
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

GeoRep – Resilient Storage for Wide
Area Networks
DANIEL BRAHNEBORG1, ROMARIC DUVIGNAU2, WASIF AFZAL3, SAAD MUBEEN3
1Braxo AB, Stockholm, Sweden (email: first@braxo.se)
2Chalmers Tekniska Högskola, Göteborg, Sweden (email: first.last@chalmers.se)
3Mälardalens Universitet, Västerås, Sweden (email: first.last@mdu.se)

Corresponding author: Daniel Brahneborg.

This research was funded by Braxo AB and the research school ITS ESS-H.

ABSTRACT Embedded systems typically have limited processing and storage capabilities, and may only
intermittently be powered on. After sending data from its sensors upstream, the system must therefore be
able to trust that the data, once acknowledged, is not lost. The purpose of this work is to propose a novel
solution for replicating data between the upstream nodes in such systems, with a minimal effect on the
software architecture. On the assumption that there is no relative order between replicated data tuples, we
designed a new replication protocol based on partial replication. Our protocol uses only 2 communication
steps per data tuple, instead of the 3 to 12 used by other solutions. We verified its failover mechanism
in a proof-of-concept implementation of the protocol using simulated network failures, and evaluated the
implementation on throughput and latency in several controlled experiments using up to 7 nodes in up to 5
geographically separated areas, with up to 1000 data producers per node. The recorded system throughput
increased linearly relative to both the number of nodes and the number of data producers. For comparison,
Paxos showed a performance similar to our protocol when using 3 nodes, but got slower as more nodes were
added. The lack of a relative order, in combination with partial replication, enables our system to continue
working during network partitions, not only in the part containing the majority of the nodes, but also in any
sufficiently large minority partitions.

INDEX TERMS store-and-forward, replication, distributed computing, resilience, availability

I. INTRODUCTION

ALL over the world, various types of disasters happen
with both regular and irregular intervals [1]–[4]. These

disasters, which could be caused by natural, technical, po-
litical or other kinds of events, affect network and power
equipment, and might therefore lead to outages for inter-
net services [5]–[7]. Such infrastructure failures have been
showed to be about twice as likely the cause for services
being unavailable to clients, as compared to failures in the
servers themselves [8]. Oftentimes, these infrastructure fail-
ures can be mitigated by using multiple geographically sepa-
rated servers [1], [9]–[11], conveniently offering protection
from failures in both infrastructure and individual servers.
The servers exchange data with each other as necessary,
allowing clients to connect to any one of them. If the sys-
tem uses different cloud providers for each data center to
mitigate the risk of failures due to software or configuration
upgrades [12], the probability for some event killing multiple
nodes during the processing of a particular data tuple is

effectively zero.
Maintaining the same data on multiple servers is not a new

problem. A common solution is to use full replication, which
sends all information regarding the processed data to all other
servers [13]. This is often managed via a master server as in
Paxos [14], [15] or Raft [16], ensuring both that all data and
its operations are communicated to all servers, and that the
operations are processed in the same order [17].

Full replication is easy to understand and reason about, and
is implemented in various concrete tools and libraries, e.g.,
Redis1 and Spread2. It forms the basis for eventual consis-
tency [18], and for Convergent and Commutative Replicated
Data Types (CRDTs) [19]. It is good for web applications
and other request-response based systems as it gives good
availability for external readers, which can send the requests
to any one of the included servers and get reasonably current
data in return. Because the system can freely select one or

1https://redis.io
2http://www.spread.org

VOLUME 4, 2016 1

https://redis.io
http://www.spread.org

Brahneborg et al.: Resilient Storage for Wide Area Networks

more remaining servers to take over the duties of a failed
server [20], this also makes resilience, as described by the
ResiliNets project [3], [21], straightforward. Resilience is
then the degree of how well a system can recover from
failures. This differs from robustness, which is how well the
system behaves during normal operations.

However, full replication also has a number of short-
comings. It wastes network traffic [2], [22], as the amount
of transmitted data grows at least linearly by the number
of servers in the system. It requires all servers to be able
to reach each other, possibly going via one or more other
servers. When there is a network partition, by which we
mean any type of failure breaking full reachability, system
availability [10], [23]–[26] is reduced as clients can then only
perform updates on the nodes in the remaining majority part,
if any. The required coordination can be costly [27], [28] and
limit system performance.

In this work, we envision an application providing a mes-
sage queue for event data sent from sophisticated sensors or
IoT devices. The data tuples are added to the queue by the
devices, and then one by one pushed by the queue itself to
the service responsible for that particular type of data. After
being successfully forwarded, each data tuple is removed
from the queue.

The queue’s push construct has a few important implica-
tions, making previous state-of-the-art non-optimal. One of
the explicit goals in current work on replication is that the
data tuples should be delivered and thereby be visible to
all other nodes. An alternative to this full replication is to
use the more resource conservative partial replication, which
only sends data tuples to a subset of the servers [10]. In our
use case, each message needs to be visible to just one single
server, to ensure that it is delivered only once. It is not until
a server fails that the application layer on the other servers
should be made aware of its messages, again only on a single
server per message.

As each data tuple is independent, we have no need for
consistent operation ordering, and therefore do not need any
mechanism for enforcing this order [29]. As there are no
external readers pulling messages from the queue, we also
do not need all nodes to receive the same set of data and
its operations, and thus have no use for the consistency
guarantees provided by full replication.

Partial replication saves both network and other resources
compared to full replication, but makes it difficult to main-
tain a consistent, global order between data tuples. Previous
works in this area [30]–[34] solve this by using some variant
of atomic broadcast [35]–[39]. Unfortunately that solution
requires additional network traffic (between 1 and 10 com-
munication steps, depending on the protocol) and relatively
complex algorithms. This creates a problem with scalability,
which can be observed in the literature on this topic by
noticing that the system throughput does not always increase
when new nodes are added. The throughput typically falls
relatively quickly when the number of nodes to replicate to
increases. This can, for example, be seen in the evaluation

of GentleRain [40], where the throughput increases signifi-
cantly slower when there are more than about 10 servers.

The purpose of this work is to design a replication protocol
for a resilient message queue with high efficiency, allowing
disaster-resistant processing of 1000 or more messages per
second (MPS) per server, with better scalability than in state-
of-the-art. The resulting design was evaluated using a proof-
of-concept implementation, tested on servers scattered across
multiple continents. Even on servers with modest perfor-
mance, we achieved up to 3440MPS per node in the geo-
diverse case, replicating each data tuple to a random other
server in the world. By always using the nearest server, e.g.,
from New York to Toronto, we instead reached 5661MPS
per node.

We claim the following contributions in relation with this
protocol.

1) A high level description of its functionality.
2) An analysis of its reliability in terms of availability,

potential data loss, and potential data duplication.
3) A method to verify its failover mechanism.
4) A performance analysis on throughput, both when de-

ployed within a local network and for a geo-distributed
system configuration.

5) An open-sourced implementation.

Following this introduction is a description of the as-
sumptions we have made about our system model, and a
sample application context. Section II describes the proposed
protocol. Next follows evaluations of the protocol from three
different perspectives. First, Section III contains a theoretical
analysis of the reliability. Then, Section IV describes the
verification of the failover mechanism, and finally Section V
describes the setup for the experiments conducted to evaluate
the behaviour in a real-world configuration, focusing on the
quality attribute throughput. The results are discussed in
Section VI, and related work in Section VII. Section VIII
holds conclusions and some ideas for future work.

This paper is an extension to the previously published
conference paper [41] presenting this protocol. The main
differences between that version and this updated article, are
Section I-C discussing our requirements, the extension of
the “Duplication Analysis” subsection into a more complete
Reliability Analysis in Section III, the failover verification in
Section IV, and an extended list of references.

A. SYSTEM MODEL
Our system model is a classic store-and-forward queue [42],
with external sets of producers and consumers [43]. Data
tuples, described in more detail below, are received from the
producers and stored in the queue. As soon as possible after
they are received, each data tuple is forwarded by the queue to
one of the consumers. When acknowledged by the consumer,
the data tuple is removed from our system. The data tuples
are therefore managed by the queue for a relatively short time
period, normally less than 1 second. There are no end-to-end
acknowledgements.

2 VOLUME 4, 2016

Brahneborg et al.: Resilient Storage for Wide Area Networks

The part of the system we can control and manipulate
in this model is just the queue itself, which comprises a
collection of n nodes, named node1, node2, . . ., noden. Each
node knows about all other nodes, can exchange data with
any other node, and may join and leave the system at any
time. The nodes are crash-recovery, so they may rejoin after
crashing. The communication between the queue nodes is
asynchronous.

Each producer and consumer is a third party system con-
nected to one or more queue nodes. We assume that each
producer maintains a list of addresses to multiple nodes they
can use when sending their data tuples. However, we cannot
change the communication protocol used with these parties,
nor anything else in their systems. Due to this, a server cannot
inform clients about the other servers, unless that is already
part of the protocol between clients and servers.

The data tuples contain the following fields.
id A globally unique id.
payload

Opaque application specific payload.
In addition to n, the number of nodes in the system, we

will use f for the number of nodes which are allowed to fail
at the same time without data being lost. The value of f is
typically 1 or 2.

