
Automating Safety Argument Change Impact
Analysis for Machine Learning Components

Carmen Cârlan*
fortiss GmbH

carmen.carlan@gmail.com

Lydia Gauerhof*
Robert Bosch GmbH

lydia.gauerhof@de.bosch.com

Barbara Gallina
Mälardalen University

barbara.gallina@mdu.se

Simon Burton
Fraunhofer IKS

simon.burton@iks.fraunhofer.de

Abstract—The need to make sense of complex input data
within a vast variety of unpredictable scenarios has been a key
driver for the use of machine learning (ML), for example in
Automated Driving Systems (ADS). Such systems are usually
safety-critical, and therefore they need to be safety assured. In
order to consider the results of the safety assurance activities
(scoping uncovering previously unknown hazardous scenarios),
a continuous approach to arguing safety is required, whilst
iteratively improving ML-specific safety-relevant properties, such
as robustness and prediction certainty. Such a continuous safety
life cycle will only be practical with an efficient and effective
approach to analyzing the impact of system changes on the safety
case. In this paper, we propose a semi-automated approach for
accurately identifying the impact of changes on safety arguments.
We focus on arguments that reason about the sufficiency of
the data used for the development of ML components. The
approach qualitatively and quantitatively analyses the impact of
changes in the input space of the considered ML component
on other artifacts created during the execution of the safety
life cycle, such as datasets and performance requirements and
makes recommendations to safety engineers for handling the
identified impact. We implement the proposed approach in a
model-based safety engineering environment called FASTEN,
and we demonstrate its application for an ML-based pedestrian
detection component of an ADS.

Index Terms—Safety Cases, Machine Learning (ML), Oper-
ational Design Domain (ODD), Change Impact Analysis (CIA)

I. INTRODUCTION

The application of data-driven functions, such as machine
learning (ML), is finding its way into safety-critical sys-
tems. For example, Automated Driving Systems (ADS) are
increasingly using ML for perception tasks, such as pedestrian
detection (see Fig. 1). This imposes certain challenges when
it comes to the safety assurance of the overall system. On
the one hand, the use of training data in place of a detailed
functional specification hinders the traceability between as-
surance artifacts, which is mandated by safety standards, such
as ISO 26262 [16] and ISO 21448 [17] in automotive. On
the other hand, prediction uncertainty, lack of robustness to
subtle changes in the inputs and a lack of explainability in
the decisions made by the ML-model call for an iterative
development process, whereas traditional safety engineering
processes consider systems operating in well known and well
defined environments are non-iterative.

*First two authors contributed equally to this work.

Fig. 1. JAAD data sample with prediction of three different DNNs trained
to predict pedestrians (green, red, white bounding box) and the ground truth
(black bounding box)

The iterative nature of ML development leads to the need to
continuously adapt related assurance artifacts such as datasets
and performance requirements. This is motivated by the un-
derlying life cycle used both during model development and
during operation, as previously unknown hazardous scenarios
are continuously identified, leading to the need to update the
model or make modifications to the context of use.

Automatically determining which assurance artifacts are
impacted by such updates would be beneficial, but, however,
challenging because it requires the existence of explicitly spec-
ified traces between assurance artifacts. Whereas ISO 26262
and ISO 21448 mandate traceability between safety require-
ments and the implementation, e.g., the code, ML based
components are trained based on a given dataset, resulting in
a large number of optimized model parameters that cannot be
directly traced to individual requirements. This lack of direct
traceability can be compensated for, e.g., by explicitly linking
all the assurance artifacts within a safety argument [9]. In the
literature, a set of patterns for building such arguments has
been proposed [4], [12], [13], [31].

Given changes in the input space, to identify the impacted
assurance artifacts, it is sufficient to execute change impact
analysis (CIA) on the safety argument. Due to the frequency
of such changes, the UL Standard for Safety for Evaluation
of Autonomous Products UL 4600 [30] recommends the
automated execution of safety case CIA. To enable automated
CIA for safety cases, the checkable safety case framework [7]
proposes a modeling approach for safety arguments, sup-
porting the automated execution of safety argument CIA.
Checkable safety argument models are deeply integrated with
models of other assurance artifacts via direct traces, enabling

automated checks for consistency between safety arguments
and the traced artifacts. Here, consistency means that there are
no contradictions between the safety argument and the artifacts
on which the argument is based. To detect inconsistencies,
consistency rules shall be defined and the change scenarios that
may violate the consistencies shall be identified. With the help
of these traces, the CIA guides the safety assurance process,
by supporting the safety engineer in recognizing dependencies
at an early stage and initializing appropriate measures.

Paper contributions. Contribution 1. We further develop
the checkable safety cases framework to enable accurate
change impact analysis for safety arguments. To this end, we
extend the state-of-the-art metamodel for safety cases to allow
for the semantically enrichment of the direct traces between
argumentation elements and of the relationships between
argumentation elements with change sensitivity information.
Change sensitivity information explicitly specifies how the
impact of a change in a traced assurance artifact propagates
throughout the argumentation structure. This also enables the
identification of the impact a change in one assurance artifacts
referenced by a safety argument has on other assurance
artifacts referenced by the same safety argument. When they
entail placeholders for direct traces to other assurance artifacts,
which may be instantiated for a given system, checkable safety
arguments are reusable. Contribution 2. We propose a seven-
step qualitative CIA for arguments about the sufficiency of
the used dataset (including training, test and validation data)
given changes in the input space. The proposed seven-step
CIA emphasizes the importance of monitoring changes in the
ODD. We exploit the explicit traces between different artifacts
specified in the safety argument to semi-automatically analyze
the impact a change in the ODD has on the other artifacts. By
doing so, we compensate for the missing traceability between
ML specific artifacts. The more the semantics behind the
traces are made explicit, the more accurate guidance the safety
engineer can benefit from. Contribution 3. Complementary to
the qualitative safety argument CIA, we also propose a novel
method to quantitatively evaluate the coverage of the input
space and of the triggering conditions by the data.

Paper structure. In Section II, we provide an overview
of the concepts on which this paper is based. Then, in
Section III, we discuss the state of the art of safety argument
CIA and existing works towards the continuous development
and assurance of ML components. In Section IV, we present
an ML-based pedestrian detection component, which we use
as example throughout the paper. In Section V, we present
improvements of the checkable safety case framework to
support the automated execution of accurate impact analysis of
changes in the input space of an ML component. In Section VI,
we illustrate the usage of the framework for the considered
pedestrian detection component, and discuss tool support for
the proposed solution. We conclude the paper in Section IX,
while also providing ideas for future work.

