
Choosing a Test Automation Framework for
Programmable Logic Controllers in CODESYS

Development Environment
Mikael Ebrahimi Salari∗, Eduard Paul Enoiu∗, Wasif Afzal∗, Cristina Seceleanu∗

∗Mälardalen University, Sweden
{mikael.salari, eduard.enoiu, wasif.afzal, cristina.seleceleanu}@mdu.se

Abstract— Programmable Logic Controllers are computer
devices often used in industrial control systems as primary
components that provide operational control and monitoring. The
software running on these controllers is usually programmed
in an Integrated Development Environment using a graphical
or textual language defined in the IEC 61131-3 standard. Al-
though traditionally, engineers have tested programmable logic
controllers’ software manually, test automation is being adopted
during development in various compliant development environ-
ments. However, recent studies indicate that choosing a suitable
test automation framework is not trivial and hinders industrial
applicability. In this paper, we tackle the problem of choosing
a test automation framework for testing programmable logic
controllers, by focusing on the COntroller DEvelopment SYStem
(CODESYS) development environment. CODESYS is deemed
popular for device-independent programming according to IEC
61131-3. We explore the CODESYS-supported test automation
frameworks through a grey literature review and identify the
essential criteria for choosing such a test automation frame-
work. We validate these criteria with an industry practitioner
and compare the resulting test automation frameworks in an
industrial case study. Next, we summarize the steps for selecting a
test automation framework and the identification of 29 different
criteria for test automation framework evaluation. This study
shows that CODESYS Test Manager and CoUnit are mentioned
the most in the grey literature review results. The industrial case
study aims to increase the know-how in automated testing of
programmable logic controllers and help other researchers and
practitioners identify the right framework for test automation in
an industrial context.

Index Terms—PLC, test automation framework, CODESYS,
Grey Literature Review, Automation framework Comparison.

I. INTRODUCTION

Testing is an important activity in the engineering of in-
dustrial control software. In certain application domains (e.g.,
automation industry), programmable logic controllers (PLCs)
provide management and monitoring for control software [1].
Even if test execution on PLCs is usually performed manually,
test automation is emerging during PLC development at dif-
ferent stages of integration. Different PLC vendors and PLC
software manufacturers have proposed several Integrated De-
velopment Environments (IDEs). One of the most frequently-
used PLC IDEs in the industry is CODESYS, a manufacturer-
independent software that is free to use. It supports all the
PLC programming languages of IEC 61131-3 standard and is
widely used by many industrial companies.

Test automation can be defined as the process of automating
software testing tasks such as test script development, test
execution, and requirements verification using an automation
test framework [2] [3]. Choosing the right test automation
tool received significant attention from both academia and
industry in recent years [4]. Furthermore, recent observations
of collaborations between industry and academia emphasize
the importance of selecting the right test automation tool since
it is a non-trivial task for many practitioners [5]. This could
stem from at least two reasons; the misunderstanding of what
important criteria to use for choosing the right tool and the lack
of knowledge of the pros and cons of using test automation
frameworks in practice.

In this paper, we address the problem of choosing the
right test automation tool for PLC programs in CODESYS
IDE by leveraging a Grey Literature Review (GLR) followed
by a comparative study on the discovered tools. Aiming at
conducting an effective comparison between the detected tools,
we discover the most important features of the test automation
tools through a literature review. We evaluate the validity of
the discovered features by asking a group of engineers of a
large automation company to review them. Based on the goal
of this study, we formulate the following research questions:

1) What are the reported test automation frameworks for
CODESYS in the grey literature?

2) What are the reported features that should be consid-
ered when choosing a test automation framework for
CODESYS?

3) How do different test automation frameworks for
CODESYS compare in terms of different features?

4) How do different test automation frameworks for
CODESYS compare in terms of their applicability to
an industrial use case?

We aim to answer these research questions using a GLR
and a case study in which we compare the identified test
automation frameworks.

II. BACKGROUND AND RELATED WORK

A. PLC Programming, IEC 61131-3 Standard and CODESYS

In recent years the IEC 61131-3 programming standard for
the automation industry has been proposed, and today it is
widely accepted and used by a variety of well-known PLC

1



Fig. 1: CODESYS Integrated Development Environment

manufacturers worldwide. The smallest independent software
unit in a PLC program is called a POU (Program Organisation
Unit), also known as a block. There are three types of POU:
function, function block (FB), and program, which can call
each other with or without parameters. Based on IEC 61131-3
standard, a POU can be programmed using several program-
ming languages [6] (i.e., structured text (ST), instruction list
(IL), ladder diagram (LD), Sequential Function Chart (SFC)
and function block diagram (FBD)).

