
FESCA 2005 Preliminary Version

An event algebra extension of the
triggering mechanism in a component

model for embedded systems

Jan Carlson 1,2 and Mikael Åkerholm 1

Department of Computer Science and Electronics
Mälardalen University, Sweden

Abstract

In this article we present how the component triggering in SaveCCM, a component
model intended for embedded vehicular systems, can be extended by means of an
event algebra. The extension allows components to be triggered by complex event
patterns, and not only by clock signals or single external events.

Separating the detection of triggering conditions from the definition of the trig-
gered services permits more general components and thus improves component
reusability. Providing event detection mechanisms within the component model
means that triggering conditions are explicitly available for system analysis at de-
sign time.

An event algebra is used to define the complex triggering conditions. This algebra
has a relatively simple declarative semantics and well documented algebraic proper-
ties, which facilitates formal and informal reasoning about the system. The algebra
also ensures that detection of triggering conditions can be efficiently implemented
with limited resources, which is critical in embedded applications.

Key words: Component-based software architecture, event
detection, embedded systems.

1 Introduction

SaveCCM [1] is a component model intended for development of software
for vehicular systems. The model is restrictive compared to most general
component models, due to the high demands of predictability and run-time
efficiency in the intended domain. We have extended the triggering mechanism
of SaveCCM with an event algebra, which allows components to be triggered

1 Email: {jan.carlson,mikael.akerholm}@mdh.se
2 Funded by CUGS (the national graduate school in computer science).

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Carlson and Åkerholm

by complex event patterns, rather than just a clock signal or a single external
event.

As a running example, we consider a system with external events including
a button B, and internal warning events P and T generated by components
monitoring pressure and temperature, respectively. The system is supposed
to perform a service provided by a third component whenever the button is
pressed twice within two seconds, unless either of the alarm components signal
in between.

One way to achieve this is to design a new component that is responsible
for detecting this particular situation, and to trigger the component under the
right circumstances. This means that the triggering condition is not visible
on a system design level, and thus not easily available for analysis.

The alternative outlined in this paper is to provide detection of complex
event patterns as a part of the component model. Complex triggering condi-
tions are specified on a high level, with well-defined formal semantics, which
supports formal analysis at design-time when the access to component source
code is limited. At compile-time, code that detects the specified situations is
automatically generated.

Triggering conditions are specified by expressions from an event algebra.
For example, the situation described above could be defined by the expression
(B;B)2−(P∨T). The algebra is designed to be as intuitive as possible, under the
restriction that it should be effectively implementable with limited resources,
since we primarily target embedded applications. The operators have intuitive,
declarative semantics, and we present a number of algebraic laws that facilitate
formal and informal reasoning.

The rest of the paper is organised as follows: Section 2 surveys related work
and Section 3 gives an overview of SaveCCM. A description of the proposed
extension, including an informal introduction to the event algebra, is given in
Section 4. In Section 5 the event algebra is presented more formally, and we
outline how the properties of this particular algebra impact on the extended
component model. Finally, Section 6 concludes the paper.

2 Related Work

Recently component technologies for different classes of embedded systems
have been developed both in academia and industry. In relation to our pro-
posal some of them support different triggering types, specification of advanced
real-time constrains, and run-time flexibility. In this section we will briefly de-
scribe a sample from the automotive, consumer electronics, and automation
domains.

The Rubus Component technology [10] is a commercial technology that is
used in the automotive industry. It is shipped, and tightly integrated, with
the Rubus operating system. Rubus components are statically scheduled, and
sophisticated timing requirements can be specified, e.g., release-time, deadline,

2

Carlson and Åkerholm

worst case execution time and period time. The main limitation is that only
periodic activation of components is possible.

Koala [14] is a component technology developed and used internally by
Philips. Component binding flexibility can be achieved with switches, as in
SaveCCM. Switches choose between interfaces offered by different components
at run time, with possible static reduction at compile-time. ROBOCOP [5] is
a continuation to enhance the Koala model with, e.g., support for real-time
constrains and analysis.