G3.1 The data used to
develop and verify MLM is

sufficient

G3.2 ML Data Requirements are
sufficient to ensure it is possible to

develop an MLM that satisfies the ML
Safety Requirements

G3.3 The ML data generated
satisfies the

ML data requirements

Sn3.1 {ML Data
Requirements

Justification Report}

C3.4
{ML Data Requirements}

S3.1 Argument over
requirements for data

sufficiency

...

Legend

GSN Goal

GSN Strategy

GSN Context

Relationship
between
argumentation
elements

GSN Solution

{}
Placeholder for
system
information in
pattern

Fig. 2. A fragment of the AMLAS Pattern for Data Sufficiency [13]
.

II. FUNDAMENTALS

This section presents the basics of safety cases and check-
able safety cases. In addition, insights are given into the
artifacts that are referenced by the safety arguments scoping
ML-based components. Further, an overview of the standards
relevant for the development of safe ML components is
provided and the importance of data sufficiency is discussed.

Safety Cases. A safety case is “a structured argument,
supported by a body of evidence, that provides a compelling,
comprehensible and valid case that a system is safe for a given
application in a given operating environment.” (DS 00-56 Issue
4). To specify arguments, graphical representations such as
the Goal Structuring Notation (GSN) [28] can be used. GSN
is a graphical argument notation that can be used to explic-
itly document the individual argumentation elements (goals,
strategy specifying how goals are supported by other goals,
and ultimately supported by solutions, as depicted in Fig. 2),
the context defined for the argument, and the relationships
between the argumentation elements. The standard on GSN
includes guidelines for the definition (template) and specifi-
cation (explicit GSN modelling elements) of so called safety
argument patterns, which are reusable, previously successful
arguments, entailing parameters, i.e., placeholders for system-
specific information [28]. To formally model a safety argument
in compliance with GSN, one should use GSN/SACM [28]
- the dedicated extension of the Structured Assurance Case
Metamodel (SACM) [23].

Annotating Argumentation Elements with Status Information
There are different types of impact a claim undergoes given a
change in a traced artifact. Whereas Kelly and McDermid [21]
differentiate between ’directly’ and ’indirectly’ and ’poten-
tially’ and ’actually’ impacted elements, Kokaly et al. [22]
discuss different states of safety case elements. According to
Kokaly et al. [22], argumentation elements have a validity
state, i.e., they may be either ’valid’, reflecting the current state
of the system, or they need ’to be rechecked’. ’Directly im-
pacted’ argumentation elements have a reference to a changed
assurance artifact. A directly impacted argumentation element
is the cause of initializing CIA. Argumentation elements that

do not have a direct trace to a changed artifact, but are
impacted by the change are referred to as ’indirectly im-
pacted’. Whereas potentially impacted elements have a direct
or indirect trace to a changed artifact, and may or may not be
impacted by the change.

Checkable Safety Cases. To enable automated CIA for
safety cases, Cârlan et al. [7] introduced the checkable safety
case framework. Checkable SCs are deeply integrated with
other assurance artifacts, as the references to such artifacts
in the argumentation elements are specified in a machine-
readable manner, as direct traces between models.

Safety Cases for ML-based Components. Several approaches
to structure the safety argument scoping an ML-based percep-
tion function applicable in different domains have been pro-
posed [4], [12], [13], [27], [31]. All safety arguments related
to ML-based perception functions have in common the fact
that they refer to the following artifacts: Operational Design
Domain (ODD), requirements, used data, Deep Neural Net-
work (DNN), and triggering conditions identified during the
execution of ISO 21448 activities. As mentioned in Section I,
linking these artifacts and tracing them back to requirements
is essential, since in a trained ML component there is no code
that can be directly traced back to requirements [9]. The ODD
represents the specified input space model and comprises the
environment within which the system is designed to function
safely, thus defining the system boundaries. The requirements
steer the safety assurance activities within the data manage-
ment and training phase, whereas the data is used for the
development and the Verification & Validation (V&V) of the
ML component. For this reason, data has a significant impact
on the safe ML behavior. Usually, data comes with labels,
annotations, and data analysis results.

Automotive Safety Standards and ML ISO 26262 focuses
on the functional safety of electric and electronic systems
used in road vehicles and has been established for many
years in the automotive domain. Important shortcomings of
ISO 26262 in relation to ML were highlighted in [14] and
in [26]. However, ISO 26262 does not consider the assurance
of the safety of the intended functionality (SOTIF), which
is addressed in ISO 21448. SOTIF regards hazards caused
by functional insufficiencies due to inappropriate specification
of the functionality on system level or on components level,
or insufficient performance of components. In the presence
of triggering conditions, functional insufficiencies result in
hazardous scenarios. Triggering conditions are specific con-
ditions of a scenario that initiate a system reaction leading
to hazardous behavior or the inability to handle a reasonably
foreseeable indirect misuse. Appendix D.2.3 of ISO 21448
indicates that the ODD and data sufficiency have an important
role in the SOTIF process. ISO/AWI PAS 8800 [18], which is
about safety and artificial intelligence, focuses on the use of
ML in road vehicles and is planned to cover functional safety
and SOTIF with respect to artificial intelligence. However, it
is still under review and continuously changing. It is expected
to also consider data sufficiency to play an important role.
ISO/IEC 22989 [19] provides AI concepts and terminology,

whereas ISO/IEC 23053 [20] introduces a framework for
describing a generic AI framework using ML technology.
Although none of these standards focus on safety-critical
applications, they regard the topic of risk management that
includes safety as part of the AI life cycle.

Data sufficiency and data suitability As the Guidance on
the Assurance of ML in Autonomous Systems (AMLAS) [13]
provides for each phase of ML-lifecycle a safety argument
pattern, it also presents a pattern for a arguing about the
appropriate management of data. The top-level claim of this
argument is that the data used during the development and
verification of the ML model is sufficient [13]. Gauerhof et
al. [10] define that training data is sufficient, when (1) there
is no under-sampling of relevant content (e.g. data features)
and when (2) there are no unintended correlations that are
learnt by the ML as an inappropriate pattern. Undersampling
refers to an underrepresentation of events e.g., that might be
critical, but rare, whereas unintended correlations are cause
of inappropriate functionality of the ML component, such as
an ML based pedestrian detection learns that a pedestrian has
always two legs and a head. Even though this might be valid
for many cases, a person wearing a long skirt and a hat should
be still be detected.