We use the term “majority replication” for all data replica-
tion protocols based on inequality (1) below. Full replication
normally uses number of nodes to send write operations to
(w) = n and number of nodes to read data from (r) = 1, which
trivially satisfies this condition [44]. Another variant is to
wait for acknowledgements from at least ⌊n/2⌋ + 1 nodes
for both write and read operations [45].

w + r > n (1)

Security concerns such as authentication and encryption
are not part of the model. There are also no byzantine
failures [46], with nodes sending arbitrarily erroneous data.

B. EXAMPLE APPLICATION
One of the application areas matching our system model
is application-to-human messaging, e.g. an SMS gateway.
Such gateways are used by SMS brokers, connecting clients
via internet to mobile network operators. These clients are
companies sending event data from their IoT devices, authen-
tication codes, meeting reminders and similar information.
Using SMS makes it possible to reach all customers without
them having to install any additional software on their mobile
phones. Fig. 1 shows a schematic view of this setup. In this
use case, the replication would be done between multiple
SMS gateways belonging to the same SMS broker, without
affecting the protocols towards neither the client companies
nor the operators. In our system model, the clients are the
producers, and the operators are the consumers.

We will use an SMS gateway for the motivation of various
assumptions and decisions throughout this paper. For exam-
ple, n is in this context typically at most 10. The payload

Operator

Broker

IoT DeviceServer

Clients

IoT DeviceIoT Device

FIGURE 1. Companies sending text messages from multiple IoT devices, an
SMS broker with multiple servers, mobile network operators, and customers’
mobile phones.

field in the data tuple consists of the sender’s and recipient’s
phone numbers, the message text, and possibly additional
other information, in total a few hundred bytes.

The network operators implement their own message
queues, making the mobile phone user the final consumer.
This affects the delivery guarantees we must support, as it is
important that all messages are delivered as soon as possible,
but it is not a big problem if an occasional message is deliv-
ered twice. Similar to the established terms “at most once”
and “at least once”, we call this “once plus epsilon” delivery.
The term “at least once” allows any number of repetitions of
each message, but we want to explicitly minimize these.

C. PROBLEM STATEMENT AND REQUIREMENTS
For our store-and-forward system model in general, and our
SMS application in particular, the problem addressed in this
paper is to find a way to replicate the forwarded data tuples as
effectively as possible, with minimal changes to an existing
application. By “effectively” we mean high throughput and
low CPU and network usage.

Next, we summarize our requirements, which are based
on current industry standards for SMS traffic in general.
An overview of the required data flows for a configuration
with two nodes is shown in Fig. 2. A program, named
ExampleApp, is running on each node, using a context in-
dependent subsystem implementing the replication protocol.
In the figure this subsystem is called GeoRep, as that is the
name of our proposed solution. A producer, of which there
may be many, sends data to ExampleApp on one of the nodes.
The producers here correspond to the companies in Fig. 1.
ExampleApp then tells the replication subsystem to store the
data in its local persistent storage, and replicate it to the
other node. When ExampleApp has forwarded the data to a
consumer, corresponding to one of the operators in Fig. 1, it
tells GeoRep to delete the data on both nodes.

The GeoRep subsystems communicate with each other for
replication and failure detection. When a failed node has
been detected, GeoRep tells ExampleApp on the working
node to forward the data tuples originally received by the
failed node. So, ExampleApp does not know anything about
replication, and GeoRep knows neither of the producers nor
the consumers.

This architecture has several advantages.
1) ExampleApp can maintain its data tuples freely, reorder-

ing and delaying them as needed, without any network
traffic at all.

2) The API towards the replication system is small and
generic, allowing many different solutions.

VOLUME 4, 2016 3

Brahneborg et al.: Resilient Storage for Wide Area Networks

node 1 node 2

ExampleApp

Producer

GeoRep

Data Tuple Storage

Consumer

ExampleApp

GeoRep

Data Tuple Storage

store
delete

store
deleteadopt adopt

store forward

FIGURE 2. Architecture overview for ExampleApp running on two nodes.

3) The replication system does not require any standalone
components, which may otherwise add complexity to
the installation and maintenance procedures for the full
ExampleApp system.

We assume all n nodes receive the same amount of traffic,
m messages per second. Using full replication will then
lead to the CPU load of O(nm) on each node, which is
undesirable as more system nodes will require a lower m. We
therefore need partial replication, giving a load of O(fm),
which is independent of n. We have set a target throughput
of 1000MPS per node.

There are a few potential solutions we need to dismiss for
various reasons.

Having the “find the next data tuple” operation in the
replication system
If the selection of the next data tuple to forward to the
consumer is handled by the replication system, a global
consensus must be reached frequently to ensure each
data tuple is handled by one single node.

Apache Kafka and other standalone engines
Standalone systems have their advantages, but make the
system architecture more complex as they need their
own life-cycle management.

Systems requiring modifications in the producers or con-
sumers
For example, ChainReaction [47] uses an API where
new data tuples are sent to one node and acknowl-
edged by another. Typically SMS brokers integrate with
many different systems developed and maintained by
other companies, making any API changes impossible
in practice.

II. PROPOSED SOLUTION
In this section we describe our proposed replication protocol,
named GeoRep. It is designed to be used on n nodes, of
which f nodes may fail without data being lost.

A. PROTOCOL DESCRIPTION
Here we describe the activities carried out when GeoRep
starts and stops, how data is replicated, and how node failures
are handled.

We amend the data tuples with an additional owners field,
containing an ordered list of f + 1 unique node identifiers.
The first node referenced in this list is the one which orig-
inally received this tuple, and the remaining nodes are the
failover nodes for this specific data tuple.

1) Startup
At startup, the application layer in ExampleApp provides its
selected value for f to the GeoRep subsystem, and an initial
list of other nodes. GeoRep then loads any previously stored
data tuples into appropriate data structures in memory. When
that is completed, it waits for contact requests, while also
trying to make contact with the other nodes.

In response to a contact request from nodex, GeoRep on
the contacted node returns a welcoming message with its
list of currently known nodes. This list includes temporarily
stopped nodes and their expected return times (see Sec-
tion II-A3 below). The contacted node informs the others
about nodex, while nodex tries to connect to the existing
nodes, getting their respective lists of known nodes. If any
node gets an update during this phase, the full list is broadcast
to all other nodes. Eventually, this will converge, from which
point all nodes send periodic heartbeats [17] to all other
nodes unless other data has recently been sent.

If a node returns after a short time, each welcoming mes-
sage will also contain the list of entries adopted by each node.
These entries can then be removed by the returning node to
reduce the number of duplications.

2) Replication
According to our system model described in Section I-A,
f nodes are allowed to fail without resulting in data loss. All
received data tuples must therefore be replicated to at least f
additional nodes before the corresponding acknowledgement
can be sent to the producer. We do not need to replicate the
data to more than these f nodes, as there is no requirement
of keeping all nodes identical. The replication algorithm
therefore becomes as follows.

1) The application layer in ExampleApp requests some
opaque data to be replicated.

2) GeoRep creates a list of f other nodes known to be alive
out of the other n − 1 ones it knows about, putting this
list in the owners field of the data tuple. If the number of
alive and reachable nodes is less than f , the operation is
terminated immediately, and a failure status is returned
to the application. If this happens, the producer can send
the data to another node.

4 VOLUME 4, 2016

Brahneborg et al.: Resilient Storage for Wide Area Networks

3) The data tuple is replicated to the f selected nodes.
4) GeoRep returns a condition variable to the applica-

tion. This variable is signalled when all nodes have
responded. The application can therefore be as syn-
chronous as it wants to be, while GeoRep remains
asynchronous.

If multiple producers request entries to be replicated suf-
ficiently close in time to the same node, these are all sent
together. When receiving an entry from another node, it is
stored locally and a response sent back, but no other action
is taken. In particular, none of the received messages are
forwarded at this point. Fig. 3 shows the replication when
n = 5 and f = 2, for a message received by node1, and the
f other nodes being node3 and node4.

Producer

node5

node4

node3

node2

node1
payload: x id: 42

payload: x
owners: 1,3,4

FIGURE 3. Replicate a payload to a subset of size 2 of the 5 known nodes,
here nodes 3 and 4. This payload is sent neither to node2 nor node5.

3) Failover

If node1 does not receive anything from node2 for some
time, node1 suspects that node2 is down and stops replicating
entries to it [48]. It resumes replication to node2 only after
node2 has sent proof-of-life by means of new data.

The reason for this lost connection may be a network
outage, resulting in multiple isolated subsets of the original n
nodes still in contact with each other. Each network partition
with such a subset of at least f + 1 nodes can continue
to run as before. This is in contrast to replication protocols
using majority quorums, as they only allow the nodes in the
majority to accept new data.

After some configurable time, or after the recovery timeout
given by node2 when it exited, node2 is considered dead. If
node1 ends up as the first node in the owners list for one or
more entries, the application running on node1 is notified,
one entry at a time. For these entries, node1 is now the only
node allowed to forward them to the consumer. We call this
transfer of ownership adoption. The identifiers of the adopted

and successfully sent entries are stored for a limited time,
making it possible to notify node2 should it return.