Port Based Objects (PBO) [13] is a component technology specialised on
reconfigurable robotics applications, from the Advanced Manipulators Labora-
tory at Carnegie Mellon University. The technology has support for modelling
output response from given inputs of closed or open loop systems by applying
transfer functions. Real-Time analysis is also supported.

PECOS [15] is a collaborative project between ABB and academia, with
the aim to develop a technology adjusted for field-devices. Pecos support dif-
ferent trigger-types associated with components; they can be of passive, active
or event-type. Passive components do not have their own execution thread,
and have to be triggered by other types of components. Active components
have their own thread that is periodically triggered. Event components are
components that are triggered by an external event and have a thread of
control.

Outside the domain of component-based architecture, event detection mech-
anisms of various kinds are used in a wide range of areas. For example, some
large distributed systems have an architecture based on event subscribers and
publishers. In such a system, rather than having subscribers register their
interest in simple event types, and perform their own filtering and pattern de-
tection, this functionality can be provided by the publisher. The subscribers
register event patterns, specified for example in an event algebra. The pub-
lisher performs the event detection and notifies the individual subscribers when
their pattern is detected. Many systems of this type has been proposed, e.g.,
the READY event notification service by Gruber et al. that contains a simple
event algebra for registering event patterns [9].

In middleware platforms, event detection techniques are used to handle
high volumes of event occurrences by allowing consumers to subscribe to cer-
tain event patterns rather than to single event types. For example, Sánchez
et al. present an event correlation language where event expressions are trans-
lated into nested Petri net like automata [12].

The operators of the event algebra we use, as well as the interval-based se-
mantics and the concept of restricted detection, are influenced by work in the
area of active databases. Snoop [4], Ode [8] and SAMOS [7] are examples of
active database systems where an event algebra is used to specify the reactive
behaviour. These systems differ primarily in the choice of detection mecha-
nism. SAMOS is based on Petri nets, while Snoop uses event graphs. In Ode,
event definitions are equivalent to regular expressions and can be detected by

3

Carlson and Åkerholm

state automata.

Galton and Augusto have shown that associating occurrences of complex
event patterns with a single time instant results in unintended semantics for
some operation compositions [6]. They also present the core of an alternative,
interval-based, semantics to handle the problem. We use a similar semantic
base for our algebra, but extend it with a restriction policy to allow the al-
gebra to be implemented with limited resources while retaining the desired
algebraic properties. To the best of our knowledge, no existing event alge-
bra provides assistance to the developer in terms of algebraic properties or
an event expression equivalence theory, while at the same time ensuring that
detection can be correctly performed with limited resources.

3 The SaveComp component model

SaveCCM is based on a textual syntax, but a somewhat modified subset of
the component diagrams of UML2 is used as a graphical notation. In this
paper, we present only the graphical notation, and refer the reader to [1] for
details on the textual syntax.

3.1 Architectural elements

Systems are built from interconnected components, i.e., units of encapsulated
behaviour with well defined interfaces defined in terms of input- and output
ports, which are points of interaction between the component and its external
environment. The model distinguishes between two aspects of ports: the
data flow and the control flow. The former is captured by data ports, i.e.,
one element buffers where data of a given type can be written and read.
Control flow is defined in terms of triggering ports that control the activation
of components. Finally, a port can have both triggering and data functionality.
The notation for these port types is shown in Fig. 1.

Basic components are associated with an executable through an entry func-
tion. Optionally, quality attributes can be given to specify particular proper-
ties of the component, e.g., worst case execution time. In addition to basic
components, the model contains two more component types: Assemblies are
encapsulated subsystems. The internal interconnections and components are
hidden from the rest of the system, and can be accessed only through the
ports of the assembly. Switches are lightweight components used to dynam-
ically change the component interconnection structure. The switch specifies
a number of connection patterns, i.e., partial mappings from input to output
ports. Each connection pattern is guarded by a logical expression, possibly
over the data available at the input ports, that defines the condition under
which that pattern is used. Switches perform no computation other than the
evaluation of connection pattern guards.

