
PyLC: A Framework for Transforming and Validating PLC
Software using Python and Pynguin Test Generator∗

Mikael Ebrahimi Salari
Mälardalen University
Västerås, Sweden

mikael.salari@mdu.se

Eduard Paul Enoiu
Mälardalen University
Västerås, Sweden

eduard.enoiu@mdu.se

Wasif Afzal
Mälardalen University
Västerås, Sweden
wasif.afzal@mdu.se

Cristina Seceleanu
Mälardalen University
Västerås, Sweden

cristina.seceleanu@mdu.se

ABSTRACT
Many industrial application domains utilize safety-critical systems
to implement Programmable Logic Controllers (PLCs) software.
These systems typically require a high degree of testing and strin-
gent coverage measurements that can be supported by state-of-the-
art automated test generation techniques. However, their limited
application to PLCs and corresponding development environments
can impact the use of automated test generation. Thus, it is neces-
sary to tailor and validate automated test generation techniques
against relevant PLC tools and industrial systems to efficiently un-
derstand how to use them in practice. In this paper, we present a
framework called PyLC, which handles PLC programs written in
the Function Block Diagram and Structured Text languages such
that programs can be transformed into Python. To this end, we
use PyLC to transform industrial safety-critical programs, showing
how our approach can be applied to manually and automatically
create tests in the CODESYS development environment. We use
behaviour-based, translation rules-based, and coverage-generated
tests to validate the PyLC process. Our work shows that the trans-
formation into Python can help bridge the gap between the PLC
development tools, Python-based unit testing, and test generation.

KEYWORDS
PLC, Python, Code translation, FBD, ST, Pynguin, IEC 61131-3,
Translation validation

1 INTRODUCTION
Industrial control software is vital in today’s modern industry. One
of the most popular industrial control devices in safety-critical
systems is the Programmable logic controller (PLC). PLC devices are
being produced in the market by different vendors and are different
in terms of their specifications. Programming PLC devices is done

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC’23, March 27 – March 31, 2023, Tallinn, Estonia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9517-5/23/03.
https://doi.org/10.1145/3555776.3577698

via five different programming languages that are supported in the
IEC 61131-3 standard, including Function Block Diagram (FBD),
Structured Text (ST), Sequential Function (SFC), Ladder Diagram
(LD), and Continuous Function (CFC) [15].

In PLC programming, one or more programming languages of
IEC 61131-3 can be used in each Programmable Organisation Unit
(POU). Like any other programming language, PLC programming
can be aided by using an Integrated Development Environment
(IDE), which can parse, compile and execute code on the target
PLC device. One of the most popular IDEs in the current PLC
industry is CODESYS, developed by Smart Software Solutions1.
CODESYS supports all the programming languages of the IEC 61131-
3 standard. In addition, the IDE is equipped with different add-ons,
such as unit testing frameworks that can be used to create test cases
manually. The only non-IEC 61131-3 programming language that
CODESYS supports is Python, such that the IDE can import and
execute the scripts directly.

There has been little research on rigorously applying automated
test generation approaches for PLC programs in industrial practice.
Bridging PLC programs with a high level dynamic language such
as Python is challenging. This paper proposes a PLC to Python
translation framework, called PyLC, which fills the gap between
PLC development and automated test generation using Pynguin
[7]. Our designed translation framework can transform an FBD/ST
PLC program into Python code in a systematic way. We validate
this transformation using unit testing by focusing on three types of
validations: requirement-based, translation-based, and code-based
unit test cases.

To achieve the goal of our research, we formulated the following
research questions.

(1) How to translate a PLC program that is developed in ST/FBD
into Python code?

(2) How to validate the translated PLC code into Python using
manual unit testing and automated test generation?

The paper is organized as follows. Section 2 briefly overviews
PLC programming languages FBD and ST, CODESYS, Python, as
well as Pynguin. Section 3 describes the translation process, transla-
tion challenges, and translation validation mechanisms of the PyLC
framework. Section 4 explains the gathered results of this study
regarding each formulated research question as well as threats to

1https://www.codesys.com/

https://doi.org/10.1145/3555776.3577698

SAC’23, March 27 – March 31, 2023, Tallinn, Estonia M. Ebrahimi Salari et al.

Figure 1: A Snippet of an example PLC Program
(Check_Signals) written in FBD.

validity. Section 5 overviews the related work. Finally, section 6
briefly overviews the conclusions and potential future research
directions.

2 BACKGROUND
In this section, we briefly overview PLC languages FBD and ST, IEC
61131-3 standard and the CODESYS environment and Pynguin test
generator as a basis for describing our framework.

2.1 PLC Programming, IEC 61131-3 Standard
and CODESYS

IEC 61131-3 standard [15] has been proposed in the last decade
for programming PLC devices. This standard supports six different
programming languages, including three graphical ones, which
are FBD, LD, and SFC, as well as three textual ones, including ST,
IL, and SFC (textual version) [15]. In recent years, this standard
received significant acceptance from both PLC manufacturers and
large industrial automation companies.

The smallest independent software unit in a PLC code is POU.
A POU can be of three types: Function, Function Block (FB), and
Program (PRG).While a Function does not contain any internal state
information, the values returned by a function block depend on the
values of its internal memory. In practice, a PLC program consists
of several POUs communicating with each other with or without
parameters. The PLC uses periodic cyclic scanning by executing
the instructions that perform periodic program loop scanning.
2.1.1 Function Block Diagram (FBD). The FBD language orig-
inates in the signal processing area and shares a wide range of
similarities in terms of graphical interface elements with LD lan-
guage [15]. An FBD representation consists of three main parts,
including (i) the POU, (ii) a declaration, and (iii) the actual code
representing the behaviour [15]. The declaration part can be repre-
sented graphically or textually, while the code consists of networks
of functions and FBs. Each network in FBD consists of 3 main
elements: (i) a network label, (ii) a network comment, and (iii)
a network graphic. In addition, the FBD network contains block
diagrams and control flow statements connected horizontally or
vertically via connections.