III. RELATED WORK

Safety argument CIA. There are several model-based ap-
proaches for safety case maintenance [3], [6], [7], [22].
However, to the best of our knowledge, none of the existing
approaches explicitly consider an argument about the suffi-
ciency of the data used for the development of ML-based
components, and, therefore, none of them specifically analyzes
the impact of changes in the input space (i.e., ODD) on the
system safety case. Given changes in the operating context
referenced by a GSN context element, safety argument CIA
such as [21] would identify that the entire argumentation
under the respective context as potentially impacted, and,
therefore, to be rechecked. The MMINT-A approach proposed
by Salayet al. [22] and the Safety Artifact Forest Analysis
(SAFA) proposed by Agrawal et al. [3] have as prerequisites
the existence of models of each artifact referenced in the safety
arguments, and the existence of traces between system models,
as they analyze first the impact of a change in an artifact on
the other artifacts, based on traces between the models of such
artifacts. Based on the impact analysis executed at the level of
system models, the impact on the safety arguments is analyzed.
Such approaches do not handle the analysis of change impact
for ML components, since, as we discussed in Section I,
one challenge of ML components safety assurance is the
deficitary or even nonexistent traceability between assurance
artifacts. Our approach is, on the contrary, to analyze the
impact of an artifact change on other artifacts at the level of the
safety argument, based on the traces between argumentation
elements and assurance artifacts and the relationships between
argumentation elements.

Continuous development and assurance of ML components.
Approaches for continuous development and assurance of ML

TABLE I
OVERVIEW OF POTENTIAL ODD CHANGES.

Can be controlled
in reality

Can not be controlled
in reality

Add ODD category/
dimension/alternative
to the ontology

Extend the ODD model
e.g. include country
to ODD

Concretize the ODD model
e.g. add contrast to
pedestrian or trees
to vegetation

Delete ODD category/
dimension/alternative
in the ontology

Limit the ODD model
e.g. exclude country
from ODD

Generalize the ODD model
e.g. delete clothing color
from pedestrian

components motivate the need for automated CIA for assur-
ance artifacts of ML components. For example, SafetyOps [29]
is a concept to enable a continuous and traceable safety life
cycle. Here different automation frameworks (e.g., DevOps,
TestOps, DataOps, MLOps) are combined. However, the work
is in its early stages, as, for example, the linkage between the
individual frameworks is not explicitly elaborated. Gauerhof et
al. [9] provide guidance for linking explicitly artifacts (see the
list of ML-specific artifacts in Section II) from different phases
of the ML-life cycle. This linkage would allow artifacts from
the requirements elicitation phase, e.g., the data requirements
and the ODD to be updated in accordance to the testing results.

IV. USE CASE

An autonomous system, such as an ADS, requires a per-
ception of its environment in order to move within it and
conduct tasks. For example, for ADS operating in urban areas,
pedestrian detection is required to drive safely without harming
humans. As ML outperforms by far non-learning approaches,
e.g. in perceiving objects, it is already indispensable. In
this section, we briefly introduce a subset of the artifacts
related to an ML-based pedestrian detection component. This
subset of the artifacts was generated during the assurance of
the considered ML component and referenced in the safety
argument of the respective component.

ODD. The ODD of the system under consideration (SuC)
refers to PAS 1883 [5], which provides requirements for the
minimum hierarchical taxonomy for specifying an ODD to
enable the safe deployment of an ADS. For our use case, we
set the country of operation to Germany.

Requirements. The SuC shall implement the requirements
presented by Gauerhof et al. [11].

DNN. The ML component is a DNN, which consists of
a Squeezenet and Region Proposal Network (RPN), previ-
ously presented by Gauerhof et al. [11]. The architecture
is comparably small, so that it can be implemented with low
computation demand on dedicated hardware in an ADS.

Data. The DNN is trained and evaluated on the Joint
Attention for Autonomous Driving (JAAD) dataset [24]. The
JAAD dataset includes 346 video clips recorded over 240
hours of driving in America, Canada, Germany and Ukraine
with circa 82000 image samples. These data cover various
driving situations with a variation of all four seasons, weather
conditions (e.g., rain, snow and fog), and day and night time.

Triggering conditions. In Table II, we present a subset of
the identified SOTIF triggering conditions, which are derived
from the DNN error categories from [10]. Particular triggering

conditions are expected to be mitigated by retraining the DNN
with adapted data. Thereby, data sufficiency is achieved, if data
is free from under-sampling of relevant data characteristics
and unintended correlations [10]. If the ODD does not include
the elements that are related to the triggering conditions, it is
updated. In the next section, we propose a CIA considering
updates of the ODD.

V. SEMANTICALLY ENRICHED CHECKABLE SAFETY
ARGUMENT PATTERNS

To support safety engineers in modeling checkable safety
arguments, we introduce checkable safety argument patterns,
extending the concept of safety argument patterns. Checkable
patterns document a semantically-enriched, reusable argumen-
tation structure, which facilitates the automated execution
of accurate safety argument CIA given changes in traced
assurance artifacts. They are reusable as the have placeholders
for system-specific information, i.e., placeholders for direct
traces to assurance artifacts.

As we recall in Section II, checkable safety arguments
have direct trace links between safety argumentation models
and models of other assurance artifacts. However, these di-
rect trace links only support the automated identification of
the potentially impacted safety argumentation elements. To
enable the automated identification of the actually impacted
argumentation elements, we propose to semantically enrich
the direct trace links between argumentation elements and as-
surance artifacts and the relationships between argumentation
elements by annotating them with change sensitivity infor-
mation. Consequently, we extend the GSN/SACM metamodel
so that it supports the specification of such annotations, by
adding ChangeSensitivityAnnotation - a dedicated class for
modeling such annotations, and by adding a new attribute
of type ChangeSensitivityAnnotation to the classes for the
direct traces and relationships. Change sensitivity annotations
formally specify a set of tuples consisting of: 1) the changed
traced artifact, 2) the type of change the traced artifact may
undergo, 3) the impact the respective change type has on the
argumentation element having a trace to the changed artifact
(e.g., if the argumentation element is valid or to be rechecked),
and 4) update recommendations to recover from the identified
impact. The update recommendations can be both for the
safety argument itself, and other assurance artifacts. Examples
of change sensitivity annotations can be seen in Fig. 3. The
annotation A2 in Fig. 3 specifies that, given 1) an ODD model,
which is changed by 2) including an alternative, 3) C3.1
argumentation element is to be set as to be rechecked, and 4)
the update recommendation is to analyze the dataset referenced
by the context argumentation element. Such change sensitivity
annotations are to be specified by the safety engineer creating
the safety argument, and then reviewed by an external assessor.