4

Carlson and Åkerholm

g Data-only input portg � Triggering-only input portg > Input port with triggering and data�� Data-only output port

�
�� Triggering-only output port

>
�� Output port with triggering and data

〈〈SaveComp〉〉

Basic component

〈〈Assembly〉〉

Assembly

〈〈Switch〉〉

Switch component

Fig. 1. The graphical notation of SaveCCM.

3.2 Execution model and run-time framework

On a system level, execution can be triggered by clocks or external events.
Then, the control propagates through the system according to the triggering
port connections. A component is triggered once all of its input triggering
ports have been activated. If more than one output triggering port is con-
nected to the same input triggering port, this input port is activated as soon
as one of the connected output ports are activated.

When a component is activated, it first reads from all its input ports and
then performs the associated computation. Then, output is written to output
ports, which includes activating all output triggering ports of the component.
Finally, all input triggering ports are reset to a non-active state.

The application domain of embedded systems requires a small runtime-
framework that fits the current practice of this field. E.g., the prototype
generates code for the RTXC real-time operating system [11], where a system
is implemented as a set of periodic tasks with known worst case execution
times, deadlines, and priorities governing the execution order.

At compile time, the components are allocated to tasks in such a way
that triggering conditions, precedence relations and component communica-
tion are preserved. An analysis phase derives task properties from component
attributes and from the system architecture, and performs further analysis
based on these, e.g., response time and schedulability analysis. Finally, tar-
get specific code is generated for each task, where calls to the component
entry function are interleaved with code that handles data exchange between
components within the task and with other tasks.

5

Carlson and Åkerholm

4 Extended triggering

We propose an extension to the triggering mechanism that allows more elabo-
rate triggering conditions to be specified. This functionality is provided in the
form of an event algebra, i.e., a number of operators from which expressions
can be constructed that represent complex triggering conditions.

First, we give an informal description of the algebra operators, and show
how the event algebra is incorporated into SaveCCM. The formal semantics
and a number of important properties of the algebra is discussed in Section 5.
For a detailed description of the algebra, including implementation details,
the reader is referred to [2] or [3].

4.1 Operators

Expressions are built recursively from primitive events, represented by input
port names, and the operators of the algebra. Fig. 2 lists the operators,
together with an informal description of their meaning.

Operator Notation Informal meaning

Disjunction A∨B occurs when A or B (or both) occurs.

Conjunction A+B occurs when A and B have occurred (in any
order, and possibly not simultaneously).

Negation A−B occurs when there is an occurrence of A, during
which B does not occur.

Sequence A;B occurs when an occurrence of A is followed by
an occurrence of B.

Within Aτ occurs when there is an occurrence of A shorter
than τ time units.

Fig. 2. Informal description of the algebra operators.

As an example, the triggering condition from in the introductory example,
that B occurs twice within two time units and neither P nor T occurs in
between, would be defined by the expression (B;B)2−(P∨T).

4.2 Extended notation

To incorporate the algebra into the component model, the SaveCCM notation
is extended with a new element called event. An example of a this construct
is shown in Fig. 3. An event element has a number of named input ports and
one output port. To illustrate that the semantics of these ports differ from
the ordinary ports, they are not represented graphically. The event element

6

Carlson and Åkerholm

is also associated with an algebraic expression defining the event pattern it is
responsible for detecting.

Buttong >

Pressure sensorg >

Temp. sensorg >

〈〈Assembly〉〉

-

-

g >
〈〈Assembly〉〉

>
��

g >
〈〈Assembly〉〉

>
��Pressure

Temp

-
-
-

B

P

T

(B;B)2−(P∨T)

?g >
〈〈SaveComp〉〉

Response
��- ��Control

Fig. 3. An example of a system design that includes an event element.

Currently, the semantics of the event element is defined in terms of the
original notation. The main motivation for this is that the extension can be
included in the prototype tool with minimal effort. In the future, we intend
to develop a more direct semantics for the event element, and handle them
explicitly in the analysis and code generation phases to avoid unnecessary
overhead.

