
An Empirical Evaluation of System-Level Test Effectiveness for
Safety-Critical Software

Muhammad Nouman Zafar a, Wasif Afzal b and Eduard Paul Enoiu c

Mälardalen University, Sweden
{muhammad.nouman.zafar, wasif.afzal, eduard.paul.enoiu}@mdu.se

Keywords: System-Level Tests, Safety-Critical Software, Fault Detection Effectiveness.

Abstract: Combinatorial Testing (CT) and Model-Based Testing (MBT) are two recognized test generation techniques.
The evidence of their fault detection effectiveness and comparison with industrial state-of-the-practice is still
scarce, more so at the system level for safety-critical systems, such as those found in trains. We use mutation
analysis to perform a comparative evaluation of CT, MBT, and industrial manual testing in terms of their fault
detection effectiveness using an industrial case study of the safety-critical train control management system.
We examine the fault detection rate per mutant and relationship between the mutation scores and structural
coverage using Modified Condition Decision Coverage (MC/DC). Our results show that CT 3-ways, CT 4-
ways, and MBT provide higher mutation scores. MBT did not perform better in detecting ‘Logic Replacement
Operator-Improved’ mutants when compared with the other techniques, while manual testing struggled to
find ‘Logic Block Replacement Operator’ mutants. None of the test suites were able to find ‘Time Block
Replacement Operator’ mutants. CT 2-ways was found to be the least effective test technique. MBT-generated
test suite achieved the highest MC/DC coverage. We also found a generally consistent positive relationship
between MC/DC coverage and mutation scores for all test suites.

1 INTRODUCTION

Software controls safety-critical functions of systems
in different domains, e.g., in avionics and vehicular.
However, the failure of software in such systems di-
rectly affects the physical world. Therefore, failures
in safety-critical software can lead to substantial risk
to the safety of human lives, serious environmental
damage, and severe economic problems. Engineering
safety-critical systems typically require a certain de-
gree of certification according to safety standards and
defined processes for thoroughly analyzing the sys-
tem requirements, together with software testing to
ensure its reliability.

The analysis of the preliminary system require-
ments is performed by one of the qualitative or
quantitative safety analysis techniques such as expert
analysis, failure mode and effect analysis, reliabil-
ity block diagrams, and fault tree analysis (Rouvroye
and van den Bliek, 2002). After analyzing system re-
quirements, safety-critical functions are usually im-

a https://orcid.org/0000-0001-8746-7209
b https://orcid.org/0000-0003-0611-2655
c https://orcid.org/0000-0003-2416-4205

plemented in specific industrial control software sys-
tems. For example, Programmable Logic Controllers
(PLCs) support multiple programming languages for
the development of industrial applications and have
been widely adopted in several domains. The testing
of such software is then carried out to ensure adequate
functional and non-functional operations of the sys-
tem according to specific system requirements. How-
ever, testing such systems is costly. As a solution
to reducing the cost of testing and assuring the re-
liability of such systems, several techniques for au-
tomated test generation such as model-based testing
(MBT), and combinatorial testing (CT) exist. Be-
sides, manual testing is still considered a prevailing
technique for the testing of real-world industrial ap-
plications (Taipale et al., 2011), with some evidence
suggesting that both technical and non-technical skills
are required for effective fault detection (Sánchez-
Gordón et al., 2020). There is a scarcity of research
and consequently empirical evidence into the fault-
detection effectiveness of automated test generation
techniques and industrial manual testing, especially if
the aim is to generate test cases at the system level of
a safety-critical system. Thus, the use of automated
test generation alongside industrial manual testing re-



quires a thorough evaluation of the fault detection ca-
pabilities in an industrial setting.

This motivated us to analyze the fault detection
effectiveness of manual and two well-known auto-
mated test generation techniques (i.e., CT and MBT)
through mutation analysis, at the system level of
the safety-critical train control management system
(TCMS) developed by Alstom Transportation AB.
We have also analyzed the type of detected faults in-
duced by different mutation operators to identify the
sensitivity of each technique toward each type of in-
jected fault. In addition, we performed a compara-
tive analysis between the mutation scores and cover-
age levels1 of each test suite. Based on our goal, we
have formulated the following research questions:

• RQ1. How effective are CT, MBT, and manual
testing techniques in detecting injected faults?

• RQ2. How sensitive are CT, MBT, and manual
system-level testing to different types of injected
faults?

• RQ3. What is the relationship between MC/DC
coverage and mutation scores achieved by CT,
MBT, and manual testing at the system level?

The rest of the paper is organized as follows: Sec-
tion 2 provides an overview of the background and re-
lated work, Section 3 presents the methodology of this
study including an overview of the System Under Test
(SUT), a description of the development process and
mutation injection, test suite creation, deployment of
the SUT and execution of test scripts, and evaluation
metrics. Section 4 describes the results, Section 5
provides a brief discussion on results, Section 6 deals
with the validity threats, whereas the conclusion and
future are provided in Section 7.

2 BACKGROUND AND RELATED
WORK

This section provides necessary background informa-
tion on relevant topics and a summary of related work.

2.1 Safety-Critical Software and PLCs

PLCs are used to control the safety-critical functions
of an embedded system application. PLCs are spe-
cially designed industrial computers connected via a
network of input and output modules using a data
bus. These PLCs communicate with each other,

1We use MC/DC since several standards, e.g., EN
50129, suggest its use in safety-critical software system de-
velopment

sensors, and other subsystems to control the safety-
critical functions of an embedded system. Functional
Block Diagram (FBD) is one of the five standard
languages defined by the International Electrotechni-
cal Commission (IEC) (Maslar, 1996) to implement
safety-critical applications for PLCs and has been
widely adopted by industrial practitioners in domains
such as railways, nuclear power plants, and avion-
ics (Schwartz et al., 2010).

FBD is a graphical notation language that con-
tains ten function block groups stated in IEC 1131-
3 (Maslar, 1996) (e.g., arithmetic, logic, comparison
and timer operations). These function block groups
are responsible for different types of operations be-
tween the states of input and output variables. Func-
tion elements/blocks from these groups are connected
through input/output variables to represent the behav-
ior of an FBD program. The developed FBD pro-
grams are then compiled into the source and ma-
chine code using platform-dependent tools provided
by PLC vendors.