Connections, graphical elements for execution control, and con-
nectors are all graphical objects in FBDs. The IEC 61131-3 defines

Figure 2: A Snippet of an example PLC Program (SafeSuper-
vision) written in ST language.

eight main categories of standard functions for FBD, including data
type conversion functions, numerical functions, arithmetic func-
tions, bit-string functions (bit-shift and bitwise boolean functions),
selection and comparison functions, character string functions,
functions for time data types, and functions for enumerated data
types [15]. The standard also defines five types of standard FBs:
bistable elements (i.e., flip-flops), edge detection, counters, timers,
and communication function blocks. FBD allows programmers to
implement their desired applications using a network of connected
functions, function blocks, and Inputs/Outputs (I/O). FBD programs
operate based on the sequential execution of the connected blocks
in a cyclic manner.

Aiming to clarify the functionality of FBD programs, we show
an example of a real-world PLC program. The FBD program that we
considered is named Check_Signals and is shown in Figure 1. This
FBD code is used as a POU for checking the status of the real-time
enabled signals in a PLC program for control system supervision.
This POU consists of several connected computational blocks exe-
cuted cyclically. Each computational element (e.g. the XOR, AND)
or FB (TON) in this POU goes through three execution steps: (i)
reading and storing the inputs, (ii) execution of the operations, and
(iii) writing the output(s). This FBD program is constructed as a
chain of interconnected blocks and a data flow communication
between them. When the POU is activated, a program consumes
one set of inputs and executes them to completion. In this example,
the POU is enabled using the (Input1, Input2) and Status signals.
An error is raised in the system when the two input signals have
different values assigned to them for a preset time (DTime) while
the Status signal is active.
2.1.2 Structured Text (ST). ST is one of the most popular text-
based programming languages of the IEC 61131-3 standard [15]. A
developed algorithm in ST can be divided into several statements.
Programmers can use statements to compute/assign values in ST
to control the command flow and call/leave a POU. ST supports
different operands including literal (numeric, alphanumeric charac-
ters, time), variables (single-/ multi-element variables) and function
calls. Figure 2 shows an ST program example. This ST code is used
as a POU in a control system supervision PLC program and has
the following behaviour: to check the control system identification

PyLC: A Framework for Transforming and Validating PLC... SAC’23, March 27 – March 31, 2023, Tallinn, Estonia

numbers and compare them to each other and generate an output
based on their status. As shown in Figure 2, the program consists
of variables/data type declaration using the assignment statements,
while the program logic concerning the execution order is written
separately.
2.1.3 PLC Development Environment. There are several IDEs
for developing PLC programs (e.g., Beremiz, GEB Automation,
Simulink PLC Coder). However, one of the most popular IDEs in
the industry is CODESYS (COntroller DEvelopment SYStem) and
supports all of the supported programming languages of IEC 61131-
3 standard 2. In the rest of the paper, we will refer to PLC programs
developed in the CODESYS development environment.

2.2 Python and Pynguin
2.2.1 Python. Python is an open-source dynamic programming
language that Guido van Rossum invented in 1990. The motivation
behind creating this programming language was to produce an
advanced scripting language for the Amoeba system [9]. As a result,
Python has gained massive popularity during the last 20 years.
Based on the latest statistics of top programming languages in
2022, Python is the top programming language worldwide based
on TIOBE and PYPL Index3. Python has good compatibility with
parsing XML files, a widespread format used when dealing with
PLCOpen4 formats used in the PLC IDEs for file exchange.
2.2.2 Pynguin Test Automation Framework. Pynguin [7] is a
state-of-the-art automated test case generation tool for Python pro-
grams that uses search-based algorithms. It supports four different
well-known search-based test case generation algorithms, includ-
ing MOSA [12], DYNAMOSA [13], MIO [1], and WHOLE SUITE
[5]. It is also equipped with a random test generator named RAN-
DOM [11], which works based on the RANDOOP algorithm [10].
We note here that Python is the only non-IEC 61131-3 program-
ming language officially supported by CODESYS IDE (a well-known
PLC IDE) and can be directly compiled inside the IDE. For more
information about Pynguin, we refer the reader to the following
publications [6–8].

3 PYLC: FROM PLC TO PYTHON AND
PYNGUIN

In this section, we propose a translation framework called PyLC
consisting of four main phases chained to each other and working
sequentially to eventually enable automatic test generation for PLC
programs via Pynguin. Figure 3 shows the framework’s workflow,
while more details of each phase are described in the rest of the
paper. The first step is transforming the PLC program into Python
code by considering the Translation Rules and PLC code specifica-
tions based on the IEC 61131-3 standard (Steps 1 and 2 in Figure 3).
Then the generated Python code is fed into the Translation Valida-
tion module, which checks the correctness of the transformed PLC
code in Python based on the three different unit testing mechanisms
(Step 3 in Figure 3). Finally, the Translation Validation module of
the transformed code (Step 4 in Figure 3) uses unit testing to ensure

2https://www.codesys.com/
3https://statisticstimes.com/tech/top-computer-languages.php
4https://plcopen.org/

PLC
Program

Python
Code

Unit Testing
Translation
Validation

Validated PLC Program in Python

Translation
Rules

1 2

3

4

IEC 61131‐3

PASSED

FAILED

Figure 3: An Overview of the PyLC Framework, the Proposed
Translation Mechanism for Translating a PLC Program into
Python Code and Validating the Translation.

PLC Program

I/O Analysis
FBs Functional

Analysis

Python Main
Function
Arguments

Python Sub‐
Functions

FB Network
Analysis

FB Execution
Order Analysis

Python Code

IEC 61131‐3A

B

C

D

E

F

G

Figure 4: The Translation Work Flow (TWF) Used in PyLC
Framework for Translating a PLC Program into Python.

that the code is scrutinized for proper use in further analysis and
test generation.

3.1 Translation Process
Our translation policy includes two common programming lan-
guages of IEC 61131-3: ST and FBD. Since ST is a textual pro-
gramming language like Python, the transformation process is
more straightforward. It includes translating each logical operator
(e.g. AND, XOR, OR functions) into the corresponding operator in
Python and mapping these together based on the network of the
original PLC program.