Definition 4.1 An event element with n input ports is viewed as syntactic
sugar for a collection of a basic component B, a switch S and n auxiliary basic
components, as outlined in Fig. 4.

-

-

...
-

p1

p2

pn

-

g >
〈〈SaveComp〉〉

>

g >
〈〈SaveComp〉〉

>
...

A1

...

An

��g >
〈〈SaveComp〉〉

B
>

����g >g 〈〈Switch〉〉

S >
��

Fig. 4. An event element (left), and its counterpart in the original notation (right).

The basic component B is responsible for the computation and state infor-
mation needed to detect the event pattern correctly. Code for this component
is automatically generated from the expression of the event element, following
the algebra implementation presented in [2].

The switch S determines, based on the output of B, if the triggering should
be forwarded or not. The connection pattern condition is independent of the
expression to be detected.

Additionally, an auxiliary component Ai is generated for each of the n input
ports of the event element. These components are very small, and only serve
to tag the data with a timestamp and the corresponding port name before
relaying them to B. To ensure that an activation of one of the input ports is
processed by B before it is overwritten by an activation of another port, we
require that B is given a higher priority than the auxiliary components.

7

Carlson and Åkerholm

We believe that the overhead introduced by the auxiliary components is
reasonably low. They will typically be allocated at the end of existing tasks,
and the component code can be inlined by the compiler since it is only accessed
from a single point. Explicit handling of event elements in the code generation
phase would remove the need for these auxiliary components.

5 Event algebra details

From the perspective of the algebra, the input ports of the event element are
viewed as event sources. Conversely, to the rest of the system the output
port acts as an event source, emitting a triggering signal whenever the incom-
ing event sequence matches the pattern defined by the algebraic expression.
Note that the SaveCCM triggering signals are instantaneous, but the alge-
bra associates event instances, i.e., both port activations and detections of
subexpressions, with time intervals to ensure the desired algebraic properties.

Before we consider the algebra semantics, a few basic concepts have to be
defined that connects the algebra with concepts in the component model.

Definition 5.1 Let the temporal domain T be the set of all natural numbers,
and let P be a set containing the names of the input ports of the event element.
For each p ∈ P , let type(p) denote the data type of p.

5.1 Input ports

An activation of an input port is characterised by the port name, occurrence
time and the associated data. Formally, we represent each activation as a
singleton set to allow uniform treatment of primitive and complex event in-
stances. Together, all activations of a certain port during the system lifetime
form an event stream.

Definition 5.2 If p ∈ P , υ ∈ type(p) and τ ∈ T , then the singleton set
{〈p, υ, τ〉} is a primitive event instance. A primitive event stream is a set
of primitive event instances all of which are labelled with the same port name
and with different timestamps.

An interpretation is a formal representation of a single execution scenario,
as it defines one of the possible ways in which the input ports of the event
component can be activated.

Definition 5.3 An interpretation is a function mapping each input port p∈P
to a primitive event stream with instances labelled with p.

As an example, let P = {T, P}, type(T) = N and type(P) = {high, low}.
Now S = {{〈T, 12, 2〉}, {〈T, 14, 3〉}, {〈T, 8, 5〉}} and S ′ = {{〈P, low, 4〉}} are
examples of primitive event streams. The interpretation I such that I(T)=S
and I(P)=S ′ represents a scenario where T is activated at times 2, 3 and 5,
and P at time 4.

8

Carlson and Åkerholm

5.2 Event expressions

Event expressions are built from input port names and the operators of the
algebra, as outlined in Section 4. As a first step of defining the meaning of
an expression, we extend the concepts of instances and streams, defined for
input ports above, to event expressions.

