
Automation of the Creation and Execution of System Level
Hardware-in-Loop Tests through Model-Based Testing

Viktor Aronsson Karlsson
vkn17002@student.mdu.se
Mälardalen University
Västerås, Sweden

Ahmed Almasri
aai17011@student.mdu.se
Mälardalen University
Västerås, Sweden

Eduard Paul Enoiu
eduard.paul.enoiu@mdh.se

Mälardalen University
Västerås, Sweden

Wasif Afzal
wasif.afzal@mdu.se
Mälardalen University
Västerås, Sweden

Peter Charbachi
peter.charbachi@volvo.com

Volvo Construction Equipment AB
Eskilstuna, Sweden

ABSTRACT

In this paper, we apply model-based testing (MBT) to automate
the creation of hardware-in-loop (HIL) test cases. In order to select
MBT tools, different tools’ properties were compared to each other
through a literature study, with the result of selecting GraphWalker
and MoMuT tools to be used in an industrial case study. The results
show that the generated test cases perform similarly to their manual
counterparts regarding how the test cases achieved full require-
ments coverage. When comparing the effort needed for applying
the methods, a comparable effort is required for creating the first
iteration, while with every subsequent update, MBT will require
less effort compared to the manual process. Both methods achieve
100% requirements coverage, and since manual tests are created and
executed by humans, some requirements are favoured over others
due to company demands, while MBT tests are generated randomly.
In addition, a comparison between the used tools showcased the
differences in the models’ design and their test case generation. The
comparison showed that GraphWalker has a more straightforward
design method and is better suited for smaller systems, while Mo-
MuT can handle more complex systems but has a more involved
design method.

CCS CONCEPTS

· Software and its engineering→ Empirical software valida-

tion.

KEYWORDS

MoMuT, GraphWalker, Hardware-in-Loop, Model-Based Testing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
A-TEST ’22, November 17ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9452-9/22/11.
https://doi.org/10.1145/3548659.3561313

ACM Reference Format:

Viktor Aronsson Karlsson, Ahmed Almasri, Eduard Paul Enoiu, Wasif Afzal,
and Peter Charbachi. 2022. Automation of the Creation and Execution of Sys-
tem Level Hardware-in-Loop Tests throughModel-Based Testing. In Proceed-
ings of the 13th International Workshop on Automating Test Case Design, Selec-

tion and Evaluation (A-TEST ’22), November 17ś18, 2022, Singapore, Singapore.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3548659.3561313

1 INTRODUCTION

Vehicular systems have developed rapidly, and their software and
hardware parts have increased to cover most of the vehicle, ei-
ther by controlling the vehicle autonomously or interacting with
the driver’s commands to ensure safe driving in different environ-
ments [24]. Future software development for vehicular systems
requires more complex requirements to be satisfied, which consec-
utively requires an increase in test cases. The industry has found
that the validation process for functional requirements has been
costly and time-consuming throughout the years, which the indus-
try wants to alleviate [23][20].

The traditional way to test systems is by doing it manually.
However, since the demand for testing and the cost of manual
testing has increased, the desire for a better test creation technique
to satisfy the demand has emerged. Software and requirements
updates are needed to maintain the high efficiency of the systems,
which increases the pressure of developing new test cases [1][27].
Manually written test cases are often time-consuming and costly to
perform for the company. By automating the creation, the quantity
of the tests can increase, which will allow more test cases to be
executed with less time invested.

From a tester’s perspective, maintenance of test cases is a has-
sle and a time-consuming activity [2]. When a requirement gets
updated, so do all test cases related to that requirement.With model-
based testing (MBT), only the model has to be modified while the
test cases will automatically correct themselves; the impact of this
change will give the testers more time to focus on more complex
tasks [23].

This research, performed at Volvo Construction Equipment AB,
is based on reducing human interaction and increasing the quality
of the validation process for their products. The proposed solution
for achieving this goal is the automation of the creation and execu-
tion of test cases with the help of MBT. Verification of the created
test cases is performed on the actual hardware constructed in a
controlled environment that can simulate realistic conditions; this

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

9

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548659.3561313
https://doi.org/10.1145/3548659.3561313

A-TEST ’22, November 17ś18, 2022, Singapore, Singapore Viktor Aronsson Karlsson, Ahmed Almasri, Eduard Paul Enoiu, Wasif Afzal, Peter Charbachi

concept is formally known as Hardware-in-Loop (HIL) [4] and is
commonly used to supplement field testing to reduce its cost [15].
The challenge of creating HIL test cases is that all functions before
the function that needs to be tested have to be configured during
the test. This is in contrast to the common application of MBT for
software applications, where the software’s features can be easily
tested in isolation from each other. In contrast, HIL testing contains
most of the system’s functions, resulting in the testing process be-
ing applied and adapted for the whole system instead of individual
features.

In this paper, we propose and evaluate a method for designing
models to automate the creation and execution of HIL test cases to
verify functional requirements.

2 BACKGROUND

This section outlines information concerning MBT, MBT simulation
and testing, and finite state machines (FSMs) for creating models.