As node1 knows the identifiers of the rest of the nodes to
which each entry was replicated, it will try to inform those
nodes about updated statuses. Only the nodes in the owners
list will ever send updates and deletes for a particular entry,
and only to the nodes originally stored in that list.

4) Exiting
When ExampleApp exits and tells GeoRep to shut down, this
event is broadcast to all other nodes, including a timeout for
when the node expects to be back. This timeout is also stored
locally. The timeout tells the other nodes when they can start
adopting that node’s messages. If the original node comes
back after the timeout has expired, it can assume all of its
messages have been adopted by the other nodes.

B. PEER LIFE CYCLE
Fig. 4 shows the states and transitions used by each node for
each one of the other nodes. A node maintains its own list of
states for these peer nodes, so all nodes can take different
decisions on which other nodes to replicate data to. This
is intentional, and an important feature of this replication
protocol as it both avoids having to reach consensus on the
set of reachable servers, and allows the protocol to continue
to work even in case of partial failures. As our model has
crash-recovery nodes, there is no end state.

Terminated

Arnold

Active

Contacted Schrödinger

T

Prospect

send
greeting

got data

got Goodbye

got data

no data

 still no datagot data

no data

got data
long timeout

got data

FIGURE 4. The life cycle of each peer.

When a node is informed about the existence of a new peer,
the new peer starts in the Prospect state, causing the node
to send it a greeting. When the peer replies with some data,
regardless of the current state, it is moved to the Active state.
This is the only state where it can receive new data tuples,
and is marked with boldface.

When no data has been received for some time, the peer
first moves to the state Schrödinger, and after an additional
time to the state Terminated. The timeouts when moving
to the Schrödinger and Terminated states are configurable,
letting the application select its sensitivity to timeouts. When
a node knows it will be away for just a short while, making
any failover adoptions unnecessary, it can send a goodbye

VOLUME 4, 2016 5

Brahneborg et al.: Resilient Storage for Wide Area Networks

message to the other nodes which puts it in the Arnold3

state. The failover logic is triggered when moving to the
Terminated state. To allow partitions to heal, all nodes send
occasional heartbeats even to Terminated nodes.

C. DATA TUPLE LIFE CYCLE
Fig. 5 and Fig. 6 illustrate the replication and failover from
the perspective of a single data tuple. The Inactive state has
a dashed border to show that it is a passive state, waiting on
an externally initiated event. The solid arrows represent state
changes on the first node, and dashed arrows on the failover
nodes.

Inactive

DeletedForwarded

Stored

ReceivedT
to first node

T

delete

replicate to failover
nodes

on delete

FIGURE 5. The life cycle of each data tuple on the first node.

Inactive

DeletedForwarded

Stored

T

T

from
first
nodeearlier

nodes
dead

delete

FIGURE 6. The life cycle of a data tuple in case of failover.

First, in Fig. 5, a producer sends the data tuple to some
node, whereby the data tuple enters the Received state. This

3It will be back.

corresponds to the arrow from Producer to node1 in Fig. 3.
Next, this node sets the owners field, and replicates the
updated data tuple to the selected failover nodes, where they
are stored in the Inactive state. Also in Fig. 3, these are the
arrows on the right, from node1 to node3 and node4. When
the failover nodes have confirmed this operation, the data
tuple on node1 moves to state Stored. It stays in this state
until the application has forwarded the data.

In the normal case, the application will forward any data
tuple in the Stored state, and then move them to the For-
warded state. This instructs GeoRep to inform the failover
nodes, i.e., node3 and node4 in Fig. 3, that this data should
be deleted. Finally, the data tuple is removed from the local
storage in GeoRep on the first node as well.

Fig. 6 illustrates the cases later shown as B and C in
Fig. 8, when a failover node discovers that all earlier nodes
in the owners field no longer respond to its heartbeat requests
within the stipulated timeout. It then moves the data tuple
from state Inactive to Stored, and informs the application
about this change. The life cycle then proceeds as above,
causing the data tuple to be forwarded and then deleted on
any remaining failover nodes. As described in Section III-C,
there is a possibility for the same data tuple to enter the
Stored state and therefore be forwarded by multiple nodes.
We do not need to create a mechanism to prevent that, as such
duplication are acceptable according to our requirements.

D. SOURCE CODE
The source code, consisting of about 3500 lines of C, is
publicly available4. This includes both the proof-of-concept
implementation of the replication protocol and the test ap-
plication and scripts used in the evaluations in Sections IV
and V. ZeroMQ5 is used for the networking layer.

E. EVALUATION ENVIRONMENT
For the evaluations later in this paper, we used a total of
thirteen servers in 2021, all of them being the smallest ones
offered by DigitalOcean6 at that time: 1 GB memory, 25 GB
disk, and 1 virtual x64 CPU. They all ran CentOS 7.9, with
the working directory on the filesystem XFS. The code was
compiled using gcc 4.8.5.

III. RELIABILITY ANALYSIS
The design of our protocol has some immediate conse-
quences on its reliability. We will discuss these consequences
next, based on the quality model ISO 25010 [49]. This model
defines several characteristics for the evaluation of a software
product, each one separated into several sub-characteristics.
In this section we will focus on the Reliability characteristic,
which contains the sub-characteristics Maturity, Availability,
Fault Tolerance and Recoverability. Discussing the maturity
of a new protocol does not seem meaningful, and the recov-

4https://bitbucket.org/infoflexconnect/leaderlessreplication
5https://zeromq.org
6https://digitalocean.com

6 VOLUME 4, 2016

https://bitbucket.org/infoflexconnect/leaderlessreplication
https://zeromq.org
https://digitalocean.com

Brahneborg et al.: Resilient Storage for Wide Area Networks

erability in terms of how GeoRep handles a lost node was
already discussed in Section II-A3.

For the evaluations of the availability and fault tolerance
of the proposed protocol, we will use the concepts yield and
harvest, respectively, suggested by Fox and Brewer [50]. In
Section III-A we discuss the availability in terms of the yield,
i.e., how likely it is for a producer to be able to find a node
in the GeoRep system which accepts a new data tuple. Next,
in Section III-B, we discuss the fault tolerance in terms of
the harvest, seen as the probability that the consumer will
receive at least one copy of each data tuple. Finally, the
fault tolerance is again discussed in Section III-C, now from
the perspective of what happens when the communication
between two or more nodes fail for some reason, and under
which conditions the consumer will get at most one copy of
a particular data tuple.

A. AVAILABILITY – YIELD
The yield [50] for GeoRep is the probability for a client to
be able to find a set of at least f + 1 (where f represents the
number of nodes that are allowed to fail after data has been
received and acknowledged, as discussed above) correctly
functioning nodes. Here we assume that the client knows
about all n nodes in the system.

To calculate this yield, we define a node-set as a set of
nodes that can communicate with each other. Each one of
n nodes is either part of, or not part of, each such set, giving
a total of 2n sets. If a node has failed, it is put in its own
node-set. As we only care about sets with a size of at least 2
(i.e. f + 1, where f > 0), failed nodes are automatically
ignored in our calculations below. There are

(
n
k

)
sets with size

k. For example, consider the configuration in Fig. 3, where
n = 5. The number of sets with sizes between 2 and 5 are
then 10, 10, 5, and 1, respectively.

GeoRep can use all sets with a size of at least f +1, which
for n = 5 and f = 1 there are 10 + 10 + 5 + 1 = 26. In
contrast, replication protocols which requires a majority of
the nodes to work [51] can only use those with a size of at
least (n + 1)/2, which for n = 5 becomes (5 + 1)/2 = 3.
There are

(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 10 + 5+ 1 = 16 such sets. The

protocols requiring fewer nodes than a majority [52], [53] for
a write operation to succeed, achieve this by only allowing
predefined node sets, so for n nodes there are typically only
n usable node sets. For protocols replicating all data to all
other nodes, only a single node set is allowed.

We illustrate the general case in Fig. 7, using Pascal’s
triangle, where the row (starting at 0, shown to the left) is the
number of nodes in the system, and the values in the triangle
are the number of node-sets with a particular size. The list of
1’s along the left side represents the single situation where all
nodes are unavailable. The next column on each row, where
the value is the same as the number of nodes, represents the
cases where only a single node is available. Each following
column represents the cases with an increasing number of
available nodes. Along the rightmost side are finally the
single cases where all nodes are available.

GeoRep

Majority

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

FIGURE 7. Number of node-sets usable by majority replication and GeoRep,
for f = 1.

The node-sets usable by majority replication are the ones
on the right part of Fig. 7. As described above, GeoRep can
use not only these node-sets, but also the ones to the left
except the ones in the first f + 1 columns.

The total number of node-sets is shown in Equation (2)
below. The ones usable by GeoRep are then shown by
Equation (3). The number of node-sets usable by majority
replication are given by in Equations (4) and (5) for odd and
even values of n, respectively. For example, going from right
to left on row 3, we see that for 3 nodes we can use the single
case where all nodes are available, and the 3 cases where 2
out of 3 nodes are available: 2(n−1) = 2(3−1) = 22 = 4 =
1 + 3.

