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Abstract

Planning is a critical function of multi-agent autonomous systems, which in-

cludes path finding and task scheduling. Exhaustive search-based methods such

as model checking and algorithmic game theory can solve simple instances of

multi-agent planning. However, these methods suffer from state-space explo-

sion when the number of agents is large. Learning-based methods can alleviate

this problem, but lack a guarantee of correctness of the results. In this paper,

we introduce MoCReL, a new version of our previously proposed method that

combines model checking with reinforcement learning in solving the planning

problem. The approach takes advantage of reinforcement learning to synthesize

path plans and task schedules for large numbers of autonomous agents, and

of model checking to verify the correctness of the synthesized strategies. Fur-

ther, MoCReL can compress large strategies into smaller ones that have down

to 0.05% of the original sizes, while preserving their correctness, which we show

in this paper. MoCReL is integrated into a new version of Uppaal Stratego

that supports calling external libraries when running learning and verification

of timed games models.
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1. Introduction

Autonomous agents (or shortly, agents), such as driverless cars, drones, and

mobile robots, are systems that can move, carry out tasks, and collaborate

with other agents autonomously without human intervention. Multi-Agent Au-

tonomous Systems (MAS) [1] consist of multiple agents that work together in an5

environment and aim to achieve a common goal, an example being a group of

construction equipment quarrying, crushing, and transporting stones. Planning

for MAS involves path finding and task scheduling, and is one of the most critical

problems when designing such systems [2]. There exist algorithms that solve

each problem, respectively. A* [3] and rapidly-exploring random tree (RRT)10

[4] are two well-known algorithms that calculate the shortest paths in an envi-

ronment with static obstacles. Algorithms for task scheduling have also been

widely researched, resulting in search-based methods [5, 6] and learning-based

methods [7, 8].

Nevertheless, approaches that solve the entire planning problem for MAS,15

which also provide a correctness guarantee are often not scalable [9, 10]. Learning-

based methods address this weakness but fail to provide a formal guarantee of

the correctness of their results. A united solution that solves both path finding

and task scheduling is still missing. The difficulties of finding such a solution

are threefold. First, the tasks of the agents are of different kinds. Some must20

be done individually, whereas some need collaborations, that is, agents gather

at the same position and start and finish a common task simultaneously. In

addition, tasks have uncertain completion time, which increases the difficulty of

task scheduling dramatically. Second, tasks can be scheduled differently: peri-

odically (repeatedly perform A), sequentially (perform A, then B, then C), or25

as a request-response pair (whenever A occurs, perform B). Third, the complex-

ity of solving the problem increases exponentially when the number of agents

increases linearly. This difficulty stems from the fact that task scheduling is

NP-hard [11]. Solving the problem algorithmically on MAS resulting from com-

posing all agents’ behaviors is computationally demanding.30
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We have previously proposed MCRL (Model Checking + Reinforcement

Learning) [12, 13] as a method that combines model checking with reinforce-

ment learning to synthesize and verify plans of agents. MCRL benefits from both

model checking and reinforcement learning so that the scale of the problem that

MCRL can solve is larger than that of search-based methods, and also the re-35

sults (a.k.a., plans) are guaranteed to be correct by model checking [11, 13, 14].

However, MCRL has some limitations: (i) models are hard to build manually

when the environment is big or the agents are many; (ii) MCRL only supports

simple tasks that are executed individually and periodically; (iii) the resulting

plan synthesized by MCRL is larger than needed, as it contains a tabulation40

of system states that are unreachable under the plan, which is impeding un-

derstandability (by an operator) and the realizability on systems with limited

resources.

To alleviate these issues, we propose MoCReL (Model-checked Compressed

Reinforcement Learning). MoCReL provides functions of synthesizing, verifying,45

and compressing plans, and it relies on modeling MAS as (Stochastic) Timed

Games in Uppaal Stratego [15], which is a tool that incorporates a sym-

bolic model checker Uppaal [16], a statistical model checker Uppaal SMC

[17], a solver for Timed Games Uppaal TiGa [18], and solvers for Stochas-

tic Timed Games relying on learning algorithms [15]. Similar to MCRL, the50

plan synthesis in MoCReL is an iterative process of a random simulation and

reinforcement learning. The simulation explores the MAS model randomly and

samples a user-defined number of execution traces of the model, which record

the executed action at each state of the model and the corresponding reward.

Then the learning algorithm uses these traces to synthesize a plan, which is55

used in the next round of simulation. This iteration of simulation and learning

ends when reaching a user-defined maximum round of iteration rounds, or a

user-defined number of traces are sampled so that a final plan is considered to

be generated. Next, to guarantee the correctness of the plan, MoCReL verifies

it by model checking the MAS model under the control of the plan, that is,60

the plan controls the model to choose certain actions at different states. The
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selected pairs of state and action are labeled during the verification, which in

turn helps compressing the plans. The unlabeled pairs are considered useless

for satisfying the requirements, and thus are removed from the plan. In this

way, plans are compressed while preserving the satisfied requirements. All the65

activities of plan synthesis, verification, and compression are implemented as an

external library that is linked to Uppaal Stratego, which enables us to easily

change or extend the algorithms for learning and compression.

In addition, to overcome the difficulty of building the models manually, we

propose parameterized templates of models. Uppaal [16] provides a rich lan-70

guage for defining templates in the form of extended Timed Automata, consist-

ing of locations and edges, and possibly local declarations and parameters. A

template is then instantiated by a process assignment. Uppaal Stratego [15]

inheritsUppaal’s template-based way of modeling and extends the templates to

support Timed Games. Thanks to this feature of Uppaal Stratego, our agent75

models are instantiated from several templates of Timed Games. Our design of

the templates enables users to easily adapt the models without re-constructing

the templates according to their own applications where the environment or the

goal of the mission changes. For example, if the number of agents or a pre-

condition of a task is changed, one only needs to pass a different value of the80

corresponding parameter of the templates. In our experiments (Section 5), we

leverage this contribution to build a tool for automatic model generation.

In summary, MoCReL overcomes the limitations of MCRL as follows, which

are the contributions of this paper:

(i) Parameterized model templates that are easy to adapt according to dif-85

ferent applications.

(ii) The model templates allow for various task types, such as collaborations

among agents and tasks that are activated by events.

(iii) MoCReL’s method for plan synthesis and compression is proven to be

sound, that is, plans that are synthesized and compressed by MoCReL are90

correct-by-construction.
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(iv) Experiments of MoCReL on a real industrial case study show that the

compressed plans can take down to 0.05% of the memory space of the

original plans, while preserving their properties, e.g., always eventually

finishing all tasks.95

The remainder of the paper is organized as follows. In Section 2, we intro-

duce the preliminaries: timed games and strategies in Uppaal Stratego, and

reinforcement learning. Section 3 describes the problem of MAS planning. In

Section 4, we describe our proposed methods for strategy synthesis, verification,

and compression in MoCReL. Next, we present the experimental evaluation in100

Section 5. In Section 6, we discuss the assumptions made by MoCReL and lim-

itations of the approach that show the potential future work. In Section 7, we

compare to related work, and conclude the paper in Section 8, where we also

mention directions for future work.

2. Preliminaries105

In this section, we recall the timed automata formalism as used in the UP-

PAAL tool suite, timed games, and the reinforcement learning algorithm used

in this paper. We denote non-negative integers as N, and real numbers as R.

2.1. UPPAAL Timed Automata

A timed automaton (TA) is finite-state automaton extended with real-valued110

variables [19]. The variables model the logic clocks in systems, which are zero

initially and then increase synchronously with the same rate. Uppaal [16] is a

tool for modeling, simulation, and model checking of Uppaal timed automata

(UTA), which is an extension of TA with data variables, etc. A UTA is defined

as a tuple:115

< L, l0,Σ, V, C,E, I >, (1)

where L is a finite set of locations, l0 ∈ L is the initial location, Σ is a set of

actions, V is a set of data variables, C is a set of real-valued variables called

clocks, E ⊆ L×B(C, V )×Σ×2C×L is the set of edges, where B(C, V ) is the set
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of guards over C and V , that is, conjunctive formulas of clock constraints B(C)

(of the form x ▷◁ n or x − y ▷◁ n, where x, y ∈ C, n ∈ N, ▷◁ ∈ {<,≤,=,≥, >})120

and non-clock constraints B(V ), and I : L 7→ B(C) is a function assigning

invariants to locations.

The semantics of a UTA is defined as a timed transition system over states

q = (l, c), where l is a location, c ∈ RC is the valuations of the clocks at this

location, with the initial state q0 = (l0, c0), where c0 assigns all clocks in C to125

zero. There are two kinds of transitions:

(i) delay transitions: qn
d−→ q′n, where n ∈ N, c |= I(l), q′n = (l, c ⊕ d) is the

next state delaying from qn, and c ⊕ d is obtained by incrementing all clocks

with the delay amount d such that c⊕ d |= I(l), and

(ii) discrete transitions: qn
a−→ qn+1, where qn+1 = (l′, c′) is the next state130

traversing via the edge l
g,a,r−−−→ l′ from qn, for which the guard g evaluates to

true in the source state qn, a ∈ Σ is an action, and valuation of c′ on the target

state qn+1 are obtained by resetting all clocks in r ⊆ C such that c′ |= I(l′).

2.2. Timed Games

(a) A TG of a car (b) A TG of a charging station

Figure 1: An example of a network of TG.

A timed game (TG) is a UTA with its set of actions partitioned into con-135

trollable (Σc) and uncontrollable (Σu) ones. Uppaal Stratego [15] is a tool

that supports modeling and verifying TG as well as synthesizing strategies to

solve TG. Fig. 1 depicts two templates of TG in Uppaal Stratego, which

consist of locations and edges. A template may also have local declarations and

parameters and can be instantiated by a process assignment (in the system def-140

inition) [16]. In a TG template, locations (e.g., Charging) are blue circles. The
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double circles (e.g., Home) denote the initial location. Clocks (e.g., t) are spe-

cial variables that increase simultaneously at rate 1, when the TG is executed.

Invariants (e.g., t<=20) on locations must be true when the TG stays at the

location. Edges connecting locations denote discrete actions, which are parti-145

tioned into controllable ones (solid lines) and uncontrollable ones (dashed lines).

Delays allow time to elapse on locations as long as the associated invariants are

not violated. Guards (e.g., t>=10) on edges must be true when the edges are

enabled for transition. Assignments on edges reset clocks (e.g., t=0) or update

data variables (e.g., fuel = 20). A network of TG is a parallel composition of150

TG that can synchronize via channels (e.g., go! is synchronized with go?).

When TG are executed, the choices of delaying at locations or executing

discrete actions are non-deterministic, whereas Stochastic Timed Games (STG)

replace the non-deterministic choices with stochastic ones. By default, STG in

Uppaal Stratego apply uniform probability distributions on discrete tran-155

sitions and time-bounded delays, and exponential probability distributions on

unbounded delays.