CODESYS stands for COntroller DEvelopment SYStem,
and it is an integrated development environment (IDE) for
programming controller applications according to the interna-
tional industrial standard IEC 61131-3 [7]. The framework is
developed by Smart Software Solutions GmbH In this work,
we choose CODESYS as our IDE for two reasons. First,
CODESYS is free to use and is popular in industry [7].
Second, CODESYS is a device-manufacturer-independent IDE
1 that can be used to develop PLC programs for a wide range
of PLC devices from various vendors.

B. Related Work

In recent years, researchers have made efforts in developing
test automation frameworks for PLC software. Jamro intro-
duces a method for POU-oriented unit testing for IEC 61131-
3 languages [8]. In this approach, test cases are defined in
CPTest+, a dedicated test definition language. The proposed
approach is introduced in the CPDev engineering environment.
Recently, Hofer and Russo [9] presented a unit-testing frame-
work named APTest (Advanced Program Organization Unit
Testing) for CODESYS IDE. The framework is developed
based on the IEC61131-3 standard and CPTest+. APTest is a
POU-based framework equipped with a test library supporting
different types of assertions and compatible with CODESYS
(version 2.3). Even if these academic tools have a wide range
of capabilities such as test parallelization, simulating analog
signals, and supporting time-dependent behaviors, there is
limited evidence of how industrially-useful these frameworks
are. In addition, these tools are only compatible with older
versions of CODESYS.

1https://www.codesys.com/

CODESYS IDE 
Ecosystem

Test Automation 
Frameworks (TAFs)

TAF 
Features

TAFs ComparisonIndustrial Case Study

GLR Literature

Review

1

Industrial

 Validation

TAFs 

Selection

TAFs

 Evaluation

2

3

4

5

Fig. 2: An Overview of The Methodology used for Choosing
Test Automation Frameworks (TAFs) for PLCs.

Selecting a test automation framework is an essential part
of software testing, and recent studies have looked at different
challenges to implementing automation support. Raulamo-
Jurvane et al. [5] perfomed a GLR to identify the practitioners’
criteria for choosing the right test automation tools. The study
showed that practitioners select and embrace the widely known
and utilized tools. Garousi et al. [4] compared visual GUI
testing frameworks (i.e., Sikuli and JAutomate) using several
relevant features and perfomed an industrial case study. In
2019, Raulamo-Jurvane et al. investigated the practitioners’
opinions on evaluating testing tools by conducting an online
survey [10]. They found that evaluations in which one uses a
tool seem to be more favorable than those based on opinions
and considering the opinions of seven experts provides a
reasonable level of reliability.

These results kindled our interest in studying how to tackle
the problem of choosing a test automation frameworks for pro-
grammable logic controllers in CODESYS, especially when
these tools are used to test safety-critical industrial control
systems.

III. METHOD
In this study, we leverage a hybrid methodology that com-

bines conducting a GLR and an industrial case study. Our aim
of performing GLR is to find the most-discussed available
test automation frameworks of CODESYS IDE systematically
and reasonably, reflecting the practitioners’ point of view. In
contrast, the case study is performed to represent and compare
the functionality of the proposed frameworks on a real-world
industrial case study. The overall conceptual architecture of
the proposed hybrid methodology can be observed in Figure
2, and it will be discussed in more detail in the rest of this
section.

A. Grey Literature Review

We find the GLR as one of the most suitable approaches
to conduct our study, since the available information about
test automation frameworks of CODESYS is more accessible
online than in academic papers. Consequently, to explore the
available automation frameworks targeting CODESYS, we
need to gather information across the web, and prioritize it
based on features and popularity. We base our approach on the
GLR approach proposed by Garousi e al. [11]. The conducted
GLR approach (Step 1 in Figure III) consists of several steps.

2



TABLE I: GLR Search Strings

A B C D

CODESYS
Test Automation framework

Testing Automated Framework
Automatic

1) Search Process and Framework Selection: First, we
aim to detect the test automation frameworks available for
CODESYS, and consequently we perform a GLR by searching
for a combination of topic-related keywords on Google. We
carry out several exploratory search queries using strings such
as ”CODESYS test automation framework” and ”CODESYS
test automation tool”. Moreover, we also consider the related
search strings suggested to us by Google. However, we remove
the suggestions that include a specific framework name. We
present the final search strings in Table 1. We consider the
keywords of each column as synonyms and combine them via
the OR operator (e.g., framework OR tool). Then, we produce
the whole search string using the AND operator between the
existing keywords of columns A to D.

We follow the guidelines used by Raulamo et al. [5] to
identify the available test automation frameworks targeting
CODESYS. Firstly, the pool of contents is revised by the first
author of this paper to remove any irrelevant results from it.
Secondly, the new version of the pool is reviewed by at least
one of the authors of this paper. We only include the results
related to CODESYS-compatible test automation frameworks.
Furthermore, all the academic papers are excluded from the
contents pool. It should be noticed that in case of any con-
flicting views among authors, we leverage a voting system to
choose the results for the final pool, based on the opinion of
the majority of the authors.