Definition 5.4 An event instance is a union of n primitive event instances,
where 0 < n, and an event stream is a set of event instances. For an event
instance a we define:

start(a) = min({τ | 〈p, υ, τ〉∈a})

end(a) = max({τ | 〈p, υ, τ〉∈a})

Informally, an event instance represents a number of input port activations
that together match the event pattern described by the expression. We asso-
ciate with each instance a an interval [start(a), end(a)] that can be thought of
as the smallest interval which contains all input port activations that caused
a.

Note that a primitive event instance is an event instance, and if a is a
primitive instance then start(a) = end(a). Similarly, a primitive event stream
is an event stream, just as the names suggest.

As an example, let a = { 〈T, 12, 2〉, 〈P, low, 4〉, 〈T, 8, 5〉 }. Then a is an
event instance, with start(a)=2 and end(a)=5.

5.3 Operator semantics and the restriction policy

The interpretation represents input port activations by mapping each port
name to an event stream, and the role of the algebra semantics is to extend this
mapping so that a given event expression is mapped onto an event stream with
exactly those instances that match the pattern described by the expression.

Definition 5.5 The meaning of an event expression for a given interpretation
I is defined as follows:

[[A]]I = I(A) if A∈P

[[A∨B]]I = [[A]]I ∪ [[B]]I

[[A+B]]I = {a ∪ b | a∈ [[A]]I ∧ b∈ [[B]]I}

[[A−B]]I = {a | a∈ [[A]]I ∧ ¬∃b(b∈ [[B]]I ∧ start(a)≤start(b)∧
end(b)≤end(a))}

[[A;B]]I = {a ∪ b | a∈ [[A]]I ∧ b∈ [[B]]I ∧ end(a)<start(b)}

[[Aτ]]
I = {a | a ∈ [[A]]I ∧ end(a)− start(a) ≤ τ}

9

Carlson and Åkerholm

These definitions result in an algebra with simple semantics and intuitive
algebraic properties. However, it can not be implemented with limited re-
sources since the conjunction and sequence operators require that instances
are stored throughout the system lifetime. To deal with resource limitations,
we define a formal restriction policy, and require only that an implementation
should compute a valid restriction of the event stream specified by the algebra
semantics above.

The restriction policy is defined as a binary relation rem over event streams,
where rem(S, S ′) means that S ′ is a valid restriction of S. For reasons of
repeatability, it is typically desirable that an implementation of the algebra is
deterministic. From a theoretical point of view, however, we prefer to leave
as many detailed design decisions as possible open, and guarantee that any
implementation which is consistent with the restriction policy relation have
the properties described in the paper.

Definition 5.6 For event streams S and S ′, rem(S, S ′) holds if the following
conditions hold:

• S ′ ⊆ S

• For any s ∈ S there exists a s′ ∈ S ′ such that start(s) ≤ start(s′) and
end(s)=end(s′).

• No instances in S ′ have the same end time.

Rather than computing [[A]]I for a given event expression A, an implemen-
tation of the algebra should result in an event stream S for which rem([[A]]I , S)
holds. For the user of the algebra, this means that at any time when there is
one or more occurrences of A, according to the [[A]]I semantics, one of them
will be detected.

5.4 Properties

In order to investigate the properties of the event algebra, we need a well-
defined concept of expression equivalence.

Definition 5.7 For event expressions A and B we define A ≡ B to hold if
[[A]]I =[[B]]I for any interpretation I.

Trivially, ≡ is an equivalence relation. Moreover, it satisfies the substi-
tutive condition, meaning that if a subexpression is changed into something
equivalent, the result is equivalent to the original expression.

The following laws describe a number of important expression equivalences
that facilitate reasoning, both formally and informally, about the triggering
condition defined by an event element. They also show to what extent the
algebra operators behave according to intuition. For a more extensive set of
laws, and formal proofs, the reader is referred to [2].

10

Carlson and Åkerholm

Theorem 5.8 These laws hold for event expressions A, B and C, and τ ∈T .