In this paper, we denote TG (STG) by G (P), and the semantics of a G by

SG . A run π of a G is a sequence of alternating delays (denoted by d) and

discrete transitions (denoted by a) of its SG : π = q0
d1−→ q′0

a1−→ q1
d2−→ q′1

a2−→160

...
dn−→ q′n−1

an−−→ qn .... If we denote the last state of a finite run πf as last(πf ),

a strategy is a function that maps actions, i.e., either a controllable one a ∈ Σc

or a delay (delays with no specific duration are denoted by λ), to each of the

states. Formally, strategies are defined as follows [20]:

Definition 1 (Strategy). Let G =< L, l0,Σc ∪ Σu, V, C,E, I > be a TG. A165

strategy σ over G is a partial function: πf → 2Σc∪{λ} \ {∅} such that for any

finite run πf ending in state ql = last(πf ), if a ∈ σ(πf ) ∩ Σc, then there must

exist a transition ql
a−→ ql+1 ∈ SG. □

A stochastic strategy of an STG delivers probabilities instead of definite

choices of actions [20]. Strategies defined by Definition 1 can be memoryless,170

which make decisions on actions depending on the current state only, that is,
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the function σ now is: last(πf ) → 2Σc∪{λ}\{∅}. Note that strategies in the con-

text of Timed Games conventionally are defined with history to capture more

complex settings (such as partial observability) or complex logical requirements

(such as Linear Temporal Logic). However, for the given subclass of prob-175

lems that we study here (reachability and safety), memoryless strategies suffice

(both w.r.t. qualitative safety/reachability and quantitative measures such as

optimality), and thus it is sufficient to consider the last state.

If we denote the set of runs in SG as ΠG , a TG under the control of a strategy

σ as G | σ, the outcome of running G | σ is a subset of ΠG , denoted as Out(G | σ).180

Out(G | σ) can be defined inductively as follows1:

Definition 2 (Outcome of G | σ). Given ϵ ∈ Out(G | σ) with last(ϵ) = q0 =

(l0, c0) ∈ Out(G | σ)2, if π ∈ Out(G | σ) and π′ = last(π)
e−→ q, then π′ ∈

Out(G | σ) if either one of the following conditions hold:

1. e ∈ Σu, or185

2. e ∈ Σc and e ∈ σ(last(π)), or

3. e ∈ [0, T ] ⊆ R≥0 and ∀e′ < e, last(π)
e′−→ q′ for some q′ s.t. σ(q′) ∋ λ,

where T is the invariant boundary on the location of last(π). □

We will use these three conditions in the proof of Theorem 1. Let P be a

proposition and the reachability objective for G, then a finite run πf is winning190

w.r.t. P , if P is true at the last state of πf . A strategy σ over a G is winning if

all runs in Out(G|σ) are winning. In this paper, we aim to synthesize winning,

memoryless, and non-lazy strategies, that is, winning strategies that urgently

decide on a controllable action to execute, or wait until the environment makes

a move3. For brevity, strategies referred to in the rest of this paper are all195

memoryless and non-lazy.

1Definition 2 is adapted from the definition of strategy outcome Out(σ) [20].
2An empty trace denoted by ϵ is a special case of a trace.
3Memoryless and non-lazy strategies are shown to suffice for optimal scheduling of Duration

Probabilistic Automata [5].

8



2.3. Model Checking and Temporal Properties

Model checking [21] traverses the state space of a formal model (e.g., TA)

and checks if it satisfies temporal properties. The properties in Uppaal are

(Timed) Computation Tree Logic ((T)CTL) expressions [22]. In this paper, we200

use the following forms of (T)CTL properties, where p is an atomic proposition

over the locations, clocks, and data variables of the UTA:

(i) Invariance: E[] p meaning that there exists a run where all the states

satisfy p, or A[] p meaning that for all runs, p is satisfied by all states in

each run,205

(ii) Liveness: A<> p (A<>≤t p) meaning that for all runs, p is satisfied by at

least one state in each run (within t time units).

2.4. Reinforcement Learning

Reinforcement learning (RL) [23] is a kind of machine learning method for

training agents by assigning rewards to desired behaviors and/or penalties to210

undesired ones, with the purpose of maximizing the accumulated rewards. Fig. 2

depicts how an agent learns in RL. Without losing generosity, we assume that

the agent starts from state S1 and takes action A1. When taking an action

at the current state, the agent obtains the feedback of the action from the

environment, including the immediate reward and the next state that agent215

is going to transfer to (Fig. 2(a)). Then, the agent calculates the reward of

the current state-action pair and stores it in a score table. When the agent

reaches the goal state, or fails, or exceeds the time limit, one round of learning

is accomplished, and the score table is populated with the explored state-action

pairs and their corresponding rewards (Fig. 2(b)).220

Based on the types of environment, RL algorithms can be categorized into

model-free RL and model-based RL. Model-free RL relies on samples from the

environment, which can be a virtual or a real one, to estimate the rewards of

the future state-action pairs following the agent’s current state. Model-based

RL uses the model’s predictions or distributions of state-action pairs and their225
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(a) How agents learn in Reinforcement Learning [23]

(b) An example of how a score table is populated in Reinforcement Learning. S stands for
state, A stands for action, and / means an action is not allowed at a particular state.

Figure 2: A process of Reinforcement Learning.

rewards to find optimal actions. Therefore, models in the model-based RL must

contain the full information of the environment and agents, which is hardly to

obtain in an unexplored or partially observed environment.

Q-learning [24] is one of the model-free algorithms, in which scores of state-

action pairs are calculated by a Q function that satisfies the Bellman optimality230

equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (2)

where q∗(s, a) represents the expected reward of executing action a at state s,

E denotes the expected value function, R(s, a) is the reward obtained by taking

the action a at state s, γ ∈ [0, 1] is a discounting value indicating how much

the future reward is evaluated in the calculation of the expected value of the235

current reward, s′ is the new state coming from state s by taking action a,

and max
a′

q∗(s′, a′) represents the maximum reward that can be achieved by any

possible next state-action pair (s′, a′). When γ is zero, the future reward is

not considered at all, which means the learning algorithm becomes a greedy

algorithm that only considers the available actions at the current state. When240
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γ is larger than zero, the future rewards are taken into consideration. The

Bellman equation calculates the rewards of state-action pairs by considering

both the current reward and the discounted maximum future reward. The

rewards of the pairs are often stored in a score table. We show an example of

such score tables in Section 3.2.245

3. Problem Description

In this section, we introduce the planning problem of MAS and its challenges.

3.1. Overall Description

MAS are designed to move and execute a series of tasks autonomously. The

actions belonging to a MAS can be categorized as: (i) movement, and (ii) execut-250

ing a task. Whenever an agent moves or starts a task, the environment decides

the ending time of the action. Now, the MAS planning is to order these two

kinds of actions such that, no matter how the environment reacts, the MAS can

finish its tasks while satisfying certain requirements, e.g., never let two agents

execute a task simultaneously. The overall goal of MAS planning is:255

Overall Goal: Given a MAS and a set of requirements, the goal of planning

is to order the agents’ actions of movement and task execution, according to

their variable ending time and occurrences of events, which are decided by the

environment, such that theMAS can finish its tasks and satisfy the requirements.

Remark 1. The planning problem becomes a path-finding problem only, in case260

the agents do not need to accomplish any tasks, but only travel to different

positions in the environment. Similarly, the planning becomes task scheduling

only if the agents do not need to travel, e.g., scheduling of processes in a multi-

core computer system.

Remark 2. The requirements can be functional ones, such as task A always265

being started after task B, and safety ones, such as no collision with static

obstacles within the environment.
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3.2. Challenges of Solving the Planning Problem

The major challenges of this problem stem from four aspects, which get

amplified especially when solving the problem via algorithmic techniques. While270

the challenges are exposed and identified in the present study, they align with

the experience reported in other literature [5, 11, 25, 14, 10, 9, 26].

• Challenge I (uncertainty): The agents’ actions have uncertain execution

time, which means agents can choose actions to perform but cannot control

how much time the actions will take. The uncertainty of execution time275

makes static plans inefficient, since they assign starting time to the actions

without knowing their actual ending time [5, 11].

• Challenge II (variety of task constraints): Some tasks have additional

constraints, e.g., task A should always be completed before task B starts.

Some tasks must be executed whenever certain events occur [14, 25].280

• Challenge III (complexity): As an NP-hard problem [11], when synthe-

sizing and verifying plans for MAS, the state space of the model grows

exponentially when the number of agents increases linearly as shown in

the literature [9, 10, 25].

• Challenge IV (large plans): As the state space of the problem grows ex-285

ponentially, the resulting plan can grow exponentially too. However, some

of the information in the plans may never be used. It is time-consuming

to look for the right actions in a large plan. In some applications, it is

simply impossible to store plans that take too much memory space, such

as Airborne Collision Avoidance System X (ACAS X) [26].290

3.2.1. An Example of Planning for Illustrating the Challenges

To give a concrete example of large plans, in Fig. 3, we show a path-finding

problem in a 2D space, where a robot tries to catch a cat. Note that our mission-

planning problem combines path finding and task scheduling, which makes the

model’s state space to be high dimensional rather than a 2D space.295
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(a) An example of a plan for a path-finding prob-
lem. Solid lines are controllable actions in the
plan. Dashed lines are the uncontrollable actions
of the environment. Red lines are the ones that
guarantee to reach the destination no matter how
the environment reacts. Black lines are useless
ones that should be removed from the plan.

(b) The score table of the plan for
this example. The first column in-
dicates states. The grey rows in-
dicate the controllable actions at
states. The white rows show the
scores of state-action pairs accumu-
lated by reinforcement learning.

Figure 3: An example of path finding in an environment with uncertain behaviors and the
score table of the path plan.

Limits of search-based methods. Algorithmic planning methods, such as Di-

jkstra’s algorithm for path finding [27], and the symbolic on-the-fly algorithm

for solving timed games [18], usually explore the model’s state space in a certain

order (e.g., depth-first exploration), store the preceding states of each state, and

back propagate to the initial state when finding the goal state. The resulting300

plan is concise as it only contains the state-action pairs that are correct, that

is, they satisfy the requirements and reach the goal state. Additionally, the

correctness of the plan is guaranteed as the algorithms explore the state space

exhaustively [18]. However, the algorithmic methods are not scalable because

they fail to solve the problem in a reasonable time when the model’s state space305

becomes large [13].

Limits of reinforcement-learning-based methods. A path-finding algorithm

that uses reinforcement learning can alleviate this problem by replacing the

exhaustive state-space exploration with random simulation [13], while in turn

suffering from disadvantages that we emphasize in the following. As depicted in310

Fig. 3(a), a path plan synthesized by reinforcement learning contains multiple

13



routes from the robot to the cat, which results in a score table shown in Fig. 3(b).