2) Pool of Objects: Every result and its corresponding
information is called an ”Object” in the rest of this study. We
consider several properties for every object The considered
properties are shown in Table II. The final pool of objects and
defined criteria are accessible online on GitHub2.

3) Data Extraction Method: To classify the objects of the
pool of contents and specify the required criteria to detect the
efficient test automation frameworks of CODESYS, we follow
a systematic qualitative method of specific related work [12].
All authors of this paper have reviewed the qualitative analysis
of this work. Since coding in qualitative analysis is not just
a preliminary step of analyzing the data, but it also includes
”deep analysis and interpretation of the data meanings” [12],
we select the relevant results and analyze them.

4) Selection Criteria: The final version of considered cri-
teria to classify the objects of the pool is shown in Table
III. Since the goal is to discover the valid test automation
frameworks that are compatible with CODESYS IDE, we
checked the official CODESYS documentation. The next cri-
terion is the credibility of the object’s author, for which two
parameters are evaluated: the number of referral sites to an

2https://github.com/MikaelSalari/CODESYS-Tool-Comparison

object, and the Alexa rank of the object’s website. Moreover,
as we are looking for up-to-date frameworks compatible with
the CODESYS v3.x family, the publishing date is another
criterion used in filtering the results. The first version of the
CODESYS V3.x family was released in 20163.

B. Discovery and Validation of Features

To perform an effective comparison between the discovered
test automation frameworks of CODESYS, first, we need
to identify the most important reported features of test au-
tomation frameworks. To this end, we conduct an informal
literature review on the related work in this area to gather a list
of features that should be considered during the comparison
process (Step 2 in Figure III).

In this paper, we reviewed the literature and identified
five existing works as our sources of information for test
automation framework feature extraction: (1) The study of
Ferrari et al. [13] on the selection and adoption of formal
tools in the railway domain, (2) Umar et al. [14] which is
an overview of popular existing test automation tools, (3)
the study of Gamido et al. [15] performing a comparative
review based on the user’s needs, (4) a study [16] focusing
on some well-known test automation frameworks including
Selenium, Quick Test Professional and Testcomplete, and (5)
a comparative study [17] on two different automated visual
GUI testing tools including CommercialTool and Sikuli.

Aiming at making this work more aligned with industry,
we asked a group of engineers who are working at a large
industrial automation company in Sweden to evaluate the va-
lidity of the discovered features from their point of view (Step
3 in Figure III). These engineers are experts in developing
and testing the supervisory PLC programs. Besides feature
validation, the engineer also added two new features that are
important from the company perspective in choosing the right
test automation tool. We only include the industrial validated
features in our tool comparison study, since our priority is to
help practitioners in their choice, based on their needs.

C. Industrial Case Study

To practically use the results of this comparison, we evaluate
the applicability of the discovered test automation frameworks
for CODESYS in a real-world scenario, using an exploratory
case study using an industrial system (Step 4 & 5 in Figure
III). The case is provided by a large industrial automation
company in Sweden.

IV. RESULTS

A. RQ1 - Discovered Test Automation Frameworks

As a result of the GLR, we obtain 120000 search results
which are all written in English. We only stored the first 100
results locally to build the pool of contents since we discovered
that these contain relevant sources to our topic. Most of the
objects in the final version in the pool of objects have been
published by industry individuals, including IDE developers

3https://store.codesys.com/en/codesys.html

3



TABLE II: Considered Object Properties

Object Properties

Title Link Extracted framework Object Type Literature Type Demographic info
Documentation Tutorial Description Discussion other Grey Formal Year Author(s) Author’s Organisation

TABLE III: Selection Criteria for GLR

Selection Criteria
Author’s Credibility CODESYS Verified v3.x SupportAlexa Rank Referral Sites

and PLC vendors. Aiming to establish a trade-off between
the preferences of companies and independent framework
developers in our results, we included valid third-party devel-
opers and Github topics in the final pool. After reviewing the
content of the pool, we ended up with a pool consisting of 13
sources. After analyzing the final objects based on the defined
criteria, we discovered three test automation frameworks as the
most prevalent automation frameworks targeting CODESYS.
Out of all the collected results, 62% of the objects in the
pool are pointing towards CODESYS Test Manager4 (the
largest share of the discovered objects). Two other frameworks,
CoUnit5 and TcUnit are revealed in 15% of the objects each.
Other frameworks were mentioned in 8% of the objects. Our
results suggest that most of the discovered objects of our
GLR after screening and applying the selection criteria point
towards CODESYS Test Manager, CoUnit (formerly known
as CfUnit), and TcUnit as the predominant test automation
frameworks targeting CODESYS. We note here that CoUnit is
developed based on TcUnit and both frameworks have similar
functionality. Since CODESYS IDE officially supports only
the former, we include CoUnit in the final list of discovered
automation frameworks.