A∨A ≡ A

A∨B ≡ B∨A

A+B ≡ B+A

A∨(B∨C) ≡ (A∨B)∨C

A+(B+C) ≡ (A+B)+C

A;(B;C) ≡ (A;B);C

(A∨B)+C ≡ (A+C)∨(B+C)

(A∨B);C ≡ (A;C)∨(B;C)

A;(B∨C) ≡ (A;B)∨(A;C)

A ≡ Aτ if A ∈ P

(Aτ)τ ′ ≡ Amin(τ,τ ′)

(A∨B)τ ≡ (Aτ)∨(Bτ)

(A+B)τ ≡ (Aτ +B)τ

(A−B)τ ≡ (Aτ)−B

(A−B)τ ≡ (A−(Bτ))τ

(A;B)τ ≡ (Aτ ;B)τ

(A;B)τ ≡ (A;Bτ)τ

(A−B)−C ≡ A−(B∨C)

(A∨B)−C ≡ (A−C)∨(B−C)

The laws identify expressions that are semantically equivalent, but in order
to handle resource limitations we expect an implementation of the algebra to
compute an event stream S such that rem([[A]]I , S), rather than computing
[[A]]I . As a result, detecting A might yield a different stream than detecting
A′, even when A ≡ A′. Consequently, it should be clarified to what extent the
laws presented above are still applicable when restriction is applied.

Theorem 5.9 If A ≡ A′ and rem([[A]]I , S) holds, then rem([[A′]]I , S) holds.

Proof. This follows trivially from Definition 5.7, since A ≡ A′ implies that
[[A]]I =[[A′]]I . 2

Thus, A ≡ A′ ensures that the result of an implementation detecting A is
always a valid result for A′. Any reasoning based on the algebra semantics
and the restriction policy, and not on the details of a particular detection
algorithm, will be equally valid for equivalent expressions.

5.5 Analysis

An argument for extending the component model with an event algebra is that
it facilitates analysis on a system design level, compared to developing a new
component for each triggering condition. The algebraic laws presented above
can be used to rewrite expressions into a form that can be more efficiently
detected, e.g., as illustrated by the transformation algorithm presented in
earlier work [2]. From the component model point of view, we want to be able
to infer a number of properties of an event element based on the expression
and properties of the components connected to it.

11

Carlson and Åkerholm

Memory requirement

The memory requirements of an event element can be directly determined
from the expression and the types of the input ports. Unlike earlier work on
the event algebra, the current implementation can detect any expression with
limited memory.

Worst case execution time

The code generated for the detection component is characterised by a very
simple control flow. For example, there are no nested loops and no function
calls. Once the memory analysis derives the required storage structure sizes,
all loops are trivially bounded. This means that the code could be analysed
with standard worst case execution time techniques.

Alternatively, it should be fairly straightforward to determine, directly
from the expression, an abstract worst case execution time in terms of the
number of assignments, comparisons, arithmetical operations, etc.

Triggering frequencies

In order to guarantee timely responses when parts of the system activities
are non-periodic, it is essential to have information about how often a given
component is triggered. In real-time scheduling theory, the term sporadic is
used for activities for which a lower bound on the time between two consecutive
triggerings (minimum interarrival time) is known.

If the minimum interarrival time is known for the ports connected to the
event element, this property can be derived for the output port as well. How-
ever, operators like disjunction and conjunction result in expressions with zero
minimum interarrival time. We have defined a more general notion of max-
imum occurrences, computed by a function occ that guarantees that during
any interval of length τ , there are at most occ(A, τ) detections of the expres-
sion A. This can be computed for an arbitrary expression and interval length
if minimum interarrival times, or occ values, are known for the input ports of
the event element [2].

6 Conclusions and future work

We have presented how the component triggering in SaveCCM, a component
model intended for embedded vehicular systems, can be extended by means
of an event algebra. Using the algebra operators, complex patterns of trigger-
ing port activations can be defined, and whenever the activations match this
pattern, the associated components are triggered.

Separating the detection of triggering conditions from the definition of
the triggered service permits more general components and thus improves
component reusability. Providing event detection as a part of the component
model, rather than implementing it within an ordinary component, means
that it is available for analysis at design-time.

