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Abstract

System-level testing of safety-critical embedded systems is complex and costly.
MBT has shown promising results in terms of fault detection effectiveness and
efficiency of test generation and execution. However, the industrial adoption
of MBT approaches is slow and limited to specific industries and domains.
Moreover, the strengths and weaknesses of MBT in industrial settings need to
be thoroughly evaluated to find an optimal testing strategy.

The objective of this thesis is to adapt, compare, and evaluate the effec-
tiveness and efficiency of MBT to help industrial practitioners in the testing of
safety-critical embedded software. We have divided this objective into three
subgoals. To achieve the first subgoal, we have explored multiple state-of-the-
art MBT tools and evaluated the selected tool, GraphWalker (GW), in terms
of modeling notations, generation algorithm, stopping conditions, and model
completeness. To achieve the second subgoal, we have proposed a Model-
Based Test scrIpt GenEration fRamework (TIGER), based on GW, to generate
system-level test artifacts (i.e., test cases and test scripts). Based on the pro-
posed framework, we implemented two test script generation tools for com-
binatorial testing (CT) and MBT. Finally, to achieve the last subgoal, we per-
formed a comparative analysis between test suites developed using MBT, CT,
and manual industrial practices.

The results showed that the MBT-generated test suites using the edge cov-
erage criterion tend to cover each requirement multiple times while achieving
the same level of requirement coverage as the manually written test suites.
Moreover, MBT provided higher Modified Decision and Condition Coverage
(MC/DC) than CT and manual testing. On the other hand, CT came out as
the most efficient technique in terms of the time required to generate and ex-
ecute tests as well as achieving the highest fault detection rate with 3-ways
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and 4-ways interaction strength. Hence, based on the results, we conclude that
manual industrial testing will benefit from MBT and CT for improved coverage
and fault detection.
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Sammanfattning

Testning på systemnivå av säkerhetskritiska inbyggda system är komplext och
kostsamt. MBT har visat lovande resultat när det gäller feldetekteringsef-
fektivitet och effektivitet i testgenerering och testutförande. Den industriella
utvecklingen av MBT-metoder är dock långsam och begränsad till specifika
branscher och domäner. Dessutom måste styrkorna och svagheterna hos MBT
i industriella miljöer utvärderas noggrant för att hitta en optimal teststrategi.

Syftet med denna avhandling är att anpassa, jämföra och utvärdera ef-
fektiviteten hos MBT för att hjälpa industriutövare att testa säkerhetskritisk
inbyggd programvara. Vi har delat in detta mål i tre delmål. För att up-
pnå det första delmålet har vi utforskat flera av de främsta MBT-verktygen
och utvärderat det valda verktyget, GraphWalker (GW), i termer av modeller-
ingsnotationer, genereringsalgoritm, stoppförhållanden och modellfullständighet.
För att uppnå det andra delmålet har vi föreslagit ett Model-Based Test ScrIpt
Generation Framework (TIGER), baserat på GW, för att generera testartefakter
på systemnivå (d.v.s. testfall och testskript). Baserat på det föreslagna ramver-
ket implementerade vi två testskriptgenereringsverktyg för kombinatorisk test-
ning (CT) och MBT. Slutligen, för att uppnå det sista delmålet, utförde vi en
jämförande analys mellan testsviter utvecklade med MBT, CT och manuell in-
dustriell praxis.

Resultaten visade att de MBT-genererade testsviterna som använder kant-
täckningskriteriet tenderar att täcka varje krav flera gånger samtidigt som de
uppnår samma nivå av kravtäckning som de manuellt skrivna testsviterna. Dessu-
tom gav MBT högre Modified Decision and Condition Coverage (MC/DC) än
CT och manuell testning. Å andra sidan kom CT ut som den mest effektiva
tekniken när det gäller den tid som krävs för att generera och utföra tester samt
att uppnå den högsta feldetekteringshastigheten med 3-vägs och 4-vägs inter-
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aktionsstyrka. Baserat på resultaten drar vi därför slutsatsen att manuell indus-
triell testning kommer att dra nytta av MBT och CT för förbättrad täckning och
feldetektering.
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Chapter 1