A robot under the control of a plan always chooses the actions with the highest

score at each of its states. For example, if a robot is controlled by the plan

in Fig. 3(b), it non-deterministically chooses among actions m11 and m12 at its315

initial position, because they have the highest score at state Init. However, one

cannot neglect other actions at state Init before the learning finishes because

score tables are populated gradually during the course of learning while the

scores converge to the optimal values at the limit (see Fig. 2(b)). This causes

the final score table to contain many useless data that are not optimal or even320

violate the requirements. Another example of useless data is the pair (C, m23). It

is sampled during the random simulation, but not used in the final plan, which

initially chooses to do actions m11 and m12, and thus never gets to state C.

Besides, there is no guarantee on the correctness of the learning results,

that is, even the actions with the highest score are not guaranteed to lead the325

agents towards the goal state and satisfy all requirements. This drawback of Q-

learning [24] stems from three facts: i) although the scores of state-action pairs

converge to the optimal values at the limit, it is unknown when they converge.

Therefore, it is hard to know if the learning is sufficient enough for synthesizing

a comprehensive score table that covers all the possible states; ii) the learning330

algorithm uses data sampled from random simulation, thus even if the scores

converge, the resulting plan is not guaranteed to provide a safe policy as rare

events might not be encountered during the simulation, even with very high

sampling budget [28]; iii) when constructing the reward function for Q-learning,

that is, the function for calculating immediate rewards, one often needs to make335

a trade-off between safety and performance. This would inadvertently cause

the resulting score tables to accept risks of failure, as long as the performance

improvement compensates the cost of failure. Hence, a post-verification on

the plans synthesized by reinforcement learning is important for ensuring the

correctness of the results.340

Overall challenge. In a nutshell, the overall challenge of MAS planning is to

design a method for plan synthesis that can cope with the uncertain execution
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time of actions, variety of task constraints, and large state spaces of the MAS

models in real cases, and for compressing large plans that could contain useless

data. The compressed plans must have a correctness guarantee.345

3.3. A Motivating Example

In this section, we introduce the autonomous quarry that serves as the in-

dustrial case-study provided by Volvo Construction Equipment (CE) in Swe-

den. As depicted in Fig. 4, the quarry contains various autonomous agents,

e.g., trucks and wheel loaders. The goal of the agents is to transport stones350

from stone piles to crushers. Specifically, wheel loaders first dig stones at

the stones piles and load them into trucks. Trucks can choose to get loaded

from the wheel loaders or primary crushers. After being loaded, the trucks

carry the stones to a secondary crusher, which is the destination of the stones.

Figure 4: An autonomous quarry

During the transportation, the agents355

move, collaborate or work independently,

and charge timely in order to achieve their

goal, while satisfying requirements such

as quarrying 2000m3 of stones per day.

The challenges of the use case are as fol-360

lows, which fall into the general challenges

in planning problems of MAS (see Section 3.2):

• Task durations are uncertain because of the uncertainties in the environ-

ment. For instance, when trucks are unloading stones into a primary

crusher, the speed of the conveyor belt on the primary crusher varies,365

which results in different execution times of unloading. Other trucks may

need to wait until the previous one finishes its work at the primary crusher,

which can even influence the entire plan (Challenge I).

• Some tasks are executed independently by agents, such as unloading to

secondary crushers. Some tasks require collaboration between agents, such370

as wheel loaders loading stones into trucks. Some tasks must be priori-
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tized when certain events occur, such as the charging task that must be

prioritized when the agent’s battery/fuel level is low (Challenge II).

• According to the experience of Volvo CE, the number of agents can vary

from 2 to 8. However, our previous study has demonstrated that synthe-375

sizing correctness-guaranteed plans by using model checking is limited to

MAS with less than 5 agents4 [9]. Handling larger numbers of agents is

challenging (Challenge III and Challenge IV).

To overcome these challenges of MAS planning, we design an approach called

MoCReL, which is an improved version of MCRL that we have proposed previ-380

ously [12]. MCRL combines model checking with reinforcement learning, so it

can deal with more agents than the algorithmic methods do, however, its task

types do not support collaborations and events in MCRL, and large plans cannot

be compressed either. Next, we introduce MoCReL in detail.

4. Strategy Synthesis, Verification and Compression385

Figure 5: Workflow of MoCReL

In this section, we introduce the workflow of

MoCReL and describe the TG of MAS together

with the important techniques that are used in

MoCReL for strategy synthesis, verification, and

compression.390

4.1. Overall Workflow of MoCReL

The workflow of MoCReL is shown in Fig. 5.

Step 1 : A probabilistic quantification is con-

ducted on the TG to facilitate sampling over the

system, effectively turning the TG into an STG395

(Stochastic Timed Game).

4Note that the mission plan is for all the agents that collaborate to accomplish a com-
mon goal. Hence, the synthesis must be done over the composed model of all agents, which
dramatically increases the complexity.
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Step 2 : Strategy synthesis takes place, which employs the Monte-Carlo simula-

tion in Uppaal Stratego [15] to simulate the models and sample runs that

satisfy certain properties. Next, the sampled runs are passed to the reinforce-

ment learning module to generate strategies. Iterations between the simulation400

and learning continue until reaching the limit of iteration or sampling a user-

defined number of runs. In this paper, we extend Uppaal Stratego such

that it supports using external libraries to change the learning module [29], and

implement MoCReL as an external library5.

Step 3 : When the synthesis finishes, a stochastic strategy is obtained, which is405

then abstracted as a non-deterministic strategy and verified.

Step 4 : During the verification, the model checker inquires the synthesized

strategy, which is stored in the external library of MoCReL, about the preferred

actions at a given state. The preferred state-action pairs are labeled as “visited”.

Step 5 : If the verification fails, we go back to Step 2 with an increased number410

of iteration limit so that the new round of synthesis can have more samples

for learning. If the verification passes, the strategy is cleaned by removing the

unlabeled pairs, which completes the phase of strategy compression.

Note that increasing iteration limit is considered a valid approach only when

the current learning rounds are insufficient, that is, when the counterexample415

returned from the model checker shows that the synthesized strategy has not

covered all the states that the agent model may encounter on its way towards the

goal. Besides increasing the iteration limit, one can also use the counterexamples

to guide the following rounds of learning. The authors are working on this

method and leave it as a future work to report. If the counterexample shows420

that the violation of a requirement is caused by a controllable action suggested

by the synthesized strategy, one should stop increasing the iteration limit and

examine the model or reward function.

Models and strategies throughout the workflow are interpreted semantically

as shown later in Section 4.4. Uppaal Stratego supports both the algorith-425

5The introduction and an example of the library are in Appendix A.4.
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mic synthesis in Uppaal TiGa [30] and the learning-based synthesis that uses

reinforcement learning [20]. Results of the algorithmic synthesis are correct-by-

construction, but the method does not scale as it needs to explore the state

spaces of the models exhaustively. In MoCReL, we propose a post-verification

of the strategies that are synthesized by learning. The verification is exhaus-430

tive so the results are guaranteed to be correct. Moreover, as the verification

is conducted on the agent model controlled by a strategy, the state space can

be much reduced. Therefore, problems that are too complex to be handled by

Uppaal TiGa can be solved by MoCReL.

4.2. Modeling of MAS435

MoCReL models the agent behaviors into timed games (TG), including: (i)

movement TG that model the connection and traveling time between every pair

of legal positions in the environment. Legal positions are the ones that are

accessible by the agents; (ii) task execution TG that model the switch between

tasks and the idle state, and the task execution time; (iii) monitor TG that440

monitor events. When an event occurs, a monitor TG informs task execution

TG to execute the corresponding task.

As a major difference between MoCReL and our previous approach MCRL

[12], the models in MoCReL are much easier to adapt to different scenarios of the

planning problem, as they are instantiated from model templates. One does not445

need to change the templates but only instantiate the templates with different

values of parameters in order to fit in one’s own application. We describe this

feature throughout the following introduction of the TG templates.

(i) Movement TG: The TG template of movement models an agent traveling

from one point to another. The points can be anywhere except the obstacles450

within the map. Since the purpose of the model is to synthesize plans, the

movement TG do not need to model the concrete trajectories, but the traveling

targets and the time duration. For example, the trajectories depicted by Fig. 6

can be modeled by the movement TG, regardless of how the agents move, such

as continuously in Fig. 6(a) or discretely in Fig. 6(b) and Fig. 6(c).455
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(a) (b) (c)

Figure 6: Examples of trajectories.

Figure 7: The TG template of agent movement

Fig. 7 shows the template of movement TG, in which locations P1 and P2

represent any legal positions in the map. The parameters p1 and p2 are the

concrete positions that locations P1 and P2 represent, respectively. The location

F1T2 models the duration of traveling from P1 to P2. Although the edge from

F1T2 to P2 is uncontrollable by agents, the invariant (xm ≤ up) and guard (xm460

≥ down) regulate that the traveling time must be within the interval between

down and up. The time interval is also parameterized by the parameters down

and up of this template.

Now let us argue why the new movement TG template is easier to adapt

than the movement template of MCRL [13]. In MCRL’s movement template,465

all the positions that need to be visited by the agents are modeled as loca-

tions in one movement template, which means that whenever the topology of

the environment changes, such as more positions are available, the movement

template needs to be changed accordingly. The modification is error-prone and

time consuming, especially when the number of positions is large. When us-470
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ing the new movement TG template, one only needs to pass different values of

the parameters when the topology changes, or instantiate more models when

more positions are available for the agents. For example, when the modeling

granularity of movement changes from Fig. 6(b) to Fig. 6(c), one only needs to

instantiate three TG models instead of two, whereas in the movement template475

of MCRL, one needs to add more locations and edges into the template, which

is error-prone and hard to automate.

Note that the agent’s current position and current status of task execution

are stored in arrays gp and gt, respectively, which are shared with all the TG

of movement, task execution, and monitor. The arrays gp and gt are used in480

the guard function isReady and update functions move and reach. The update

functions are straightforward, which change the value of gp[agentID] according

to the values of the parameters p1 and p2. The guard function isReady is more

complex, and is depicted in Algorithm 1.

Algorithm 1: isReady in the movement TG template

1 isReady(int position)
2 if timeUp || isGameWon() || isMoniterStop(agentID) then
3 return false

4 if gp[agentID] == position && gt[agentID] == TASK IDLE then
5 if gs[taskOnP1] == FINISHED || gs[taskOnP2] == UNSTARTED

then
6 return true

7 return false;

Line 2 means that if the simulation time is consumed (timeUp is true), or485

the mission goal is achieved (isGameWon() returns true), or the monitor has

stopped (reaching the location Stop in Fig. 9), the agent is not allowed to move,

and thus the isReady function returns false. Line 4 means that if the agent’s

current position is at p1 and the agent is not running any task, it can be allowed

to move. Line 5 means that only when the agent’s task at p1 is finished and490

the task at p2 is not started, the movement from p1 to p2 is permitted. This

condition is for eliminating meaningless movements among positions where tasks
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have been finished already.