The rest of the section explains the transformation rules and
validates the generated Python code. The translation process of
our framework consists of 7 main steps, which can be observed
in Figure 4. The translation process starts by analyzing the PLC
program’s inputs and outputs, transforming the input signals into
Python function arguments, and considering the output signals
as global variables in Python (Steps A, B in Figure 4). Then, the
functionality of each interface Function and Function Block (FB)

SAC’23, March 27 – March 31, 2023, Tallinn, Estonia M. Ebrahimi Salari et al.

inside the PLC program (e.g. AND, XOR, TON) is analyzed based
on their standardized functionality description in IEC61131-3 doc-
umentation (Step C in 4). In the next step, the identified interface
FBs are transformed into corresponding Python sub-functions that
represent the same functionality based on the Block translation
rules described in the rest of this section (Step D in Figure 4). After
translating the blocks into sub-Python functions and feeding them
with the inputs as main Python function arguments, we analyze the
network between different FBs, inputs, and outputs in the original
PLC program to simulate these connections in the Python code
and correctly map the elements to each other (Step E in Figure 4).
The final step is identifying the execution order of the program ele-
ments inside the PLC program and implementing it in the translated
Python code (Step F, G in Figure 4).

An overview of the translation rules we adhere to in the trans-
lation process is observed in Table 1. It is worth mentioning that
every described step in this table is done by considering IEC 61131-3
specifications for the PLC program elements under translation. In
other words, the translation mechanism is realized by using all the
translation rules.

3.1.1 FBD/ST Structure. For each PLC program, first, we scan
all the program inputs and create a python function that consists
of all the inputs as arguments. Considering Python is a dynamic
programming language and can identify the variable data types au-
tomatically, to avoid causing any discrepancies for the Python inter-
preter, we define each argument data type in our translation mech-
anism (e.g. bool(Input1), int(Input2)). Moreover, a type-checking
mechanism is implemented in each function representing an FB
using if-else statements. Inside the main Python function, a sub-
function for each block inside the FBD network of the program
under translation is generated. The translated Python code adheres
to the execution order of the original PLC program, so the inter-
nal functions call each other based on this specific order. For each
input of the FBD program, the name is preserved during the trans-
lation process for better code readability. Every variable type in
the original PLC program (e.g. boolean, integer) is preserved in the
transformed Python code. However, some variable types like TIME
do not exist in Python and should be simulated based on its specific
specification in the IEC61131-3 standard (Section 4).

3.1.2 Cyclic Execution and Triggering. Each block inside an
FBD code has an interface with a name identifier, input and output
ports, and a list of parameters. The behaviour of the block is only
accessible via the block interface. When a block is activated, the
values at the input ports are ready to be read. The output ports
will be updated when the execution of each statement in the block
ends. The behaviour of a block is implemented individually with
updates to the local variables. Moreover, the program contains a
clock variable that models the delay between program execution
cycles. In our translation policy, the cyclic execution of the PLC
program is implemented using an iterator Python function that
monitors and executes the code cyclically.

3.1.3 Basic Blocks Translation. Each basic interface FBD block
(e.g. AND, OR, XOR) is translated into a Python function with a
dynamic range of arguments that can be used in different programs.
The translation process works based on the following steps:

• The Logical Operator blocks are translated using the logical
Python operators AND, OR, and ˆ (XOR).

• The Arithmetic Operator blocks are translated using the
arithmetic Python operators +, =, −, /, ∗.

• The Comparison blocks are translated using the relational
Python operators <, <=, >=, ==.

• The Selection blocks are translated using if-then-else state-
ments in Python.

3.1.4 Timer Function Blocks Translation. There are four differ-
ent timers in FBD programs, including TON (ON delay timer), TOF
(OFF delay timer), TP (Pulse Timer), and TONR (Time accumulator),
which are different in terms of their functionality. In all of the timer
function blocks, there is one Trigger input (IN) and two time-related
variables, including a delay time input (PT) and an elapsed time
monitoring module (ET). In the original version of timer function
blocks, when the timer block is activated using the trigger input
signal (IN), ET starts a timer in the amount of the considered delay
time in PT. As soon as the value of PT and ET match, the output
(Q) is activated. In our transformation, when the trigger signal of
the timer function block (IN) becomes true, the constant values of
the delay timer (PT) and the predefined constant value in ET will
be compared. If the ET and PT values are equal, the output (Q) is
activated. It should be noticed that for each different function block,
the functionality is implemented based on its defined functionality
described in the IEC 61131-3 documentation [15].

3.1.5 Translation Example. We illustrate the translationmethod-
ology using two running examples for the FBD and ST code. First,
we present the translation of Check Signals and SafeSupervision
PLC programs, which are used in the supervision PLC program of
a control system in a large automation company in Sweden.
FBD to Python Example: The FBD program that we consider
for translation is the proposed FBD example in Figure 1. The step-
by-step translation process of this example is shown in Table 2.
Based on the translation methodology described in Figure 4, the
first step (2A) is analyzing the inputs which in this case are Status,
Input1, Input2, and ET. The next step (2B) is creating a main Python
function with the needed inputs. Next, we perform the functional
analysis of each FB in the example to identify each FB requirement
and behaviour based on the official documentation of IEC 61131-3
documentation (Step 2B). As it can be observed in Figure 1, in this
example, we have four FBs, including three Basic FBs (2 AND and
1 XOR) and one Timer FB (TON). Based on step 3B in our Trans-
lation methodology, for each of these FBs, we declare a Python
sub-function that behaves like the original FB in the POU based on
our FB functional analysis in the last step. After creating the main
Python function, which includes the sub-Python functions repre-
senting each FB inside, in step 4, we analyze the existing network
between different POU elements under translation, followed by an
execution order analysis of the FBs in step 5. Finally, in step 6, we
connect the nested Python functions to other elements based on
the conducted network analysis and execution order.
ST to Python Example: The ST program we considered for this
part is SafeSupervision. This program is described in Section 2. Based
on the proposed translation mechanism in Figure 4, the first step
is to detect the inputs and outputs of the program as well as their