Introduction

The testing of a safety-critical embedded software requires a thorough anal-
ysis of the system’s correctness, which is a costly and complex process [1].
It is carried out at different levels during the development of a system (i.e.,
unit, integration, and system) to guarantee its reliability and availability along
with mitigation of risk factors that can cause catastrophic events due to abrupt
behavior of such systems [2]. Each level of testing deals with a different num-
ber of input/output space, communication formats, and test objectives. At the
unit and integration level of testing, the input/output space is a lot smaller and
the test objectives for the validation process are limited to the functionality of
a module or the interaction between different modules, respectively [3]. On
the other hand, the testing complexity of a system grows with the scope of a
system due to bigger input/output space and end-to-end functionality of inte-
grated modules at the system level. System testing deals with the validation
of a whole system or a subsystem to ensure that all the components and mod-
ules are working according to functional and non-functional behavior speci-
fied in the requirement document. For a safety-critical system, it also includes
the testing of a system using risk analysis reports based on interactions be-
tween different software components [4]. As the complexity, size, and scope
of a safety-critical system increase, the cost and effort of testing also increase,
which consequently affects the overall cost of the development process. Hence,
there is a need to research into cost-efficient testing techniques while ensuring
the quality of safety-critical systems.
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4 Chapter 1. Introduction

There are various automated testing tools and techniques (e.g., combina-
torial testing (CT), random testing, search-based testing) that have been used
to generate high-quality test cases while reducing the cost of a testing pro-
cess [5]. In this regard, Model-based Testing (MBT) techniques have also
shown promising results [6]. Different studies (e.g., [7], [8], [9], [10]) have
shown multiple benefits of model-based approaches for the testing of embed-
ded systems. These benefits include the aid provided by modeling of a SUT to
verify and validate system requirements at the initial level of the development
process, generation of test artifacts before the development of a real system,
and increasing the test coverage as well as fault detection rate while reducing
the cost of the testing process in terms of time, effort, and resources [11].

Motivation: In literature, multiple state-of-the-art MBT approaches (e.g.,
[12], [13], [14], [15]) exist for the testing of safety-critical embedded systems.
However, industrial adoption of MBT proposed solutions and approaches is
slow due to platform-dependent and domain-centric solutions focusing on a
specific scope of a system [6] [16]. The lack of industrial success stories and
practical guidelines, as well as limited empirical and evidence-based studies
are also among the reasons for the limited adoption of MBT techniques [17].
Furthermore, we have found few studies (i.e. [18] and [19]) that have reported
the details on the concretization process (executable test cases) at system and
integration levels. This motivates us to empirically investigate the use of MBT
techniques in practice for the testing of safety-critical embedded systems at the
system level.

Summary of the Contributions: In this thesis, we have examined the
efforts of modeling a safety-critical system in terms of completeness and rep-
resentativeness using an open-source MBT tool (i.e. GraphWalker (GW)). We
further evaluated the behavioral differences between the abstract test cases gen-
erated by modelling notations, generation algorithms and stopping conditions
of the selected tool and manually written test cases using an industrial case
study. We have also proposed a Model-Based Test scrIpt GenEration fRame-
work (TIGER) for the testing of safety-critical embedded systems and defined
mapping rules for the concretization of GW-generated abstract test cases along
with tool support to generate test artifacts (i.e. test cases and test scripts) at
the system level and evaluated the proposed approach in close industrial col-
laboration. We have developed a cost model to measure the efficiency of a
testing technique and used Modified Condition Decision Coverage (MC/DC)

4 Chapter 1. Introduction

There are various automated testing tools and techniques (e.g., combina-
torial testing (CT), random testing, search-based testing) that have been used
to generate high-quality test cases while reducing the cost of a testing pro-
cess [5]. In this regard, Model-based Testing (MBT) techniques have also
shown promising results [6]. Different studies (e.g., [7], [8], [9], [10]) have
shown multiple benefits of model-based approaches for the testing of embed-
ded systems. These benefits include the aid provided by modeling of a SUT to
verify and validate system requirements at the initial level of the development
process, generation of test artifacts before the development of a real system,
and increasing the test coverage as well as fault detection rate while reducing
the cost of the testing process in terms of time, effort, and resources [11].

Motivation: In literature, multiple state-of-the-art MBT approaches (e.g.,
[12], [13], [14], [15]) exist for the testing of safety-critical embedded systems.
However, industrial adoption of MBT proposed solutions and approaches is
slow due to platform-dependent and domain-centric solutions focusing on a
specific scope of a system [6] [16]. The lack of industrial success stories and
practical guidelines, as well as limited empirical and evidence-based studies
are also among the reasons for the limited adoption of MBT techniques [17].
Furthermore, we have found few studies (i.e. [18] and [19]) that have reported
the details on the concretization process (executable test cases) at system and
integration levels. This motivates us to empirically investigate the use of MBT
techniques in practice for the testing of safety-critical embedded systems at the
system level.