Combining with Fig. 7, we know that the argument of position at line 4 is

always p1, because one instance of the movement TG template only models one

direction of the movement, that is, from p1 to p2. For example, when modeling

a car moving from the green point to the red point in Fig. 6(a), one needs to

instantiate two models, i.e.,

green2red = Movement(CAR, GREEN, RED, 60, 65, JOB A, JOB B) (3)

red2green = Movement(CAR, RED, GREEN, 60, 65, JOB B, JOB A) (4)

where CAR, GREEN , RED, JOB A, and JOB B are constant integers rep-

resenting the corresponding elements in the environment, respectively. When495

the agent leaves the green point, model green2red leaves location P1, and then

finally reaches location P2 meaning that the agent has arrived at the red point.

Similarly, when the agent goes back to the green point, model red2green leaves

location P1 while model green2red goes back to its location P1 synchronously

via the channel go[agentID], because green2red needs to be ready for the500

future movement from the green point to the red point.

Figure 8: TG template of task execution.

The guards and functions are not shown.

(ii) Task execution TG: Similar to the

movement TG, the task execution TG do

not model the concrete steps of executing a

task, but only the switch between task ex-505

ecution and idle, and the execution time of

the task. There are several different tem-

plates designed for different types of tasks,

such as tasks without precondition, tasks

with events, and tasks that need agents to510

collaborate. One can instantiate the tem-

plates according to one’s own application by assigning values to the parameters

of the templates, such as BCET and WCET (best-case and worst-case execution

time, respectively), preconditions, and the event that activates the task, respec-
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Table 1: An example of the guard on the edge from locations Idle to Executing in Fig. 8.
The guard is a CNF formula: C1 && C2 && C3 && C4 && C5.

C1 !isBusy(agentID, task)
C2 isExecutable(agentID, task)
C3 precondition[agentID][task] = FINISHED
C4 task status[task] = FINISHED
C5 !isMonitorAlert(agentID)

tively. However, the structure of the templates is the same (Fig. 8)6. When the515

agent is allowed to execute a task, the guard on the edge from location Idle to

Executing is true. The guard is in the conjunctive normal form (CNF). Table 1

shows examples of such guards. C1 checks if the device that the task requires

is busy or not; C2 checks if the agent is allowed to start a task, which is similar

to the condition of line 2 in Algorithm 1; C3 checks if the task’s precondition520

is true, such as the preceding tasks are finished; C4 checks if the target task

that is about to be executed finishes or not; C5 checks if a monitor is alerting

or not. The guard varies as the type of task changes, e.g., when a task needs a

collaboration among agents, the collaborating agents must be ready and located

at the same position.525

When the task is ready but the device that is required by this task is taken by

another agent, the agent can choose to wait, i.e., transfer to location Waiting,

and change to location Executing when the device is free. Note that we explic-

itly model the waiting action in this template rather than using the delay at

location Idle because on the edge from locations Idle to Waiting, the agent’s530

status is changed from from TASK IDLE to WAITING. The agent’s status is

also used in the movement template for preventing the agent from moving when

its status is not TASK IDLE (line 4 in Algorithm 1). When the task is be-

ing executed, the TG can leave location Executing after the timer exceeds the

BCET, and must leave the location when it reaches the WCET, meaning that535

the execution time of the task is between BCET and WCET.

(iii) Monitor TG: A monitor monitors a signal, e.g., the fuel level of an agent,

6The full templates can be found: https://github.com/rgu01/MoCReL-Experiments.git
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Figure 9: TG template of monitors

and triggers an event when the signal exceeds a threshold. For simplicity, we

assume the signals to be changing monotonically with time. Since the tool that

MoCReL relies on, i.e., Uppaal Stratego, allows defining ordinary differential540

equations (ODE) of continuous variables, one can eliminate this assumption by

assigning ODE to locations. However, we leave this for the future work.

Based on the assumption, a monitor TG watches the elapse of time in-

stead of the signal, and triggers an event when time elapses a certain pe-

riod, meaning that the signal exceeds a threshold. In Fig. 9, when the timer545

exceeds a particular constant integer (i.e., warning), the monitor TG trans-

fers to location Alert while updating a variable representing the event (i.e.,

agents[agentID].a monitors[event]=ACTIVATED). The corresponding task ex-

ecution TG (Fig. 8) is then activated in the sense that its edge for starting the

task is enabled. If the agent can finish the task before the timer reaches the550

limit (i.e., shutdown), the monitor TG moves back to the initial location to

restart the monitoring; otherwise, the monitor goes to location Stop, when all

controllable actions of the agent are not allowed to be taken any more, mean-

ing that the agent stops operating. Parameters, such as event for event ID,

warning for the threshold of time before transferring to location Alert, and555

shutdown for the threshold of time before shutting down the entire system, are

configurable so that the monitor TG can be applied to monitor various signals

in different applications.

We call the network of movement TG, task execution TG, and monitor TG

a MAS TG. Properties of a MAS TG can be expressed by a subset of (Timed)560
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Computation Tree Logic ((T)CTL) [16] that is supported by Uppaal Strat-

ego. Since the formal models of MAS have been defined, we can now define the

planning problem formally before introducing the approach in detail.

Definition 3 (Planning). Given a MAS TG G and a liveness property Q in

the form of A<> p, the planning problem M =< G,Q > reduces to generate565

a strategy σ over G such that G can satisfy Q when it is controlled by σ, i.e.,

G | σ |= Q. □

The liveness property A<> p means that G | σ will always eventually satisfy

p. Note that one can also use A<>≤t p to express p will always be eventually

satisfied within t time units. For simplicity, we use A<> p to define the planning570

problem in this paper. As the main goal of mission planning is to find the

strategy that controls the agents to finish all their tasks eventually no matter

how the environment reacts, the liveness property is used in the synthesis. The

correctness guarantee of other requirements, such as safety, can be achieved by

the verification after a plan is synthesized. We will give more details on these575

properties in Section 4.4.

4.3. Partial State-Space Observation

During the learning iteration, numerical rewards of taking an action at a

state are used by reinforcement learning (e.g., the Bellman equation in Q learn-

ing [24]) to populate a score table of state-action pairs. When the learning580

finishes, the final values of the pairs are stored in the score table, which serves

as a strategy. Before introducing such strategies, in this section, we introduce

another important concept in MoCReL: partial observation of the state space.

The learning algorithms need to identify the states of MAS to build up

the score tables. As a formal model, MAS TG provides a clear definition of585

states, consisting of locations, clock values, and other data variables (Section

2). However, the strategies of MAS TG do not necessarily need to know all

the components of states. For example, if discrete variables are enough to

identify the MAS’s states, strategies can ignore all the clocks in the model,
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which simplifies the problem by eliminating unnecessary details. Hence, we use590

a partial observation of the state space of a MAS TG, which is supported by

Uppaal Stratego. One only needs to provide the interesting variables of the

MAS TG to the learning algorithm so that the synthesized strategies do not

contain unnecessary information. Details of specifying partial observability is

given in Query (5) in Section 4.4.595

4.4. Key Techniques of MoCReL

In this section, we will give a detailed introduction of the key techniques used

in MoCReL after the definition of strategies that we synthesize in this paper.

4.4.1. Strategy Definition

What MoCReL aims to synthesize is a subset of memoryless and non-lazy600

strategies that do not contain clocks. This restriction enables us to develop an

algorithm to exhaustively verify TG under the control of strategies in Uppaal

Stratego, which are synthesized via learning. Tomita et al. [31] divide speci-

fications into must specifications that must not be violated and desirable specifi-

cations that may be inevitably violated. Despite the restriction, the properties605

of our strategies fall into the must specifications, such as never collide with static

obstacles in the environment. Therefore, it is important to support exhaustive

verification on our synthesized strategies. Note that though our strategies do

not contain clocks, one can still verify the strategies against timing properties,

such as always finishing all the tasks within two hours. To satisfy such timing610

properties, one needs to wisely design the reward function so that a strategy

without clocks can take time limit into consideration. The introduction of re-

ward functions is in Section 4.4.3.

Now, we formally define the strategies that MoCReL synthesizes as follows:

Definition 4 ((Stochastic) Strategy with a Score Table). Given M =< G,Q >615

as a planning problem of MAS, a (stochastic) strategy of G with a score table T

of state-action pairs is a function σ : q → A ⊆ Aq
G, where q is a state consisting

of discrete variables, and Aq
G ⊆ 2Σc×{λ} is a set of controllable actions that
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are allowed by G at state q. Let ∥A∥ be the cardinality of A, max(Aq
G , T ) be

a function that searches T and returns a set of actions with the highest score620

among actions in Aq
G, σ must hold the following conditions:

1. if ∥max(Aq
G , T )∥ = 0 (i.e., T does not contain q), then A = Aq

G;

2. if ∥max(Aq
G , T )∥ ≥ 1, then A = max(Aq

G , T ).

When ∥Aq
G∥ ̸= 1, ties among actions happen. Non-deterministic (respectively,

stochastic) strategies break the ties by non-deterministic (respectively, uniformly-625

distributed) choices over A. □

Unlike the strategies synthesized by search-based methods (e.g., Uppaal

TiGa), the ones defined in Definition 4 do not guarantee to solve the MAS

planning problem. Possible errors can exist in the design of the reward func-

tions of the reinforcement learning algorithm, which do not reflect the desired630

properties in the planning problem, or the learning phase is not sufficient to

populate a score table that covers enough states. We will give some examples

of the design errors in Section 4.4.3 after the query for synthesis is introduced.

In the next section, we show how MoCReL synthesizes, verifies, and com-

presses strategies defined in Definition 4.635

4.4.2. Probabilistic Quantification and Abstraction

Due to the inherent difference between the phases of synthesis and verifi-

cation, models are interpreted semantically differently in MoCReL when being

simulated from when they are being verified. This is automatically done by prob-

abilistic quantification and abstraction of the models and strategies in MoCReL.640

Figure 10: Model relations in the process of MoCReL
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Fig. 10 shows the transformation of the model’s semantics in the workflow of

MoCReL. As the transformation is on the semantic level, the model’s templates

do not need to be changed. We elaborate on this in the following paragraphs.

Initially, the MAS TG is interpreted as an STG during strategy synthesis be-

cause random simulation is needed in this step. An operation called probabilis-645

tic quantification changes the non-deterministic choices of actions to stochastic

ones with concrete probability distributions. Specifically, time-bounded delays

and discrete actions are transformed into stochastic ones with uniform distri-

butions of probabilities. For example, in Fig. 8, the execution time of tasks is

bounded, so the non-deterministic choice of when to leave location Executing650

is transformed to a uniformly-distributed one.