After changing a traced artifact due to an update recom-
mendation, e.g., adaptation of the dataset, it is necessary to
continue the CIA, i.e., to analyze the impact of the respective
change on the argumentation structure.

TABLE II
EXEMPLARY IDENTIFIED TRIGGERING CONDITIONS

Description incorrect detections Triggering conditions Mitigation Element in ODD Necessary artifact changes

FN on partially occluded pedestrian Occlusion Retraining (data sufficiency) Relationship pedestrian & background ODD and data requirements
Missing labels Missing label Increased labelling quality - labeling specification
FP on tree, tree branches tree, tree branches Retraining (data sufficiency) tree, tree branches ODD and data requirements

In Fig. 3, we show C1.1 context, which has a direct trace
to an ODD model. Via the change sensitivity annotations to
the direct trace to the ODD model, we specify that given any
change in the ODD, the checkable context C1.1 is to be set as
modified, and the update recommendation is to execute a safety
argument CIA, in order to analyze the impact of the ODD
change on the safety argument under the respective context.
Further, in Fig. 3, one can also see the change sensitivity
information annotated to the relationship between the C3.1
context and the G3.1 goal. The annotation specifies that, given
the exclusion of an alternative from the ODD, the G3.1 goal is
not impacted, i.e., the goal is still valid. Indeed, data with an
unnecessarily broad representation of elements could lead to a
degraded performance e.g. due to higher variance or spurious
correlations. However, this would only be identified in a later
development phase as a triggering condition, such as after
retraining and testing, and thus, handled appropriately. Given
the inclusion of a new ODD alternative, the G3.1 goal needs to
be rechecked, i.e., the status of the data coverage with respect
to the new alternative is analyzed. If necessary, the dataset
shall be enhanced with data covering the new ODD alternative.

VI. A CHECKABLE ARGUMENT PATTERN FOR DATA
SUFFICIENCY

In this section, we present the Checkable Assurance Ar-
gument Pattern for Data Sufficiency, which enables the au-
tomated execution of accurate CIA for the safety argument
addressing data sufficiency. The CIA scopes the identification
and handling of the impact of changes in a traced ODD model
on the safety argument obtained after pattern instantiation.
Changes to the ODD may be motivated by the need to handle
identified triggering conditions. For example, in the context of
our use case, one identified triggering condition is that, due
to the lack of training data suitability, occluded pedestrians
were not identified, resulting in systematic false negatives of
the DNN output (see Table II). Consequently, we needed to
add to the pedestrian category the dimension occlusion.

Modeling the ODD Having an ODD model is a prerequisite
for instantiating the pattern. To model the ODD, in this work,
we used an ontology proposed by Herrmann et al. [15],
which specifies the input domain of a camera-based pedestrian
detection component in an ADS as a set of categories, having
different relations with each other [15]. An ODD category is
refined by dimensions, which, in turn, are refined by different
alternatives. For example, the category ’pedestrian’ is refined
by several dimensions, such as ’age’, and ’pose’, whereas
the ’pose’ dimension has a set of included alternatives, such
as ’standing’, ’walking’, ’running’. An alternative may be
included or excluded from the ODD of the SuC. There are

several types of changes that the ODD model can undergo. In
Table I, we show the types of changes, while also discussing
the impact of the change to the ODD - if it concretizes,
generalizes, limits, or extends it. We differentiate between con-
trollable and uncontrollable ODD elements. Controllable ODD
elements can be controlled in the real world, meaning that
during the development the ODD element can be monitored
and influenced. Other ODD elements cannot be controlled. For
example, one can control on which type of road (e.g., highway
or city street) the ADS can be activated, but one cannot control
if the ADS encounters pedestrians with camouflage clothing.
While modifying controllable elements, one can either include
or exclude the ODD element, whereas the ODD may be
either concretized or generalized when adding or deleting
uncontrollable elements. Especially the controllable elements
shall be reviewed by the safety engineers, whether to add
them to the ODD or exclude them, as they might heavily
influence the overall functionality and the corresponding safety
requirements.

Pattern intent. The intent of the AMLAS pattern for data
is to specify a reusable structure for arguing about data
sufficiency. As written in ISO 21448, a sufficient test dataset
increases the confidence in the argument that the ML com-
ponent reaches its safety goals. Also training data require no
under-sampling of relevant content (e.g. data features) [10].
To enable automated safety argument CIA, we model the
argumentation structure proposed by the AMLAS pattern. The
intent of the aforementioned safety argument CIA is to keep
the argumentation structures resulting from the instantiation of
the pattern consistent with the ODD model of the system.

Pattern structure. In Fig. 4, we present the GSN-based
graphical representation of the pattern. The top-level goal G3.1
claims that the used dataset is sufficient. Instead of modeling
all three C3.1, C3.2, and C3.3 context elements from the
AMLAS pattern referencing different types of dataset (i.e.,
training, testing and validation datasets), we model only one
context, which references all these datasets. We replace the
placeholders for text-based references to artifacts with place-
holders for direct traces to assurance artifacts. Further, both
the placeholders for direct traces to assurance artifacts and the
relationships between argumentation elements are annotated
with change sensitivity information. Due to space restrictions,
we show in Fig. 4 only the annotation identifier, whereas
in Fig. 3, we depict some of the annotations completely.
Apart from considering the structure specified by the AMLAS
pattern, the checkable pattern also includes further context
information, i.e., the description of operational environment
- C1.1, from an upper level argumentation structure specified
by a related AMLAS pattern, namely the Argument Pattern for

C1.1 Description of operational
environment <ODD Model>

ODD Model

G3.1 The <Data> used to
develop and verify MLM is

sufficient

direct trace to an
assurance artifact

Legend

change sensitivity annotation A2

(OddSpecificationContext.oddModel,
oddModel.changeType='alternative excluded',
updateRecommendation= none)

(OddSpecificationContext.oddModel,
oddModel.changeType='alternative included',
C3.1.validity='to be rechecked',
updateRecommendation= recheck(C3.1.datset))

change sensitivity
annotation

change sensitivity annotation A1

(oddModel, oddModel.changeType='any',
C.1.1.validity='directly impacted',
updateRecommendation= executeCIA(safetyArgument))

C3.1
<Data (for development,

internal test, verification)>

change sensitivity annotation A3

(UsedDatasetContext.dataset,
dataset.changeType='any',
G3.1.validity=recheck
updateRecommendation= none)

<Assurance Artifact> placeholder for a direct trace
to an assurance artifact

Fig. 3. Context argumentation element having a direct trace to an ODD model; trace that is annotated with change sensitivity information.