2.2 System-Level Test Generation
Techniques

Automatic test case generation techniques exploit
software artifacts as inputs to generate test cases to
achieve better effectiveness and efficiency (Anand
et al., 2013). Multiple test generation techniques
exist such as random (Hamlet, 1994), search-
based (McMinn, 2011), model-based (Utting and
Legeard, 2010), amongst others to generate high-
qualitytest suites to validate a system, mostly at the
functional and structural level. But different studies
(e.g. (Li et al., 2017)) report advantages of CT and
MBT for testing safety-critical software at the sys-
tem level. There exist other studies (e.g., (Zafar et al.,
2022)) that have provided a comparative evaluation of
CT and MBT with manual testing in practice in terms
of coverage criteria.

CT generates a covering array in the form of in-
teraction possibilities of values selected from the in-
put parameters of a system (Nie and Leung, 2011).
Each row of a covering array represents a specific test
case to validate the functional requirements of a sys-
tem using the generated combination of input param-
eters. CT provides a t-ways test strategy to generate
relevant and finite number of input interactions. The
t-ways testing strategy generates different test cases
in a test suite depending on the value of t, the interac-
tion strength. It ensures the generation of unique test
sequences by covering each combination based on t-
ways (2, 3, and 4-ways being the most common) input
parameter interactions at least once.



MBT (Tian et al., 2021) generates test cases from
an explicit model representing the SUT. For instance,
a model created using a finite state machine (FSM)
consists of nodes and edges. Nodes represent the
states of the SUT, whereas edges represent the tran-
sitions between the states containing the guard condi-
tions depicting the functional and non-functional be-
havior of the SUT in terms of Boolean constraints.
After the creation of the model, a variety of abstract
test cases can be generated from the same model of
a SUT depending on selected coverage criteria (e.g.,
edge, node, and requirement) and generator algo-
rithms (e.g., random, weight random, A-star). These
abstract test cases are then converted into concrete,
executable test scripts to validate a system.

2.3 Modified Condition Decision
Coverage

Testing coverage criteria are used to determine the ex-
tent to which the design and implementation structure
has been exercised. They evaluate the quality of a test
suite by measuring, e.g., the area of a code accessed,
number of states visited, number of logical predicates
covered, or path traversed by a test suite (Lindström
et al., 2018). Some known structural coverage criteria
are condition coverage, decision coverage, and mod-
ified condition decision coverage (Hemmati, 2015).
However, MC/DC coverage is recommended by cer-
tain standards (i.e., ISO 26262, EN 50128, and EN
50657) to evaluate the structural coverage for safety-
critical systems. Multiple studies (e.g., (Li et al.,
2017), (Vilkomir et al., 2017b)) have shown the ef-
fectiveness and usability of the MC/DC to evaluate
(and generate) test cases. It ensures the coverage of
each parameter in a program i.e., each condition, de-
cision, entry, and exit point of a program as well as
the independent effect of a condition on a decision at
least once. Hence, to evaluate a test suite in terms
of MC/DC each of the above-mentioned parameters
should be examined (Johnson et al., 1998). The test-
ing of safety-critical functions of TCMS needs to fol-
low EN 50128 and EN 50657 safety standards; they
suggest MC/DC as the code coverage metric, leading
us to examine the quality of test suites in this paper in
terms of MC/DC coverage.

2.4 Mutation Analysis

While there are multiple studies showing that test
suite adequacy can be assessed using different cover-
age criteria (Hemmati, 2015), there is evidence show-
ing that these criteria are not enough to evaluate the
quality of a test suite in terms of fault detection ef-

fectiveness. Multiple factors can affect the ability
of a test suite to detect faults (Schwartz and Hetzel,
2016). Mutation analysis is one of the techniques that
can be used to examine the ability of a test suite in
terms of fault detection effectiveness, especially in
cases where naturally-occurring faults are not avail-
able.

Mutation analysis is an error-based approach used
to evaluate the quality of test suites by measuring the
number of detected faults that were induced in the real
system (Acree et al., 1979). It involves the creation of
different versions of an original program by injecting
a small fault in each version. These faulty versions
of an original program are also known as mutants.
Each mutant represents a common and typical syn-
tactical error in a programming language or a logical
error produced due to the misinterpretation of a re-
quirement by a developer. These mutants can be cate-
gorized as equivalent and non-equivalent or stubborn
mutants (Yao et al., 2014). Equivalent mutants can
not be killed by any of the test cases in a test suite
because of their identical behavior to the original pro-
gram. Whereas a non-equivalent mutant can be killed
with one or more potential test cases as they exhibit
different behavior than the original program. After
the creation of mutated versions, test suites are de-
signed with specific testing techniques and executed
on the programs (i.e., original and mutated programs)
to check if the mutant is killed or not. A mutant is
said to be killed by a test suite t if the test results
of a test suite executed on mutated and original pro-
grams show a contradiction. On the other hand, if
the results of mutated and original programs are iden-
tical, then the mutant is considered alive (MA). The
mutation score is then calculated based on the total
number of mutants (MT ) and the number of mutants
killed (MK). The mutation score can be calculated us-
ing either an output-only oracle (i.e., strong mutation)
or a state change/internal oracle (i.e., weak mutation)
against the set of mutants. However, in this study, we
have used strong mutation for the evaluation of the
test suites.

2.5 Related Work

Mutation testing is used to assess the test suites
as well as to validate software in different do-
mains (Petrovic et al., 2018). Multiple state-of-
the-art studies (Oh et al., 2005), (Hierons and Mer-
ayo, 2009), (Lindström et al., 2018), (Enoiu et al.,
2016b), (Delgado-Pérez et al., 2018), (Baker and
Habli, 2012), (Ramler et al., 2017), (Enoiu et al.,
2016a) have explored and examined mutation testing
using platform-dependent languages (e.g., C, C++,



JAVA, Python, and FBDs) for generating test suites
and evaluating testing techniques and coverage crite-
ria. Since the focus of our paper is on mutation analy-
sis for test coverage and testing technique evaluation,
rather than using it for test generation, below we sum-
marize the papers falling in our focus areas only.

Pedro et. al (Delgado-Pérez et al., 2018) used mu-
tation testing to evaluate the structural coverage cri-
terion and to determine the weakness in the testing
practices using an industrial case study. The results
showed the potential failures caused by the test suite
generated by the branch coverage criterion and im-
provements in the test suites derived from the mu-
tation analysis of the faults and test results. Simi-
larly, an empirical evaluation has been conducted to
improve the test quality of a test suite using mutation
testing in (Baker and Habli, 2012). They also showed
the comparison of mutation analysis with traditional
structural coverage analysis and manual peer review
in terms of identifying deficits in test suites and test-
ing activities. The results demonstrate that mutation
testing is the most effective in detecting issues in test
suites and testing activities than manual review and
structural coverage analysis. However, the results also
showed that mutation testing can not replace manual
review but can be used as a complement to it.