Answer RQ1: Our results suggest that the most
prevalent test automation frameworks target-
ing CODESYS IDE for PLC testing are the
CODESYS Test Manager and CoUnit.

B. RQ2 - Test Automation Frameworks Features

Conducting a comparison between the discovered test au-
tomation frameworks of CODESYS, first, we need to identify
the essential features of these test automation frameworks. To
this end, we followed a hybrid approach which consisted of a
literature review of related works followed by an industrial
feature validation. Based on three sources of information
used (academic related-works, industrial input, and official
documentation), we discovered 29 industry-reported essential
features that should be considered when choosing a test
automation framework for PLCs. We acknowledge that many
of these features are generic. Still, the instantiation of these
features is specific to PLCs. Since our aim of conducting this
work is to address the needs of industrial practitioners, we
evaluated the validity of the discovered features by checking

4https://store.codesys.com/codesys-test-manager.html?
5https://forge.codesys.com/lib/counit/home/Home/

TABLE IV: Extracted and Validated Framework Features.
Industry-validated Features

Category Feature Extraction Source
Cost [13], [14], [15], [16], [17]Company Constraints Supported Platforms [13], [14], [15]

Industrial Usage [13]Maturity Stage of Development [13]
Documentation and Report Generation [13]

Playback Record [15]
Test Suite Support [17]Testing Functionalities

Test Suite Extension Industry
Tool Flexibility Teamwork Support [13]

DevOps/ALM Integration Support [14]
Continuous Integration (CI) Support [14]

Script Language [14], [15], [17]
Availability of Customer Support [13], [14]

Quality of Documentation [13]

Usability

Maintenance Support Industry

TABLE V: Other Extracted Framework Features.

Other Features
Category Feature Extraction Source

Ease of Installation [13], [14]Company Constraints License Type Tool Documentation
Test Script Specification [13]

Supported Testable Objects Tool Documentation
Requirements Traceability [13]

Script Creation Time [14]
Testing Functionalities

Import Support [17]
Backward Compatibility [13], [17]
Standard Input Format [13]

Modularity of The Tool [13]Tool Flexibility

Framework Development Language [17]
Programming skills [14], [15]

Report Format [15]Usability
Graphical User Interface (GUI) [13]

them with a group of engineers working with CODESYS
and PLC testing in an industrial automation company in
Sweden. These engineers validated these features of a test
automation framework by marking the ones a tester would
use to choose such a framework (i.e., 15 out of 29 features
were considered important by these engineers). The list of the
discovered and validated test automation framework features
and non-validated ones as well as their category and source
of extraction, are shown in Table IV and V respectively. It
should be noted that the gathered data does not need any
further processing (e.g., open coding).

We divided the discovered features into five categories based
on their focus, including Company Constraints, Maturity,
Testing Functionalities, Framework Flexibility, and Usability.

1) Company Constraints: Cost indicates the cost model
used (FREE, MIX, PAY) [13], Supported Platforms spec-
ifies the platforms supported by the framework (Windows,
Mac, Linux) [13], Ease of Installation indicates whether
the framework installation requires installing other additional
components or it covers all the installation requirements.
(YES, NO, PARTIAL) [13], and License Type implies the
type of license used for the test automation framework (e.g.
Apache, MIT).

4



2) Maturity: Industrial Usage specifies the level of re-
ported industrial usage in academic papers and reports (HIGH,
MEDIUM, LOW) [13] and Stage of Development indicates
whether the framework is evolved through releasing different
versions (MATURE), it is an academic or early version (PRO-
TOTYPE) or it is new but has a strong fundamental roots
(PARTIAL) [13].

3) Testing Functionalities: Test Script Specification de-
termines how the test script is represented by the frame-
work: Graphical User Interface (GUI), Textual Representation
(TEXT), imported textual file (IMPORT) [13]. Supported
Testable Objects feature was discovered by reviewing the
tools documentation. This feature indicates the object types
that are supported for testing in a PLC program (APPLICA-
TION, IEC LIBRARIES, COMMUNICATION). Documen-
tation and Report Generation characterizes whether the
automatically generated reports and documentation of a tool
contain well-detailed technical details (COMPLETE) or only
some summarized technical details are available (SUMMA-
RIZED) [13]. Requirements Traceability specifies if the
framework can provide traceability between the generated test
cases to other related artifacts (YES, NO) [13]. Script Cre-
ation Time relates to the time required to produce test scripts
(QUICK, SLOW) [14]. Playback Record indicates whether
the framework can record testing sessions and playback these
as test scripts (YES, NO) [15]. Import Support specifies if the
framework can import test cases and test scripts using external
files (Python, Java, NO) [17]. Test Suite Support relates to
the framework’s ability to support the user in the creation and
execution of test suites (YES, NO) [17]. Test Suite Extension
indicates the ease of extending test suites using provided
features of a certain test automation tool. Developing new
test suites in a PLC program is a crucial and sensitive task
because all the connections between the different test suites
(test counterparts of a POU under test) should be updated after
any new modifications. (EASY, MEDIUM, HARD).