The ratio between the number of sets usable by GeoRep
and the ones usable by majority replication in the best case,
is then given by the expression (6), which simplifies to Equa-
tion (7). As the second term in Equation (8) is a polynomial,
the second term in Equation (7) will always converge to 0,
making the ratio converge to 2 for all values of f . Assuming
the producer can connect to any of the system nodes, the
availability is therefore up to twice as high as for other
systems.

total = 2n (2)
georep = 2n − (n+ 1) (3)

majority_odd = 2n−1 (4)

majority_even = 2n−1 −
(

n

n/2

)
< majority_odd

(5)

ratio ≥ georep

majority_odd
=

2n − (n+ 1)

2n−1

(6)

= 2− n+ 1

2n−1
(7)

Generally, we get:

georep = 2n −
f−1∑
k=0

(
n

k

)
(8)

There are multiple strategies to use when selecting which
node-set to use, for the situations when there are more than 1
available. The effect the selected strategy has on the system
throughput is examined in Section V-D.

VOLUME 4, 2016 7

Brahneborg et al.: Resilient Storage for Wide Area Networks

B. FAULT TOLERANCE – HARVEST
The harvest [50] is the probability that each data tuple
inserted into the system still exists to be output when needed.
When this condition is true, the consumer will receive at least
one copy of the data tuple. For GeoRep we therefore define
the harvest as the probability that at least one of the nodes in
the particular subset used for storing an individual data tuple
is alive until the data has been forwarded to the consumer
(as shown in Fig. 2). Again, we use concrete values, for
e.g., queue and recovery times, in accordance with industry
standards. According to Sahoo et al. [54], the typical lifetime
of a computer system is in the order of 3–10 years. The actual
mean time between failures (MTBF) for a specific system
may of course be both lower and higher than this, but in the
calculations below we have assumed it to be 3 years. We
make no assumptions on the MTBF for other equipment in
the data-center, the power grid, etc, even though those are
also relevant for a full analysis.

The interval from when a data tuple is stored to when it
is forwarded is typically less than one second. If a node fails
exactly once every 3 years the probability that it happens in
any particular second, which we denote as d1s, is

d1s =
1

3 · 365 · 24 · 60 · 60
≈ 10−8

(assuming each second is equiprobable7). When the node has
been repaired or replaced and then restarted, we reset the
clock and assume it will run for up to 3 more years.

In our use case, an embedded system or an IoT device may
send a large batch of data tuples faster than they can be fully
processed. The resulting queues are typically cleared within
a few hours, as the incoming traffic eventually slows down.
The probability that the node that received the messages dies
within this time, say 3 hours, is

d3h = 1− (1− d1s)
3·60·60 ≈ 10−4.

As the nodes are geographically distant from each other,
we can further assume their failures are independent. The for-
mula for the harvest as defined above, then simply becomes
1 − df+1, for the relevant value of d. For the normal case
when data is forwarded within a second, we get a harvest for
f = 1 of about 1−10−8(f+1) = 1−10−16, a.k.a. “16 nines”.
For data that stays in the system for 3 hours, we instead get
a reliability of 1 − 10−4(f+1) = 1 − 10−8 for f = 1 and
1 − 10−12 for f = 2. Systems where queues are frequent
might therefore want to replicate to two other nodes, but more
than that is mostly just a waste of network bandwidth. Please
also see Table 3 in Section IV, where only one of the nine
test cases required a fourth node to be available to avoid data
loss.

For replication protocols using full replication, we get a
harvest of 1− dn. As n grows, this of course converges more
rapidly towards 1, but at the cost of significantly more data

7This is of course a simplification, but we consider it to be an acceptable
compromise in the interest of understandability [55].

traffic and higher CPU load. We want to emphasize that as
there is a possibility that all nodes fail at the same time, the
harvest is never exactly 1, so data loss is always possible.

C. FAULT TOLERANCE – DUPLICATION ANALYSIS
We now consider the cases that can occur in the same
situation as in Section II-A2, when n = 5 and f = 2, and
a message is replicated from node1 to node3 and node4. The
cases are shown in Fig. 8. Neither node2 nor node5 have
seen this message, so whether they remain in contact with
the other nodes has no effect here. For our SMS gateway ap-
plication, the consumer here is the mobile network operator
handling SMS to the recipient of each particular SMS.

A. As long as node1 is alive, it will try to deliver the
message to the consumer, and the statuses of the other
nodes do not matter.

B. If node3 concludes that node1 is dead or for some other
reason unreachable, it will adopt the message and try to
deliver it. Here, the status of node4 does not matter.

C. If node4 loses contact with both node1 and node3, it will
then try to deliver the message itself.

node5

node4

node3

node2

node1

Consumer
dead?

dead?dead?

A

B

C

FIGURE 8. Possible duplications.

There is no way for a node to know if any of the other
nodes are dead or are unreachable for another reason, e.g.,
being unusually slow [23], [48]. In case multiple nodes can
communicate with the consumer but not with each other,
messages could therefore be duplicated. We assume that the
probability for this is low, and these duplications are therefore
acceptable. We consider it much more likely that a lost node
is dead or has lost internet connectivity entirely, and thereby
also the connectivity to the consumer. In both of these two
latter cases the message is delivered only once.

IV. FAILOVER VERIFICATION
As we see it, the most important functionality that needs
verification is that data tuples inserted into the system are
adopted and subsequently forwarded by another node if the
original node becomes unreachable. More specifically, a data

8 VOLUME 4, 2016

Brahneborg et al.: Resilient Storage for Wide Area Networks

tuple should only be adopted by the first node in its owners
list where all preceding nodes have become unreachable.

For the test case construction, we defined five different
categories of nodes. At the top level we had the nodes in the
owners list plus the rest of the nodes. Of the owners, we had
one originator and a list of failover peers. Of those peers, we
distinguished between the first one, the ones in the middle,
and the last one. These three peer groups allowed at least one
peer to have other peers before it in the owners list, after it,
and both.

Next, we assigned a number to each category as follows,
and as shown in Table 1: originator=1, first=2, middle=4,
last=8, rest=16. Finally we created a sum of the values rep-
resenting nodes that had become unavailable. As the selected
values are powers of 2, this sum can be seen as a bitmask,
where the bit value 0 meant the nodes in this category were
still reachable, and 1 that they were not. For example, the
bitmask value 00001 = 1 meant only the originator was
unreachable, and 01100 = 12 that the originator and the
first failover peers was still reachable, as well as the non-
peer nodes (in the rest group), but not any of the other
failover peers. This way we got a set of 32 unique test cases,
numbered from 0 to 31, providing a reasonable coverage
of possible server and network outages as each test case
represented the situation where zero or more nodes in each
of these categories became unavailable to all other nodes.

owners

originator 1

failover peers
first 2
middle 4
last 8

rest 16

TABLE 1. The five different node categories, and their assigned bitmask
values.

Of the total set of 32 possible test cases, all even numbered
ones mean the originating node is still alive and reachable.
Therefore no adoption should occur in any of these cases.
Next, the test cases 16–31 are the same as the cases 0–15,
as the reachability of nodes not in the owners list have no
effect, regardless of how many they are. This leaves us with
just 9 distinct test cases, listed in Table 2. We note that in
cases 0 and 15, no adoption is made. In case 0, as there is no
need for it, and in case 15, as there is no owner left alive to do
the adoption. In case 15 there is simply an unfortunate subset
of f + 1 nodes being unavailable, corresponding exactly to
the nodes storing the tested data tuple, i.e., both the original
node and all failover peers.

Finally, we mapped the test cases listed in Table 2 to
concrete servers. This mapping is shown in Table 3, where
nodes that should become unreachable are marked with ital-
ics and nodes that should adopt the message(s) are marked
with boldface.

The rest of this section contains the details regarding the
implementation and execution of these test cases, as well as
the results.

Number Unreachable Adopter Minimum f
0 = 00000 none none 1
1 originator first 1
3 originator and first middle 2
5 originator and middle first 3
7 originator, first and middle last 3
9 originator and last first 3
11 originator, first, and last middle 3
13 originator, middle and last first 2
15 = 01111 all owners none 1

TABLE 2. Relevant tests cases.

Number originator first middle last
0 node1 node2 node3 node4
1 node1 node2 node3 node4
3 node1 node2 node3 node4
5 node1 node2 node3 node4
7 node1 node2 node3 node4
9 node1 node2 node3 node4

11 node1 node2 node3 node4
13 node1 node2 node3 node4
15 node1 node2 node3 node4

TABLE 3. Mapping test cases to servers, marking which ones should become
unreachable and which ones should adopt the replicated data tuples.

A. EXPERIMENT DESIGN
The critical point for a data tuple is the transfer from Inactive
to Stored, shown in Fig. 6 in Section II-C, which in turn will
trigger at least one of the nodes in the owners list to hand
the data tuple over to the application so it can ultimately
be forwarded to the consumer. To simulate this sequence
of events, we created a test application that performed the
following steps.

1) Create a single data tuple.
2) Replicate the data tuple to all other nodes, and wait for

confirmation.
3) Block all outgoing traffic from a selected subset of

nodes, as specified in Table 3. This simulates the node
having failed.

4) Wait some time to allow the blocked nodes to reach the
state Terminated in Fig. 4 in Section II-B, triggering the
data tuple adoptions.

5) Examine the log files created on each node, to see which
node or nodes adopted the data tuple.