PyLC: A Framework for Transforming and Validating PLC... SAC’23, March 27 – March 31, 2023, Tallinn, Estonia

FBD/ST to Python Translation Rules
Category PLC Python

Input(s) Scanning PLC
Program Inputs

Declaring the inputs as the main
Python function arguments a

Output(s) Scanning PLC
Program Outputs

Declaring the outputs as global
variables in Python b

Data Type Identifying the data
type of each I/O

Binding the data type of each
PLC I/O to the corresponding

data type in Python c

Data Range Detecting I/O
Variables Range

The accepted range of values
for each PLC data type is

declared using <, >, and = operators

FB Behavior
Analyzing the behavior of

the FB based on
the requirements

Implementing the FB behavior
in Python as a sub-function

with a dynamic range of inputs
based on standardized ST and FBD
implementation and specification

in IEC-611313/CODESYS. d

FB Network
Analyzing the existing

network between different
FBs, Inputs, Outputs

Connecting the related Sub-function
of each FB to other FBs, Inputs, and
Outputs by a Python function call

Execution Order Extracting the execution
order of the program

Simulating the execution order by calling
the main and sub Python functions

in the correct order

Cyclic Execution Identifying the cyclic
execution delay time

Implementing the cyclic execution using
a Python timer module equipped
with a specific iteration(s) number

aWe use one main python function for the whole translated POU.
bNested Python sub-functions are used inside the main function.

cWhen a direct data type mapping does not exist, a similar type is used.
dFor complex FBs (e.g., Timers) the standardized specification is implemented.

Table 1: Translation Rules (TR) of the Proposed PLC Program to Python Code Considering IEC-61131-3 Standard

data type. In this program, the inputs are ItemNumber1, ItemNum-
ber2 and the outputs are out_ItemNoSupervisionOk, out_ItemNo.
The data type for all aforementioned variables is WORD except
for out_ItemNoSupervisionOk, which is BOOL. The next step is
to declare the identified inputs as the main Python function ar-
guments and the identified outputs as global variables inside the
main and sub-Python functions. Then we need to analyze the work-
flow and functionality of the program by interpreting the available
conditional statements (e.g. IF, THEN, ELSE, END_IF) and opera-
tors (e.g. AND) in the program. Finally, we need to declare Python
sub-functions for each of the identified operators and conditional
statements and connect them based on the workflow of the original
ST code. The translated version of the SafeSupervision example in
Python can be observed in Figure 5.

3.2 Validation of the Translated Code
To validate the correctness of the translated code in Python, we
propose a unit testing-based validation mechanism that consists of
3 different validation types, including 1) requirement-based testing,
2) translation rules checking, and 3) search-based test generation.
To check the validity of the translated code, we generate and exe-
cute unit test cases that meet the requirements of each validation
category. It should be noted that our proposed validation mecha-
nism is not used to demonstrate the semantic equivalence of the

Figure 5: An Overview of a small PLC program (SafeSupervi-
sion) translated into Python using The PyLC Framework.

source and target programs. Instead, we aim to validate the transfor-
mation through unit testing and conformance tests. Conformance
tests are made to verify whether the PyLC results comply with the
requirements imposed by the PLC program definition and the trans-
lation rules checks. The proposed translation validation mechanism

SAC’23, March 27 – March 31, 2023, Tallinn, Estonia M. Ebrahimi Salari et al.

Table 2: Step by Step FBD to Python Translation Example Based on The Translation Work Flow (TWF) of the PyLC framework
and the related Translation Rules (TR).

TWF
Step

Step Name
Related

Translation Rule
PLC Code Description Translated Code in Python/Description

Input1(bool), Input2 (bool)

Q(bool), Status (bool)

IN(bool), PT(TIME), Q(bool)

XOR (Input1, Input2)

#Python Sub-Function (Dynamic range of Arguments)
def XOR(*args):
 for i in range(1, len(args)):
 val = args[0]
 if type(args[i]) is not bool:
 raise TypeError
 else:
 val = val ^ args[i]
 return val

AND(Q, Status)

#Python Sub-Function (Dynamic range of Arguments)
def AND(*args):
 for i in range(1, len(args)):
 val = args[0]
 if type(args[i]) is not bool:
 raise TypeError
 else:
 val = val and args[i]
 return val

TON(IN, PT, Q)

#A Python Sub-function that simulates the TON behavior by
reading the real-time system clock in seconds.
def TON():
 from datetime import datetime
 global clockA
 global clockB
 global Q
 clockA = datetime.now()
 clockA = int(clockA.strftime("%S"))
 clockB = int(0)
 IN = True
 ET = 0
 Q = bool(False)
 if type(IN) == bool:
 while ET != pt:
 if IN:
 clockB = datetime.now()
 clockB = int(clockB.strftime("%S"))
 ET = (clockB - clockA)
 if ET < 0:
 ET += 60
 Q = False
 if IN and ET == pt:
 Q = True
 return Q

AND(Input1, Input2, Status)

#Python Sub Function (Dynamic range of args)
def AND(*args):
 for i in range(1, len(args)):
 val = args[0]
 if type(args[i]) is not bool:
 raise TypeError
 else:
 val = val and args[i]
 return val

E
FB

Network
Analysis

FB Network

One XOR block with two inputs is connected to a TON block that has
two inputs and is connected to an AND block with two inputs. Another

AND block with 3 inputs is considered for the other signal status
scenario.

#The connection between the Python code elements including
FBs, inputs, and outputs established using the Python

function calls in right order.

Execution Scenario 1: If the value of Status is enabled, the value of
Input1 and Input2 are checked. If one of them at the same time is True,

the value of TON becomes True and after spending the pre-defined
time in PT, the value of Q becomes True, and consequently, the

connected AND block is enabled and the final output (Err) becomes
True

Execution Scenario 2: If the value of Status is enabled, the value of
Input1 and Input2 are checked. If both values are True, the value of the

second AND block becomes True and consequently, the value of the
final output (Equal) becomes True.