4) Framework Flexibility: Backward Compatibility in-
dicates to which extent test scripts developed with previous
versions of the CODESYS framework can be used in the
current version (YES, NO, UNCERTAIN) [13]. Standard
Input Format specifies whether the language that is used for
developing test cases is based on a standardized programming
language or not (YES, NO) [13]. Modularity of The Tool
specifies if the framework supports a wide range of different
modules and add-ons that can be used to extend its function-
ality or not (YES, NO) [13]. Teamwork Support indicates
whether the framework supports multi-user development and
collaboration (YES, NO) [13]. Framework Development
Language details the programming language that is used to
develop the framework (e.g., Python, Java, C, Jython) [17].

5) Usability: Programming Skills specifies what level
of programming skills is needed to work with the frame-
work. Available options are advanced needed programming
skills (ADVANCED), no programming skills required (NOT
REQUIRED) or it only required for advanced test scripts
(PARTIAL) [14]. DevOps/ALM Integration Support relates

to the framework’s ability to support integration with DevOps
or ALM environments (YES, NO) [14]. Continuous Inte-
gration (CI) Support indicates if the framework supports
CI frameworks (YES, NO) [14]. Script Language speci-
fies the programming language(s) required for creating test
scripts (e.g. Python, Structured Text, Function Block Diagram,
Ladder) [14]. Report Format indicates how the test reports
are represented in a framework (HTML, XML, CSV) [15].
Availability of Customer Support evaluates the level of
support and tutorials provided for the users of a certain tool
(HIGH, MEDIUM, LOW) [13]. Graphical User Interface
(GUI) investigates the suitability of the designed graphical
user interface of a framework. Available options are; The
GUI is designed properly and is powerful enough to cover
almost all the available functionalities of a framework (YES);
The provided GUI is user-friendly, but does not provide a
graphical representation of all functionalities of a framework
(PARTIAL); The GUI exists but it is limited in its func-
tionality (LIMITED); the framework has no GUI (NO) [13].
Quality of Documentation Specifies the framework’s level
of the documentation and tutorial which is provided by the
framework developers. Available options are; The framework
is well-documented and a wide range of updated tutorials and
framework specifications are easily accessible online (VERY
GOOD); The framework is documented properly but the
provided documentation is not easily accessible or it is only
available offline (GOOD); The framework is not documented
sufficiently or it can not be accessed easily (INSUFFICIENT)
[13]. Maintenance Support implies the level of maintenance
support that is provided and whether testing new functions in
a POU under test is easy or not (EASY/HARD).

Results RQ2: We discovered several features
that should be considered when choosing
a test automation framework for PLC test-
ing: cost, supported platforms, industrial use,
stage of development, documentation and re-
port generation, record playback, test suite
support, test suite extension, team support,
DevOps/ALM support, continuous integration
support, scripting language, import support,
availability of customer support, quality of
documentation, and maintenance support.

C. RQ3 - Test Automation Frameworks

We conducted an initial comparative examination given
the features identified in the previous section. We focus on
Test Manager and CoUnit as our chosen test automation
frameworks in CODESYS IDE. The results of this comparative
examination are shown in Table VI. Even if both frameworks
support only Windows platforms and have continuous integra-
tion support, we can observe significant differences. In terms
of cost, CODESYS Test Manager is a commercial product
but available for academics to use in their research. CoUnit
is an open-source software freely available. Industrial usage
of Test Manager is considered HIGH since its use has been