ML Safety Assurance. Where suitable, we specified references
to assurance artifacts with direct traces to models of the
respective assurance artifacts. For example, as seen in Fig. 4,
the C1.1 context has a placeholder for a direct trace to an
ODD model.

Consistency rules considered during CIA. Given a change to
the ODD (see Table I), it shall be checked whether the system
still functions safely in the changed assumed operational
context: consistency rule 1: the used dataset shall cover
all the ODD elements. This consistency rule is taken from
ISO 21448, which argues that, a sufficient coverage of the
ODD by the data facilitates the component to learn how to
handle hazardous scenarios and from [10] where no under-
sampling of relevant content (e.g. data features) is required for
training data. For simplicity reasons, we did not add further
consistency rules. For example, consistency rules between the
safety argument and the ML data requirements, referenced by
goals G3.4 - G3.7, should be also defined.

In the following, we explain how this consistency rule is
checked via qualitative and quantitative CIA.

Quantitative CIA. Whenever the ODD is modified in order
to address an identified triggering condition, not only the
impact on the safety argument is analyzed, but also the data
coverage is re-assessed [25]. To this end, in accordance with
consistency rule 1, we propose to evaluate the coverage of
the identified triggering conditions by the data, the ratio of
covered triggering conditions to data, and the coverage of the
ODD by the data, as depicted in Fig. 5. The required threshold
for the coverage of identified, i.e., known, known triggering
conditions, e.g. nTCX

>= 1 sample for the particular trigger-
ing conditions TCX , might be set higher than the threshold
for the coverage of a particular ODD element mODDelementX ,
as triggering conditions are considered critical. To be able to
count the samples according to a particular ODD element,
annotations are needed, e.g. occlusion annotated to the ground
truth, or metrics to measure particular ODD elements, e.g.
contrast in the bounding box measured by Mean Square
Root (MSR) contrast. Having real data that sufficiently covers
all identified triggering conditions might be challenging, as

critical situations are dangerous to collect. Here synthetic
data might ease the challenge. It is also feasible to count
the uncovered TCs, as each TC is a combination of ODD
elements. A particular TC is uncovered, if the required amount
of samples for a particular triggering condition TC1 is not
available in the dataset. In general, a higher coverage increases
the confidence in the safety argument, as it implies that
more safety critical scenarios containing identified triggering
conditions are considered to ensure that SOTIF is achieved.
This approach could be extended by considering development
data and V&V data separately.

Qualitative CIA. The CIA steps to be taken whenever the
ODD undergoes a change of the types presented in Table I
are depicted in Fig. 4 and enlisted in the following. Also, in
Fig. 4, we show the status of argumentation elements after each
CIA step. The status of argumentation elements is specified
as discussed in Section II. The traced artifacts, such as the
ODD model, or the data can be annotated as ’changed’, to
specify they have undergone certain modifications. One CIA
step may have multiple possible outputs, which, in the model is
represented by the ’choice’ element (see Fig. 4). The output in
this case is determined by evaluating one or more conditions.
The pseudo code for this seven-step procedure is also given
in Algorithm 1.

[Step 1] The ODD model traced by the OddSpecification-
Context argumentation element is continuously checked for
changes. Based on the change sensitivity information anno-
tated to the direct trace between the argumentation element
and the ODD model (see annotation A1), given any change
to the ODD model, the validity state of the tracing context
argumentation element is set as directly impacted. The update
recommendation is to further execute CIA, namely to identify
the change impact propagation throughout the argumentation
structure.

[Step 2] The fact that the validity state of context C1.1 has
been set to directly impacted potentially impacts top-level goal
G3.1, which, in accordance to A2, is set as to be rechecked.
Also, based on the GSN relationships, the change impact will
propagate to C3.1 [21]. By excluding an alternative, goal G3.1

C1.1 Description of
operational environment

<ODD Model>

G3.1 The <Data> used to
develop and verify MLM is

sufficient

C3.1
<Data (for development, internal
test, verification)>

S3.1 Argument over
requirements for data

sufficiency

G3.2 <ML Data Requirements> are
sufficient to ensure it is possible to

develop an MLM that satisfies the <ML
Safety Requirements>

G3.3 The <Data> generated
satisfies the <ML Data

Requirements>

C3.4
<ML Data Requirements>

ODD Model

Legend

changed

directly
impacted

to be
rechecked

invalid

CIA
Step 1

 A1

 A2

CIA
Step 2

 A3

CIA
Step 3

(quantitative
CIA)

choice

excluded ODD element

included ODD element

valid

excluded ODD element

data suitable

data not suitable

Data

CIA
Step 4

 A4

CIA
Step 5

 A5
CIA

Step 6 A6

 A7

 A8 A9

<Data Balance
Validation Results>

<Data Accuracy
Validation Results>

<Data Completeness
Validation Results>

Sn3.5Sn3.4Sn3.3Sn3.2

G3.7
Requirements

Satisfaction Goal
The generated

<data> meets the
balance data
requirements

G3.6
Requirements

Satisfaction Goal
The generated

<data> meets the
accuracy data
requirements

G3.5
Requirements

Satisfaction Goal
The generated

<data> meets the
completeness

data requirements

G3.4
Requirements

Satisfaction Goal
The generated

<data> meets the
relevance data
requirements

Sn3.1 <ML Data
Requirements

Justification Report>

S3.2 Argument over Requirements List
Argument over different types of ML data

requirements

CIA
Step 7

<Data Relevance
Validation Results>

Fig. 4. The Checkable Assurance Argument Pattern for Data Sufficiency, with placeholders for direct traces to an ODD model and to datasets. While regular
pattern parameters are depicted within curly brackets {}, placeholders for direct traces to certain types of models are depicted in angle brackets ⟨⟩. Both the
traces to artifacts and the relationships between argumentation elements are semantically enriched with change sensitivity annotations.

and context C3.1 are not impacted by the change and remain
valid, and therefore the CIA stops. Whereas if the change
consists of the inclusion of an alternative, C3.1 context is
annotated as to be rechecked, and the update recommendation
is to analyze if the dataset referenced by C3.1 is sufficient,
i.e., if it sufficiently covers the newly added ODD element.