Rudolf et. al (Ramler et al., 2017) investigated the
fault detection effectiveness of unit-level tests by ap-
plying the mutation analysis in the context of safety-
critical systems. They also examined the applicability
of mutation analysis in terms of improving tests gen-
erated at the unit level by the MC/DC coverage cri-
teria. The evaluation showed the deficiencies which
were hard to find in the test suites and provided em-
pirical evidence for improving test suites using mu-
tation testing. The fault detection efficiency and ef-
fectiveness have also been determined and compared
for the specification and implementation-based test-
ing using an industrial case study in (Enoiu et al.,
2016a). The mutation analysis of the results indicates
that implementation-based testing is an effective test-
ing technique and provided a higher structural cov-
erage than test suites created by specification-based
testing.

The aforementioned studies used mutation anal-
ysis to generate test suites as well as to compare and
evaluate different testing techniques and coverage cri-
teria in terms of fault detection effectiveness. How-
ever, we have found only a limited set of studies
((Shin et al., 2012), (Shin et al., 2016), (Charbachi
et al., 2017), (Ahmed et al., 2020)), which have eval-
uated the automated testing techniques using FBD-
level mutation analysis in an industrial setting. Thus,
we examine the quality of generated test suites gen-

erated by MBT and CT in the industry and provide a
comparative analysis of these techniques with manual
practices, with the aim to improve dynamic testing of
safety-critical systems.

3 METHODOLOGY

The methodology that we have developed and fol-
lowed throughout our study has been presented in Fig-
ure 1. It consists of five main steps; (1) analysis of
system requirements and test specification (i.e., Steps
(1.1), (1.2), and (1.3)), (2) development of mutated
versions of the original program (i.e., (2.1), (2.2), and
(2.3)), (3) creation of test suites using each testing
technique (i.e., (3.1) and (3.2)), (4) deployment and
execution of programs and test scripts to generate test
results (i.e., (4.1), (4.2), and (4.3)), (5) evaluation of
test scripts based on test results.

3.1 Description of SUT

We considered the fire detection system as a case
study from an ongoing project at Alstom Transporta-
tion AB. The fire detection system is a subsystem of
the Train Control Management System (TCMS) for
MOVIA 2 which is a family of vehicle products de-
veloped at Alstom Transportation and operational in
various metro trains across the globe. TCMS is an in-
tegral part of the complex distributed control system
of a train used to control and manage all the opera-
tional functions of a train by communicating with dif-
ferent devices and subsystems via various networks
i.e. Ethernet Consist Network (ECN), Multi-function
Vehicle Bus (MVB), etc. (Zafar et al., 2021a). All
the safety-critical functions of a train are controlled
by Modular Input/Output-Safe (MIO-S) and Central
Control Unit-Safe (CCU-S) devices connected via the
MVB network. The fire detection system in TCMS
relates to a safety-critical function used to detect two
types of fire in the cabs of a train, i.e., internal, and
external. It uses two instances of Fire Detection Con-
trol Units (FDCUs) connected with the smoke and fire
sensors. Each FDCU can have two states (i.e. Master
and Slave) and only be considered as a ‘Master’ if it
holds the value of its signals as true, whereas the sen-
sors are responsible to transmit signals indicating fire
to the FDCUs. The MIO-S device of TCMS receives
the signals from the FDCUs and reports these signals
to CCU-S. CCU-S computes the logic based on the
functional requirements and reports the type of fire to

2https://www.railway-technology.com/projects/bombar
dier-movia-metro-cars/



Figure 1: An overview of the experimental methodology.

MIO-S as a corresponding output signal. The MIOS
receives the signal to light a LED indicating the type
of fire on the driver’s desk.

3.2 Requirements and Test Specification
Analysis

We have thoroughly analyzed the requirements of the
industrial case study to understand the functional and
non-functional behavior of the system. It includes the
identification of input & output signals used to com-
municate with the sensors, PLCs, and TCMS, data
types of the identified signals, constraints such as the
system’s response time, and arithmetic/Boolean op-
erators that should be used to develop the desired
behavior of the system using FBDs. On the other
hand, the test specification analysis helped us create
the complete SUT model for the generation of the
test suite using MBT. It also helped us understand
the test objectives, different test scenarios, and behav-
ior of the system from a tester’s perspective. Soft-
ware engineers and testers at Alstom Transportation
use the logical signal names to specify the require-
ments and test cases whereas the actual system uses
one or more technical signal names for its regular and
safety-critical operations. Hence, the analysis of re-
quirements and test specifications also provided us
with traceability between logical and technical signal
names in addition to an understanding of the develop-
ment process.

3.3 Development of SUT and Mutation
Injection

The general principle of mutation analysis is to ex-
amine the detection of injected faults in an original
program. These faults are injected based on some
mutant operators that can be used to mimic a pro-
grammer’s common mistakes. So, we have used the
original FBD program of the industrial case study de-
veloped by a developer at Alstom Transportation and
created a set of mutants based on selected mutant op-
erators manually. The selection of mutant operators
is carried out by thoroughly reviewing the previous
studies from the literature (Oh et al., 2005) (Enoiu
et al., 2016b) (Shin et al., 2012) that applies mutation
analysis specifically for the evaluation of testing tech-
nique, test coverage, or to generate test suites using
FBD programs. Moreover, the development of safety-
critical FBD programs at Alstom Transportation re-
quires only specific FBD operators. So, by consider-
ing the safety-critical industrial case study and FBD-
specific faults, we have used seven mutant operators
as follows:

• Logic Block Deletion Operator (LDO): to delete a
logical block from the FBD program (e.g., delet-
ing AND block).

• Logic Block Insertion Operator (LIO): to insert
another logical block between the logical blocks
or the input signals of the FBD program (e.g., in-
serting AND block between the output of two OR
blocks).



• Logic Block Replacement Operator (LRO): to re-
place a logical block of the FBD program with
another logical block of the same category (e.g.,
replacing the AND block with the OR block).

• Logic Block Replacement Operator-Improved
(LRO-I): to replace the logical block of the FBD
program with a logical block of the same cate-
gory and another logical block with Boolean input
(e.g., replacing OR with RS).

• Negation Insertion Operator (NIO): to insert the
negation block at the inputs or outputs of other
logical blocks.

• Time Block Replacement Operator (TRO): to re-
place the timer block with another timer block
(e.g., replacing TOF with TON).

• Value Replacement Operator (VRO): to replace
the constant value of a variable provided to a
block with another value (e.g., replacing the timer
variable from 3s to 6s).