5



reported in several industry-related reports [18] [19] [20] [21]
[22]. Regarding the framework’s maturity, CODESYS Test
Manager seems to be more mature and has evolved through
eight different versions so far, compared to CoUnit (i.e., in
3 versions). One of the main advantages of CODESYS Test
Manager is the ability to record and playback that is not
supported by the counterpart framework. Both frameworks
support test suites in .xml file format. In addition, CODESYS
Test Manager has the advantage of supporting .tsd (Tamino
Schema) extension (used as a container of elements that a
Tamino XML Server document contains). CODESYS Test
Manager supports test suites to be extended by using specific
predefined test commands, but the extension of test suites
in CoUnit demands ST programming knowledge, and the
user needs to instantiate the code for each single test case.
CODESYS Test Manager supports Python and all IEC 61131-
3 programming languages for developing the test scripts, while
CoUnit only supports the ST programming language. Avail-
ability of customer support is another essential factor from an
industry point of view in this comparison, and CODESYS Test
Manager seems to be superior in this respect. The quality of
the documentation provided by the CODESYS Test Manager
is excellent since comprehensive educational material and
good video tutorials are available. On the other hand, CoUnit
provides less documentation and tutorials. Maintenance sup-
port is another important feature proposed. CODESYS Test
Manager supports direct main PLC program testing and one
instantiation of the code under test can be used in all related
test suites but these features are not available in CoUnit.

Results RQ3: Based on our initial comparison
between CODESYS Test Manager and CoUnit
based on the 15 industry-validated features,
the results show that CODESYS Test Manager
is more mature and has several advantages
over CoUnit, including user support, record
and playback features, and easy test suite
extension. Nevertheless, CoUnit, as an open-
source counterpart, also provides testers with
many key features used during PLC testing.

D. RQ4 - Applicability in an Industrial Case Study

Aiming to answer this research question, we applied the
two test automation frameworks we found through our GLR
to an industrial case study by considering several possible
test scenarios. Our case is a control system provided by a
large automation company in Sweden consisting of several
POUs. This system is developed in the FBD programming
language. The Function Block (FB) in this POU consists of
several computational blocks executed cyclically. The program
executes in a cyclic loop where every cycle contains three
phases: read (reading all inputs and storing the input values),
execute (computation without interruption), and write (update
the outputs). The FBD program is created as a composition of
interconnected blocks with data flow communication. When
activated, a program consumes one set of input data and then

Fig. 3: An example of the POU under test before (top)
and after execution (bottom) of the developed test scripts in
CODESYS Test Manager

executes to completion. We considered functional scenarios
for testing the POU. We evaluate this functionality and the
applicability of Test Manager and CoUnit by automating the
test execution for the provided case and all POUs. To this end,
we generated several test suites consisting of manually created
test cases.

To automate the test execution in CODESYS Test Manager,
the first step needed is instantiating the POU in the main PLC
program. Next, we create the required test suites containing
10 test cases. Each test case includes several test actions that
are supposed to alter the values of the inputs and compare
the output of the PLC program with the expected result. For
example, five test cases target the functionality of the TON
block. In these test cases, we provide just one active input
signal with the expected output Err being true. The subsequent
five test cases use two active signals at different random time
slots. After executing the developed test scripts in CODESYS
Test Manager, the results of running the PLC program can be
observed during execution as shown in Figure 3. After running
the test suite in CODESYS Test Manager, we observed all the
test cases passing, as can be seen in Figure 4. The CODESYS
Test Manager automatically generates a test report in HTML
which includes information on e.g., test settings, test result
and status, execution time, pinned scripts.

To evaluate the applicability of CoUnit, we developed ten
different test cases. Since CoUnit does not contain any GUI
interface facilitating the creation of test cases, we developed
the test scripts in ST language. Moreover, unlike CODESYS
Test Manager, CoUnit does not support the use of the entire
Program as a testable object type, and it only supports this
functionality at the POU level. We instantiate the POU for
every defined test case. In addition, the framework needs to
be added as a library into the target PLC program. Also, for
each POU under test, the user needs to develop a dedicated
function block as a test counterpart, which is responsible for
four main tasks, including instantiating the POU under test,
defining the inputs, describing the expected output, and finally,
calling the CoUnit assertion methods to compare the expected
output with the actual one. A snippet of the developed test
suite for the CoUnit test automation framework implemented

6



TABLE VI: An Overview of the Comparison between CODESYS Test Manager and CoUnit based on the Validated Features.
Feature Test Manager CoUnit

Cost MIX
*Commercial license, but free to use for academic purposes

FREE
*Open Source license

Supported Platforms Microsoft Windows Microsoft Windows
Industrial Use HIGH LOW

Stage of Development MATURE
*8 versions released so far

PARTIAL
*3 versions released so far

Documentation and Report Generation COMPLETE SUMMARIZED

Playback Record YES
*Can be realized via the Test Progress feature NO

Test Suite Support YES
*.tsd, .xml extensions are supported

YES
*.xml extension is supported

Test Suite Extension

EASY
*New test cases can easily be developed using the available graphical test commands.