2.1 Model-Based Testing

MBT automates the generation of validation tests for the system
functions. MBT functions by creating models depicting the system’s
behaviour and its requirements through FSM or textual representa-
tions [22]. The main advantage of MBT is the ability to dynamically
modify the models and quickly generate new test cases for the
updated system [23][12]. The main disadvantages of MBT are its
high learning curve and the knowledge needed to maintain an older
model [3]. The MBT process is divided into the following five main
steps [29]:

(1) Model the system under test (SUT) and/or its environ-

ment. An abstract model of the desired system to be tested
is created, and it is called abstract because it is simpler than
the SUT itself and forgoes some of its details.

(2) Generate abstract tests from the model. When generat-
ing test cases in MBT, several coverage criteria are possible,
e.g., choosing a path generator’s condition to decide how to
traverse a model, such as covering all transitions. The output
of is a sequence of operations from the model.

(3) Concretize the abstract tests to make them executable.

This step is where the tester/designer will transform opera-
tions into an executable test suite. The process can be done
by using a transformation tool to create appropriate test
cases to fit the test execution tool, alternatively by writing
some adaptor code to filter out the unnecessary data.

(4) Execute the tests on the SUT. There are two ways to exe-
cute test cases on the SUT, online and offline. With online
testing, the tests are executed on the SUT as they are gen-
erated and the execution results will be recorded. In offline
testing, the test cases are generated and stored in a file, e.g.,
as a sequence of commands, stored data or lines of code.
These files can be executable on different machines or in
entirely different environments.

(5) Analyse the test results. The last step is to analyse the
result of the test execution, and if a test reports a failure, the
team must investigate the reason for the fault.

2.2 Hardware-in-Loop Testing

HIL testing allows the developers to validate their creations for
the actual hardware in a lab setting where some parts of the actual
hardware are simulated while other parts are same as in the final
system. The main benefit of HIL testing is the cost reduction on the
development since the development and verification of the system
can be made in parallel, and the testing of functionalities can be
performed individually instead of having to wait for a specific time
slot, e.g. with field testing a location has to be booked and can
often only be performed at specific time slots [4]. The HIL system
contains the hardware components of the final system to ensure the
correctness in the test environment and accuracy in test results [11].
The HIL system will simulate the vehicle’s environment in order to
make the Electronic Control Unit (ECU) believe it is connected to the
actual vehicle. The HIL system simulates the analogue, digital and
bus signals to the ECU, aiming to emulate real-world operation. The
perfect HIL system would be where the ECU could not differentiate
between the actual environment and the HIL system [5].

2.3 Finite State Machines

FSM allows the developers to visualise the flow of control in any
given system by utilising states and transitions. FSM collects all
relevant, unique states for a given system and binds them together
with conditional transitions [8]. FSM design consists of two primary
forms, Moore and Mealy [30]. The difference between the two is
how the state changes and the output generation (output here refers
to variable assignments). Moore changes state only depending on
the state variable, while Mealy can change by either state or input
values. The outputs for Moore generates at the state change, and it
occurs for Mealy during the transition between states. When ap-
plying FSM on a complex system with many states and transitions,
the Harel state chart should be used instead of Moore and Mealy.
Harel utilises composite states and sub-diagrams to reduce clutter
and simplify the diagram.

3 RELATED WORK

In the context of system testing, MBT is nothing new. Using model-
based tests compared to manually written tests has numerous ad-
vantages and can describe any system behaviour, shorten the de-
velopment cycle and deliver a high-quality product with fewer
errors [9].

Enoiu et al. [16] analysed the difference between automatically
generated test cases with manually written tests. The tests were
created for a safety-critical system written in the programming
language IEC61131-3. The comparison of the two techniques was
through the cost and quality measurements aspects. The study
results show that the automatically generated and manual test
cases achieved similar results in terms of code coverage. Manual
creation of tests had tremendous success in detecting logical, timer
and negation faults than automated.

The study [21] by Keränen and Räty presents an analysis of
novel validation methodologies that applyMBT in a HIL platform to
validate the test system itself. The novel methodologies presented in
this paper are component, integration, acceptance and performance
testing. Mutation testing was applied during the analysis process to

10

Automation of the Creation and Execution of System Level Hardware-in-Loop Tests through Model-Based Testing A-TEST ’22, November 17ś18, 2022, Singapore, Singapore

measure the effectiveness of the test cases and the coverage of non-
functional requirements. A UML-based MBT tool ‘Qtronic’, was
used to create the models and generate the test cases to perform this
study. The generation and execution of test cases were performed
online and offline, where the tool łTTworkbenchž was utilised to
execute the offline format.