B. FACTORS AND VARIABLES
For this evaluation, the only independent factor was the set
of nodes which should be made unavailable, and the only
dependent variable was the set of nodes adopting the data.
Based on Table 3, all test cases in this section used n = 4
and f = 3. We also used a fixed peer order to ensure
the roles of each node was predictable. Preliminary tests
showed that the number of clients and messages had no
effect on the behaviour, so we set both of these parameters
to 1. As the adoptions were performed based entirely on
local information, the concepts of recovery time, time to
elect a new leader and so on, commonly evaluated for other

VOLUME 4, 2016 9

Brahneborg et al.: Resilient Storage for Wide Area Networks

replication protocols, were not relevant to us. The factors and
variables are summarized in Table 4 for easy overview.

Type Factor Value(s)/Unit
Independent Disabled node(s) None, 1, 2, 3, and/or 4

Constants

Servers, n 4
Protection, f 3
No of clients 1
No of messages 1
Separation local

Dependent Adopter node number(s)
Ignored Recovery time seconds

TABLE 4. Experiment factors for the failover evaluation.

C. EXECUTION

The tests were implemented by adding a filter between the
main GeoRep logic and the ZeroMQ interface, making it pos-
sible on the application level to prevent any outgoing traffic
to one or more particular other peer nodes. The shell script
run-failover.shwas used to ensure all executions used
the correct parameters, and that data was collected in the
same way for all test cases.

D. RESULTS

Table 5 shows the results for each one of the test cases. For
test case 0, no node was blocked, and therefore no adoptions
by other nodes occurred. For the other test cases, we notice
that the correct node, as specified in Table 3, does indeed
adopt the replicated data.

No node1 node2 node3 node4
0
1 blocked adopts
3 blocked blocked / adopts adopts
5 blocked adopts blocked / adopts
7 blocked blocked / adopts blocked / adopts adopts
9 blocked adopts blocked / adopts

11 blocked blocked / adopts adopts blocked / adopts
13 blocked adopts blocked / adopts blocked / adopts
15 blocked blocked / adopts blocked / adopts blocked / adopts

TABLE 5. Failover results, showing blocked nodes and the ones adopting
any data tuples.

Except for node1, all blocked nodes also adopt the repli-
cated data tuples. The reason for this is that as they are
blocked, they never get any life signs from the other nodes
and therefore must consider these too to be unreachable. As
discussed in Section III-C, this would however rarely lead to
any data duplications.

V. THROUGHPUT EVALUATION
For an evaluation of the proposed protocol primarily fo-
cused on quality attributes, we designed a controlled experi-
ment [56]. The overall goal was to evaluate the throughput in
a few different configurations.

A. EXPERIMENT DESIGN
We used a sequence of tasks corresponding with the queue
related operations performed by the type of systems de-
scribed as our system model in Section I-A, resulting in
realistic experiments. We created a test application which
itself created the messages, and discarded them when all
tasks described below were completed.

1) A new message was stored locally and replicated ac-
cording to the selected configuration. The application
waited for acknowledgements from the others servers
before returning control to the application.

2) A message was extracted from the queue.
3) The extracted message was deleted from all servers

where it was stored.

A benchmark suite commonly used for evaluating repli-
cation systems is the Yahoo! Cloud Serving Benchmark
(YCSB) [57]. Using the same suite makes it easy to compare
different solutions, but as it is designed for web server type
systems and not store-and-forward systems, YCSB was not
meaningful for us.

B. FACTORS AND VARIABLES
In addition to the usual Independent and Dependent factors,
we found it relevant to describe the independent factors that
we set to constant values, and the dependent factors which we
chose to ignore. These are all described in more detail below,
and summarized in Table 6.

Type Factor Value(s)/Unit

Independent
Servers, n 2. . .7
Clients 1, 3, 10, . . . , 1000
Separation Local, Geographical

Constant
Protection, f 1
Transient 5 s
Steady-state 30 s

Dependent Throughput MPS
Min RTT Microseconds, µs

Ignored Recovering MPS
Duplications Ratio

TABLE 6. Experiment factors.

1) Independent Factors
The primary factors in these experiments were selected to
give a deeper understanding of the behaviour under different
circumstances.

The number of servers was varied from 2 to 7. The number
of client connections was varied between 1 and 1000. For
clarity, only subsets of these intervals are shown in the
diagrams below.

We used servers both within the same data center and in
multiple time zones. This way we could examine the effect
the physical distances between the servers, and thereby the
different round-trip times, had on the system throughput.
The data centers used for the different numbers of servers,
are shown in Table 7. The idea was to keep the sites as

10 VOLUME 4, 2016

Brahneborg et al.: Resilient Storage for Wide Area Networks

geographically separated as possible. Only when using 6 or 7
servers did we use data centers relatively close to each other.

Data center Number of servers
2 3 4 5 6 7

Amsterdam ✓ ✓ ✓ ✓ ✓ ✓
New York ✓ ✓ ✓ ✓ ✓ ✓
San Francisco ✓ ✓ ✓ ✓ ✓
Bangalore ✓ ✓ ✓ ✓
Singapore ✓ ✓ ✓
London ✓ ✓
Toronto ✓

TABLE 7. Data centers used for the Geographical cases.

The reliability of the power and internet infrastructure is
also relevant, but these factors mainly affect the availability
of the system, not its fault tolerance. We get high availability
by having a large number of possible node sets, and as we saw
in Fig. 7 in Section III-A, the most effective way to increase
the number of such sets is to increase the number of nodes,
n. This value is already selected as one of the independent
factors.

2) Constants
We motivate setting the protection f to 1 by recalling the
discussion about reliability in Section III-B. For normal
operations, where messages are forwarded within the same
second as they were received, even setting f to such a low
value as 1 gives a reliability of about 1− 10−16.

All configurations were tested for 35 seconds. First, there
was a transient phase of 5 seconds, allowing the CPU caches
and TCP parameters to stabilize. Next, the application contin-
ued to run in the steady-state phase for another 30 seconds.

3) Dependent/Response Variables
For all configurations, i.e. the combinations of one particular
value for each of the independent variables, the response
variable of most interest to us in this experiment was the
total system throughput. This throughput was defined as the
number of messages processed per second (MPS), according
to the sequence of tasks described in Section V-A.

We also measured the minimum RTT between each pair of
nodes. The median round-trip time would be more relevant
for answering the question of what a typical response time
would be. However, as discussed in Section I, we are more
interested in the system resilience, achieved by replicating
the data tuples to nodes at some minimum physical distance
from each other. A large RTT clearly is no guarantee that the
nodes are far apart, but due to the finite speed of light, a small
RTT requires the nodes to be near each other.

4) Ignored Response Variables
Other response variables that might be of interest mainly con-
cern the behaviour when a failed server is detected, and the
time-span afterwards during which the system is reassigning
messages to new servers.

C. EXECUTION
Before each test, all servers were reset to a known empty
starting state. The files for local storage were removed, so
they could be recreated as needed. The application was
then started on all servers, with the selected values for the
independent variables provided as command line parameters.

The test application counted the number of messages pro-
cessed each second by each server, values that were then
summarized into a result for the full system. Finally, the
median of the values for each of the 30 seconds in the steady-
state phase was calculated.

D. RESULTS
Here we present a summary of the results from our through-
put evaluations, made to establish an initial intuition of how
this protocol behaves. As mentioned, we varied the number
of servers up to 7, and the number of clients up to 1000, even
though the diagrams just show the results for representative
subsets.

In a local network, the total system throughput increased
with the number of nodes up to 40 437MPS on 7 nodes
with 300 clients, shown in Fig. 9. The minimum RTT varied
between 143 µs and 420 µs.

When GeoRep was deployed in a cluster of geo-separated
servers, throughput again increased with the number of
nodes. The peak throughput levels were much lower than
in the local case, due to the longer round-trip times. For
the same reason, the system spent more time waiting for
responses, lowering the CPU load. This allowed us to in-
crease the number of clients to 1000. Fig. 10 shows how the
throughput reached 9048MPS for 2 nodes and 24 085MPS
for 7 nodes.

In Fig. 11 we see the performance hit resulting from the
replication logic. The entries for f = 0 show the case when
not using any replication at all. We also ran a few tests using
f = 2. Other than occasional heartbeat traffic, the executed
program code in GeoRep is just a very thin layer on top of
LevelDB. As expected, the throughput scales almost linearly
by the number of nodes, around 35–40 kMPS per node.

For 3 geo-separated nodes, the minimum RTT averaged
105ms. For 7 nodes, the relatively distant nodes in Bangalore
and Singapore resulted in an increase to 138ms. Fig. 12
shows the RTT between a few selected pairs of nodes. For
example, the RTT from Toronto (in column 3) is quite low to
New York, almost the same to San Francisco and Amsterdam,
and quite high to Bangalore. The profiles for nodes geograph-
ically close to each other, e.g., New York and Toronto, are
notably similar.

Based on Fig. 12, we saw that instead of replicating
messages to a random selection of nodes, we could select
the f ones with the smallest RTT from where the message
was received, ignoring nodes with an RTT lower than some
predefined limit, say 10ms. This minimum value ensures
messages are always replicated outside of the critical region
mentioned in Section I.