[Step 3] Here it is checked if the required coverage is
achieved. For example, if rain constitutes a triggering con-
dition and there is data including annotations about the rain
status in the data samples, then the number of samples for this
particular triggering condition can be automatically counted.
Consequently, via formula given in Fig. 5, it can be determined
if the given coverage exceeds the required coverage or not.
This analysis could be automated, given the correct and com-
plete annotation of data and the adequate tool support to verify
data sufficiency. If the dataset is indeed insufficient, the C1.1
context is annotated as outdated. The update recommendation

for such an impact is the appropriate update of the dataset and
then retraining of the ML component. Whereas if the dataset
is found to be still sufficient, the C3.1 context remains valid,
and the CIA stops here.

[Step 4] If the dataset is not sufficient, then, in accordance
to change sensitivity annotation A4, the dataset needs to be
appropriately modified.

[Step 5] Given the direct trace between goal G3.1 and the
dataset, and annotation A5, when the dataset changes, G3.1 is
directly impacted, and needs to be rechecked.

[Step 6] Given the need to recheck goal G3.1, based on
the relationships between argumentation elements, all argu-
mentation elements supporting G3.1 should be rechecked.
However, our CIA, based on change sensitivity annotations
A6-A9, identifies that the modification of the dataset only
actually impacts goal G3.3, which has a direct trace to the data.
Context C3.4 having a direct trace to the ML data requirements

Fig. 5. Formulas computing the coverage of the TCs by the data, the ratio of covered the TCs to data, and the coverage of the ODD by the data.

Algorithm 1 Propagation of CIA throughout the safety argu-
ment depicted in Fig. 4

1: for Every time step do
2: Check status of ODD Model for changes (see Table II)
3: if Status of ODD Model is set to ’changed’ then
4: Step 1: Provide update recommendation as speci-
5: fied by change sensitivity annotation A1
6: for Every CIA step i; i=i++ do
7: Set status of the traced argumentation
8: elements and assurance artifacts
9: if Status of traced argumentation elements is

10: set to ’directly impacted’ ’to be rechecked’,
11: and of traced assurance artifacts to
12: ’changed’ then
13: Provide update recommendation specified
14: by the change sensitivity annotation(s) to the
15: safety engineer or initialize an automated
16: review procedure, e.g. quantitative CIA.
17: else
18: Stop CIA
19: end if
20: end for
21: else
22: Stop CIA
23: end if
24: end for

is not impacted by the changes in the dataset, since the
requirements remain the same. Further, goal G3.2 arguing
about the sufficiency of requirements is also not impacted,
since the requirements are not changed, only the data set.
Consequently, solution Sn3.1 is annotated as still valid, and
can be reused after a change in the ODD model.

[Step 7] Based on the relationships between argumentation
elements and because of their direct traces to the dataset, the
subgoals and solutions supporting goal G3.3 are annotated as
to be rechecked.

Pattern applicability. The pattern may be used for any ML

component implementing a safety-critical function, given the
existence of all the artifacts referenced by the argument (i.e.,
ODD, triggering conditions, safety requirements).

Pattern consequences. Whenever CIA scoping the argument
resulted from the instantiation of the Checkable Assurance
Argument Pattern for Data Sufficiency is executed, the propa-
gation of the change impact to rest of the safety case shall be
also analyzed. However, so far, we do not provide support for
this analysis and, consequently, it needs to be done manually.

Pattern implementation. The checkable pattern may be
implemented only when the considered dataset and models
of the ODD, and ML data requirements are available. Further,
the type of evidence required by the pattern, such as data
completeness validation results shall also be available.

VII. TOOL SUPPORT AND EXPERIENCE WITH
INSTANTIATING THE PATTERN

Next, we present our experience with instantiating the
Checkable Assurance Argument Pattern for Data Sufficiency
proposed in the previous subsection (see Fig. 4) for the
pedestrian detection component presented in Section IV.

We executed the CIA steps, assuming that we concretize
the ’pose’ dimension of pedestrian by adding and including
new alternatives, namely ’sitting’, and ’lying’. This change
was motivated by the refinement of the ”Unusual pose of
pedestrian” triggering condition leading to a misdetection of
the ML component. Given this change, the execution of Step
1 of the CIA, where the ODD model is continuously checked
for changes, will result in annotating C1.1 context as directly
impacted, which will then initiate Step 2. In Step 2, given the
considered change, and based on the update recommendation
specified by change sensitivity annotation A3, the C3.1 context
argumentation element is annotated as to be rechecked, which
leads to Step 3 of the CIA, where the sufficient coverage of the
ODD by the training data is checked. In Step 3, the training
data is found to not sufficiently cover the new pedestrian poses.
C3.1 context is annotated as outdated, whereas in Step 4,
the dataset is to be updated by the safety engineer, so that it
entails sufficient samples of each pedestrian pose included in

ODD Model Data ODD Model Data

a) Results of our CIA b) Results of the CIA proposed by Kelly and McDermid

Fig. 6. CIA results for the use case.

the ODD. Given the modification of the dataset, in accordance
with change sensitivity annotation A5, in Step 5 G3.1 is
annotated as to be rechecked. After executing Step 6 and Step
7, while C3.4, G3.2, Sn3.1 are annotated as to valid, and can be
reused, G3.3 and its supporting evidence need to be rechecked.

In Fig. 6-a, we show both the impacted area within the
safety argument, and the area that can be reused. In addition,
we discuss about how our CIA compares to a state-of-the-art
CIA. We compare the impact area identified by the approach
proposed by Kelly and McDermid [21], while considering
the instantiated AMLAS pattern for the SuC and the afore-
mentioned concretization of the ’pose’ dimension with ours.
The approach proposed by Kelly and McDermid [21] cannot
identify automatically a change in a referenced model, the
CIA being triggered manually by the safety engineer. This
is because the approach do not support the specification of
machine readable, direct traces to the referenced assurance
artifacts, but only of text-based references. Given any type of
change in the referenced ODD, following the CIA approach
of Kelly and McDermid [21], the safety engineer manually
annotates the C1.1 argumentation element as directly impact.
Then, following the relationships between argumentation ele-
ments, their CIA can automatically annotate all the elements
in the argumentation structure as potentially impacts. Next, the
safety engineer needs to manually review the actual impact of
the change on each element in the argumentation structure,
covering the entire argumentation. The approach does not
provide any update recommendations. For example, in contrast
to our approach, it does not recommend when and how the
data needs to be updated, as a reaction to changes in ODD.
We observethat our approach allows for a more accurate CIA
than existing approaches [21].