Hussain’s master thesis [18] aimed to investigate how MBT
could improve industrial practices when it comes to validating the
functionality of a system. To answer łHow the MBT approach could
improve the current testing processes?ž In a case study at Volvo
CE, Hussain used the tool ‘Conformiq Creator’ [6] to analyse the
accelerator pedal position and the brake pedal position. Conformiq
Creator is a functional black-box testing tool that utilises activity
diagrams and structure diagrams to create the models; structure
diagrams specify the structure of all interfaces in the system, and
activity diagrams describe the flow of control between the states in
the diagram. The created models were based on functional and non-
functional requirements, which the company provided. Five criteria
categories to guide the generation of test cases were used: Default,
Requirements, Exhaustive, All paths and Boundary Values. The
result of the thesis showcased that there is no significant difference
in coverage between manual and automated testing.

In [19], the researchers investigated the possibility of generating
models from natural language requirements using GraphWalker, an
open-source tool, to create models based on FSM. Zafar et al. [31]
point out the benefits of using an open-source MBT tool like Graph-
Walker. The researchers describe how it differs from manual test
cases. The researchers investigated two methods of generating test
cases using MBT, either by modelling SUT using only requirements
specification or modelling SUT using requirements and test specifi-
cation. A comparison between the generated and manually written
test cases was then performed. The study highlights a promising
result when utilising a MBT tool for creating test cases using both
requirements and test specifications.

4 RESEARCH METHOD

Our aim here is to investigate the possibility of using MBT to
automate the creation of HIL test cases. The MBT models are based
on the behaviour and requirements of an accelerator pedal of a
Wheel Loader System. The model shall then generate executable
test cases applied on the HIL platform to validate the system’s
functional requirements. The research startedwith a literature study
on the subject, followed by a case study based on the outcomes
of the literature study. The case study begins after the literature
study and the appropriate MBT tools have been selected. The case
study investigates the MBT approach for generating test cases for
a HIL system. The MBT models will generate offline test cases. The
generated test cases are then transferred into SE-Tools, an internal
tool used at VCE, where the tests are sent to the HIL system for
execution.

4.1 Case Study Design

The case study follows the design described in the guidelines [26].

4.1.1 The Case and Context. The case under investigation is the
Accelerator Pedal Detection System, that is part of a Wheel Loader
and the associated HIL system, which simulates the Wheel Loader.

Figure 1: The profile view of a typical Wheel Loader

Accelerator Pedal
Primary Position

Accelerator Pedal
Secondary Position

Machine Speed
Limitation Control

Hand Throttle
Percent Request

AutoDig Throttle
Request

Malfunctioning
Accelerator Pedal

Diff Alarm
Accelerator Pedal

Evaluated Accelerator
Pedal Position Unlimited

Evaluated Accelerator
Pedal Position

Evaluate Accelerator Pedal

Figure 2: Description of the SUT.

These are made available from Volvo CE (VCE) (see Figure 1 for the
profile view of a Wheel Loader). The Accelerator Pedal Detection
System is chosen for its simplicity and early execution in the system
process.

System Function - Accelerator Pedal. Accelerator Pedal Detection
testing is the act of validating the functionality of the accelerator
pedal and its interconnected alarms. The accelerator pedal consists
of a primary and secondary sensor giving the system redundancy,
meaning that it can still be operated with one damaged sensor.
However, this would mean that the system can no longer be safely
operated. The sensor signals are utilised in the internal logic of
the vehicle system, where it decides the finalised position of the
accelerator pedal and the status of the interconnected alarms. The
system is also affected by three internal signals, łMachine Speed
Limitation Controlž, łHand Throttle Percent Requestž, and łAutoDig
Throttle Requestž, which control the finalised pedal position that is
sent out of the system (Figure 2). The outputs from the system are
the finalised pedal position and the status of the alarms.

The scenario Table 1) can be defined from the requirements.
These are the eight different scenarios when validating the acceler-
ator pedal position detection system. The primary and secondary
sensors can fundamentally change between two states’ regular op-
eration and erroneous operation. The two sensors have a value
range between 0 and 100, and their maximum allowed value differ-
ence is 10% of the total value range, e.g., if sensor A has a value of
50 and sensor B have a value of 55, there will be no alarm, but if
sensor B changes the value to 65, the alarm will trigger. Only when
the first scenario is being tested will the malfunction alarm not be
active; every other scenario will trigger the alarm. The difference
alarm will trigger whenever there is a sensor difference of more

11

A-TEST ’22, November 17ś18, 2022, Singapore, Singapore Viktor Aronsson Karlsson, Ahmed Almasri, Eduard Paul Enoiu, Wasif Afzal, Peter Charbachi

than 10%, but only if both sensors are in the normal state or both
are in an erroneous state.

SE-Tools. The tool used for interfacing within and between teams
at VCE is SE-Tools, a modified version of the tool SystemWeaver [7].
SE-Tools contain most of the system documentation, from high-
level requirements down to design requirements, where all func-
tions are interconnected to understand the system from start to
finish entirely. It also contains the verification results and has ver-
sion handling for extensive documentation. The validation test
cases are written into SE-Tools, and through SE-Tools, other users
can access the tests and execute them on their test system.