VOLUME 4, 2016 11

Brahneborg et al.: Resilient Storage for Wide Area Networks

number of servers

kM
P

S

0

10

20

30

40

50

2 3 4 5 6 7

3 clients 30 clients 300 clients

FIGURE 9. System throughput as a function of the number of servers, all running in the same data center.

We set the number of servers to 7, and varied the number
of clients between 100 and 1000. We varied the minimum
RTT limit between 1, 20, and 100 ms, based on the following
reasoning. A minimum of 1ms prevents a node from repli-
cating to another node within the same data center. This level
protects from local internet and power outages. The RTT
between New York and Toronto, and between the nodes in
Europe, is around 10ms. By setting a minimum of 20ms,
these nodes must find peers further away, such as the one
in California or one across the Atlantic. This level protects
from larger outages covering bigger areas. When increasing
the limit to 100ms, we also prevent replication within the
American continent and between the American east coast
and Europe. The data tuples are then always replicated at
least about one third of the total circumference of the earth.
Increasing the limit further would not have any practical
application. With a larger number of nodes in more parts of
the world, other RTT limits would be meaningful, offering
a larger number of tradeoff points between throughput and
reliability. The achieved throughput for the three tested cases
are shown in Fig. 13.

E. COMPARATIVE EVALUATION
To get a performance comparison between GeoRep and
Paxos, we used the C implementation LibPaxos38. Based on
the requirements described in Section I-C, we assumed that
a full implementation based on Paxos would need to do

8https://bitbucket.org/sciascid/libpaxos

at least two operations per message. First, the data would
be added to the replicated event list, including the owners
field described in Section II-A. As only the node first in
the owners field would be allowed to forward the message,
we avoid duplications. When the correct node has forwarded
the message, the message id would be replicated again, with
a flag marking it as being delivered. We can therefore get
the number of messages that could be processed by a Paxos
based solution per second, by simply counting the number of
events we can submit and divide by 2.

The set of reachable nodes would be stored within the
event log as well, providing a consensus on when the failover
logic should be activated. There still exists at least one
sequence of events where a message may be duplicated,
described below. To the best of our knowledge, this situation
can not be completely avoided, as any process may crash
between promising to do something and then doing it, or
between doing something and then informing that it has been
done. However, we already stated in Section I-B that a limited
number of message duplications, caused by situations like
these, are acceptable.

1) A node N finds itself being the owner of a particular
message m.

2) Node N sends m.
3) Node N replicates the event that m has been forwarded.

Before this event has been sent, N crashes.
4) The remaining nodes discover that N no longer re-

sponds, and after a consensus round m is adopted by the

12 VOLUME 4, 2016

https://bitbucket.org/sciascid/libpaxos

Brahneborg et al.: Resilient Storage for Wide Area Networks

number of servers, f=1

M
P

S

10

100

1000

10000

2 3 4 5 6 7

1 client 10 clients 100 clients 1000 clients

FIGURE 10. System throughput as a function of the number of servers, running in different data centers on multiple continents. Please note that the Y axis is
logarithmic, to match the logarithmic increase in the number of clients.

next node in its owners list.
We tested the Paxos implementation in the same environ-

ments as GeoRep, first with up to 7 servers in the same
data-center, and then on up to 7 geo-separated servers. The
numbers when all nodes are within the same data-center,
in Table 8 on the line marked Local, should be compared
to the ones for GeoRep in Fig. 9. We see that for 3 nodes
Paxos is faster than GeoRep, even when GeoRep has 300
parallel client threads. However, while the system throughput
increases when nodes are added in GeoRep, the throughput
instead decreases in Paxos. We compare the numbers for
the geo-separated configurations to the ones for GeoRep in
Fig. 10. Paxos is now more on par with GeoRep for 10
parallel clients. Just as in the previous configuration, the clear
performance increase seen for GeoRep is not present with
Paxos. The number of clients had no measurable effect in
this experiment.

Number of servers
3 4 5 6 7

Local/Paxos 22827 13366 16021 13798 9343
Local/GeoRep 14880 23246 29807 32762 40437
Separated/Paxos 756 356 217 211 243
Separated/GeoRep 13253 13230 15977 21345 24085

TABLE 8. LibPaxos3 system throughput, in messages per second (MPS).

The main advantage with a Paxos based solution is that the
risk for duplicated messages would be 0, due to the stricter

reliance on consensus in Paxos. With up to at least 7 nodes
running within the same data-center, we also get at least
1000MPS per node, our target as specified in Section I-C.
Paxos is not as suitable in geo-separated configurations, nor
provides the clear scale-up for more servers as seen with
GeoRep.

VI. DISCUSSION
In our experiments, the proposed protocol was shown to be
able to leverage the ordering independence of the data tuples
and thereby perform better as the number of clients, and
thereby also the number of parallel requests, increased. As
shown in Fig. 13 in Section V, the highest recorded through-
put for the geo-distributed case was 28 377MPS when using
7 servers with a minimum RTT of at least 20ms between
each other, or sufficiently far apart to avoid having more than
1 server fail due to a single power or network outage. The
independence between the data tuples enables us to reach
much more than our target 1000MPS per node, as long as
there are sufficiently many clients.

A. THREATS TO VALIDITY
The identified validity threats are grouped [58], [59] for better
overview.

1) Construct
The validity threat “construct” concerns whether the exper-
iment measures the right thing. Differences in hardware,

VOLUME 4, 2016 13

Brahneborg et al.: Resilient Storage for Wide Area Networks

number of servers

kM
P

S

5

10

50

100

2 3 4 5 6 7

f=0 f=1 f=2

FIGURE 11. System throughput as a function of the number of servers, running in different data centers on multiple continents, when varying f between 0, 1,
and 2. The number of clients is 1000.

R
TT

0 ms

50 ms

100 ms

150 ms

200 ms

250 ms

San
 Fran

cis
co

New
 Y

ork

Toro
nto

Lo
nd

on

Amste
rda

m

Ban
ga

lor
e

Sing
ap

ore

Amsterdam San Francisco Bangalore New York

FIGURE 12. Round-trip time (RTT) for various pairs of servers.

programming language, the number of clients, servers, and
replication groups, as well as selected test scenarios make it
difficult to compare absolute numbers to previous work. The
failover mechanism uses only local operations, and the rate
of this was not measured.

2) Internal
Internal validity threats concern the causal relationship be-
tween two variables. Even though an existing system was the
driving force for the requirements addressed by GeoRep, a

Minimum RTT

kM
P

S

1

5

10

50

1 20 100

100 clients 300 clients 1000 clients target: 7000

FIGURE 13. System throughput for various minimum RTT limits. In this
experiment we use 7 nodes, giving a target throughput of 7 ∗ 1000 = 7000
MPS.

new and minimal application was written for these experi-
ments. This avoided the threat of any confounding variables
introduced by the existing implementation and simplified the
reproducibility.

In a production environment, the client applications will of
course not run on the same machine as GeoRep. Separating
them will result in more time passing for the client, between
submitting a data tuple for replication, and getting the con-
firmation back. On the other hand, it will leave more CPU
to GeoRep, possibly increasing its performance for the CPU
bound parts.

14 VOLUME 4, 2016

Brahneborg et al.: Resilient Storage for Wide Area Networks

To address the threat of additional confounding factors, all
cases were run for a relatively long time. As we focused on
the median, any temporary variances in the environment were
effectively filtered out.

3) External
External validity threats concern whether the results are
still valid in a more general context. Due to not having a
coordinating server, our proposal is only usable for situations
where the stored elements have no relative order. Applica-
tions where this is true, other than in our embedded systems
use case, are email gateways. These gateways also route
messages from companies to their customers, but instead of
delivering messages to network operators, they are delivered
to email servers and ultimately to the customers’ mailboxes.
Here too, the relative order between messages does not mat-
ter, there are no reliable end-to-end acknowledgements,9 and
each message is important to its recipient. Here, the quality
requirements for these systems also mean the system must
provide high availability to the senders, and as messages must
not get lost despite temporary failures of both system nodes
and recipient systems.

VII. RELATED WORK
A. REPLICATION IN PRACTICE
Among others, Helland and Campbell in 2009 [60] and
Hellerstein and Alvaro in 2019 [61], argued that shifting the
focus from the storage layer up to application semantics may
lead to better solutions. In our case, this shift enabled us to
not only take advantage of the lower network requirements
by partial replication, but also to lower the network usage
even further by avoiding the cost of maintaining a total order
of the messages. It also made it possible, in case of a network
partition, to let other subsets than the one containing the
majority of the original nodes continue working, thereby
making the system available to the senders in the minority
group(s).

B. REPLICATION PROTOCOLS
Other store-and-forward systems are application-to-application
message queues, e.g. Apache Kafka [62]. In Apache Kafka
the data in the system can be spread over multiple subsets
of the nodes, with each such subset being called a partition.
A partition has an elected leader, which handles all reads
and writes, and zero or more replicas which are kept in
sync using a very efficient mechanism. Should the leader
become unavailable, one of the replicas takes its place. This
gives an automatic ordering of the events, but at the cost of
being sensitive to the network latency between the client
and the replica leader. GeoRep avoids this cost, as it has
no leader. Instead, clients are free to connect to any node
of their choice, thereby minimizing the latency time and as

9A common workaround for emails are tracking pixels, but these are
usually possible to disable on the client side. Some email services, e.g.,
hey.com, see them as a threat to privacy and explicitly blocks them.

a result maybe also maximizing the throughput. It is quite
likely that a Kafka-based solution would perform well in
the same environment as used in our tests. It would however
not satisfy our “minimal changes to an existing application”
requirement from Section I-C.