After injecting the faults based on the selected
mutants, we used the Alstom Transportation-specific
compiling tools to generate the builds of a train con-
taining the mutated program. We used these builds to
generate the simulations of a train, also known as vir-
tual trains, to execute the test scripts at the software-
in-the-loop level.

3.4 Test Suite Creation

To evaluate the test suite developed using manual
testing, we used the manually created test suite by
a tester at Alstom Transportation for the selected
subsystem. Whereas, for MBT and CT, we have
utilized automated test script generation tools i.e.
TIGER (Model-Based Test scrIpt GenEration fRame-
work) (Zafar et al., 2021b) and CATSgen (Covering
Array Test Script generator) to generate the test suites,
respectively. Both automated tools are based on dif-
ferent abstract test case generation tools but use a sim-
ilar procedure, and format of the XML file containing
the information about the signals (i.e., data type, log-
ical and technical signal names) to generate the exe-
cutable test scripts. Moreover, the test scripts devel-
oped by the selected techniques are implemented in
the C# language. A brief description of the activities
and tools for test suite generation of each testing tech-
nique is given in the subsequent subsections.

3.4.1 Manual Test Suite Creation

The testers at Alstom Transportation follow EN
50128 and EN 50657 safety standards and regulations

to create the test suites based on Equivalence Par-
titioning (EP) and Boundary Value Analysis (BVA)
testing techniques. However, in some cases, MC/DC
coverage criterion is also used for the creation the test
suites for testing complex systems. The test cases
are written in natural language and consist of a set
of test steps specifying test inputs for the system, ex-
pected output, and response time according to each re-
quirement specified in the requirement specification.
Requirement coverage is considered a de facto crite-
rion at Alstom Transportation for test suite develop-
ment to ensure that each requirement has been cov-
ered and executed by the test cases. After the creation
of test cases, Alstom Transportation-specific libraries
are used to write the test scripts manually.

3.4.2 Model-based Test Suite Generation

For model-based test suite generation, we have uti-
lized GraphWalker3 studio version to create the FSM
model of the SUT and provided the model to TIGER
along with an XML file to generate C# implemented
test scripts. TIGER uses the CLI version of Graph-
Walker to generate the abstract test cases in JSON for-
mat by traversing through the model elements based
on the selected generator algorithm (e.g., random,
quick random, etc.) and coverage criteria (edge, ver-
tex, requirement, etc.). It contains the implementation
of some defined mapping rules for logical and techni-
cal signal names as well as information specific to Al-
stom Transportation’s testing framework (i.e., config-
urations, classes, and methods). After the generation
of abstract test cases, it processes the data in a JSON
file and utilizes the mapping rules along with testing
framework-specific information to generate concrete
test scripts. Hence, we generated the test suite by se-
lecting the ‘random’ generator algorithm and 100%
edge coverage criteria using TIGER.

3.4.3 Combinatorial Test Suite Generation

There exist multiple combinatorial test generation
tools to generate test cases using different algorithms
and combinatorial interaction strengths (Khalsa and
Labiche, 2014). However, these tools can only
be used to generate abstract test cases in the form
of a covering array. To execute the test cases
on the Alstom Transportation-specific testing frame-
work, these test cases need to be concretized and im-
plemented in the C# language. Hence, to generate
the combinatorial-based test suites, we have devel-
oped our own CT test script generator called CATS-
gen based on a state-of-the-art combinatorial test gen-

3https://github.com/GraphWalker/graphwalker-
project/wiki



eration tool known as CAgen4. CAgen is an open-
source tool and available in two versions (i.e. online
web GUI and offline command-line) with compara-
tively high performance than other combinatorial test
generation tools (Wagner et al., 2020). It provides
three state-of-the-art meta-heuristic search algorithms
(i.e. FIPOG, FIPOG-F, FIPOG-F2) to generate the
test cases based on the t-ways testing strategy. We
have considered the logical names of all the signals
specified in the requirement specification as input pa-
rameters and utilized the web GUI online version of
CAgen and selected the FIPOG heuristic algorithm to
generate the test cases. We have also provided the
test redundancy value ‘1’ with the ‘randomization of
don’t care values’ for the generation of non-redundant
test cases and limited the interaction strength to 2, 3,
and 4-ways to avoid combinatorial explosion (Ramler
et al., 2012).

After the creation of the test cases, we exported
the generated test cases in an excel file and added
the expected outputs and timing constraints against
each test case manually by thoroughly analyzing the
requirements of the system. Then we provided the ex-
ported file along with an XML file as input to CATS-
gen. CATSgen contains the implementation of map-
ping rules, similar to TIGER, to map the logical signal
names and their respective values to the technical sig-
nal names. Moreover, it also contains the implemen-
tation details specific to the Alstom Transportation’s
testing framework and libraries (e.g., configurations,
classes, methods, etc.) to generate the executable test
scripts. Hence, CATSgen extracted the data from the
excel and XML files, used the mapping rules along
with implementation details, and generated the test
scripts in the C# language.

3.5 Deployment and Execution of the
SUT and Test Scripts

After the generation of virtual trains and test scripts,
we deployed the virtual trains on a laptop con-
taining the software compatible with the Alstom
Transportation-specific testing framework and test
simulation platform for TCMS. Moreover, we used
the Alstom Transportation-specific libraries and con-
figuration files to set up the testing environment in a
project using Visual Studio 2019 and executed the test
scripts to generate test results in the form of test ver-
dicts. The generated test verdicts contained passed
and failed test steps that can be used to identify the
detection of a fault produced by a mutant operator in
a program.

4https://matris.sba-research.org/tools/cagen/#/about

3.6 Evaluation

We have used two metrics for the evaluation of each
test suite based on our formulated research questions
as follows:

3.6.1 Mutation Score

A mutation score can be calculated for a test suite by
using the total number of mutants P(MT ) created for
a program P and the total number of mutants killed
T(MK) by the test suite T in the defined formula:

MutationScore (%) = T (MK)/P(MT )×100
The mutation score can be used to deduce the fault
detection effectiveness of each test suite. The per-
centage of mutants score shows the number of mu-
tants in percentage detected by a test suite, for exam-
ple, a test suite with a maximum mutation score (i.e.
100) depicts that 100% of the mutants are detected by
that particular test suite. Hence, we used the muta-
tion score to compare and evaluate the fault detection
effectiveness of test suites developed by each testing
technique.