Manual System Level Testing at VCE.. VCE adopts the traditional
manual testing process, which includes system requirements review,
designing test cases based on requirements, reviewing the test cases
and executing them in HIL, which simulates the behaviour of the
desired vehicle. Requirements and tests are loaded in the SE-tool
platform, where Volvo’s experienced verification engineers have
read-write access to the data. The manual testing process starts
by reading the test script and applying it step by step in the HIL.
The system will then respond to the commands and show them
in a LabView interface. The tester can follow and see changes in
the system according to the sent commands and how the vehicle
should react.

Automated System Level Testing at VCE.. The test case’s Auto-
mated Test Generation (ATG) script is generated in an XML file and
can be executed directly from SE-Tools to the HIL. The execution
process is automated and occurs quicker than the previous one. The
tester might not catch all responses from the machine, but each
step of the test script will be printed as either PASS or FAILED.
However, if a step fails a test, the system will indicate the fault and
give feedback on what went wrong.

4.1.2 Research Questions.

RQ1: Which MBT tool can be of use to capture the behaviour of the

functional requirements for a vehicular system model?

RQ2: How do manually created test cases compare with model-based

test cases when applied on HIL testing, in terms of coverage of

functional requirements?

RQ3: In which manner do the MBT tools differ from each other in

terms of functional requirements coverage?

5 COMPARISON OF MBT TOOLS

The criteria for tool selection were as follows:

(1) Formatting of the output: The desired format for VCE is
XML. Thus, the output needs to be in the XML format or a
format which can easily be converted into the XML format.

(2) Tool generation ability: The study focused on offline test-
ing, and the chosen tool shall have the capability to operate
in offline testing mode.

(3) Usability/Documentation: The application domains sup-
ported by the tool and and how good are the instructions.

(4) Community support: When using a tool in industrial appli-
cation, it is essential to have prompt support. An important
aspect is how active the user base is and how often the tool
gets updated.

(5) Company preference: The main tool aspects important for
VCE are its capability for requirements coverage, handling
time aspects of the system and the ease of use.

It was decided to aim at open-source and academic tools while
ignoring commercial tools to avoid unnecessary licenses. The in-
vestigated tools are GraphWalker, Tcases, CAgen, Pymodel, fMBT,
JSXM, Modbat, QuickCheck, OSMO and MoMu::UML.

Conclusion of Literature Study. Despite the positive aspects of
each tool, the comparison observed some limitations that influence
the tool selection. The first aspect examined of each tool was their
life-support. Most of the tools passed the first criterion since either
the developer or community kept the tool updated. The secondary
area was the support in the form of documentation, forum or wiki,
and this is where most tools failed to achieve the criteria since if
instructionswere found, theywere often lacking or only covered the
bare minimum of the needed information. The third area examined
was the output and the modelling method. The critical aspect of
the output is its existence, and that it is generated in a usable
format, this means that the tools need to be operated in offline test
generation mode, and the output information is in a usable format.
There are plenty of variances when modelling the SUT behaviour,
but not every modelling technique will work to fulfil the criterion.
The modelling technique should be able to generate random inputs
and deterministic outputs, and the technique should also be able
to handle time aspects, such as waiting for the RPM of a motor to
reach the desired value before continuing the test.

The tools that fulfilled the most criteria and were selected to be
used in the case study were GraphWalker (GW) and MoMuT:UML.
The main appeals of the two tools can be seen in Table 2. The
standout aspect of GW was its popularity in the MBT commu-
nity [10] [28] [25] and its user-friendly appearance. MoMuT, on the
other hand, utilises UML models created in Eclipse Papyrus [13],
which is a popular program with a lot of online resources avail-
able [14]. MoMuT was also the only tool that advertised its ability
to handle time aspects, which is an aspect VCE desire.

6 RESULTS

The two main sections in the results correspond to the two chosen
MBT tools, GW and MoMuT. The case study ended with comparing
the results with the manual testing process.

6.1 GraphWalker - Creation of Model

The model generation in GW went through a number of iterations,
resulting in a total of four model versions, the last being the fi-
nal. In the first version, the designed model aimed to cover one
requirement at a time and once, and the issue with this design is
that it does not cover all possible instances of input signals, not all
possible generating paths either. This version was designed to go
through the operation’s vertices once in order according to a preset
condition. The second version improved the first one when gener-
ating random paths between signals/operations, and a new method
was used, based on global variables, which helped a lot to change
variables values between models. The new variables worked as
fine as expected, but all global values did not get printed out when
generating test cases using CLI. This issue was discussed in the

12

Automation of the Creation and Execution of System Level Hardware-in-Loop Tests through Model-Based Testing A-TEST ’22, November 17ś18, 2022, Singapore, Singapore

Table 1: The eight combinations of the sensor signal states, the alarm states and the value difference of the sensor signals.