For systems where a global ordering must be maintained,
e.g., fast atomic multicast [36] and white-box atomic mul-
ticast [37], the replication protocols are often based on a
variant of Paxos [15] or Raft [16]. The Paxos variant Men-
cius [63] was designed to perform well even in wide-area
networks with high inter-node latency. One of the ways they
achieve this is by using a multi-master setup, where the
leadership is divided among all nodes similarly to GeoRep.
However, as all data is sent to all other nodes, the throughput
does not increase when nodes are added to the system. These
systems would also require a consensus round among all
nodes when each message has been processed and can be
deleted, while GeoRep only needs to send this information
to the f nodes involved in the replication for that particular
message. As is shown in the evaluations of both white-
box atomic multicast [37] and Mencius [63], reducing the
number of communication steps has a clear and positive
effect on the system performance. We do not need the higher
consistency these protocols provide, so we can reduce the
number of communication steps even further. The experiment
in Section V-E showed some of these differences in practice.

Another solution would be to store the data tuples in an
SQL database, where there are plenty of replication methods.
However, as SQL databases must maintain the ACID (Atom-
icity, Consistency, Isolation, and Durability) [64] properties
of the data, those methods work best within a local server
cluster. With geo-separated servers, the higher round-trip
times cause a significant performance degradation in our
case, as the “find and remove the next data tuple” operation
would require a global, synchronous lock. Preliminary tests
with such a configuration resulted in a throughput in the order
of 1 message per second. Comparing GeoRep with an SQL
database in this paper would therefore not be meaningful.

VIII. CONCLUSIONS AND FUTURE WORK
With the purpose of increasing the resilience of a store-and-
forward system, we designed a solution based on application
semantics instead of lower level storage operations. Several
approaches to data replication exist, but we could not find any
existing solutions with sufficiently high throughput for geo-
separated configurations. Our main contribution in this work
is the description and implementation of a new protocol,
based on partial replication. When deployed on 7 nodes
running on different continents, it provided a total throughput
of 24 085 messages per second, almost 100 times higher than
a comparable implementation based on Paxos. The primary
trade-off is that during a network outage, there is a small risk
for message duplication.

Naturally, we welcome replication studies of our proto-
col. The experiments can be varied along several different
dimensions, e.g., a) using other programming languages than

VOLUME 4, 2016 15

hey.com

Brahneborg et al.: Resilient Storage for Wide Area Networks

C, b) using other frameworks than ZeroMQ, c) using a
larger number of nodes, d) separating the client applications
into separate nodes, and e) considering other use cases and
application areas. The source code used in the experiment is
open sourced to facilitate such studies.

There is no consensus among the nodes regarding the
reachability of the other nodes, so the number of use cases
for the failover verification in Section IV is actually higher
than 9, and increases with higher values of f . A deeper
analysis to find the exact formula for which of these test cases
involving the reachabilities from multiple nodes can actually
occur, their expected outcome, and comparing this with the
actual behaviour, would be interesting, but is left as future
work.

For predictable disasters [4], e.g., hurricanes, floods and
tsunamis, it should be possible to temporarily disable some
servers beforehand as replication targets, to minimize data
loss. The same strategy could even be used for more un-
predictable disasters causing power failures, in those cases
triggered by the affected nodes switching to battery power.

REFERENCES
[1] Yufei Cheng, M Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and

James PG Sterbenz. Analysing GeoPath diversity and improving routing
performance in optical networks. Computer Networks, 82:50–67, 2015.

[2] Farabi Iqbal and Fernando A Kuipers. Disjoint paths in networks. Wiley
Encyclopedia of Electrical and Electronics Engineering, pages 1–11, 1999.

[3] Andreas Mauthe, David Hutchison, Egemen K Cetinkaya, Ivan Ganchev,
Jacek Rak, James PG Sterbenz, Matthias Gunkelk, Paul Smith, and Teresa
Gomes. Disaster-resilient communication networks: Principles and best
practices. In International Workshop on Resilient Networks Design and
Modeling, RNDM. IEEE, 2016.

[4] B. Mukherjee, M. F. Habib, and F. Dikbiyik. Network adaptability
from disaster disruptions and cascading failures. IEEE Communications
Magazine, 52(5):230–238, 2014.

[5] Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico, and
Antonio Pescapé. A comprehensive survey on internet outages. Journal of
Network and Computer Applications, 113(2018):36–63, jul 2018.

[6] Peter Bailis and Kyle Kingsbury. The Network is Reliable.
Communications of the ACM, 57(9):48–55, sep 2014.

[7] Mazin Yousif. Cloud Computing Reliability—Failure is an Option. IEEE
Cloud Computing, 5(3):4–5, may 2018.

[8] Michael Dahlin, Bharat Baddepudi V Chandra, Lei Gao, and Amol Nay-
ate. End-to-end WAN Service Availability. IEEE/ACM transactions on
Networking, 11(2):300–313, 2003.

[9] Justin P Rohrer, Abdul Jabbar, and James PG Sterbenz. Path di-
versification for future internet end-to-end resilience and survivability.
Telecommunication Systems, 56(1):49–67, 2014.

[10] James B Rothnie and Nathan Goodman. A Survey of Research and
Development in Distributed Database Management. In Proceedings –
International Conference on Very Large Data Bases, 1977.

[11] Balázs Vass, János Tapolcai, David Hay, Jorik Oostenbrink, and Fernando
Kuipers. How to model and enumerate geographically correlated fail-
ure events in communication networks. In Guide to Disaster-Resilient
Communication Networks, pages 87–115. Springer, 2020.

[12] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implica-
tions. In Proceedings – SIGCOMM. ACM, 2011.

[13] Susanne Braun and Stefan Desloch. A Classification of Replicated Data
for the Design of Eventually Consistent Domain Models. In International
Conference on Software Architecture Companion, ICSA-C. IEEE, 2020.

[14] Heidi Howard and Richard Mortier. Paxos vs raft: Have we reached
consensus on distributed consensus? In Proceedings of the 7th Workshop
on Principles and Practice of Consistency for Distributed Data, 2020.

[15] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[16] Diego Ongaro and John K Ousterhout. In Search of an Understandable
Consensus Algorithm. In USENIX Annual Technical Conference, 2014.

[17] Peter A. Alsberg and John D. Day. A Principle for Resilient Sharing
of Distributed Resources. In Proceedings – International Conference on
Software Engineering, ICSE. IEEE Comput. Soc. Press, 1976.

[18] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in bayou, a weakly connected
replicated storage system. SIGOPS Oper. Syst. Rev., 29(5):172–182, Dec
1995.

[19] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A
comprehensive study of Convergent and Commutative Replicated Data
Types. Technical Report RR-7506, Inria – Centre Paris-Rocquencourt,
2011.

[20] Paul R Johnson and Robert H Thomas. RFC 677: The Maintenance of
Duplicate Databases, 1975.

[21] James P.G. Sterbenz and David Hutchison. ResiliNets Wiki. resilinets.org,
2016 (accessed July 26, 2021).

[22] David Hutchison and James P.G. Sterbenz. Architecture and design for
resilient networked systems. Computer Communications, 131:13–21, 10
2018.

[23] Peter A. Alsberg, Geneva G. Belford, Steve R. Bunch, John D. Day,
Enrique Grapa, David C. Healy, Edwin J. McCauley, and David A.
Willcox. Research in Network Data Management and Resource Sharing,
Synchronization and Deadlock. Technical report, Center for Advanced
Computation, University of Illinois, 1977.

[24] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency
in Partitioned Networks. ACM Computing Surveys, 17(3):341–370,
September 1985.

[25] Michael J. Fischer and Alan Michael. Sacrificing Serializability to Attain
High Availability of Data in an Unreliable Network. In Proceedings -
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
PODS, 1982.

[26] Coda Hale. You can’t sacrifice partition tolerance. https://codahale.com/
you-cant-sacrifice-partition-tolerance, 2010 (Retrieved May 2020).

[27] Neil Gunther, Paul Puglia, and Kristofer Tomasette. Hadoop superlinear
scalability. Queue, 13:20–42, 5 2015.

[28] Joseph M. Hellerstein and Peter Alvaro. Keeping calm. Communications
of the ACM, 63, 8 2020.

[29] Michael Stonebraker and Eric Neuhold. A Distributed Data Base Version
of Ingres. Technical report, California University, Berkeley., 1976.

[30] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkatara-
mani, Praveen Yalagandula, and Jiandan Zheng. PRACTI replication. In
Proceedings – Networked Systems Design & Implementation–Volume 3,
NSDI. USENIX, 2006.

[31] Manuel Bravo, Luís Rodrigues, and Peter Van Roy. Saturn: A Distributed
Metadata Service for Causal Consistency. In Proceedings – European
Conference on Computer Systems, 2017.