G
Python
Code

Cyclic Execution
Finally, INPUTS, OUTPUTS, NETWORK, and EXECUTION

ORDER are linked to each other to generate the trasnlated Python
Code.

#Cyclic execution is implemented by calling a Python timer
module with a preset time budget.

F

FB
Execution

Order
Analysis

Execution Order
(The execution order of the

POU is implemented by
mapping the Python function

calls to the corresponding
execution order in the original

POU in FBD language.
The described scenarios are
interpreted by analyzing the

network of the connected FBs
to other elements based on

their description in IEC 61131-
3 standard)

Part of the Code Body
if XOR(input1, input2) is True:
 if TON():
 if AND(Q, status):
 Err = True
 return Err
 else:
 pass
elif AND((input1, input2), status) is True:
 Equal = True
 return Equal
else:
 return False

A/B
I/O

Analysis

Inputs
Outputs

Data Type
Data Range

#Python Main Function
def Check_Signals(input1: bool, input2: bool,
 status: bool, pt: int) -> bool:
 if pt < 0:
 raise ValueError

C/D
FBs

Functionial
Analysis

FB Behavior

consists of 8 main steps and can be observed in Figure 6. The rest of
this section provides more information about each validation filter.
Validation by Requirement-based Testing: Checking the ex-
pected behaviour of the PLC program on the target Python program
is used to detect behavioural errors in the transformation results.
Since each PLC program in FBD or ST consists ofmultiple sequential
connected basic or complex blocks, our designed requirement-based

test cases are aimed to test two abstraction levels, including 1) pro-
gram units, and 2) overall execution scenarios. The former relates to
testing the specification of each unit in the program (e.g. functions,
function blocks) in the code. In contrast, the latter examines the
overall behaviour of the program (network of connected blocks to
each other) based on the possible execution scenarios.

In this study, requirement-based unit testing is done via three
steps. First, the described requirement-based unit test cases are

PyLC: A Framework for Transforming and Validating PLC... SAC’23, March 27 – March 31, 2023, Tallinn, Estonia

Test
Execution

Test
Execution

Search‐
Based Tests

PLC Code

CODESYS
Test

Manager

Requirement
‐based Tests

Translation
Rules‐based

Tests

Pynguin
TAF

Translation
Rules

Unit Test
Generation

Results
Checking

Program
Units

Execution
Scenarios

Validated
PLC Code
in Python

1

2

3

4

5

6

7

8

CODESYS
Test

Manager

Test
Execution

Requirements

Figure 6: An Overview of The hybrid Unit-Testing Validation
Mechanism of the Translated PLC Code in Python

generated manually for a translated PLC program into Python
(Step 1 in Figure 6). Secondly, the test cases are executed on the
translated PLC program in Python to check whether the translated
program behaves as expected or not (Step 2 in Figure 6). Finally,
the same test cases are executed on the original PLC program in
CODESYS IDE to check whether the same passed or failed test cases
in the Python environment can produce the same results in the
original PLC version (Step 3 in Figure 6).

Finally, the actual output of both modular-based and program
scenarios-based test cases after test execution is compared with the
expected output (Step 3 in Figure 6). If the execution status of each
requirement-based test case in Python is equal to the execution
status of the same program in CODESYS IDE, the translated PLC
code in Python is valid given the specified requirements. It should
be noted that the previously described behaviour validation unit
test cases are created manually. In terms of the test execution tool
in Python, the created test cases are executed using a Python unit
testing framework 5 while the test execution in CODESYS level is
done via CODESYS Test Manager 6. Importing and implementing
the Python-based test cases into CODESYS Test Manager is done
manually via a test action. It means that, for each test case in Python,
several test actions are declared in CODESYS Test Manager (e.g.
WriteVariable, CompareVariable) to set the inputs and compare
the actual outputs with the expected ones. In addition, each PLC
program is instantiated in the main PLC program to be used by
CODESYS Test Manager. Finally, the PLC device login is completed,
and CODESYS TestManager test scripts are executed on the original

5https://docs.python.org/3/library/unittest.html
6https://store.codesys.com/codesys-test-manager.html

Figure 7: A Snippet of the Written Test Cases in CODESYS
Test Manager for a PLC program.
PLC program. A snippet of the implemented test cases in CODESYS
Test Manager can be seen in Figure 7.
Validation by Translation Rules Checking: Evaluating the pro-
posed translation rules in Table 1 by static checking can increase
the trust level in the translation results. To this end, we create
checks that can investigate the translation rules obligation in the
translated PLC program in Python (Step 4 in Figure 6). Then, we
execute these test cases using the Python unit test module on the
transformed PLC program in Python and confirm if all test cases
pass in this environment (Step 5 in Figure 6). If all the executed test
cases pass successfully, the transformation is validated with regard
to the requirements posed by the translation rules.
Validation by Search-based Testing: The final filter investigates
the translated code’s correctness by comparing the results of the
test execution based on a search-based algorithm test cases in both
PLC and Python environments. The search-based test cases are
automatically generated using the Pynguin test automation tool
(step 6 in Figure 6) that is equipped with different search-based
algorithms [7]. The generated test cases using Pynguin are first
executed on the transformed PLC code in the Python environment
using the Pynguin framework. Then, the execution results of each
test case are collected. In addition, the same test cases are imported
in CODESYS Test Manager to be executed automatically on the
original PLC program in the PLC environment (CODESYS IDE) as
well (step 7 in Figure 6). Finally, the outcome of all test cases in both
environments is compared. If all test cases in all three unit testing
categories are successfully executed against the software (Step 8 in
Figure 6), the proposed code validation process is completed, and
the resulting translation results are validated (Step 8 in Figure 6).

4 RESULTS
In the previous section, we have presented our approach towards
translating PLC programs into Python scripts that can be used
for testing purposes. In this section, we show relevant results in
terms of performance, of applying our framework to translating
and validating real-world PLC programs.