Summary of the Contributions: In this thesis, we have examined the
efforts of modeling a safety-critical system in terms of completeness and rep-
resentativeness using an open-source MBT tool (i.e. GraphWalker (GW)). We
further evaluated the behavioral differences between the abstract test cases gen-
erated by modelling notations, generation algorithms and stopping conditions
of the selected tool and manually written test cases using an industrial case
study. We have also proposed a Model-Based Test scrIpt GenEration fRame-
work (TIGER) for the testing of safety-critical embedded systems and defined
mapping rules for the concretization of GW-generated abstract test cases along
with tool support to generate test artifacts (i.e. test cases and test scripts) at
the system level and evaluated the proposed approach in close industrial col-
laboration. We have developed a cost model to measure the efficiency of a
testing technique and used Modified Condition Decision Coverage (MC/DC)

20



5

and requirement coverage to examine the effectiveness. Requirement coverage
is an important criterion for our industrial partner at system level. Multiple
safety standards such as ISO 26262 [20], IEC 61508 [21], EN 50128, and EN
50657 [22] also recommend the MC/DC coverage for the generation and eval-
uation of test suites [23]. Multiple studies (e.g., [24], [25], etc) also showed
the effectiveness of MC/DC adequate test suite for the testing of safety-critical
systems. Similarly, different studies (e.g., [26], [27], [28], [29], etc.) showed
the effectiveness of CT-generated test suite as well as used it to achieve MC/DC
adequacy for the testing of safety-critical systems based on parameters/signals
interactions at the system level. Hence, we have also performed a comparative
analysis between the test suites generated by the MBT framework (TIGER),
CT, and written manually by industrial practitioners, in terms of MC/DC, re-
quirement coverage, and efficiency (i.e. test generation and execution). Fur-
thermore, it is also evident from the literature (e.g., [30], [31], [32], [33], etc.)
that the behavioral and structural coverage alone is not sufficient to evaluate the
quality of a test suite. Hence, to provide a complete evaluation of test suites,
we have also examined the fault detection capabilities of each test suite using
mutation analysis.

Results: The comprehensive evaluation of the testing techniques used in
this thesis shows that:

• The proposed framework (i.e., TIGER) is capable of generating system-
level test cases and scripts to validate a safety-critical SUT.

• Test suite generated by MBT using a random generator algorithm and
edge coverage criterion provided higher MC/DC than combinatorial and
manual testing, and tends to cover each requirement multiple times while
achieving the same level of requirement coverage.

• MBT-generated test suite acted as a superset that contained the highest
number of similar and unique test cases across the test suites generated
by other selected techniques (i.e. CT and manual testing).

• MBT-generated test suites are more relevant to manual specification-
based testing in terms of structure and completeness (i.e, input, expected
output and constraints) and will complement manual testing in practice
to achieve higher MC/DC coverage.
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6 Chapter 1. Introduction

• CT was found to be the most efficient technique in terms of test genera-
tion and execution time with an additional cost of writing the test scripts
along with the inclusion of expected output and timing constraints man-
ually in the test suite.

• MBT-generated test suite achieved a higher fault detection rate than man-
ual testing practices in the industry. However, regardless of the highest
MC/DC, it provided a slightly lower fault detection rate than the CT-
generated test suite with high combinational interaction strength (i.e. 3-
ways and 4-ways).

Outline of the Thesis: The thesis consist of two parts. Part I provides
an overview of the conducted research and organized as follows: Chapter 2
provides a brief overview of the background along with related work, Chap-
ter 3 presents the research goals, methodology and research process, Chapter 4
summarizes the included papers and contributions, Chapter 5 deals with dis-
cussion and limitations of the thesis followed by conclusion and future work in
Chapter 6. Part II includes the published papers, which have been formatted to
comply with the format of the thesis.
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Chapter 2

Background & Related Work

This chapter explains the fundamentals of the development of safety-critical
embedded software, the purpose of its testing in industry, system-level testing
techniques, test coverage, and mutation analysis followed by related work that
has been carried out in similar domains.