Primary Sensor
State

Secondary Sensor
State

Sensors Differ
More the 10%

Malfunction
Alarm State

Difference
Alarm State

Scenario 1 Normal Normal No Normal Normal
Scenario 2 Normal Normal Yes Alarm Alarm
Scenario 3 Normal Erroneous No Alarm Normal
Scenario 4 Normal Erroneous Yes Alarm Normal
Scenario 5 Erroneous Normal No Alarm Normal
Scenario 6 Erroneous Normal Yes Alarm Normal
Scenario 7 Erroneous Erroneous No Alarm Alarm
Scenario 8 Erroneous Erroneous Yes Alarm Alarm

Table 2: The essential tool aspects.

GraphWalker MoMuT:UML

Graphical
Easy to design and maintain

Active Community Support by mail
- Time Aspect

Offline Testing
Web-Based
Studio

Used with Eclipse

Open-Source
Related work

found
Recommended by
the community

Favoured by
Volvo Supervisor

Different path generating algorithms

GW Forum [17], but we did not find any suggested solution. An up-
graded model was designed that included all actions and expected
signals at the same model and a vertex (Expected) to recognise
where each signal set starts or ends when filtering the generated
test cases. This model skips the usage of global variables, and they
are not needed anymore since all signals are included in just one
model. However, this version of the model ran into mismatch of
signal definitions. HIL is signal case sensitive, which means that
all the declared signals must exactly match as they are declared in
the system’s signals definition. The design of this model version
followed the accelerator pedal functional requirements written in
the SE-Tools, and to use signals in ATG test cases, they must be de-
fined, which is not valid for all signals. Finally, after some removed
signals in the new version, a complete model version was ready as
shown in Figure 3.

Generation of Test Suites. The result of forgoing global variables
is a more apparent generation of data where both the actions and
expectations are expressed in the data section of the GW test case.
For the finalised test case, the data only needs to be extracted at the
end of the iteration since all values are relocated to local variables
and thus collected in one place.

6.2 MoMuT - Creation of Model

As with the model creation in GW, the model in MoMuT was also
finalized after two iterations. The final MoMuT model (Figure 4)
consists of two main control regions, two sub-control regions and
two observation regions. The control regions are duplicated and
contain the actions for the two sensors, assigning new values and
changing the erroneous state. The main state controls the sub-
regions which are used for the internal logic. The observation
regions contain the logic for the alarms and represent the state

Figure 3: The final version of the GraphWalker model.

of the alarms. Signal activates the transitions, and both contain
effects, one to generate a new value and the other for changing the
state. The sensor state region changes state depending on the signal
trigger from the previous region; this state change is used in the
internal logic in the regions to the right. The two rightmost regions
are both trigger-less state systems, meaning no signal triggers and
only guards are preventing the state transition; each state has an
entry action which triggers an observation.

Generation of Test Suites. MoMuT takes the developed model
and transforms it into multiple-choice trees, where the branches
represent the model’s paths. MoMuT traverses the tree by selecting
values from a given range that will best traverse the tree. When a
branch has been traversed and does not lead into unexplored paths,
MoMuT will execute the command łinconcž which will undo its
latest action. Due to multiple regions being used for the design of
the models, multiple trees were also generated, resulting in test
cases that repeatedly test the guard commands and, in turn, validate
the requirements more than once.

13

A-TEST ’22, November 17ś18, 2022, Singapore, Singapore Viktor Aronsson Karlsson, Ahmed Almasri, Eduard Paul Enoiu, Wasif Afzal, Peter Charbachi

Figure 4: MoMuT State Machine, Containing the Abstraction of the SUT

6.3 Serialisation Script

To execute the generated test cases on the HIL system, the test cases
first need to be serialised into the correct format. The GW script
starts with reading each line of the raw JSON file, searching for
the desired line where all the data for the new test cases is stored.
Once the line is found, the data segment is extracted and divided
into actions and expected. When the data have been extracted, the
test will be formatted and written into the XML file. The MoMuT
script function in a similar manner, where it reads each line of the
raw test case. However, instead of searching for the correct line,
it will identify the line as either action, expected or inconc. For
action and expected, it will extract the important information and
format it into the XML format, whiles with inconc it will remove
the previous line and continue with the next line.

6.4 Comparison Between GraphWalker, MoMuT
and Manual Testing

The manually written test cases are gathered from SE-Tools, auto-
matic testing (ATG), and written by a VCE verification engineer.
The manual test cases are a collection of five test cases, one for ev-
ery requirement, and the test cases are then analysed for how many
times the requirements are covered and how often each scenario is
covered. The MBT test cases from GW and MoMuT are analysed
similarly to the manual test cases. In Table 3, the proportion of
requirements being tested in the three test suits can be seen, where
two values are given: the first value is the number of times the
requirement is tested, and the second value is the percentage of the
test suites covering that specific requirement. In Figure 5, it can be
seen that all three methods test all requirements, but the manual
favour validating the first requirement (Normal Operation) while

Table 3: The requirements tested by techniques.