3.6.2 MC/DC Coverage

We used the MC/DC coverage criteria to examine the
structural coverage and analyze the relationship be-
tween the MC/DC and mutation score in terms of
fault detection effectiveness of a test suite. There
is no standard formula to calculate the MC/DC ade-
quacy and different existing tools use different princi-
ples for measuring the MC/DC of test suites (Vilkomir
et al., 2017a). However, we calculated each coverage
parameter presented for MC/DC in Section 2.3 and
used the following formula, similar to the one used
in (Vilkomir et al., 2017b), to measure the MC/DC of
each test suite:

• Conditions having all possible outcomes (C) %
= (No. of conditions having all possible out-
comes/Total no. of conditions) x 100

• Decisions having all possible outcomes (D) %
= (No. of decisions having all possible out-
comes/Total no. of decisions) x 100

• Conditions independently affecting a decision
(AD) % = (No. of conditions independently af-
fected decisions/ Total no. of conditions affecting
decisions) x 100

• Entry and exit points of program invoked (E) % =
(Sum of no. of invoked entry and exit points/Sum
of total no. of entry and exit points) x 100
Hence, the overall MC/DC coverage in percentage

for each test suite is calculated as an average of the
individual MC/DC conditions of C, D, AD, and E.



4 RESULTS

In this section, we provide the experimental results
of our study in terms of fault detection effectiveness
for each test suite using mutation score, the sensitiv-
ity of each test suite towards mutation operators, and
an analysis of the relationship between MC/DC and
mutation score in detecting faults.

4.1 RQ1: Fault Detection Effectiveness
of Test Suites

To measure the fault detection effectiveness of each
test suite, we created 50 mutants of the original FBD
program based on mutation operators as described in
Section 3.3 and calculated the mutation score for each
test suite. The mutation scores are shown in Column
5 of Table 1. It is important to mention here that
we have considered only non-equivalent mutants in
our results and excluded the equivalent mutants5 after
carefully examining the test results and alive mutants
manually. For example, we added an XOR between
two operators in one of the LIO mutants, and none of
the test suites detected this fault. On examining this
mutant, we found out that it had an apparent effect
at the internal level, but that effect did not propagate
towards the overall output of the program. Hence,
we declared this mutant an equivalent and excluded it
from the results. Table 1 shows the result of each test
suite in terms of mutation score, and the total num-
ber of killed and alive mutants. Table 2 depicts the
number of common mutants killed and alive between
the pairs of test suites. Whereas, Figure 26 illustrates
the overlaps and differences between alive mutants of
each test suite.

The results show that CT-generated test suites pro-
vide the highest mutation scores by detecting 90% of
the mutants when using 3-ways and 4-ways interac-
tion strength while requiring 1140 and 1680 seconds
as an average execution time per mutant, respectively.
In contrast, CT 2-ways, manual, and MBT achieved
82%, 86%, and 88% mutation scores respectively, and
780, 600, and 2760 seconds of average execution time
per mutant, respectively. Moreover, the number of un-
detected mutants in manual, CT 2-ways, CT 3-ways,
CT 4-ways, and MBT were 7, 9, 5, 5, and 6, respec-
tively. We observed that MBT generated the highest
number of test cases in a test suite and required the
highest execution time, on average per mutant, but
still provided a slightly low mutation score than 3-
ways and 4-ways testing strategy. In addition, we also

5The mutants that do not change the program behavior.
6The Venn diagram is created in an online tool ‘Meta-

Chart’ https://www.meta-chart.com/venn#/data

Figure 2: Venn diagram representing the overlaps and dif-
ferences between alive mutants.

examined the test verdicts of the MBT-generated test
suite and found that, due to duplicate test cases in the
MBT-generated test suite, if a test case in the MBT-
generated test suite detects a fault, its identical test
case(s) also show the presence of the fault in the mu-
tated program. In our industrial context, each failed
test step in a test case requires a maximum waiting
time for a signal response specified in the require-
ments. Similarly, in the case of other test suites, the
number of test cases detecting a mutant and the wait-
ing time for a signal response have a significant effect
on the execution time. However, the number of MBT-
generated test cases in a test suite can be minimized
by removing these identical test cases, which conse-
quently will reduce the execution time too.

The analysis of the data shown in Table 2 and Fig-
ure 2 suggests an similar number of killed mutants
whereas only 4 common alive mutants were found
among all the test suites. We have also examined
these alive mutants and observed that 2 out of these
4 mutants were affecting a part of the code that could
not be invoked by the generated test cases’ inputs and
requires inputs from another subsystem upon integra-
tion. However, test suites developed using Manual, 2-
ways, 3-ways, 4-ways, and MBT left 3, 5, 1, 1, and 2
mutants alive, respectively7. Hence, all the test suites
achieved a reasonably high level of mutation scores,
within the range of 82% to 90%. However, the test
suites generated by CT 3-ways and 4-ways provided
higher fault detection rates than the test suites gener-
ated by other testing techniques. Moreover, each tech-
nique missed the generation of some signal combina-
tions that could be used to achieve a mutation score
of 100%. However, we still found manual testing as a
better-performing technique in terms of average exe-

7Some of these are unique across all the test suites,
while some have overlaps among only a subset of the test
suites.



Table 1: Mutation score of each testing technique.

Techniques No. of Test Cases Mutants Killed (MK)% Mutants Alive (MA)% Mutation Score%
Manual 17 43 7 86
CT 2-ways 10 41 9 82
CT 3-ways 22 45 5 90
CT 4-ways 50 45 5 90
MBT 150 (39 after ex-

cluding identical
test cases)

44 6 88

Table 2: No. of common killed and alive mutants between the pairs of test suites.

Techniques CT 2-ways CT 3-ways CT 4-ways MBT
(MK / MA) (MK / MA) (MK / MA) (MK / MA)

Manual 41/7 42/4 43/5 41/4
CT 2-ways N/A 41/5 41/5 39/4
CT 3-ways - N/A 41/5 43/4
CT 4-ways - - N/A 43/4

cution time per mutant while achieving a 86% of mu-
tation score. A summary of our observations regard-
ing alive mutants across all test suites is as follows:

• The total number of mutants not detected by man-
ual testing, 2-ways, 3-ways, 4-ways, and MBT
were 7, 9, 5, 5, and 6, respectively. 4 of these alive
mutants were common among all the test suites.

• The manual test suite did not detect 3 alive mu-
tants that were also included in the subset of alive
mutants in CT 2-ways, whereas 1 mutant amongst
the 3 was also not detected by the 2-ways and 4-
ways generated test suites.

• The use of CT 2-ways generated test suite did not
detect 1 unique alive mutant which was killed by
each of the other test suites.

• CT 3-ways and 2-ways generated test suites had 1
alive mutant which was not killed by either of the
test suites.

• Lastly, 2 unique mutants were not detected by the
MBT-generated test suite.