Figure 11: A task execution STG

of a task with an unbounded exe-

cution time. This model does not

exist in our MAS STG.

If the execution time of a task is unbounded

(Fig. 11), an exponential probability distribution

must be assigned to the unbounded delay on lo-

cation Executing, where an exponential rate is655

used, e.g., 0.2. However, models like the one in

Fig. 11 do not exist in our MAS STG, because

tasks in our problem have BCET and WCET.

If a location has no invariant, which means un-

bounded delay is allowed there, but only outgoing controllable actions are con-660

nected to that location, such as Idle in Fig. 8, we still adopt uniform distribution

at that location because strategies are non-lazy, meaning that agents urgently

decide on a controllable action when it is available, or delay until the environ-

ment reacts. In this case, the controllable actions and delay are equally likely to

be chosen, so the model templates do not need to be changed either. Hence, the665

model templates of movement and task execution do not need to be changed,

as the probabilistic quantification is done on the semantic level automatically

by Uppaal Stratego.

Next, synthesis based on theMAS STG generates stochastic strategies. Specif-

ically, the simulation samples runs of the model and sends them to the learning670

algorithm to accumulate the scores of state-action pairs of the runs. During the
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learning phase, the probabilities of actions are not always the same. Actions

with higher scores become more likely to be chosen than the ones with lower

scores. Unexplored state-action pairs are equally likely to be chosen as the ones

with the highest scores. This arrangement is referred to as “exploration” in rein-675

forcement learning literature. After a user-defined number of runs is consumed

by the learning algorithm, a stochastic strategy is considered to be generated.

After the synthesis, strategies are to be verified and compressed. To achieve

verification, stochastic strategies must be transformed into non-deterministic

strategies so that they can be exhaustively model checked. This step is called680

abstraction (see Fig. 10), which is also automatically carried out by Uppaal

Stratego on the semantic level. Abstraction eliminates the probabilistic infor-

mation from a stochastic strategy by replacing the stochastic choices of actions

with non-deterministic ones, and produces a strategy. Specifically, as defined in

Definition 4, in the phase of verification, both non-deterministic strategies and685

stochastic ones always choose the actions with the highest scores. This is the

so-called “exploitation” in reinforcement learning literature. When ties among

actions appear, stochastic strategies equally likely choose one of these actions,

whereas strategies make the decision non-deterministically. Therefore, a strat-

egy may exhibit more behaviors than the stochastic strategy that the former is690

abstracted from. We prove this formally as follows:

Theorem 1. Given a TG G, an STG P obtained from G by the probabilistic

quantification, a stochastic strategy σ◦ (Definition 4) solving P, and a strategy

σ abstracting σ◦, the following inclusion holds: Out(P | σ◦) ⊆ Out(G | σ).

Proof. First, since P is obtained from G by the probabilistic quantification, an695

uncontrollable action that is chosen non-deterministically by G is chosen with

equal probability by P. If π ∈ Out(P | σ◦) and q = last(π), there must be a

π′ ∈ Out(P | σ◦) such that π = last(π′)
e−→ q, where e meets one of the three

conditions in Definition 2. Assuming π′ ∈ Out(G | σ), then

1. if e ∈ Σu, then last(π′)
e−→ q ∈ Out(G | σ) because σ has no control on e,700

and G non-deterministically chooses e ∈ Σu. Hence, π ∈ Out(G | σ);
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2. if e ∈ Σc ∩σ(q) or e = λ, then according to Definition 4, e has the highest

score in Aq
G . Then e can be chosen by σ deterministically when ∥A∥ = 1

or non-deterministically when ∥A∥ ≠ 1. Hence, π ∈ Out(G | σ).

Hence, π = last(π′)
e−→ q ∈ Out(G | σ). Likewise, we can inductively prove the705

assumption: π′ ∈ Out(G | σ). Hence, if π ∈ Out(P | σ◦), π ∈ Out(G | σ), that

is, Out(P | σ◦) ⊆ Out(G | σ).

Theorem 1 shows that σ, as the abstraction of σ◦, may broaden the outcome

of σ◦, since the former may exhibit behaviors that are highly unlikely or even

do not exist in the latter. Therefore, the exhaustive post-verification on σ is710

necessary for ensuring that the resulting strategy meets the requirements. In the

next section, we enumerate other reasons for conducting the post-verification.

4.4.3. Strategy Synthesis

Synthesis in Uppaal Stratego is done via the following queries:

strategy policy = minE(x)[<=T]{dv}-->{cv}:<> P (5)

strategy policy = maxE(x)[<=T]{dv}-->{cv}:<> P (6)

The keyword minE(x) (respectively, maxE(x)) means simulating the model715

while running the learning algorithm with the purpose of minimizing (respec-

tively, maximizing) “x”, which can be a variable or an expression. This is the

so-called “reward function” in reinforcement learning literature. In addition,

T is the maximum time for one round simulation, dv is a set of expressions

regarded as discrete values, and cv is a set of expressions regarded as continu-720

ous values. These constitute the so-called “features” in reinforcement learning

literature [23].

The state space of the MAS TG is partially shown to the learning algorithm

by the values of the expressions in dv and cv. In particular, MoCReL only allows

discrete variables, hence the synthesized strategies do not contain clocks. This725

limitation facilitates the verification of the learned strategy since the preference

of choice of controllable action cannot change within zones that represent the

basic construction enabling symbolic verification of timed automata [16].
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The formula “<> P” is a TCTL property, and only the runs that satisfy this

property are sampled in the simulation. These runs are used as input of the730

learning algorithm to calculate the scores of state-action pairs. In particular,

MoCReL uses “<> time ≥ C”, where time is a global clock in the model that

is never reset and C ∈ [0, T] is a constant integer within the simulation time

T. This formula allows all runs that simulate the model over C time units to be

passed to the learning algorithm no matter whether the agents reach their goals735

or not. Hence, both good and bad state-action pairs are passed to the learning

algorithm, which accumulates their scores by using their immediate rewards or

penalties, respectively.

When running Query (5) in Uppaal Stratego, our new version of the tool

calls an external library, which implements the learning algorithm of MoCReL740

to synthesize strategies, and stores the score table of the strategy. With the

help of the external library, one can plug in one’s own learning algorithm or add

new functions into the existing algorithm. We show this in Section 4.4.5.

Example. Now, we revisit the path-finding problem of Section 3.2, Fig. 3, to

show on the example concretely the necessity of verifying the resulting strategies,745

which in fact follows from the one way inclusion of Theorem 1. Assume that

the cat stays at its current position for N minutes, and that the robot wants to

catch it as quickly as possible, then the reward function can be specified as:

x = time− caught× REWARD (7)

The variable time is the aforementioned global clock, caught is a binary

integer (i.e, 1/0) indicating whether or not the cat is caught by the robot, and750

REWARD is a non-negative integer that the robot gets when it catches the cat. It

is trivial to see that the smaller the value of x is, the better the strategy is.

Mistake 1: misuse of synthesis queries. If one adopts the reward function

of equation 7 but mistakenly uses Query (6) for synthesis, which attempts to

find the state-action pairs maximizing x, the result can still be obtained, as755

the synthesis is only about accumulating scores of the pairs and populating a

score table. However, the actions that consume the most time (i.e., time being
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maximum) but never catch the cat (i.e., caught being 0) are taken as the best

actions in this result.

Mistake 2: inappropriate reward functions. Even if one uses the query cor-760

rectly, the resulting mission plan may not be able to let the robot catch the cat

before the latter escapes, that is, within N minutes. This is because the reward

function (7) does not consider the time limit. One can improve the reward

function to be equation (8).

x = time− caught × (time<=N)× REWARD (8)

Now, only when the robot catch the cat within N minutes, it is given the765

reward. This examples show a misuse of synthesis queries and an inappropriate

design of reward functions. Even if one avoids such two types of mistakes, the

resulting mission plan may still be wrong, because the samples for learning may

be too few to populate a score table that covers enough states, or the MAS

model is wrongly designed and violates other requirements of the agents that770

are not reflected in the queries for synthesis. In a nutshell, the learning-based

synthesis does not have a correctness-guarantee on its results.

4.4.4. Strategy Verification

Different from MCRL [12], the verification in MoCReL is directly conducted

on the MAS model under the control of a strategy, because Uppaal Stratego775

supports the following verification queries [15]:

A<> ϕ under σ (9)

Pr[<=T] ϕ under σ (10)

The keyword under puts the state space exploration of the MAS TG under

the control of the strategy that is synthesized and stored by the external library

of MoCReL. Query (9) returns an absolute answer of true or false to the question

of whether ϕ is always eventually satisfied, whereas Query (10) returns the780

probability of satisfying ϕ.

In this paper, we extend Uppaal Stratego to support Query (9) on strate-

gies that are synthesized by learning. The pseudo-code of executing Query (9) is
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in Algorithm 2. In Appendix A.2, we illustrate the execution of the algorithm

with an example. For the sake of readability, we overview the algorithm briefly785

here. To verify a liveness property like Query (9), one needs to explore the

model’s state space until either getting a counter-example violating the prop-

erty, or until reaching all the states. Specifically, a counter-example of a liveness

property like Query (9) must be either a loop, or a maximum run ending at an

unbounded state where time increases indefinitely, or a deadlock, in which none790

of the states satisfy ϕ. Hence, once such a run is found, the verification termi-

nates with a negative result (line 15 and line 17 in Algorithm 2).

Algorithm 2 is based on the algorithm for checking liveness properties in

the literature [32]. The main difference between these two algorithms is that

the state space exploration in Algorithm 2 is guided by a strategy. Specifically,795

when the model checker faces controllable actions (i.e., isControllable(
a
=⇒) in

line 22), or a delay (line 9), it calls function Allow to lookup the score table of a

strategy and chooses the actions with the highest score. In this way, the liveness

verification is guided by a strategy. In addition, the correctness and termination

of Algorithm 2 are guaranteed by the algorithm for checking liveness properties800

in the literature [32].