We modeled the checkable pattern in FASTEN [1], [8]. The
pattern instantiation implies the specification of traces from the
safety argument model to models of different assurance arti-
facts (e.g., to ML data requirements, ML safety requirements,
ODD and triggering conditions). To this end, we extended
FASTEN with new Domain specific Languages (DSLs) to
enable the modeling of the ODD, and of the identified SOTIF
triggering conditions. However, the tool does not yet support
the automated identification of the type of change the ODD

model undergoes. Therefore, whenever a change in the ODD
model is detected, the CIA in FASTEN will annotate the
UsedDatasetContext as to be rechecked without differentiat-
ing an alternative is included or eliminated, and the update
recommendation will be to recheck the dataset. As such, the
CIA supported in FASTEN is more conservative and less
accurate than the CIA presented in the previous section. Also,
the quantitative CIA is still yet to be implemented in CIA.
Currently, the new functionality in FASTEN is at Technology
Readiness Level (TRLs) TRL4 (validated in a lab). To be
used in industrial projects, so that a safety manager or safety
engineer relies on the automation, tool qualification would be
required.

In Fig. 7, one can see a screenshot of a part of the model
of the instantiation of the checkable pattern for the pedestrian
detection ML-based component described in Section IV. While
C1.1 has a direct trace to the ODD we modeled for the
use case, C3.1 references external documents with the used
datasets. Fig. 7 shows a recommendation message output by
the implemented consistency checks, given the occurrence of
a change in the traced ODD model.

The checkable pattern can be downloaded from the git
repository [2]. The pattern will be also included in the up-
coming release of FASTEN.

VIII. DISCUSSION

Modeling checkable safety cases implies more effort than
modeling regular safety cases because one needs also to spec-
ify the change sensitivity information for all traces. However,
this is a one time effort, and it is compensated by the reduced
effort for executing CIA every time a system change occurs.
The more iterations on the safety argument are conducted, the
higher the benefit of the checkable safety argument is.

The accuracy of the proposed CIA highly depends on the
correct linkage between safety arguments and other assurance
artifacts. However, the advantage here is that the semantics
behind the traces are made explicit, enabling the automated
execution of consistency checks. As we discussed in the in-
troduction, this traceability is not trivial for Machine Learning
components. The more traces are made explicit, the more trust
can be laid in the safety argument. The accuracy of our CIA

Fig. 7. FASTEN screenshot with the Checkable Assurance Argument Pattern for Data Sufficiency instantiated for the pedestrian detection use case

also depends on the correct and complete specification of the
change sensitivity information.

However, our solution does not replace the need of a safety
engineer to conduct CIA, but automates parts of the CIA steps.
As the safety engineer is the one who specifies the change
sensitivity information, the correctness and completeness of
the automated CIA depends on his/her qualification.

The proposed CIA steps for the selected use case depend,
among other things, on the considered safety argument pattern
and change scenario. In this work, we consider the adaptation
of the ODD as change scenario and the a safety argument pat-
tern from the literature. This change scenario is an important
use case, since, as also specified in ISO 21448, knowledge
about previously unknown conditions must be incorporated
during development. Namely, whenever hazardous scenarios
are revealed either during V&V or during system operation,
the description of the ODD needs to be updated so that
it enables the specification of the respective scenario. It is
recommended that the data used follows the description of the
ODD and not the other way around, since the ODD is the basis
of all safety requirements, including the data requirements. If
triggering conditions are noticed that could lead to a failure,
then these must be documented in the ODD and not just
mitigated by further measures, changing the dataset.

Individual update recommendations have the potential to
be automated, such as the proposed quantitative CIA. How-
ever, some update recommendations will remain impossible
to automate in the near future. For example, in our use case
a retraining on extended data might be not sufficient for
particular reflection during sunset, as the camera is blinded.
Then a mitigation on system level might be more efficient.
This hazard might be handled by another sensor, e.g. radar,
that is not affected by this physical effect.

Whereas in this work we focused on an argument for the
sufficiency of the dataset used for the development of an ML
component, our solution for modeling safety arguments and
safety argument patterns in order to increase the accuracy
of automated safety argument CIA can be applied to various
safety arguments for different applications.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed to increase the accuracy of safety
argument CIA, by enhancing the traces between argumentation
elements and models of assurance artifacts with annotations
specifying the impact a change in the traced artifacts has on
the tracing argumentation elements. Also, to identify the prop-
agation of that impact throughout the entire safety argument
structure, we annotated traces between argumentation elements
with change sensitive information about how a change in a
model traced by one argumentation element impacts the other
argumentation elements. We implemented the solution in a
model-based environment called FASTEN, and we exemplified
it for an ML-based pedestrian detection component of an
automated driving system.

We illustrated how to model a state-of-the-art reusable
safety argument pattern as checkable. The chosen argument
pattern is one proposed by AMLAS and it reasons about the
sufficiency of data for ensuring that an ML-based component
satisfies its safety requirements. Making the pattern checkable
allows for the automated execution of accurate qualitative and
quantitative safety argument CIA given changes in the input
space, which is specified as an ODD model. The proposed CIA
is accompanied by update recommendations for impacted as-
surance artifacts to guide safety engineers through the process
of handling the identified impact.

Next, we intend to further validate our approach by applying
it to other use cases and also by exercising it for more
change scenarios. Also, our work opens up new potential
lines of research. For example, we intend to analyze the
impact of other types of changes (e.g., changes to the system
architecture, or the safety requirements) on the argumentation
structure of the AMLAS pattern addressed in this paper.

Acknowledgement. The research leading to the results pre-
sented above are funded by the German Federal Ministry
for Economic Affairs and Energy within the project KI Ab-
sicherung – Safe AI for automated driving. B. Gallina is par-
tially supported by the Sweden’s Knowledge Foundation via
the Safe and Secure Adaptive Collaborative Systems project.