4.2 RQ2: Sensitivity of Test Suites to
Specific Mutation Operators

To examine the type of faults prone to be detected by
each test suite, we calculated the mutation scores as
per each mutation operator. We also developed a bar
graph based on the results to analyze the breakdown
of mutation scores of each test suite as shown in Fig-
ure 3.

Figure 3 shows some meaningful implications
based on the mutants killed by different test suites.
All test suites detected each of the mutants injected

Figure 3: Percentage of mutants killed by each test suite per
operator.

by 3 out of 7 mutation operators i.e., LDO, LIO, and
VRO, and provided 100% mutation scores for these
mutation operators. On the other hand, none of the
test suites detected any mutant induced in the original
program based on the TRO mutation operator, con-
sequently providing 0% mutation scores. In the case
of LRO-I, all the test suites achieved 100% mutation
scores except MBT, which achieved only 83%. For
the NIO-based mutants, all the test suites achieved
86% mutation scores except 2-ways, which achieved
77%. Similarly, 3-ways, 4-ways, and MBT attained
a similar mutation score of 93% by detecting mutants
injected based on LRO, whereas 2-ways and manual
achieved 75% and 81%, respectively.

Based on these results, we observe that for each
mutation operator except TRO, each testing technique
did not generate such combinations (i.e. combina-
tions of inputs invoking the faulty area of the code
affected by the alive mutant) that could be used to
reach 100% mutation score. In order to detect TRO-
based mutants, each test suite requires special test
cases targeting the basic integrity (i.e., ensuring the
starting states of the system) while entering a state
within specified time, which can be used to vali-
date the timing related requirements of the system.



Figure 4: Mutation score and MC/DC of each test suite in
percentage.

Hence, the results show that the CT 3-ways and 4-
ways generated test suites are the most effective in
detecting all types of faults except the faults related to
TRO. MBT’s mutation score closely follows, where
it achieved an equal mutation score in detecting all
types of faults when compared to CT 3-ways and
4-ways, except faults related to LRO-I. CT 2-ways-
generated test suites are least effective in detecting
NIO and LRO-based mutants due to the generation
of less number of input combinations having lower
interaction strength.

4.3 RQ3: Relationship Between MC/DC
Coverage and Mutation Score

Figure 4 presents the mutation score and MC/DC cov-
erage of each test suite. It shows that the MBT-
generated test suite provided the highest MC/DC cov-
erage, i.e., 88%. The test suites developed using CT
2-ways, 3-ways, 4-ways, and manual testing tech-
niques provided 59%, 76%, 80%, and 79% of MC/DC
coverage respectively. The test suite generated by
MBT provided an equal mutation score as its MC/DC
coverage, whereas manual, 2-ways, 3-ways, and 4-
ways generated test suites provided higher mutation
scores as compared to the MC/DC coverage achieved
by the respective test suites. We also observed that the
differences between the mutation scores and MC/DC
coverage in 2-ways and 3-ways generated test suites
were greater than for the test suites generated by 4-
ways and manual testing. Moreover, regardless of
its high MC/DC, MBT shows a slightly lower muta-
tion rate when compared with CT 3-ways and 4-ways
techniques.

To thoroughly analyze the relationship between
MC/DC coverage and mutation scores, we exam-
ined the breakdown of MC/DC coverage achieved by
each test suite according to the selected parameters
as shown in Figure 5, the SUT, as well as the killed
and alive mutants. The analysis showed that if a sys-
tem shares two or more similar requirements, then one
FBD program can be used to generate two instances
of the code. Therefore, each mutant induced at the
FBD level can affect different areas of the code (i.e.

Figure 5: Breakdown of MC/DC according to selected pa-
rameters.

induce more than one fault) and it may be possible
that test suites with lower MC/DC can not detect each
fault induced per mutant. Similarly in our case, a fault
induced at the FBD level affected the behavior of the
selected program at the system level where the combi-
nations of input signals have a significant effect on the
output of the system. Hence, the test suites developed
using CT with higher interaction strength i.e., 3-ways
and 4-ways and manual testing techniques contained
such combinations, which were required to achieve an
adequate mutation score at the system level. Whereas,
MBT has provided higher MC/DC coverage by gener-
ating such test cases, especially targeting the MC/DC
parameter ‘coverage of all the conditions having an
independent effect on a decision at least once’, where
other techniques gave relatively lower coverage per-
centages. Based on the graphs presented in Figure 4
and Figure 5, we also observed a generally positive
relationship between MC/DC coverage and mutation
score and argue that test suites achieving an adequate
level of MC/DC coverage also provide higher muta-
tion scores.

5 DISCUSSION

We see from our results that a high fault detection rate
can be achieved using the higher interaction strength
of CT. Results are similar to some previous studies,
e.g., (Bures and Ahmed, 2017), (Petke et al., 2013).
However, CT has an increasing cost of completing
the test suite with expected outputs and timing con-
straints according to the system requirements. On
the other hand, MBT generated a complete set of test
suites containing inputs, expected outputs, and tim-
ing constraints from the model conforming to system
requirements while achieving an 88% fault detection
rate. Moreover, we also found the MBT-generated test
suite is complete (i.e., contained expected output, and
timing constraints) and ready to be executed as well
as similar to specification-based manual testing used
in the industry.

The analysis of different mutant operators illus-
trates that all the test suites do not detect faults re-



lated to time constraints and thus special test cases
should be included to target testing of timing proper-
ties. Our results further suggest that test suites gen-
erated by CT 3-ways, CT 4-ways, and MBT achieved
similar effectiveness in detecting all functional level
faults according to the achieved mutation scores. A
deeper analysis, however, shows that MBT did not
achieve a high mutation score for the operator LRO-I
when compared with CT 3-ways and CT 4-ways and
missed generating specific fault-revealing input com-
binations due to the random coverage criteria.

Our results also indicate that, in general, the
higher MC/DC coverage corresponds to a higher mu-
tation score. However, there are subtle differences
among different techniques. For example, the differ-
ence between the achieved MC/DC coverage and mu-
tation scores in the case of CT 2-ways and CT 3-ways
is greater between other techniques.

Lastly, we argue that a mutation analysis at the
FBD level alone is not sufficient to measure the
fault detection effectiveness of test suites, particularly
when safety critical systems are concerned, and fur-
ther analysis should be conducted at the code level in
industrial settings. The reason is that for similar re-
quirements, if one FBD program is used to generate
different instances of code, then a limited number of
mutants can be induced as well as a fault at the FBD
level can also produce multiple faults in different ar-
eas of the generated code. This has an impact on the
mutation score that can be achieved per test technique.
Similarly, it is also possible that a test suite may not
achieve significant effectiveness in terms of fault de-
tection rate at the code level or if different FBD pro-
grams are used to generate the code for similar re-
quirements.