4.1 RQ1 - PyLC Translation
We consider ten different PLC programs to evaluate our proposed
translation framework in real-world circumstances, including 6 ST

SAC’23, March 27 – March 31, 2023, Tallinn, Estonia M. Ebrahimi Salari et al.

PRG
Name

PRG
Language Type LOC

in PLC
LOC in
Python

No of
FBS

No of
Branches

PRG1 ST FUN 82 54 - 16
PRG2 ST FB 74 50 - 16
PRG3 ST FUN 137 86 - 34
PRG4 ST FB 338 261 - 134
PRG5 ST FB 21 17 - 8
PRG6 ST FB 38 14 - 0
PRG7 FBD FB - 30 3 14
PRG8 FBD FB - 57 5 28
PRG9 FBD FB - 46 4 22
PRG10 FBD FB - 40 4 16

Table 3: Information Regarding Translated PLC Programs
(PRG) from PLC into Python Using the PyLC Framework

Test
Suite

PRG
Unit Type Number

of TCs Verdict Execution
Time (s)

1 AND FUN 5 5/5 0.03
2 XOR FUN 7 7/7 0.04
3 OR FUN 5 5/5 0.02
4 SEL FUN 6 6/6 0.03
5 TON FB 10 10/10 0.08
6 TOF FB 10 10/10 0.09

Table 4: Results of executing the test cases for each com-
mon Program (PRG) unit as well as their type: Function
(FUN)/Function Block(FB)

and 4 FBD programs. Detailed information on the translated PLC
programs is shown in Table 3. The considered PLC programs are of
different sizes (between 21 and 338 Lines of Code (LOC)). Nine of
the ten selected PLC programs are being used in the industry by a
large automation company in Sweden. These programs are part of
a software system that supervises the control system operations.
Six programs perform supervision duties by checking the control
system’s real-time signals. In contrast, the other four PLC programs
produce decisions based on the inputs received from the connected
positioning system based on cameras.

The translation of the mentioned PLC programs to Python is
done using the proposed translation workflow in Figure 4 and
adheres to the proposed translation rules in Section 3.1. We note
here that, according to the data in Table 3, the translation reduces
the number of LOC for the considered ST programs by an average
of 65.20%. This can be explained by the fact that in ST and FBD
programming languages, one needs to include a variable declaration.
In addition, unlike Python, the syntax of ST programming requires
the user to declare the ending point of the conditional loops.

4.2 RQ2 - PyLC Validation
To evaluate the proposed method, we use the translation results
of the translated PLC programs in Section 4.1 by three different
unit testing mechanisms described in Section 3.2. In the following
subsections, we describe and demonstrate the results regarding
each unit testing validation step, respectively.
4.2.1 Unit Testing Validation based on Requirements . Be-
haviour validation of the translated PLC programs into Python is
done via requirements-based testing. It means that for each PLC
program transformed into Python, the actual behaviour of the trans-
lated PLC program in Python is compared with the expected be-
haviour in the original PLC program based on test cases covering
all stated requirements.

Test
Suite Program Number

of TCs Verdict Execution
Time (s)

1 PRG1 6 6/6 0.04
2 PRG2 9 9/9 0.07
3 PRG3 5 5/5 0.03
4 PRG4 9 9/9 0.03
5 PRG5 7 7/7 0.04
6 PRG6 8 8/8 0.04
7 PRG7 10 10/10 0.03
8 PRG8 5 5/5 0.02
9 PRG9 8 8/8 0.06
10 PRG10 7 7/7 0.04

Table 5: Results of executing requirement-based test cases
on the translated PLC programs

Based on the proposed technique for this type of validation (as
shown in Figure 6), we analyze the behaviour of the translated code
from two different aspects, that are test execution scenarios and
individual program units (consisting of functions and FBs). This
means we design two sets of unit test cases. The first set of test
cases covers the overall behaviour of the program based on the
stated scenarios. In contrast, the second set of test cases examines
the expected behaviour of each FB in the translated PLC program
in Python according to the IEC 61131-3 standard.

Regarding the execution scenario-based testing, we design a
test suite for each PLC program that includes test cases based on
the existing requirements. Therefore, each test suite’s number of
designed test cases is connected to the number of requirements. All
the designed unit test cases are executed automatically in Python
using unittest7. Table 5 shows the test execution results for each
translated program. The results suggest that requirement-based test
cases have passed successfully on the resulting Python programs.
The execution time is between 0.02s and 0.07s.

Regarding the design of test cases for the standard functions
and FBs (program units) that are used in different PLC programs,
we design different test cases that are bound to check the correct
functionality of each block based on their expected behaviour.

We consider commonly-used PLC Functions (e.g., AND, XOR, OR
and SEL) and FBs (e.g., TON and TOF (Timers)). We have developed
all test cases manually based on the definition of each Function
and FB in the IEC 61131-3 standard. The developed test cases have
been executed automatically on the translated programs in Python
using the Python unittest tool. Table 4 shows more details and
results of testing these blocks. As it can be observed in Table 4,
we have considered seven unit test cases for each function and
ten test cases for each function block. All test cases have been
executed successfully on the Function/FBs at the Python level, with
the execution time not exceeding 0.09s.