*One instantiation of the POU under test can be used in all new test suites and test cases
*The number of test cases inside a test suite is not limited

HARD
*New test cases need to be developed in ST language

*For every new test case a new distinct instantiation of the POU under test is required
*Every test suite can only contain 100 test cases

Teamwork Support NO NO
DevOps/ALM Integration Support No Information Provided No Information Provided

Continuous Integration (CI) Support Yes Yes
Script Language Python, All IEC 61131-3 Supported Programming Languages Structured Text (ST)

Availability of Customer Support: YES(Official CODESYS costumer support is available) NO

Quality of Documentation VERY GOOD
*Both tool documentations and official tutorial videos are available online

GOOD
*Tool documentations and textual tutorial are available online

Maintanance Support
EASY

*Direct testing of the PLC main program is supported
*GUI and graphical test commands are available

HARD
*Direct testing of the main PLC program is not supported

*GUI and graphical test commands are not available

Fig. 4: A generated test report in CODESYS Test Manager

in the ST programming language is shown in Figure 5. After
running CoUnit in the main program (PRG Test in Figure 5),
the framework automatically executes the defined test cases on
the POUs under test. When the test execution ends, CoUnit
generates a test report in the XML format that provides users
with information about the test results, including test suite
name, the number of test cases, test case name, test case status
(PASS or FAIL), and the class name.

Finally, we report our overall experiences in using both test
automation frameworks. The following results and features
are PLC-specific. Regarding installation and configuration,
we found out that setting-up CODESYS Test Manager seems
to be more straightforward since it can be installed as a
standard add-on package. On the other hand, CoUnit needs
to be installed as a package and imported as a library in

Fig. 5: A test suite developed in the CoUnit

every project under test. Regarding the ease of use, CODESYS
Test Manager is more user-friendly and provides features for
developing test scenarios using available test commands in the
GUI integrated in CODESYS IDE. Moreover, developing test
cases with this framework does not require the use of any of
the IEC61131-3 programming languages. On the other hand,
creating the same test cases in CoUnit is more time-consuming
due to the use of ST scripts and instantions. When comparing
the frameworks’ capabilities related to testable objects, we
found out that the Test Manager can create harnesses for PLC
applications, IEC libraries, and communications. In contrast,
CoUnit can only be used at the application level. Regarding
test assertion timeouts we note here that PLC programs are
executed cyclically in a loop, and one needs to set a test
assertion timeout to make sure that the result comparison
process ends after a certain amount of time. Only CODESYS
Test Manager can be used to set a custom timeout, a useful
feature when testing complex PLC programs. After executing
test scripts on both frameworks, we discovered that test reports
generated by CODESYS Test Manager provide the user with
detailed information. On the other hand, CoUnit only reports
scarce information.

Results RQ4: Using the discovered features as
a basis, the application on an industrial PLC

7



program revealed that both frameworks pro-
vide proper automation functionality. However,
CODESYS Test Manager seems to be more
mature, provides more helpful test execution
features, and is more user-friendly. In contrast,
CoUnit seems limited in its usefulness, and
working with it requires ST programming.

E. Threats to Validity

In this section, we discuss some of the threats to validity
for this study. To address internal validity, we iterated on the
search strings by conducting several initial searches. Aiming at
minimizing the bias in the process of interpretation, analysis,
and selection of the gathered sources, we made sure that at
least two authors of this paper reviewed each source. The
extraction method we used for filtering and categorizing the
gathered data in the pool of contents is based on the systematic
qualitative analysis approach proposed by Huberman et al.
[12]. When considering the construct validity of our study, we
employed already proposed methods [4], [5]. Consequently,
the data has been examined and checked multiple times to
realize an agreement on the obtained features in this study.
Regarding external validity, since this research is conducted in
a very specific domain and it only focused on test automation
tools of a particular PLC IDE, more studies are needed to gen-
eralize the process of choosing a test automation framework.

V. CONCLUSIONS AND FUTURE WORK

This paper addresses the practical problem of choosing the
right test automation tool for PLC programs in CODESYS
IDE. First, we identified the most-discussed test automation
tools of CODESYS by performing a GLR on existing test au-
tomation frameworks of CODESYS followed by a qualitative
analysis based on several criteria. Aiming at performing an
effective comparison between the discovered test automation
frameworks of CODESYS, we identified 29 features as im-
portant features of test automation tools through conducting
a literature review. Finally, to investigate the applicability of
the discovered tools on a real-world case study, we performed
an automated test execution on an industrial case study based
on two different test scenarios. Our findings imply that both
discovered test automation tools of CODESYS provide user
with necessary automation functionalities but CODESYS Test
Manager seems more mature, has more useful test execution
features, and is more user-friendly. By contrast, CoUnit is not
user-friendly, is limited in its automation features, and work-
ing with it demands ST programming knowledge. In future
research, we plan to conduct a more comprehensive evaluation
of CODESYS Test Manager when used in an industrial context
as well as how to connect such a test automation framework
for automated testing of timer and stateful blocks in PLCs.