[32] Paulo Coelho and Fernando Pedone. Geographic State Machine Repli-
cation. Technical Report USI-INF-TR-2017-3, Faculty of Informatics
Università della Svizzera italiana Lugano, Switzerland, 2017.

[33] Pedro Fouto, João Leitão, and Nuno Preguiça. Practical and Fast
Causal Consistent Partial Geo-replication. In Proceedings – International
Symposium on Network Computing and Applications (NCA). IEEE, 2018.

[34] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine
Partial Replication in Wide Area Networks. In Proceedings – Symposium
on Reliable Distributed Systems. IEEE, 2010.

[35] Marcos Kawazoe Aguilera and Robert E Strom. Efficient Atomic
Broadcast Using Deterministic Merge. In Proceedings – Symposium on
Principles of Distributed Computing, PODC. ACM, 2000.

[36] Paulo R Coelho, Nicolas Schiper, and Fernando Pedone. Fast Atomic
Multicast. In Proceedings – International Conference on Dependable
Systems and Networks, DSN. IEEE, 2017.

[37] Alexey Gotsman, Anatole Lefort, and Gregory Chockler. White-
box Atomic Multicast. In Proceedings – International Conference on
Dependable Systems and Networks, DSN. IEEE, 2019.

[38] Rachid Guerraoui and André Schiper. Genuine Atomic Multicast in Asyn-
chronous Distributed Systems. Theoretical Computer Science, 254(1-
2):297–316, 2001.

[39] Nicolas Schiper and Fernando Pedone. On the Inherent Cost of Atomic
Broadcast and Multicast in Wide Area Networks. In Proceedings –
Distributed Computing and Networking, ICDCN. Springer, 2008.

[40] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
GentleRain: Cheap and Scalable Causal Consistency with Physical Clocks.
Proceedings – Symposium on Cloud Computing, 2014.

16 VOLUME 4, 2016

resilinets.org
https://codahale.com/you-cant-sacrifice-partition-tolerance
https://codahale.com/you-cant-sacrifice-partition-tolerance

Brahneborg et al.: Resilient Storage for Wide Area Networks

[41] Daniel Brahneborg, Wasif Afzal, Adnan Causevic, and Mats Björkman.
Superlinear and bandwidth friendly geo-replication for store-and-forward
systems. In 15th International Conference on Software Technologies, July
2020.

[42] Edsger Wybe Dijkstra. Co-operating sequential processes. In
Programming languages. Academic Press Inc, 1968.

[43] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[44] M. Ahamad and M.H. Ammar. Performance Characterization of Quorum-
Consensus Algorithms for Replicated Data. IEEE Transactions on
Software Engineering, 15(4):492–496, apr 1989.

[45] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly
in message-passing systems. Journal of the ACM, 42(1):124–142, 1995.

[46] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, Jul 1982.

[47] Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: a
Causal+ Consistent Datastore based on Chain Replication. In Proceedings
– The European Professional Society on Computer Systems, EuroSys.
ACM, 2013.

[48] Bruce G Lindsay, Patricia G Selinger, Cesare Galtieri, James N Gray,
Raymond A Lorie, Thomas G Price, Franco Putzolu, Irving L Traiger,
and Bradford W Wade. Notes on Distributed Databases. IBM Thomas
J. Watson Research Division, 1979.

[49] ISO. ISO/IEC 25010. https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010, 2021. Accessed 2021-04-06.

[50] Armando Fox and Eric A. Brewer. Harvest, Yield, and Scalable Tolerant
Systems. In Proceedings - Workshop on Hot Topics in Operating Systems,
HOTOS. IEEE, 1999.

[51] Robert H Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems
(TODS), 4(2):180–209, 1979.

[52] Akhil Kumar. Hierarchical Quorum Consensus: A New Algorithm for
Managing Replicated Data. IEEE Transactions on Computers, 40(9):996–
1004, 1991.

[53] Mamoru Maekawa. A sqrt(N) Algorithm for Mutual Exclusion in Decen-
tralized Systems. ACM Transactions on Computer Systems, 3(2):145–159,
1985.

[54] Siva Satyendra Sahoo, Behnaz Ranjbar, and Akash Kumar. Reliability-
aware resource management in multi-/many-core systems: A perspective
paper. Journal of Low Power Electronics and Applications, 11(1):7, 2021.

[55] Peter A. Alsberg. Research in Network Data Management and Resource
sharing, 1976.

[56] Colin Robson and Kieran McCartan. Real world research. John Wiley &
Sons, 2016.

[57] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings – Symposium on Cloud Computing, SoCC ’10, New York,
NY, USA, 2010. ACM.

[58] Thomas D Cook and Donald Thomas Campbell. Quasi-experimentation:
Design and analysis for field settings, volume 3. Rand McNally, Chicago,
1979.

[59] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. Reporting
experiments in software engineering. In Guide to advanced empirical
software engineering, pages 201–228. Springer, 2008.

[60] Pat Helland and Dave Campbell. Building on Quicksand. In Proceedings
– Conference on Innovative Data Systems Research, CIDR. ACM, 2009.

[61] Joseph M Hellerstein and Peter Alvaro. Keeping calm: when distributed
consistency is easy. arXiv preprint arXiv:1901.01930, 2019.

[62] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed Messaging
System for Log Processing. In Proceedings of the SIGMOD Workshop on
Networking Meets Databases, NetDB, Athens, Greece, 2011.

[63] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building
Efficient Replicated State Machines for WANs. In USENIX Conference
on Operating Systems Design and Implementation, OSDI, Berkeley, CA,
USA, 2008.

[64] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4):287–317, 1983.

DANIEL BRAHNEBORG received a M.Sc de-
gree in computer science from Umeå University in
2015. In 2017 he joined the ITS ESS-H research
school as an industrial doctoral student, with a
research focus on distributed systems in general
and messaging systems in particular. He received
a Licentiate degree from Mälardalen University in
2020, on his research on improving the quality
attributes of messaging gateways.

He has worked at Braxo AB in Stockholm,
Sweden, for the last 20 years. Most of this time has been spent on further
development of the company’s flagship product, the SMS gateway EMG.

ROMARIC DUVIGNAU received his Ph.D. de-
gree in computer science from the University of
Bordeaux (LaBRI), France, in 2015. He is cur-
rently an Assistant Professor with the Networks
and Systems Division at Chalmers University of
Technology.

He was previously affiliated with Aix-Marseille
University (LIF) and the University of Bor-
deaux (LaBRI). His research interests include data
stream processing, edge computing, p2p energy

trading, and continuous distributed monitoring.

WASIF AFZAL is a Professor in Computer Sci-
ence and Software Engineering at Mälardalen Uni-
versity, Sweden, where he also co-leads the soft-
ware testing laboratory research group.

His research interests include software test-
ing, empirical software engineering and decision-
support tools for software verification and valida-
tion.

PH.D. SAAD MUBEEN is an Associate Pro-
fessor at Mälardalen University, Sweden. He has
previously worked in the vehicle industry as a Se-
nior Software Engineer at Arcticus Systems and as
a Consultant for Volvo Construction Equipment,
Sweden. He is a Senior Member of IEEE and a Co-
chair of the Subcommittee on In-vehicle Embed-
ded Systems within the IEEE IES Technical Com-
mittee on Factory Automation. He is co-leading
the Heterogeneous systems - hardware software

co-design (HERO) research group at Mälardalen University. His research
focus is on model- and component-based development of predictable embed-
ded software, modeling and timing analysis of in-vehicle communication,
and end-to-end timing analysis of distributed embedded systems. Within this
context, he has co-authored over 150 publications in peer-reviewed interna-
tional journals, conferences and workshops. He has received several awards,
including the IEEE Software Best Paper Award in 2017. He is a PC member
and referee for several international conferences and journals respectively.
He is a guest editor of IEEE Transactions on Industrial Informatics (TII),
Elsevier’s Journal of Systems Architecture and Microprocessors and Mi-
crosystems, ACM SIGBED Review, and Springer’s Computing journal. For
more information see http://www.es.mdh.se/staff/280-Saad_Mubeen.

VOLUME 4, 2016 17

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://www.es.mdh.se/staff/280-Saad_Mubeen

	Introduction
	System Model
	Example Application
	Problem Statement and Requirements

	Proposed Solution
	Protocol Description
	Startup
	Replication
	Failover
	Exiting

	Peer Life Cycle
	Data Tuple Life Cycle
	Source Code
	Evaluation Environment

	Reliability Analysis
	Availability – Yield
	Fault Tolerance – Harvest
	Fault Tolerance – Duplication Analysis

	Failover Verification
	Experiment Design
	Factors and Variables
	Execution
	Results

	Throughput Evaluation
	Experiment Design
	Factors and Variables
	Independent Factors
	Constants
	Dependent/Response Variables
	Ignored Response Variables

	Execution
	Results
	Comparative Evaluation

	Discussion
	Threats to Validity
	Construct
	Internal
	External

	Related Work
	Replication in Practice
	Replication Protocols

	Conclusions and Future Work
	REFERENCES
	Daniel Brahneborg
	Romaric Duvignau
	Wasif Afzal
	Ph.D. Saad Mubeen