Requirement 1 Requirement 2 Requirement 3 Requirement 4 Requirement 5
Manual (75) 49 (65.3%) 8 (10.6%) 8 (10.6%) 5 (6.6%) 5 (6.6%)

GraphWalker (54) 7 (12.9%) 14 (25.9) 5 (9.3%) 3 (5.5%) 25 (46.3%)
MoMuT (57) 8 (14.03%) 19 (33.3%) 5 (8.7%) 10 (17.5%) 15 (26.3%)

Figure 5: Comparison of requirements tested between man-

ual testing, GW and MoMuT.

the MBT tests favour the fifth requirement (Double Erroneous De-
tectors). However, when the test cases are analysed for the scenarios
in Figure 6, it can be seen that the MBT tools cover more scenarios
than the manual. Due to the randomisation in MBT, more scenarios
will be tested even though the tested requirement will not change.
The only scenario where this phenomenon happened in the manual
testing was when the requirement łNormal Operationž was tested.
When creating tests for a system function with an extensive range
of values to choose from, it is crucial to validate the requirements
multiple times with different values from the range. In Figures 7
and 8, the diversity of values tested for each input sensor can be
viewed. The MBT test cases utilise comparable values to the manual
test case, showing that the generated test values are similar to the
manual.

14

Automation of the Creation and Execution of System Level Hardware-in-Loop Tests through Model-Based Testing A-TEST ’22, November 17ś18, 2022, Singapore, Singapore

Figure 6: Comparison of scenarios being tested betweenman-

ual testing, GW and MoMuT.

Figure 7: Comparison of the Primary sensor value distribu-

tion between manual testing, GW and MoMuT.

Figure 8: Comparison of the Secondary sensor value distri-

bution between manual testing, GW and MoMuT.

The comparison of Manual, GW and MoMuT results shows that
all methods achieve 100% requirement coverage, but the main dif-
ference is that the MBT tools generate a higher quantity of test
suites. Moreover, manually created tests have a bias for validating
łNormal Operationž because VCE demands higher priority to test
it, while the MBT follows the probability of the path traversal. Fur-
thermore, in comparison to manual testing, MBT does not validate
threshold values because the logic in the path generation is missing
this criteria.

Table 4: Time distribution where: N/A: Not performed, 2:

Manual time estimation, 22: Time for understanding VCE

tool, *: When creating a test case with (Edge_Coverage(100%)

as a stop condition for the path generator) and ** : The test

generation mode = TCG and no. of steps = 300.

GW MoMuT Manual

Versions V1 V2 V3 V3.1 V1 V2 -
System

Understanding
8 h

Tool

Understanding
16 h 40 h 2 h 22

Modelling 10 h 24 h 8 h 2 h 6 h 2 h N/A
Test Case

Creation
N/A 5.962 sec* 6.63 sec* 5.778 sec* 29.43 sec** 47.16 sec** 10 h ±2 2

Test Execution N/A N/A N/A 134 sec 160 sec 784 sec 1 h2
Issue Analysis 2 h 32 h 2 h - 2 h - N/A

Total Time 36 h 80 h 34 h 26 h 56 h 50 h 21±2 h

6.5 Effort

The efforts are calculated based on the following parameters (Ta-
ble 4):

(1) System Understanding: Analysis of the system, and func-
tional requirements to understand the system and signals.

(2) Tool Understanding: Time consumed for the needed experi-
ence to start using it.

(3) Modelling: Creation of each version of the test models.
(4) Test Case Creation: Time needed to generate a single test

case in GW and a suite of test cases in MoMuT.
(5) HIL Test Execution: The time taken for the execution of a

test case in HIL.
(6) Issue Handling Process: The estimated time spent analysing

the results and finding a solution.

Modelling a system usingMBT for the first time requires some effort,
especially with no previous experience in modelling. In addition
to that, understanding the system to model and the used MBT
tool is a time-consuming task. From the first day of using them
until analysing their results, the efforts needed are represented in
Table 4. By following the table, it can be seen that the time needed
to re-design the model decreases with each subsequent version of
the model; the phenomenon can be observed for both tools. The
exception is version one to version 2 for GW, where the model
design changed entirely, and none of the previous designs were
used in the new design. The observation of the total time shows that
the needed time for both MBT methods is decreasing and starting
to align with the manual testing. The test case creation time for the
manual is the equivalent of the modelling time for the MBT tools.
The factor that hinders the MBT time is the initial learning curve
and the modelling process, but the maintenance and re-designing
time is lower than manual, leading to a gain in time over a more
extended period.

7 SUMMARY OF ANSWERS TO RQS

RQ1: The selection process of MBT tools aimed to focus on open-
source and academic tools while ignoring commercial tools to avoid
unnecessary licenses. Ten tools were chosen initially, and despite
the positive aspects of each tool, the comparison observed some
limitations that influence the tool selection. The tools that fulfilled

15

A-TEST ’22, November 17ś18, 2022, Singapore, Singapore Viktor Aronsson Karlsson, Ahmed Almasri, Eduard Paul Enoiu, Wasif Afzal, Peter Charbachi

the most criteria and were selected to be used in the case study
were GraphWalker and MoMuT.