REFERENCES

[1] https://sites.google.com/site/fastenroot/, accessed on 02.08.2022
[2] https://github.com/mbeddr/mbeddr.formal/actions/runs/2024913071, ac-

cessed on 02.08.2022
[3] Agrawal, A., Khoshmanesh, S., Vierhauser, M., Rahimi, M., Cleland-

Huang, J., Lutz, R.R.: Leveraging artifact trees to evolve and reuse safety
cases. In: Proceedings of the 41st International Conference on Software
Engineering - ICSE. pp. 1222–1233. IEEE / ACM (2019)

[4] Bloomfield, R., Fletcher, G., Khlaaf, H., Hinde, L., Ryan, P.: Safety case
templates for autonomous systems (2021)

[5] BSI org: BSI PAS 1883 Taxonomy for specifying an Operational Design
Domain, https://www.bsigroup.com/en-GB/CAV/pas-1883/

[6] Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I.,
Kelly, T.: Engineering trustworthy self-adaptive software with dynamic
assurance cases. IEEE Transactions on Software Engineering 44(11),
1039–1069 (2018)

[7] Cârlan, C., Petrisor, D., Gallina, B., Schoenhaar, H.: Checkable safety
cases: Enabling automated consistency checks between safety work
products. In: Proceedings of the 31st International Symposium on
Software Reliability Engineering - ISSRE Workshops. pp. 295–302.
IEEE (2020)

[8] Cârlan, C., Ratiu, D.: Fasten.safe: A model-driven engineering tool to
experiment with checkable assurance cases. vol. 12234, pp. 298–306.
Springer (2020)

[9] Gauerhof, L., Gansch, R., Heinzemann, C., Woehrle, M., Heyl, A.:
On the necessity of explicit artifact links in safety assurance cases for
machine learning. In: Proceedings of the International Symposium on
Software Reliability Engineering - Workshops (ISSREW). IEEE (2021)

[10] Gauerhof, L., Hagiwara, Y., Schorn, C., Trapp, M.: Considering relia-
bility of deep learning function to boost data suitability and anomaly
detection. In: Proceedings of the International Symposium on Software
Reliability Engineering Workshops (ISSREW). pp. 249–254. IEEE
(2020)

[11] Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli,
I.: Assuring the safety of machine learning for pedestrian detection
at crossings. In: Proceedings of the 39th International Conference on
Computer Safety, Reliability, and Security - SAFECOMP. Springer
(2020)

[12] Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a
machine learning function applied to automated driving. In: Proceedings
of the 37th International Conference on Computer Safety, Reliability,
and Security - SAFECOMP. Springer (2018)

[13] Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu, R., Habli, I.:
Guidance on the assurance of machine learning in autonomous systems
(AMLAS). arXiv preprint arXiv:2102.01564 (2021)

[14] Henriksson, J., Borg, M., Englund, C.: Automotive safety and machine
learning: Initial results from a study on how to adapt the iso 26262
safety standard. In: 2018 IEEE/ACM 1st International Workshop on
Software Engineering for AI in Autonomous Systems (SEFAIAS). pp.
47–49 (2018)

[15] Herrmann, M., Witt, C., Lake, L., Guneshka, S., Heinzemann, C.,
Bonarens, F., Feifel, P., Funke, S.: Using ontologies for data set
engineering in automotive ai applications. In: Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE
(2022), accepted

[16] ISO: Road vehicles – functional safety. ISO ISO 26262-(1-12):2018,
International Organization for Standardization, Geneva, Switzerland
(2018)

[17] ISO Org: ISO 21448 Road vehicles — Safety of the intended function-
ality, https://www.iso.org/standard/77490.html

[18] ISO Org: ISO/AWI 8800 Road vehicles — Safety and artificial intelli-
gence, https://www.iso.org/standard/83303.html

[19] ISO Org: ISO/IEC 22989:2022 Information technology — Artificial
intelligence — Artificial intelligence concepts and terminology, https:
//www.iso.org/standard/74296.html

[20] ISO Org: ISO/IEC 23053:2022 Framework for Artificial Intelligence
(AI) Systems Using Machine Learning (ML), https://www.iso.org/
standard/74438.html

[21] Kelly, T., McDermid, J.: Systematic approach to safety case mainte-
nance. Reliability Engineering and System Safety 71, 271–284 (2001)

[22] Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety
case impact assessment in automotive software systems: An improved

model-based approach. In: Proceedings of the 36th International Con-
ference on Computer Safety, Reliability, and Security – SAFECOMP.
pp. 69–85

[23] Object Managment Group: Structured Assurance Case Metamodel
- SACM, version 2.1. Tech. rep. (2020), https://www.omg.org/spec/
SACM/About-SACM/

[24] Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are They Going to Cross?
A Benchmark Dataset and Baseline for Pedestrian Crosswalk Behav-
ior. Proceedings of the International Conference on Computer Vision
Workshops (ICCVW) pp. 206–213 (2017)

[25] Salay, R., Queiroz, R., Czarnecki, K.: An analysis of iso 26262: Using
machine learning safely in automotive software (2017), https://arxiv.org/
abs/1709.02435

[26] Salay, R., Queiroz, R., Czarnecki, K.: An analysis of iso 26262: Machine
learning and safety in automotive software. SAE Technical Papers 2018
(2018), https://doi.org/10.4271/2018-01-1075

[27] Schwalbe, G., Knie, B., Sämann, T., Dobberphul, T., Gauerhof, L.,
Raafatnia, S., Rocco, V.: Structuring the safety argumentation for deep
neural network based perception in automotive applications. In: Proceed-
ings of the International Conference on Computer Safety, Reliability and
Security Workshops (SafeComp). p. 383–394. Springer-Verlag (2020)

[28] SCSC: Goal structuring notation, https://scsc.uk/gsn
[29] Siddique, U.: Safetyops. arXiv preprint arXiv:2008.04461 (2020)
[30] UL Org: Presenting the Standard for Safety for the Evaluation of

Autonomous Vehicles and Other Products, https://ul.org/UL4600
[31] Zhao, X., Huang, W., Bharti, V., Dong, Y., Cox, V., Banks, A., Wang, S.,

Schewe, S., Huang, X.: Reliability assessment and safety arguments for
machine learning components in assuring learning-enabled autonomous
systems. CoRR abs/2112.00646 (2021), https://arxiv.org/abs/2112.00646