Example. We show several queries that can be used in the verification of the

synthesized strategy in the path-finding problem of Section 3.2, Fig. 3.

strategy policy = minE(time - caught × REWARD)[<=100]

{robot.location}-->{}:<> time >= 90
(11)

A<> caught under policy (12)

A[] !collide() under policy (13)

Query (11) synthesizes a strategy named policy, which allows the robot to

catch the cat within 100 time units ([<=100]). The condition at the end of the805

query, i.e., time >= 90, specifies when to sample runs. In this example, time

is a global clock that is never reset, and we want to sample runs that execute

at least 90 time units because this is the estimated least time for the robot to

catch the cat. The concrete value 90 can be replaced by any positive integer
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Algorithm 2: Algorithm of liveness verification (adapted from Fig. 3
in the literature [32]): model checking G | σ against Query (9)

1 Function Liveness(G, σ, ϕ):
2 ST := ∅ SD := ∅ Passed := ∅
3 Delay(G.S0,¬ϕ)
4 for Sd ∈ SD do
5 Search(Sd,¬ϕ)

6 return (true)

7 Function Delay(S, φ):

8 for S′ : S
d
=⇒ S′ do

9 if Allow(σ,
d
=⇒) then

10 if (S′ /∈ SD) ∧ (S′ |= I(S.l) ∧ φ) then
11 push(SD, S′)

12 Function Search(S, φ):
13 S := S ∧ φ
14 if S ̸= empty then
15 if loop(S,ST) then
16 exit(false) // Loop found

17 if unbounded(S) ∨ deadlocked(S) then
18 exit(false) // Maximal run found

19 push(ST, S)

20 if ∀S′ ∈ Passed : S ⊈ S′ then

21 for Sa : S
a
=⇒ Sa do

// If action a is uncontrollable or allowed, it can be chosen.

22 if ¬isControllable(
a
=⇒)∨ Allow(σ,

a
=⇒) then

23 Delay(Sa, φ)
24 for Sd ∈ SD do
25 Search(Sd, φ) // Recursive all

26 Passed := Passed ∩ {pop(ST )} // Move from stack to Passed

27 Function Allow(S, action):
28 if NumControllable(S) == 1 then
29 return (true)

30 if action ∈ best(σ, S) then
31 label(σ, S, action) // Label (S, action) in σ
32 return (true)

33 else
34 return (false)

depending on the designer’s experience. Normally, it is less than or equal to the810

total simulation time, i.e., 100 in this example, because no clock in the model can

exceed the total simulation time. Query (12) verifies the robot model under the

control of policy to see if it can always eventually catch the cat. Query (13)

involves a function collide() implemented in the model, which detects the

distances from the robot to obstacles in the environment and returns true if any815

one of the distances is less than a certain value, or false otherwise. This query
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verifies whether collisions between the robot and obstacles never happen.

Besides the possible errors in the resulting strategies, as presented in the

path-finding example, strategies can be memory consuming for containing too

much useless data. With the help of the external library where MoCReL is820

implemented, we can leverage queries in the form of Query (9) to not only

verify the strategy but also compress the strategy.

4.4.5. Strategy Compression

Once an external library is linked to Uppaal Stratego, the model checker

can enquire the external library when facing multiple controllable actions. For825

example, when more than one agent is ready to execute a task, the model checker

without an external library simply traverses all options non-deterministically,

whereas the model checker with an external library passes the current state and

the available actions of the state to the external library one by one, and obtains

the preference of each state-action pair. The ones with the highest score are830

always preferred. In MoCReL, besides returning the preference of actions, we

also label the state-action pairs that have the highest score as “selected” because

they are selected and verified by the model checker.

When verifying a liveness property (e.g., Query (9)), the model checker must

explore all the branches of the state space to ensure that the proposition of835

the property (e.g., ϕ in Query (9)) is always eventually true. Therefore, if

the liveness property is satisfied, the exhaustive model checking guarantees the

labelled state-action pairs to eventually reach the states where the property

is true regardless of which and when the uncontrollable actions are taken by

the environment. The unlabelled pairs are considered “useless” data because840

without them, the property can still be satisfied. Therefore, the strategy can be

compressed by removing the unlabelled pairs (cleaning in Fig. 5). By verifying

the compressed strategy again, we can see if the new strategy preserves the

liveness property that is met by the original strategy.
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Algorithm 3: MoCReL algorithm
1 Function Main(G, Q, iterationNum, totalNum, goodNum, formula):
2 Strategy σ := ∅, σc := ∅
3 Stochastic Strategy σ◦ := ∅
4 STG P := ProbabilisticQuantification(G)
5 while ¬Liveness(G, σ, Q) do
6 σ◦ := Learn(P, iterationNum, totalNum, goodNum, formula)
7 σ := Abstraction(σ◦)
8 Update(iterationNum, totalNum, goodNum)

9 σc := Clean(σ)
10 return (σc)

4.4.6. Soundness of MoCReL845

Algorithm 3 is the pseudo-code of MoCReL. Line 4 and line 7 are the prob-

abilistic quantification and abstraction, respectively. Line 6 runs an algorithm

that iteratively simulates and learns until a user-defined number of samples

are obtained, or the iteration reaches its maximum rounds (see Algorithm 4 in

Appendix A.1). The function Liveness(G, σ,Q) at line 5 runs Algorithm 2,850

which verifies if G | σ |= Q as defined in Definition 3, and labels the state-action

pairs that are selected by the model checker. Line 8 updates the parameters for

learning, e.g., increasing the number of samples (i.e., totalNum) to have a larger

score table that covers more states than that of the last strategy, as score tables

are empty initially and populated on the fly with the visited state-action pairs.855

Line 9 cleans strategy σ by removing the unlabeled data, thereby compressing

the strategy.

Soundness of the Approach. When MoCReL terminates with a synthe-

sized strategy, the result is verified, which guarantees that the planning problem

(Definition 3) is answered correctly. Formally, MoCReL is sound, proven by The-860

orem 2 below:

Theorem 2 (Soundness). Given a planning problem Q =< G, Q >, where Q =

A <> ϕ, if Algorithm 3 terminates and returns a strategy σc, then G | σc |= Q.

Proof. Obviously, Algorithm 3 terminates with two cases:

1. Liveness(G, σ, Q) returns true (line 5 in Algorithm 3), when Algo-865

rithm 3 will eventually return σc (line 10 in Algorithm 3);
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2. Liveness(G, σ, Q) has a negative result (exit at line 16 and line 18

in Algorithm 2), and causes Algorithm 3 to terminate with no strategy

returned (line 10 in Algorithm 3 never being reached).

In Case 2, no strategy is generated, hence, we only need to prove when Case870

1 happens, G | σc |= A <> ϕ. Assuming Liveness returns true, but G | σc ⊭

A <> ϕ, then G | σc |= E[]¬ϕ, which holds if and only if the following two

conditions hold (the code lines in the rest of the proof all refer to Algorithm 2):

(i) The labeling is complete, that is, all the controllable state-action pairs

that are selected by the model checker are labeled, but G | σc |= E[]¬ϕ,875

which reads that there exists a run in G | σc, in which all of the states

satisfy ¬ϕ or none of the states satisfy ϕ;

(ii) The labeling is incomplete, that is, some pairs that are selected by the

model checker are not labeled, which makes the model checker use the

wrong actions at certain states when verifying G | σc |= A <> ϕ and get880

a negative result.

In Case (i), such a run is either a loop or a run ending in a deadlock or an

unbounded state where time can increase indefinitely, in which all the states

do not satisfy ϕ. Then the Search function must exit with a verification result

of false (line 16 and line 18), which contradicts that Liveness returns true885

assumption.

In Case (ii), wherever the model checker faces a controllable action (line 22)

or a delay (lines 7 and 9), it invokes the function Allow, which returns true

when the state has only one controllable action (line 28), or the action is labeled

(line 31). Hence, when facing multiple controllable actions, the model checker890

can never select an unlabeled action. Therefore, Case (ii) cannot happen.

In a nutshell, Case (i) and Case (ii) cannot happen, and thus G | σc |= E[]¬ϕ

does not hold, that is, G | σc |= A <> ϕ must hold when the function Liveness

returns true, that is, when Algorithm 3 terminates and returns σc.
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5. Experimental Evaluation895

In this section, we evaluate MoCReL in several experiments to see its per-

formance in the use case of an autonomous quarry with different numbers

of agents, tasks, and task execution time. The reinforcement learning algo-

rithm used in the experiments is Q-learning [24]. The experiments are con-

ducted on an Intel Xeon E5-2678 with 256 GB of RAM running Ubuntu 20.04900

LTS. All the models, tool, and the full experiment results can be found at:

https://github.com/rgu01/MoCReL-Experiments.git.

5.1. Use Case Description

Fig. 12 depicts an autonomous quarry that is abstracted from a real scenario,

where there are two kinds of autonomous agents: wheel loaders and trucks.905

Wheel loaders dig stones and load them into trucks. The latter load stones

either from the wheel loaders or from a primary crusher, before transporting

the stones to their destination: a secondary crusher. The goal of the agents is

to transport a certain amount of stones. Agents need to go to a charging station

for refueling when the energy level is low.910

Figure 12: An autonomous quarry

In the experiments, we aim to syn-

thesize mission plans that indicate

the agents which milestones to go or

which tasks to execute. Therefore, we

choose a coarse granularity of agent915

movement, that is, between every pair

of milestones. The traveling times among milestones are calculated by using the

A* algorithm [3]. Now the state space of the model is mostly influenced by the

number of agents, as the number of states in the composed model of all agents

grows exponentially with the linear increase of the number of agents [9]. Task920

execution TG models four types of tasks: (i) individual tasks with no precondi-

tion, e.g., wheel loaders digging stones; (ii) individual tasks with preconditions,

e.g., trucks unloading stones into the secondary crushers with a precondition:
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the unloading task can be carried out only after the trucks have been loaded by

wheel loaders or at primary crushers; (iii) collaborating tasks, e.g., wheel loaders925

loading stones into trucks; (iv) tasks that are activated by events, e.g, refueling

when an agent’s energy level is low. In addition, we design a special TG named

Referee (Fig. A.16 in Appendix A.3), which judges whether the goal is reached

(i.e., enough stones are transported) or the maximum simulation time has been

reached. In either case, the agents must stop, i.e., no controllable actions can be930

taken. The learning algorithm partially observes the state space of the models

by detecting discrete variables such as the locations of the TG7.

According to our previous study, the method that purely uses search-based

algorithms (namely TAMAA) can only solve a simplified version of this problem,

where task execution time is fixed and the number of agents is less than 5 [9, 13].935

A learning-based method (namely MCRL) can deal with more agents and flexible

task execution time, but collaborations and events are not supported [12]. The

experiments in this section include collaborations among agents and a battery-

low event. Note that collaborations mean agents carry out a common task at

the same milestone simultaneously, such as a wheel loader unloading stones into940

a truck. Maps in the experiments are also complex, i.e., some models contain

2-4 primary crushers and 1-2 secondary crushers. Table 2 shows the ranges

of parameters scoping the problems that TAMAA, MCRL, and MoCReL can

solve, respectively. A detailed comparison between the search-based method

and learning-based method is reported in the literature [13].