6 VALIDITY THREATS

The section provides an overview of the threats to the
validity of this study along with the methods we use
to counter them.

The threats related to the internal validity include
the conformance of the model to system requirements
and the existence of equivalent mutants. The model-
ing of system requirements in MBT is a manual pro-
cess, and it requires a complete understanding of the
system requirements and environment. One can mis-
interpret these requirements, impacting the confor-
mance of the model with actual system requirements
and thus impacting the test suite generated. Hence, to
mitigate this factor, we have developed the model in
an iterative manner and by getting continuous feed-
back from the testers at Alstom Transportation AB.

Similarly, in mutation testing, the existence of equiva-
lent mutants is also a possible risk to the evaluation of
test suites. We tried to eliminate this threat by spend-
ing a fair amount of time examining the alive mutants
and test results manually.

The factors that can affect the reliability and ex-
ternal validity of this study include the particulari-
ties of the MBT model and test suites specific to the
Alstom Transportation’s environment, test generation
tools, modeling notations, size of the subsystem, hu-
man experience, and generation algorithms. We cre-
ated the model and test suites by using the require-
ments related to a subsystem of the TCMS developed
at Alstom Transportation and it contains some par-
ticularities related to Alstom Transportation’s specific
testing environment, libraries, and development tools
that may not be relevant to other domains. However,
we have provided sufficient information on the exper-
imentation methodology and argue that if a researcher
with similar testing and modeling experience will
replicate this study, similar results can be obtained.
Furthermore, different test generation tools, model-
ing notations, and generator algorithms may also af-
fect the results. The research into the effectiveness
of test suites should therefore require more industrial
case studies for creating generalizable knowledge.

The measures used for MC/DC and mutation
score in this study were inspired by the literature
and evaluation metrics used in industrial safety stan-
dards, i.e., ISO 26262, IEC 61508, EN 50128, and
EN 50657. Moreover, the selection of mutants is
done by thoroughly investigating the operators used
for the development of FBD programs from the liter-
ature, their industrial applicability, and dependencies
on the tools used by the Alstom Transportation for de-
veloping safety-critical programs.

7 CONCLUSION AND FUTURE
WORK

This paper provides an experimental evaluation of in-
dustrial manual testing and two popular system-level
automated test generation techniques, MBT and CT,
in terms of fault detection effectiveness at the sys-
tem level using an industrial case study. In addition,
we measure the sensitivity of each test suite towards
each type of fault induced by different mutant opera-
tors. Moreover, we examine the relationship between
the MC/DC coverage and mutation scores at the sys-
tem level. The experimental results show that the test
suites achieved mutation scores within the range of
82% (CT 2-way) and 90% (CT 3-ways and CT 4-
ways), whereas other techniques’ mutation scores ly-



ing within this range. Thus, CT with higher interac-
tion strength (3-ways and 4-ways) was found to be the
most effective testing technique in terms of achieved
mutation score, closely followed by MBT with a mu-
tation score of 88%. This means that we found higher-
interaction strength CT and MBT as most effective
in detecting induced faults based on the selected mu-
tant operators, the exception being the TRO, where
none of the techniques were able to find faults based
on this particular operator. MBT was found to be the
least effective in detecting faults induced by the LRO-
I operator, while manual testing achieved a low mu-
tation score in detecting LRO mutants. CT 2-ways
was found to be the least effective testing technique in
our case. On the other hand, manual testing was also
found to be efficient in terms of execution time. The
results also showed that the MBT-generated test suite
achieved the highest MC/DC coverage when com-
pared with other techniques. Lastly, the analysis of
mutation and MC/DC coverage scores showed a gen-
eral positive relationship between both measures for
all test suites. Hence, we put forward the hypothesis
that the test suite achieving adequate MC/DC cover-
age tends to also provide a higher mutation score.

In future work, we intend to execute the gener-
ated test suites at Hardware-in-the-Loop (HiL) level
and explore the optimization techniques for the MBT-
generated test suite. Moreover, a thorough evaluation
and statistical analysis are also warranted to analyze
the mutation score and MC/DC coverage at the struc-
tural level.

ACKNOWLEDGEMENT

This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion program under grant agreement Nos. 871319,
957212; from the Swedish Innovation Agency (Vin-
nova) through the SmartDelta project and from the
ECSEL Joint Undertaking (JU) under grant agree-
ment No 101007350.

REFERENCES

Acree, A. T., Budd, T. A., DeMillo, R. A., Lipton, R. J.,
and Sayward, F. G. (1979). Mutation analysis. Tech-
nical report, Georgia Inst of Tech Atlanta School of
Information And Computer Science.

Ahmed, B. S., Enoiu, E., Afzal, W., and Zamli, K. Z.
(2020). An evaluation of monte carlo-based hyper-
heuristic for interaction testing of industrial em-
bedded software applications. Soft Computing,
24(18):13929–13954.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen,
M. B., Grieskamp, W., Harman, M., Harrold, M. J.,
McMinn, P., Bertolino, A., et al. (2013). An orches-
trated survey of methodologies for automated soft-
ware test case generation. Journal of Systems and
Software, 86(8):1978–2001.

Baker, R. and Habli, I. (2012). An empirical evaluation
of mutation testing for improving the test quality of
safety-critical software. IEEE Transactions on Soft-
ware Engineering, 39(6):787–805.

Bures, M. and Ahmed, B. S. (2017). On the effectiveness
of combinatorial interaction testing: A case study.
In 2017 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-
C), pages 69–76. IEEE.

Charbachi, P., Eklund, L., and Enoiu, E. (2017). Can pair-
wise testing perform comparably to manually hand-
crafted testing carried out by industrial engineers?
In 2017 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-
C), pages 92–99. IEEE.

Delgado-Pérez, P., Habli, I., Gregory, S., Alexander, R.,
Clark, J., and Medina-Bulo, I. (2018). Evaluation of
mutation testing in a nuclear industry case study. IEEE
Transactions on Reliability, 67(4):1406–1419.

Enoiu, E. P., Cauevic, A., Sundmark, D., and Pettersson, P.
(2016a). A controlled experiment in testing of safety-
critical embedded software. In 2016 IEEE Interna-
tional Conference on Software Testing, Verification
and Validation (ICST), pages 1–11. IEEE.

Enoiu, E. P., Sundmark, D., Čaušević, A., Feldt, R., and
Pettersson, P. (2016b). Mutation-based test genera-
tion for plc embedded software using model checking.
In IFIP International Conference on Testing Software
and Systems, pages 155–171. Springer.