12

Carlson and Åkerholm

The event algebra has been developed with two main considerations in
mind: It should comply with laws that intuitively ought to hold for the algebra
operators, and there should be an implementation that correctly detects any
expression with limited memory. The simple operator semantics, and the
expression equivalence laws, facilitates formal and informal reasoning about
the triggering conditions in a system.

Our ongoing work includes defining a more direct semantics for the event
element, rather than defining it in terms of other architectural elements. The
compile-time phases of the prototype tool should be modified accordingly, so
that the event detection activities are implemented as efficiently as possible.
Then, case studies should be carried out to evaluate the usefulness of the
method and to identify possible improvements.

References

[1] Åkerholm, M., A software component technology for vehicle control systems,
Licentiate thesis No. 44 (2005), Mälardalen University, Sweden.

[2] Carlson, J., An intuitive and resource-efficient event detection algebra,
Licentiate thesis No. 29 (2004), Mälardalen University, Sweden.

[3] Carlson, J. and B. Lisper, An event detection algebra for reactive systems, in:
Proc. 4th ACM Int Conference on Embedded Software (EMSOFT) (2004).

[4] Chakravarthy, S. and D. Mishra, Snoop: An expressive event specification
language for active databases, Data Knowledge Engineering 14 (1994), pp. 1–26.

[5] de Jonge, M., J. Muskens and M. Chaudron, Scenario-based prediction of
run-time resource consumption in component-based software systems, in: Proc.
6th Int. Workshop on Component-Based Software Engineering: Automated
Reasoning and Prediction (2003).

[6] Galton, A. and J. C. Augusto, Two approaches to event definition, in: Proc. 13th
Int. Conference on Database and Expert Systems Applications, Lecture Notes
in Computer Science 2453 (2002).

[7] Gatziu, S. and K. R. Dittrich, Events in an active object-oriented database
system, in: Proc. 1st Int. Workshop on Rules in Database Systems (1993).

[8] Gehani, N., H. V. Jagadish and O. Shmueli, COMPOSE: A system for composite
specification and detection, in: Advanced Database Systems, Lecture Notes in
Computer Science 759 (1993).

[9] Gruber, R., B. Krishnamurthy and E. Panagos, The architecture of the READY
event notification service, in: Proc. 19th IEEE Int. Conference on Distributed
Computing Systems, Middleware Workshop, Austin, TX, USA, 1999.

[10] Lundbäck, K.-L., J. Lundbäck and M. Lindberg, Development of dependable
real-time applications (2004).
URL http://www.arcticus.se

13

http://www.arcticus.se

Carlson and Åkerholm

[11] Quadros Systems Inc, RTXC kernel users guide (2004).
URL http://www.quadros.com

[12] Sánchez, C., S. Sankaranarayanan, H. Sipma, T. Zhang, D. Dill and Z. Manna,
Event correlation: Language and semantics, in: Proc. 3rd Int. Conference on
Embedded Software, Lecture Notes in Computer Science 2855 (2003).

[13] Stewart, D. B., R. A. Volpe and K. Khosla, Design of dynamically reconfigurable
real-time software using port-based objects, IEEE Transactions on Software
Engineering 23 (1997), pp. 759–776.

[14] van Ommering, R., F. van der Linden, K. Kramer and J. Magee, The Koala
component model for consumer electronics software, Computer 33 (2000),
pp. 78–85.

[15] Winter, M., T. Genßler, C. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts,
G. Arévalo, M. Mueller, C. Stich and S. Schoenhage, Components for embedded
software — the PECOS approach, in: Proc. 2nd Int. Workshop on Composition
Languages, 2002.

14

http://www.quadros.com

	Introduction
	Related Work
	The SaveComp component model
	Architectural elements
	Execution model and run-time framework

	Extended triggering
	Operators
	Extended notation

	Event algebra details
	Input ports
	Event expressions
	Operator semantics and the restriction policy
	Properties
	Analysis

	Conclusions and future work
	References