Table 2: Problems that TAMAA, MCRL, and MoCReL can solve, respectively

Methods Agent amount Task amount Existence of events Task types
TAMAA [9] 2 - 4 3 Yes 2
MCRL [13] 2 - 6 3 No 2
MoCReL 2 - 6 3 - 6 Yes 4

945

7Discrete variables are in the queries of models at https://github.com/rgu01/MoCReL-
Experiments.git
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5.2. Experiment Design

We conduct two series of experiments: 1) one where we study the synthesis

time and compression efficiency, and 2) one where we study the influence of

the number of sampled runs on the learning efficiency. Models that are used in

both series of experiments are generated automatically by randomly assigning950

values to the parameters of the environment, e.g., the number of agents. The

parameters are reported in Table 3 that we introduce in the next section.

Table 3: Results of strategy synthesis, verification, and compression. Abbreviations: category
(CAT), the number of wheel loaders (WL), the number of trucks (TK), the number of primary
crushers (PC), the number of secondary crushers (SC), the number of chargers (CH), the
capability of trucks (CAP), if the task execution time is time intervals or not (INT), the
number of runs (RUNS), the computation time of synthesis in seconds (STIME), the size of
the original strategy in MB (ORI), the size of the compressed strategy in MB (COM), the
result of verification against the compressed strategy (VER).

CAT model WL TK PC SC CH CAP INT RUNS STIME ORI COM VER
game1-A 2 4 1 1 0 20 YES 2000 3,902 27 0.13 TRUE
game3-A 1 2 1 1 0 20 YES 200 16 0.08 0.02 TRUE
game4-A 2 4 1 1 0 20 YES 5,000 772 5.6 0.03 TRUE
game6-A 2 1 1 1 0 20 YES 200 175 0.09 0.02 TRUE
game7-A 1 4 1 1 0 20 YES 5,000 575 4.7 0.03 TRUE
game8-A 1 2 1 1 0 20 YES 200 14 0.08 0.02 TRUE

I

game9-A 1 4 1 1 0 20 YES 5,000 640 4.4 0.05 TRUE
game0-B 1 2 3 1 0 10 YES 500 92 0.9 0.2 TRUE
game1-B 1 1 4 1 0 10 YES 500 71 0.02 0.1 TRUE
game3-B 1 2 1 2 0 10 YES 100,000 17,297 1.4 0.6 TRUE
game1-E 1 3 1 2 0 30 NO 500 88 5.9 0.03 TRUE
game5-E 1 3 4 2 0 30 NO 5000 1,705 103 0.05 TRUE
game2-B 1 4 1 2 0 10 YES 100,000 800 112 - FALSE

II

game6-B 1 3 3 2 0 10 YES 100,000 893 121 - FALSE
game4-C 1 2 1 1 2 50 YES 2,000 270 9.4 0.03 TRUE
game5-C 1 2 1 1 1 50 YES 5000 410 2.8 0.03 TRUE
game3-D 1 2 1 1 1 50 NO 500 68 1.4 0.03 TRUE
game6-D 1 2 1 1 2 50 NO 500 80 2.6 0.03 TRUE
game9-D 1 2 1 1 2 50 NO 500 84 7.0 0.03 TRUE
game6-C 1 1 1 1 2 50 YES 100,000 8,629 0.7 - FALSE

III

game8-C 1 2 1 1 2 50 YES 100,000 12,457 49 - FALSE

The first series of experiments is conducted on the full set of models while

the second is restricted to a subset. The set of models is grouped intro three

categories:955

• Category I : No charging, no choice in crusher, large numbers of agents

up to 6, a small number of crushers (2), and a fixed medium value of the

trucks’ capabilities (20).

• Category II : No charging, choice in crusher, medium numbers of agents
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(2 - 5), large numbers of crushers (3 - 6), and a range of the trucks’960

capabilities (10 - 30).

• Category III : Charging, no choice in crusher, small numbers of agents (2 -

3) and crushers (2), and a fixed large value of the trucks’ capabilities (50).

The second series of experiments is conducted on a model game6-B in Table3

and its two variants that change the capability of trucks (CAP), that is, the965

amount of stones trucks can carry at one time. For these three models, we

modify the “RUNS” from 100 to 500, and for each number of “RUNS”, we

synthesize a strategy and statistically verify its probability of reaching the goal

by using queries in the form of Query (10). We repeat this experiment 10 times

and use the mean values of the probabilities to be the result of verification to970

account for the random nature of statistical model checking. In both series of

experiments, the target amount of stones to be transported is the same in all

models.

5.3. Experiment Results

In Table 3, Column “VER” shows the results of verifying the compressed975

strategies against queries in the form of Query (9). Column “RUNS” includes

the numbers of runs that needs to be sampled for synthesizing a valid strategy,

which are picked empirically.

Synthesis time. In category I, the time of synthesizing strategies is rela-

tively short. Most of the cases spend several seconds and the most difficult one980

(game1-A) costs more than 1 hour with the largest strategy (27M) produced in

this category. In category II, synthesis time remains at the level of minutes for

most of the cases. One interesting comparison is between game3-B and game5-E

in this category. Considering the numbers of agents and milestones (e.g., crush-

ers), the latter is more complex than the former. However, game3-B needs985

100,000 runs and more than 4 hours to synthesize a successful strategy that

passes the verification, whereas game5-E only needs 5000 runs and half an hour.

The reason is because the task execution times are fixed in game5-E whereas the
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ones in game3-B are time intervals. The time intervals cause many interleaving

actions which increase the state space of the model dramatically. When maps990

have chargers in category III, the synthesis times for successful strategies are

at most several minutes. However, some models in categories II and III can

be very complex so that learning with 100, 000 runs cannot generate successful

strategies. We will discuss this in the presentation of learning efficiency.

Verification results. Overall, most of the cases ( 4150 ) in the experiments995

pass the verification8. In some cases (e.g. game2-B in category II), we find

counter-examples in the strategies that violate the liveness property, so they do

not pass the verification. Increasing their simulation time and rounds to gather

more runs for learning can be helpful in these cases. However, the fact that the

models in these cases have large state spaces makes reaching the goal state a1000

rare event that is hard to catch by random simulation (see the results of learning

efficiency). This phenomenon stems from the nature of reinforcement learning

algorithms that rely on random simulation.

Figure 13: Distribution of mean probabilities

of satisfaction over 10 experiments

Learning efficiency. Fig. 13

shows the mean probabilities of agents1005

reaching their goal (i.e., satisfying

Query (10)). The original model is

game6B, in which the capability of

trucks is 10, and the modified models

are game6B-7 and game6B-8, which de-1010

crease the capability to 7 and 8, respec-

tively. The results of model game6B are not shown in the figure because all the

experiments with 100 to 500 runs generate the same result: above 97%. The

probabilities of game6B-7 and game6B-8 increase with the increasing numbers

of runs. The probabilities of model game6B-7 are lower than those of the other1015

two models and the IQR (interquartile ranges9) are the largest. This indicates

8Full results of all models can be seen: shorturl.at/dkqyE
9IQR is the difference between the 75th and 25th percentiles of the data.
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that when reaching the goal becomes hard, learning efficiency becomes unstable

in the sense that the probabilities of satisfaction under the learned strategy vary

dramatically.

One interesting observation is that, although the original model of game6B1020

cannot generate a successful strategy not even when the number of runs is

100,000, its mean probabilities of satisfaction for the strategies synthesized by

a few runs (i.e., 100 - 500) are quite high (i.e., above 97%) with a standard

deviation of 0. This phenomenon shows that when reaching the goal becomes a

rare event, the benefit of increasing the number of runs becomes very low.1025

Strategy compression. The size reductions of compressed strategies are

up to 99.95% of the original sizes in our experiments (e.g., game5-E in category

II). Strategies that do not pass the verification are not compressed and thus are

shown as “-” in the column “COM” of Table 3. The compressed strategies not

only save memory space but also improve the explainability of the strategies.1030

For example, the score table of the complete strategy in game4-A has almost

78,000 rows of data, which is reduced to less than 50 rows in the compressed

strategy10. The latter is much more readable and explainable by humans.

Conclusion of the Experiments. The experiments show that MoCReL

can solve the MAS planning problem in complex maps with multiple crushers1035

and chargers. Successful strategies are verified and compressed and the size

reductions are significant. Counter-examples of the liveness property can be

found in unsuccessful strategies, which indicate where the agents fail. Compared

to MCRL, although the environment is more complex, the task types are richer,

and the numbers of milestones and tasks are larger, MoCReL can still solve1040

most of the cases in a reasonable time. The learning efficiency of reinforcement

learning drops dramatically when reaching the goal state becomes a rare event

in the model.

10See the strategies of game4-A at https://github.com/rgu01/MoCReL-Experiments.git.

42



6. Discussion

Although the experiments demonstrateMoCReL’s good performance of strat-1045

egy synthesis and compression, the approach has a few assumptions and limi-

tations that are discussed in the following.

Continuous variables are not included in strategies. MoCReL observes

a partial state space of an agent model, which only covers discrete variables. It

is not trivial to include continuous variables, e.g., time, in strategies while pre-1050

serving the exhaustive model checking, because the score tables will be infinitely

long due to the infinite values of the continuous variables. One may adopt tech-

niques of representing sets of states symbolically, as zones [16], and transform

the infinite state space into a finite state space. We leave this as future work.

Low learning efficiency in some cases. As shown in the experiments,1055

when reaching the goal becomes a rare event for the agents, the learning effi-

ciency of reinforcement learning drops dramatically. Rare events simulation is

a longstanding problem with simulation technology [33, 34]. Techniques such

as importance sampling [35] have been investigated for solving this problem

[36]. We believe that, by exploiting counterexamples, one can also increase the1060

learning efficiency of reinforcement learning algorithms.

7. Related Work

Synthesis of strategies for MAS has been an increasingly researched area in

recent years. Formal methods have been adopted to complement planning algo-

rithms with correctness guarantees. Alur et al. [37] use game theory for compo-1065

sitional synthesis of reactive controllers from LTL specifications for multi-agent

systems, in which agents can be controllable or uncontrollable. Their method

assumes the LTL specifications can be separated into several sub-specifications

that concern subsets of agents, respectively. In our problem, agents are de-

signed to accomplish a common goal and the requirements concern all of them.1070

Křet́ınskỳ [38] investigated the combination of LTL, Steady-State Policy Syn-

thesis (SSPS), and long-run average reward (LRA) on synthesizing policies that
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resolve Markov decision processes (MDP). However, our planning problem con-

cerns properties expressed by (T)CTL, and our method includes strategy syn-

thesis and compression. Gleirscher et al. [39] introduce an approach for synthe-1075

sis and verification of safety controllers for human-robot collaboration. Their

synthesis means selecting a safe controller over several models that are created

by control engineers according to different applications. Our synthesis does not

need engineers to manually design controllers as it is over agents’ motions, such

as movement and task execution, whose model templates are defined already.1080

In the field of strategy synthesis and verification, Uppaal and its branches

have been employed in many studies. Andersen et al. [40] present a Uppaal-

based method for motion planning of multi-robot systems. Their method uses

reachability queries to generate motion plans, which is not sufficient for syn-

thesizing comprehensive strategies that consider time intervals as the execution1085

time of motions. Basile et al. [41] use Uppaal Stratego to solve the strategy

synthesis problem for autonomous driving in a moving block railway system.