Finally, for six out of ten translated PLC programs (PRG5 to
PRG10), both categories of the aforementioned requirement-based
test cases are executed on the original PLC program in CODESYS
IDE using CODESYS Test Manager. The result of executing these
test cases on both Python and PLC environments is then compared.
We find that the same test case execution status is obtained in

7https://docs.python.org/3/library/unittest.html

PyLC: A Framework for Transforming and Validating PLC... SAC’23, March 27 – March 31, 2023, Tallinn, Estonia

Test
Suite Program Number

of TCs Verdict Execution
Time (s)

1 PRG1 5 5/5 0.03
2 PRG2 8 8/8 0.04
3 PRG3 10 10/10 0.05
4 PRG4 15 15/15 0.07
5 PRG5 5 5/5 0.03
6 PRG6 6 6/6 0.02
7 PRG7 8 8/8 0.04
8 PRG8 9 9/9 0.05
9 PRG9 11 11/11 0.04
10 PRG10 10 10/10 0.07

Table 6: An overview of the results of Test Case (TC) execu-
tion on 10 cases based on the proposed PyLC Translation
Rules

CODESYS IDE, indicating the program’s accurate translation using
PyLC Framework according to the specific tested requirements.
The reason behind excluding four PLC programs from this process
is that these programs are designed to analyze some data directly
from specific hardware cameras, and altering these inputs manually
in CODESYS Test Manager is not feasible directly using unit testing.
4.2.2 Checking PyLC Translation Rules. We have also investi-
gated the use of checks related to our translation rules. For each PLC
program, we have designed several unit test cases that investigate
the alignment of the translated programs to the proposed transla-
tion rules in PyLC. These test cases check if the transformation of
certain PLC elements(i.e., input(s), output(s), data type, data range,
FB behaviour, FB network, execution order, and cyclic execution)
produces valid elements in the translated PLC programs. We have
developed test cases manually using the Python unittest tool. The
results of executing the translation rules on the ten considered PLC
programs are shown in Table 6.
4.2.3 Validation using Pynguin Test Generation. In this sub-
section, we show how we leverage Pynguin, an automated search-
based testing framework for Python, within our framework. Among
all of the supported search-based algorithms of Pynguin, we use
DYNAMOSA (Pynguin’s default algorithm) as our algorithm of
choice for generating test cases.

We have followed Pynguin’s default configuration using DY-
NAMOSA, a test generation time budget of 10 mins, and mutation
analysis enabled. The results of automated test generation and exe-
cution on ten considered PLC programs of this study using Pynguin
are shown in Table 7.

As seen in Table 7, we find that the number of generated test
cases ranges from 1 to 27 test cases per program. Pynguin test
cases obtain a branch coverage of 88.44% on average. Moreover,
Pynguin achieves 100% branch coverage for three transformed PLC
programs. The size of the program influences the test case gen-
eration time, and it ranges from 1s for PRG6 to 653s for a larger
program such as PRG4; however, letting the time budget exceed 10
min could improve the coverage obtained for Pynguin test cases.
Regarding mutation analysis, Pynguin leverages assertion gener-
ation mechanisms during the test generation phase. Pynguin will
automatically switch to mutation analysis that works based on
MutPy8. We observe that Pynguin starts mutation analysis for 9 out

8https://github.com/se2p/mutpy-pynguin

Test
Suite Program Number

of TCs Verdict
Test

Generation
Time(s)

Test
Execution
Time

Branch
Coverage

(%)

Covered
Branches

Killed/
Survived
Mutants

1 PRG1 7 5/7 5 0.16 100 16/16 72/0
2 PRG2 7 4/7 4 0.14 100 16/16 67/0
3 PRG3 6 4/6 609 0.13 80 27/34 164/0
4 PRG4 27 20/27 653 0.5 88.89 119/134 170/0
5 PRG5 2 2/2 601 0.03 77.78 6/8 5/4
6 PRG6 1 1/1 1 0.02 100 0/0 0/0
7 PRG7 4 2/4 601 0.13 86.67 12/14 18/0
8 PRG8 7 3/7 601 0.14 75.86 21/28 26/0
9 PRG9 7 5/7 610 0.23 86.96 19/22 40/0
10 PRG10 6 5/6 606 0.12 88.24 14/16 18/0

Table 7: Results of Automatic Test Generation/Execution for
Translated PLC Programs using Pynguin TAF

of 10 PLC programs, and in all except one case, it is able to kill all
the mutants. The results seem to be influenced by the 10 minutes
time limit used for test generation, the specific mutant generation
used by Pynguin, and the possibility of having mutants that are not
generated for a specific region of the code. The number of gener-
ated mutants varies for each translated PLC program, from 5 to 170
injected faults. Our intuition of the lack of generating any mutants
for PRG6 by Pynguin is the high simplicity of the program. The test
execution time is 0.16 seconds on average. Regarding passed/failed
test cases, we observe that most of the generated test cases have
successfully passed, given the generated assertions.

The results of generating and executing test cases for the trans-
lated PLC programs into Python using PyLC show that this method
is feasible for validating the transformation and test generation
during the development of PLC programs. However, using other
search-based algorithms and increasing the test generation budget,
especially for large programs such as PRG4, might increase the
obtained code coverage and improve the mutation analysis results.
In the end, we execute the generated test cases on the original PLC
programs in CODESYS IDE to investigate whether their execution
in the original PLC environment produces the same results. Exe-
cuting the test cases in CODESYS IDE has been done via CODESYS
Test Manager.

4.3 Threats to Validity
We have successfully applied our PyLC approach to transform and
validate PLC programs. However, a significant threat to the validity
of our experiments is the question of the representativity of the
programs used. While our case study does not cover the whole
range of possibilities of program transformations, these programs
are still distinct from one another and of different sizes.

Regarding the data types used, Python is designed to automat-
ically interpret and detect various types based on the bounded
values of each variable. We have defined the exact variable type for
each declared variable in Python to mitigate the potential problem
of using the generated test cases in Pynguin in CODESYS IDE. The
second threat refers to the default values that Python considers for
each variable type, which can be different from the PLC case. To
mitigate this threat, we declare the default value for each defined
variable manually. We acknowledge that we are aware of the possi-
bility of minimising this threats by using a static high level language
such as C, but we believe using Python is less expensive because of
its full compatibility with CODESYS IDE and being supported by
powerful static verifiers such as Nagini9.

9https://github.com/marcoeilers/nagini

SAC’23, March 27 – March 31, 2023, Tallinn, Estonia M. Ebrahimi Salari et al.