RQ2: The iterations done on both tools gave several test suites
that differ from each other in quantity since both tools use differ-
ent generation criteria. The automation of generating test suites
helped cover the desired system and assess the applicability of
using MBT as the modelling and generation method. Moreover,
manual tests put weight on some requirements since human is the
one who performs the testing procedure, and it is natural to test
one requirement more than other, e.g. testing manually łNormal
Operationž/Scenario 1 in the modelled system had been performed
many times compared with the rest of requirements (See Figures 5
and 6). On the contrary, MBT tools follow random probabilities
when choosing requirements to test, which results in testing more
requirements randomly (See Section 6.4).

RQ3: Both tools, GraphWalker and MoMuT, have the ability to
design a model for the SUT. In addition, they were able to generate
test suites in a different type of output file format, but a Python
script (See Section 6.3) was able to serialise the data into an XML file
that can be run in the HIL. The requirement coverage criteria differ
between GW and MoMuT, which depends on each tool’s technique
when creating test suites.

8 CONCLUSIONS & FUTUREWORK

The main goal of this paper was to investigate an approach for
automating the creation and execution of HIL test cases. Further-
more, we also evaluated the feasibility of implementing an MBT
solution to accomplish this goal. In order to fully automate the
creation of test cases in an industrial workflow, it requires a signifi-
cant amount of effort to understand both the desired system and
the MBT tool. However, the results show it is worth the effort and
time. Automating the generation of test cases does not make the
system behave differently during the testing process. Instead, the
generated test cases perform similarly to their manual counterparts.
The advantage of MBT compared to the manual is the reduction
in creation-effort of new test cases, resulting in an increase in the
quantity of requirement coverage and an earlier faults detection.
The MBT tools applied in this work are GraphWalker and MoMuT.
Both tools were available for academic work and free to use, but for
using MoMuT in an industrial area, a licence must be obtained to
get access to the tool. As a proof-of-concept, a test suite created by
either GraphWalker or MoMuT covered the system requirements,
was executed in HIL, and helped discover errors and bugs within
the requirements and HIL rig.

An interesting future work is to investigate the maintainability
and usability of the tools and models. Examining how traceabil-
ity can be implemented within a model of various sizes would
be interesting, and how different modelling designs could affect
traceability.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s Hori-
zon 2020 program under grant agreement Nos. 871319, 957212,
101007350 and the ITEA3 SmartDelta project.

REFERENCES
[1] 2017. Why Software Updates Are So Important | McAfee Blog. McAfee (9 2017).

https://www.mcafee.com/blogs/internet-security/software-updates-important/
[2] 2018. How Model Based Testing Benefits the End-user. https://www.uk.sogeti.

com/content-hub/blog/how-model-based-testing-benefits-the-end-user/.
[3] 2018. Model Based Testing: Testing Type You Must Know! - Software Testing

Class. https://www.softwaretestingclass.com/model-based-testing/
[4] 2020. What Is Hardware-in-the-Loop? National Instruments (12

2020). https://www.ni.com/sv-se/innovations/white-papers/17/what-is-
hardware-in-the-loop-.html#section--380192003

[5] 2021. What is Hardware-in-the-Loop (HIL) Testing? http://www.genuen.com/
blog/what-is-hardware-in-the-loop-hil-testing

[6] 2022. CONFORMIQ CREATOR. https://www.conformiq.com/products/
conformiq-creator/.

[7] 2022. SystemWeaver. https://www.systemweaver.se/
[8] 2022. What is a state machine? https://www.itemis.com/en/yakindu/state-

machine/documentation/user-guide/overview_what_are_state_machines
[9] Larry Apfelbaum and John Doyle. 1997. Model Based Testing.
[10] Automated-360. 2022. 9 Great Tools to work with Model-based Testing

(MBT). https://automated-360.com/model-based-testing/model-based-testing/
#graphwalker

[11] M. Bacic. 2005. On hardware-in-the-loop simulation. In Proceedings of the 44th
IEEE Conference on Decision and Control.

[12] Mark R. Blackburn, Robert Busser, and Aaron Nauman. 2002. Interface-Driven,
Model-Based Test Automation. In Proceedings of the International Conference On
Software Testing Analysis Review.

[13] Eclipse. 2022. Eclipse Papyrus. https://www.eclipse.org/papyrus/
[14] Eclipse. 2022. Eclipse Papyrus™ Documentation. https://www.eclipse.org/

papyrus/documentation.html
[15] George Ellis. 2012. Chapter 13 - Model Development and Verification. In Con-

trol System Design Guide (fourth edition ed.), George Ellis (Ed.). Butterworth-
Heinemann, Boston, 261ś282. https://doi.org/10.1016/B978-0-12-385920-4.
00013-8

[16] Eduard Enoiu, Daniel Sundmark, Adnan Čaušević, and Paul Pettersson. 2017.
A Comparative Study of Manual and Automated Testing for Industrial Control
Software. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST).

[17] GraphWalker. 2022. GraphWalker forum. https://groups.google.com/g/
graphwalker

[18] Aliya Hussain. 2018. An Evaluation of Model-based Testing in Industrial Practice:
From System Modelling to Test Generation. Master’s thesis.