The authors demonstrate the applicability of Uppaal Stratego in a concrete

case study. They model the railway system as a stochastic priced timed game

and thus apply statistical model checking on their resulting (safe) strategy. Our1090

verification is exhaustive, which aims to see if the agents can achieve their goal

safely and timely, regardless of how the environment acts non-deterministically.

Bersani et al. [14] present PuRSUE (Planner for RobotS in Uncontrollable En-

vironments), which supports users to configure their robotic applications and

automatically generate their controllers by using Uppaal TiGa. The main dif-1095

ference between our work and this is that the authors base their synthesis on

an exhaustive search of the model’s state space, which provides a correct-by-

construction solution, but the scalability of their method is inherently limited.

In the field of combining formal methods with reinforcement learning (RL),

Behjati et al. [42] attempt to solve the state-space-explosion problem of model1100

checking LTL properties by using RL. Bouton et al. [43] propose a method that

enforces probabilistic guarantees on agents during the course of RL. Jothimu-

rugan et al. [44] propose DIRL, a synthesis approach that interleaves Djikstra’s
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algorithm with RL to train agents. In comparison to the mentioned related

work, the correctness guarantee provided by MoCReL is not on the course of1105

learning or on formal specification of the reward functions and agents’ tasks. In-

stead, MoCReL provides an exhaustive post-verification of the synthesis results,

which is more scalable than verifying the original agent models. Additionally,

counterexamples returned from model checking show the agents’ behaviors that

violate the requirement, which constitutes valuable feedback.1110

In the area of strategy compression, Julian et al. explore several ways of

compressing strategies by using origami compression [45] or deep neural net-

works [26][46]. Ashok et al. propose a decision-tree-based method for concisely

representing strategies [47][48]. Their tool dtControl is able to compress strate-

gies produced by Uppaal TiGa. Piterman et al. use a method that minimizes1115

strategies by removing redundant states [49]. Compared with these methods,

the strategy compression in MoCReL focuses on removing the unused data in the

strategies rather than representing them in different forms. Since it relies on ex-

haustive model checking, compression in MoCReL inherently provides a safety

guarantee of strategies, which needs extra effort to achieve in other methods1120

[46].

8. Conclusions and Future Work

We present a new method, namely MoCReL, for synthesis, verification, and

compression of strategies of multi-agent autonomous systems (MAS). MoCReL

uses reinforcement learning for synthesizing strategies and model checking for1125

verifying and compressing the strategies. MoCReL is integrated into Uppaal

Stratego, which facilitates the use of this method. Experiments carried out

on a real-word autonomous quarry case study show that MoCReL is able to solve

the planning problem of MAS in complex maps with large numbers of agents

doing various types of tasks. The compressed strategies save up to 99.95% of1130

the memory space taken by the original strategies. When reaching the goal

state becomes a rare event that is hard to be captured by random simulation,
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the learning efficiency of reinforcement learning drops dramatically.

An interesting direction of the future work is to investigate the use of the

counter-examples to repair the unsuccessful strategies, which would increase1135

the learning efficiency profoundly. Introducing clocks into the strategies can be

another challenging direction of research.
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Appendix A. Appendix

Appendix A.1. Algorithm of Synthesis

Algorithm 4 is the simplified pseudo-code of running Query (5) in Uppaal

Stratego. Details of this algorithm are in the literature [13].

Algorithm 4: Simplified algorithm behind the minE-query (adapted
from Algorithm 1 in the literature [13])

1 minE(tg, iterationNum, totalNum, goodNum, formula)
2 int iterations = 0
3 int bestFitness = ∞
4 Strategy best = empty
5 Strategy aStrategy = empty
6 for iterations < iterationNum do
7 int totalRuns = 0
8 int goodRuns = 0
9 for totalRuns < totalNum do

10 Run aRun = simulate(tg , aStrategy)
11 if aRun satisfies formula then
12 aStrategy = learn(aRun)
13 goodRuns ++
14 if goodRuns ≥ goodNum then
15 break

16 totalRuns ++;

17 if goodRuns ≥ goodNum then
18 fitness = evaluate(aStrategy)
19 if fitness < bestFitness then
20 bestFitness = fitness
21 best = aStrategy

22 iterations ++

23 return best ;

1295

Appendix A.2. Algorithm of Verification and Labeling

In this section, we illustrate the execution of Algorithm 2 by an example in

Fig. A.14. In Algorithm 2, line 3 passes the initial state S0 of the TG G and

the negation of the state formula of Query (9), i.e., ¬ϕ, to the function Delay,

which adds the symbolic succeeding states of S0 via restricted delay transitions.1300

The definition of restricted delay transitions is presented in the literature [32].

In this paper, we adapt this function on symbolic states (i.e., zones) by using
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difference bounded matrices (DBM) in Uppaal. Fig. A.14 shows an example

(a) An example of TG (b) The Zone Graph of the TG

Figure A.14: An example of a TG and its semantic model.

of a UTA modeling a traffic light and its symbolic semantic model - a Zone

Graph. The action transitions and delay transitions are arrows labeled with a1305

and d, respectively. An example of symbolic states that are used in the Delay

function is <Red, c=0> in Fig. 14(b). The function Allow(σ,
d
=⇒) checks if the

delay transition is allowed by the strategy σ by calling back the external library

(see Appendix A.4). Briefly, if the action is the only controllable action at

state S, the function Allow returns true directly, which is the case at the initial1310

state in Fig. 14(b); otherwise, it looks up the strategy and finds the set of the

best actions that have the highest score at the current state (i.e., best(σ, S)). If

the current action belongs to the set, it is allowed and we call the label function

to label the state-action pair as visited (line 31).

When the delay transition is allowed in the function Delay, we continue to1315

check if the succeeding state S′ is not on the stack SD and satisfies the invariant

at the location of the current state (I(S.l)) and the restriction (φ) (line 10).

The restriction φ is actually ¬ϕ, which means the state space exploration only

visits the states where the state formula ϕ of Query (9) is false, because the

verification of a liveness property aims to find a run where ϕ is false at all1320

states as the counter-example. If S′ satisfies the condition (line 10), it is pushed

onto the stack SD for further exploration. In Fig. 14(b), after delaying at

the initial location, two symbolic states can be reached, which are passed to
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function Search as the value of parameter S. The restriction ¬ϕ is also passed

to function Search as the value of parameter φ.1325

In function Search, we first check if the current state S satisfies φ (line 13,

which returns an empty state when φ is false at S, and S itself when φ is true).

At line 15, the function checks if there is a loop in the state space by checking

if the current state S is on the stack ST . If a loop exists, an unsatisfactory

run (the runs where no state satisfies ϕ) is found and thus the algorithm exists1330

with a negative result of verification; otherwise, we check if the maximum run

is found (line 17). According to the definition in the literature [32], a run is

maximal if either it ends in a state with no outgoing transitions, ends in a state

from which an unbounded delay is possible, or is infinite. When such runs are

found, no further symbolic state exists and thus the algorithm exists with a1335

negative result of verification; otherwise, the algorithm pushes S onto ST and

continues to explore the unvisited states (line 20). For example, in Fig. 14(b),

both succeeding states of the initial state are pushed onto SD and explored by

function Search. The state <Green, c≥15> ends at a deadlock, whereas the

state <Green, c≥10 ∧ c≤15> has two actions, that is, a controllable action1340

and an uncontrollable one. Both actions end to the same state <Reg, c=0>.

Similar to the function Delay, line 22 explores the succeeding states via

controllable actions that are allowed by the strategy σ, or uncontrollable actions.

If a controllable action is allowed, its succeeding states are recursively explored

at line 25. For example, at the state <Green, c≥10 ∧ c≤15> in Fig. 14(b),1345

we can either choose the uncontrollable action without asking the strategy, or

choose the controllable action after asking the strategy, and then continue to

explore the state space in the same manner.

Assume we instantiate a model of the TG in Fig. 14(a), namely trafficLight,

and we want to verify a liveness property: A<> trafficLight.Red. By following1350

Algorithm 2, we will get a negative result of verification with a counter-example

returned, that is, a trace from the initial state <<Green, c=0>> to the state

<Green, c≥15>.
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Appendix A.3. The TG Templates

Figure A.15 depicts the TG of task execution. Figure A.16 depicts the TG1355

of Referee that is used in the experiments (See Section 5).

Figure A.15: A TG template of agent task execution

Figure A.16: The Referee TG

Appendix A.4. Overview of the External Library of MoCReL

The new extension of Uppaal Stratego supports calling external libraries

that are implemented by C/C++. An example of the implementation is in:

https://github.com/DEIS-Tools/stratego$_$external$_$learning. The1360

library must contain the following functions so that Uppaal Stratego can

invoke it correctly:

1 // Allocates an instance of a learner
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2 void* uppaal_external_learner_alloc(bool minimization ,

size_t d_size , size_t c_size , size_t a_size);1365

3 // Deallocation code for object

4 void uppaal_external_learner_dealloc(void* object);

5 // print out strategies

6 char* uppaal_external_learner_print(void* object);

7 // Deep -copy function of an instance of a leaner1370

8 void* uppaal_external_learner_clone(void* object);

9 // Called for each sample in a trace

10 void uppaal_external_learner_sample_handler(void* object ,

size_t action , double* from_d_vars , double* from_c_vars ,

double* t_d_vars , double* t_c_vars , double value);1375

11 // Return the values of state -action pairs in the strategy

12 double uppaal_external_learner_predict(void* object , bool

is_search , size_t action , double* d_vars , double* c_vars)

;

13 // Batch -completion call -back1380

14 void uppaal_external_learner_flush(void* object);

When running MoCReL in Uppaal Stratego, the function alloc is firstly

called, which instantiates the learner. Next, when Query (5) is executed, Up-

paal Stratego simulates the model to sample runs, which are passed to the

learner by calling the function sample handler. During the simulation and ver-1385

ification, wherever the model has more than one controllable action, function

predict is called for looking up the strategy and returning the value of the

action at the current state. This value can be used as the probability or the

weight of choosing that action, which is introduced in Section 4.4. Addition-

ally, when under verification (Query (9) is being executed), MoCReL marks the1390

chosen state-action pairs in the function predict so that the strategies can be

compressed after the verification passes. One can print the strategy by using

a query saveStrategy(path) in Uppaal Stratego. It will call the function

print to print the strategy to the specific file in a standard format.
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