VI. ACKNOWLEDGMENT

This work has received funding from EU’s H2020 research
and innovation program under grant agreement No 957212.

REFERENCES

[1] Irfan Ahmed, Sebastian Obermeier, Sneha Sudhakaran, and Vassil Rous-
sev. Programmable logic controller forensics. IEEE Security & Privacy,
15(6):18–24, 2017.

[2] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software
testing: introduction, management, and performance. Addison-Wesley
Professional, 1999.

[3] Eliane Figueiredo Collins and Vicente Ferreira de Lucena. Software
test automation practices in agile development environment: An industry
experience report. In International Workshop on Automation of Software
Test (AST), pages 57–63. IEEE, 2012.

[4] Vahid Garousi, Wasif Afzal, Adem Çağlar, İhsan Berk Işık, Berker
Baydan, Seçkin Çaylak, Ahmet Zeki Boyraz, Burak Yolaçan, and Kadir
Herkiloğlu. Comparing automated visual gui testing tools: an industrial
case study. In International Workshop on Automated Software Testing,
pages 21–28, 2017.

[5] Päivi Raulamo-Jurvanen, Mika Mäntylä, and Vahid Garousi. Choosing
the right test automation tool: a grey literature review of practitioner
sources. In International Conference on Evaluation and Assessment in
Software Engineering, pages 21–30, 2017.

[6] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems. Springer, 2010.

[7] Dag H Hanssen. Programmable logic controllers: a practical approach
to IEC 61131-3 using CODESYS. John Wiley & Sons, 2015.

[8] Marcin Jamro. Pou-oriented unit testing of iec 61131-3 control software.
IEEE Transactions on Industrial Informatics, 11(5):1119–1129, 2015.

[9] Florian Hofer and Barbara Russo. Iec 61131-3 software testing:
A portable solution for native applications. IEEE Transactions on
Industrial Informatics, 16(6):3942–3951, 2019.

[10] Päivi Raulamo-Jurvanen, Simo Hosio, and Mika V Mäntylä. Practitioner
evaluations on software testing tools. In Proceedings of the Evaluation
and Assessment on Software Engineering, pages 57–66. 2019.

[11] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. The need for
multivocal literature reviews in software engineering: complementing
systematic literature reviews with grey literature. In International
Conference on Evaluation and Assessment in Software Engineering,
pages 1–6, 2016.

[12] A Michael Huberman and Johnny Saldana Matthew B Miles. Qualitative
data analysis: A methods sourcebook. 2019.

[13] Alessio Ferrari, Franco Mazzanti, Davide Basile, and Maurice Ter Beek.
Systematic evaluation and usability analysis of formal methods tools
for railway signaling system design. IEEE Transactions on Software
Engineering, 2021.

[14] Mubarak Albarka Umar and Chen Zhanfang. A study of automated
software testing: Automation tools and frameworks. International
Journal of Computer Science Engineering (IJCSE), 6:217–225, 2019.

[15] Heidilyn Veloso Gamido and Marlon Viray Gamido. Comparative review
of the features of automated software testing tools. International Journal
of Electrical and Computer Engineering, 9(5):4473, 2019.

[16] Harpreet Kaur and Gagan Gupta. Comparative study of automated
testing tools: selenium, quick test professional and testcomplete. Journal
of Engineering Research and Applications, 3(5):1739–1743, 2013.

[17] Emil Borjesson and Robert Feldt. Automated system testing using visual
gui testing tools: A comparative study in industry. In International
Conference on Software Testing, Verification and Validation, pages 350–
359. IEEE, 2012.

[18] Sebastian Ulewicz and Birgit Vogel-Heuser. Increasing system test cov-
erage in production automation systems. Control Engineering Practice,
73:171–185, 2018.

[19] Sebastian Ulewicz and Birgit Vogel-Heuser. Guided semi-automatic
system testing in factory automation. In International Conference on
Industrial Informatics (INDIN), pages 142–147. IEEE, 2016.

[20] Sebastian Ulewicz and Birgit Vogel-Heuser. System regression test
prioritization in factory automation: Relating functional system tests to
the tested code using field data. In Annual Conference of the IEEE
Industrial Electronics Society, pages 4619–4626. IEEE, 2016.

[21] Sebastian Ulewicz and Birgit Vogel-Heuser. Industrially applicable sys-
tem regression test prioritization in production automation. Transactions
on Automation Science and Engineering, 15(4):1839–1851, 2018.

[22] GIACOMO Barbieri, GABRIEL Quintero, OSCAR Cerrato, JULIAN
Otero, DAVID Zanger, and ALEJANDRO Mejia. A mathematical
model to enable the virtual commissioning simulation of wick soilless
cultivations. J. Eng. Sci. Technol, 16:3325–3342, 2021.

8