[19] Korhonen Joakim. 2020. Automated Model Generation Using GraphWalker Based
on Given-When-Then Specifications. Master’s thesis.

[20] Massila Kamalrudin and Safiah Sidek. 2015. A Review on Software Require-
ments Validation and Consistency Management. International Journal of Software
Engineering and its Applications x, x (2015), 20.

[21] Janne Keränen and Tomi Räty. 2013. Validation of Model-Based Testing in Hard-
ware in the Loop Platform. In 2013 10th International Conference on Information
Technology: New Generations.

[22] Anne Kramer and Bruno Legeard. 2016. Model-based testing essentials: guide to
the ISTQB certified model-based tester foundation level. John Wiley & Sons.

[23] Yasir Masood Malik. 2010. Model Based Testing: An Evaluation. Master’s thesis.
[24] L. Pan, X. Zheng, H.X. Chen, T. Luan, H. Bootwala, and L. Batten. 2017. Cyber

security attacks to modern vehicular systems. Journal of Information Security
and Applications 36 (2017), 90ś100.

[25] ProfessionalQA. 2022. Model Based Testing. https://www.professionalqa.com/
model-based-testing-tools

[26] Per Runeson and Martin Höst. 2009. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Softw. Engg. 14, 2 (2009),
131ś164.

[27] Steve Symanovich. 2021. 5 reasons why general software updates and patches
are important. NortonLifeLock (1 2021). https://us.norton.com/internetsecurity-
how-to-the-importance-of-general-software-updates-and-patches.html

[28] Ministry Of Testing. 2022. Model-based testing open source Tools? https://club.
ministryoftesting.com/t/model-based-testing-open-source-tools/20159/8

[29] Mark. Utting and Legeard. Bruno. 2006. Practical model-based testing a tools
approach. Morgan Kaufmann Publishers, San Francisco, CA.

[30] Peter Wilson and H. Alan Mantooth. 2013. Chapter 6 - Block Diagram Modeling
and System Analysis. In Model-Based Engineering for Complex Electronic Systems,
Peter Wilson and H. Alan Mantooth (Eds.). Newnes, Oxford, 169ś196.

[31] Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu, Athanasios Stratis, Aitor
Arrieta, and Goiuria Sagardui. 2021. Model-Based Testing in Practice: An Indus-
trial Case Study Using GraphWalker. In 14th Innovations in Software Engineering
Conference. ACM, New York, NY, USA.

16

https://www.mcafee.com/blogs/internet-security/software-updates-important/
https://www.uk.sogeti.com/content-hub/blog/how-model-based-testing-benefits-the-end-user/
https://www.uk.sogeti.com/content-hub/blog/how-model-based-testing-benefits-the-end-user/
https://www.softwaretestingclass.com/model-based-testing/
https://www.ni.com/sv-se/innovations/white-papers/17/what-is-hardware-in-the-loop-.html#section--380192003
https://www.ni.com/sv-se/innovations/white-papers/17/what-is-hardware-in-the-loop-.html#section--380192003
http://www.genuen.com/blog/what-is-hardware-in-the-loop-hil-testing
http://www.genuen.com/blog/what-is-hardware-in-the-loop-hil-testing
https://www.conformiq.com/products/conformiq-creator/
https://www.conformiq.com/products/conformiq-creator/
https://www.systemweaver.se/
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_state_machines
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_state_machines
https://automated-360.com/model-based-testing/model-based-testing/#graphwalker
https://automated-360.com/model-based-testing/model-based-testing/#graphwalker
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/documentation.html
https://www.eclipse.org/papyrus/documentation.html
https://doi.org/10.1016/B978-0-12-385920-4.00013-8
https://doi.org/10.1016/B978-0-12-385920-4.00013-8
https://groups.google.com/g/graphwalker
https://groups.google.com/g/graphwalker
https://www.professionalqa.com/model-based-testing-tools
https://www.professionalqa.com/model-based-testing-tools
https://us.norton.com/internetsecurity-how-to-the-importance-of-general-software-updates-and-patches.html
https://us.norton.com/internetsecurity-how-to-the-importance-of-general-software-updates-and-patches.html
https://club.ministryoftesting.com/t/model-based-testing-open-source-tools/20159/8
https://club.ministryoftesting.com/t/model-based-testing-open-source-tools/20159/8

	Abstract
	1 Introduction
	2 Background
	2.1 Model-Based Testing
	2.2 Hardware-in-Loop Testing
	2.3 Finite State Machines

	3 Related Work
	4 Research Method
	4.1 Case Study Design

	5 Comparison of MBT Tools
	6 Results
	6.1 GraphWalker - Creation of Model
	6.2 MoMuT - Creation of Model
	6.3 Serialisation Script
	6.4 Comparison Between GraphWalker, MoMuT and Manual Testing
	6.5 Effort

	7 Summary of Answers to RQs
	8 Conclusions & Future Work
	Acknowledgments
	References