5 RELATEDWORK
Previous contributions in transforming PLC programs to other
languages range from SCs-based approaches (e.g., [16]) and the
ones using the C language (e.g., [17]) to model-based approaches
of transforming the actual FBD program code (e.g., [4]). The tech-
nique in [2] is based on the IEC 6150 models and supports other
parts of the development process. However, compared to our work,
these works are not coping with the internal structure of the PLC
language aspects for FBD and ST as we do. In addition, the trans-
formation validation can be complemented by using a systematic
unit testing approach using both requirement-based and structural
test case generation while taking advantage of the test automation
frameworks available, as presented in this paper.

Marcel et al. [16] proposed two different translation mechanisms
for translating the FBDs under the IEC61131-3 standard to Sequen-
tially Constructive States (SCs). The generated synchronous graphi-
cal SCs are equipped with textual descriptions, and their impact on
readability is evaluated inside the proposed translation mechanisms.
The first translation method of their work is more straightforward
and consists of a backward translation strategy of an FBD to an
equivalent textual ST model. The second proposed method is trans-
lating the resulting ST models into a synchronous programming
language [14]. The idea is to benefit from intuitive functional reuse
for a model-based design. This study suggests that the translation
mechanism can increase the readability of the FBD code using code
refactoring inside the synchronous paradigm.

Enoiu et al. [4] proposed a toolbox that can formalize logic cov-
erage criteria and use it inside a model-checker to generate test
cases [4]. The authors defined a translation mechanism that exports
a model from an FBD program to a UPPAAL timed automata to
achieve this. In their translation procedure, they used UPPAAL op-
erators and comparison blocks for transforming the FBD elements
into a UPPAAL model. The performance of their proposed tool-
box is evaluated by applying this transformation to 157 industrial
real-world PLC programs for test generation using model checking.
Compared to our work, this work does not focus on validating the
transformation.

Junbeom et al. [17] investigated the possibility of translating
the nuclear Reactor Protection System (RPS) software from FBD to
C. Their proposed translation mechanism consists of two sets of
translation algorithms and rules. First, the authors use backward
and forward translation based on tracking the execution and data-
flow patterns in an FBD. To translate each FB in an FBD to C,
the authors defined an equivalent C function. Finally, the authors
validated each translation algorithm by showing that their example
FBD program has the same I/O behaviour for all existing inputs as
the translated C code.

In the context of IEC 61508 standard [2], Mirko Conrad [3] pro-
posed a framework that verifies and validates the models and their
generated code. The framework consists of numeric equivalence
testing between the generated code and its corresponding mode and
some extra measurements to ensure no unintended functionality
has transformed. The author claims that Simulink users can benefit
from using this framework.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have proposed PyLC, a translation framework for
translating PLC programs into Python code, including validation of
the translation process using three different unit-testing validation
mechanisms. We have evaluated the applicability and efficiency
of our proposed framework by applying it to the different indus-
trial PLC programs. Ultimately, we aim to use PyLC to generate
search-based test cases for PLC programs that can be used during
regression testing in the development of industrial control systems.

In future work, we want to to automate PyLC fully, by parsing in
CODESYS the PLC program and using the test manager to generate
and execute test cases without user intervention to minimize the
manual overhead. Another direction for future research, is to equip
PyLC with a formal verification mechanism, to increase correctness
assurance. The final contribution for future work can be investi-
gating the performance of the different search-based algorithms in
generating more effective test cases for evolving PLC programs.

ACKNOWLEDGMENTS
This work has received funding from EU’s H2020 research and
innovation program under grant agreement No 957212.

REFERENCES
[1] Andrea Arcuri. 2017. Many independent objective (MIO) algorithm for test

suite generation. In International symposium on search based software engineering.
Springer, 3–17.

[2] Ron Bell. 2006. Introduction to IEC 61508. In Acm international conference pro-
ceeding series, Vol. 162. Citeseer, 3–12.

[3] Mirko Conrad. 2009. Testing-based translation validation of generated code in
the context of IEC 61508. Formal Methods in System Design 35, 3 (2009), 389–401.

[4] Eduard P Enoiu, Adnan Čaušević, Thomas J Ostrand, Elaine J Weyuker, Daniel
Sundmark, and Paul Pettersson. 2016. Automated test generation using model
checking: an industrial evaluation. International Journal on Software Tools for
Technology Transfer 18, 3 (2016), 335–353.

[5] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2012), 276–291.

[6] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated Unit Test
Generation for Python. arXiv preprint arXiv:2202.05218 (2022).

[7] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated unit
test generation for python. In International Symposium on Search Based Software
Engineering. Springer, 9–24.

[8] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An Empirical Study
of Automated Unit Test Generation for Python. arXiv preprint arXiv:2111.05003
(2021).

[9] Mark Lutz. 2001. Programming python. " O’Reilly Media, Inc.".
[10] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random

testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815–816.

[11] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 75–84.

[12] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Refor-
mulating branch coverage as a many-objective optimization problem. In 2015
IEEE 8th international conference on software testing, verification and validation
(ICST). IEEE, 1–10.

[13] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2017), 122–158.

[14] Klaus Schneider. 2009. The synchronous programming language Quartz. Technical
Report. Internal Report 375, Department of Computer Science, University of

[15] Michael Tiegelkamp and Karl-Heinz John. 2010. IEC 61131-3: Programming
industrial automation systems. Vol. 166. Springer.

[16] Marcel Christian Werner and Klaus Schneider. [n. d.]. From IEC 61131-3 Function
Block Diagrams to Sequentially Constructive Statecharts. ([n. d.]).

[17] Junbeom Yoo, Eui-Sub Kim, and Jang-Soo Lee. 2013. A behavior-preserving
translation from FBD design to c implementation for reactor protection system
software. Nuclear Engineering and Technology 45, 4 (2013), 489–504.

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 PLC Programming, IEC 61131-3 Standard and CODESYS
	2.2 Python and Pynguin

	3 PyLC: From PLC to Python and Pynguin
	3.1 Translation Process
	3.2 Validation of the Translated Code

	4 Results
	4.1 RQ1 - PyLC Translation
	4.2 RQ2 - PyLC Validation
	4.3 Threats to Validity

	5 Related Work
	6 CONCLUSIONS and FUTURE WORK
	Acknowledgments
	References