Hamlet, R. (1994). Random testing. Encyclopedia of soft-
ware Engineering, 2:971–978.

Hemmati, H. (2015). How effective are code coverage cri-
teria? In 2015 IEEE International Conference on
Software Quality, Reliability and Security, pages 151–
156.

Hierons, R. M. and Merayo, M. G. (2009). Mutation testing
from probabilistic and stochastic finite state machines.
Journal of Systems and Software, 82(11):1804–1818.

Johnson, L. A. et al. (1998). Do-178b, software considera-
tions in airborne systems and equipment certification.
Crosstalk, October, 199:11–20.

Khalsa, S. K. and Labiche, Y. (2014). An orchestrated sur-
vey of available algorithms and tools for combinato-
rial testing. In 2014 IEEE 25th International Sympo-
sium on Software Reliability Engineering, pages 323–
334. IEEE.

Li, D., Hu, L., Gao, R., Wong, W. E., Kuhn, D. R., and
Kacker, R. N. (2017). Improving mc/dc and fault de-
tection strength using combinatorial testing. In 2017
IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages
297–303. IEEE.

Lindström, B., Offutt, J., Gonzalez-Hernandez, L., and An-
dler, S. F. (2018). Identifying useful mutants to test



time properties. In 2018 IEEE International Confer-
ence on Software Testing, Verification and Validation
Workshops (ICSTW), pages 69–76. IEEE.

Maslar, M. (1996). Plc standard programming languages:
Iec 1131-3. In Conference Record of 1996 Annual
Pulp and Paper Industry Technical Conference, pages
26–31. IEEE.

McMinn, P. (2011). Search-based software testing: Past,
present and future. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 153–163. IEEE.

Nie, C. and Leung, H. (2011). A survey of combinatorial
testing. ACM Computing Surveys (CSUR), 43(2):1–
29.

Oh, Y., Yoo, J., Cha, S., and Son, H. S. (2005). Soft-
ware safety analysis of function block diagrams using
fault trees. Reliability Engineering & System Safety,
88(3):215–228.

Petke, J., Yoo, S., Cohen, M. B., and Harman, M. (2013).
Efficiency and early fault detection with lower and
higher strength combinatorial interaction testing. In
Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering, pages 26–36.

Petrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., and
Just, R. (2018). An industrial application of muta-
tion testing: Lessons, challenges, and research direc-
tions. In 2018 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops
(ICSTW), pages 47–53.

Ramler, R., Kopetzky, T., and Platz, W. (2012). Combina-
torial test design in the tosca testsuite: lessons learned
and practical implications. In 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verification
and Validation, pages 569–572. IEEE.

Ramler, R., Wetzlmaier, T., and Klammer, C. (2017). An
empirical study on the application of mutation test-
ing for a safety-critical industrial software system. In
Proceedings of the Symposium on Applied Computing,
pages 1401–1408.

Rouvroye, J. L. and van den Bliek, E. G. (2002). Comparing
safety analysis techniques. Reliability Engineering &
System Safety, 75(3):289–294.

Sánchez-Gordón, M., Rijal, L., and Colomo-Palacios, R.
(2020). Beyond technical skills in software testing:
Automated versus manual testing. In Proceedings
of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, pages 161–164.

Schwartz, A. and Hetzel, M. (2016). The impact of fault
type on the relationship between code coverage and
fault detection. In Proceedings of the 11th Inter-
national Workshop on Automation of Software Test,
pages 29–35.

Schwartz, M. D., Mulder, J., Trent, J., and Atkins, W. D.
(2010). Control system devices: Architectures and
supply channels overview. Sandia Report SAND2010-
5183, Sandia National Laboratories, Albuquerque,
New Mexico, 102:103.

Shin, D., Jee, E., and Bae, D.-H. (2012). Empirical eval-
uation on fbd model-based test coverage criteria us-
ing mutation analysis. In International Conference on

Model Driven Engineering Languages and Systems,
pages 465–479. Springer.

Shin, D., Jee, E., and Bae, D.-H. (2016). Comprehensive
analysis of fbd test coverage criteria using mutants.
Software & Systems Modeling, 15(3):631–645.

Taipale, O., Kasurinen, J., Karhu, K., and Smolander, K.
(2011). Trade-off between automated and manual
software testing. International Journal of System
Assurance Engineering and Management, 2(2):114–
125.

Tian, Y., Yin, B., and Li, C. (2021). A model-based
test cases generation method for spacecraft software.
In 2021 8th International Conference on Dependable
Systems and Their Applications (DSA), pages 373–
382.

Utting, M. and Legeard, B. (2010). Practical model-based
testing: a tools approach. Elsevier.

Vilkomir, S., Alluri, A., Kuhn, D. R., and Kacker, R. N.
(2017a). Combinatorial and mc/dc coverage levels
of random testing. In 2017 IEEE International Con-
ference on Software Quality, Reliability and Security
Companion (QRS-C), pages 61–68. IEEE.

Vilkomir, S., Baptista, J., and Das, G. (2017b). Using mc/dc
as a black-box testing technique. In 2017 IEEE 28th
Annual Software Technology Conference (STC), pages
1–7. IEEE.

Wagner, M., Kleine, K., Simos, D. E., Kuhn, R., and
Kacker, R. (2020). Cagen: A fast combinatorial
test generation tool with support for constraints and
higher-index arrays. In 2020 IEEE International Con-
ference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pages 191–200. IEEE.

Yao, X., Harman, M., and Jia, Y. (2014). A study of equiv-
alent and stubborn mutation operators using human
analysis of equivalence. In Proceedings of the 36th in-
ternational conference on software engineering, pages
919–930.

Zafar, M. N., Afzal, W., and Enoiu, E. (2022). Evalu-
ating system-level test generation for industrial soft-
ware: A comparison between manual, combinatorial
and model-based testing. In Proceedings of the 3rd
ACM/IEEE International Conference on Automation
of Software Test, AST ’22, page 148–159, New York,
NY, USA. Association for Computing Machinery.

Zafar, M. N., Afzal, W., Enoiu, E. P., Stratis, A., Arrieta,
A., and Sagardui, G. (2021a). Model-based testing in
practice: An industrial case study using graphwalker.
In Innovations in Software Engineering Conference
2021.

Zafar, M. N., Afzal, W., Enoiu, E. P., Stratis, A., and Sellin,
O. (2021b). A model-based test script generation
framework for embedded software. In The 17th Work-
shop on Advances in Model Based Testing.