2.1 Embedded Safety-Critical Software and its
Testing

Embedded systems are composed of hardware and software components that
interact with the real world through sensors and actuators to manipulate the
environment [34]. The hardware of the embedded systems is controlled by
a software system that is responsible for regular and safety-critical functions
according to requirement specifications. These systems are specially designed
and developed to facilitate humans to execute complex tasks with a reduction of
effort and time. Such systems have widely been adopted in different domains
such as aviation, transportation, nuclear power plants, etc and failure of these
systems can cause harm to human life, and the environment as well as can cause
economic problems [35]. Hence, the development of the software controlling
the safety-critical function requires a certain degree of software verification
and validation through a defined process according to certain safety standards
and regulations to ensure its reliability.
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8 Chapter 2. Background & Related Work

2.1.1 Development of Safety-Critical Software in Industry

The development of safety-critical software in the industry starts with the re-
quirement analysis based on qualitative and quantitative analysis techniques
such as fault tree analysis, expert analysis, etc. [36]. After the analysis of the
requirements, the safety-critical software is usually implemented for specially
designed computers known as Programmable Logic Controllers (PLCs), which
are responsible for performing safety-critical operations of a system. PLCs
receive the input signals from the sensors, perform computational logic and
send the instructions via a computer network as the output to different modules
and subsystems to perform the safety-specific tasks. There are several pro-
gramming languages defined by the International Electrotechnical Commission
(IEC) [37] to implement safety-critical software applications for PLCs (e.g.,
Instruction List (IL), Structured Text (ST), Functional Block Diagram (FBD),
etc.). In this context, FBD is a renowned language and has been adopted by
Alstom to develop the system under consideration.

FBD uses a graphical modeling notation representing the different func-
tions and functional blocks such as arithmetic, selection, comparison, etc.
These function blocks are connected to each other through input and output
variables to define the functional properties and relationships between different
components of the software application according to defined functional and
non-functional requirements. Figure 2.1 represents an example of an FBD
program consisting of the arithmetic operators (AND, OR, NOT, XOR), a
latch (SR), and a timer (TON) function block. It takes six parameters/signals
as inputs and provides one output based on the logic represented by functional
blocks and after a delay of five seconds. The developed FBD programs are
then complied through specific industrial compiling tools and transformed into
the source and machine code.

2.1.2 Testing of Safety-Critical Software in Industry

Software verification and validation of safety-critical software is an iterative
process that is carried out throughout the development life cycle to ensure its
behavioral functionality according to system requirements. In industrial prac-
tices, the testing process starts in parallel to the software development process
following the V-model which has been widely accepted by the industrial prac-
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2.1 Embedded Safety-Critical Software and its Testing 9

Figure 2.1: An example of FBD program with six inputs and one output

titioners developing the embedded software [38] [39] [40]. However, different
versions of V-models [41] are followed by different industries according to
their business needs. In this section, we have presented a simplified version of
the V-model as shown in Figure 2.2 to provide the fundamental concepts used
in this thesis.

The V-Model is divided into four phases i.e., the development phase, test
design phase, testing phase, and implementation phase. On the left side of
Figure 2.2, the development phase is illustrated in which each activity of the
development life cycle is presented at the abstract level [40]. The details in
the functional specification about the system increase at each level correspond-
ingly. Level 0 deals with the functional specification from a customer per-
spective, level 1 provides the functional design of the complete system, level 2
specifies the detailed description of data transfer and communication between
each module and external environment whereas level 3 deals with the detailed
functional specification of each module at the unit level. The test design phase
is carried out in parallel to the development phase in which test specifications
for each level are created accordingly. The implementation phase deals with
the actual development of each module of the system to realize the system
requirements. After the development of each module, the test designs are ex-
ecuted in an iterative and incremental manner during the testing phase which
has been illustrated on the right side of the figure.

The test execution phase in the embedded system industry is usually car-
ried out at three levels (i.e., Model-in-the-loop (MiL), Software-in-the-Loop
(SiL), and Hardware-in-the-Loop (HiL)) [34]. At the MiL level, the tests are

2.1 Embedded Safety-Critical Software and its Testing 9

Figure 2.1: An example of FBD program with six inputs and one output

titioners developing the embedded software [38] [39] [40]. However, different
versions of V-models [41] are followed by different industries according to
their business needs. In this section, we have presented a simplified version of
the V-model as shown in Figure 2.2 to provide the fundamental concepts used
in this thesis.

The V-Model is divided into four phases i.e., the development phase, test
design phase, testing phase, and implementation phase. On the left side of
Figure 2.2, the development phase is illustrated in which each activity of the
development life cycle is presented at the abstract level [40]. The details in
the functional specification about the system increase at each level correspond-
ingly. Level 0 deals with the functional specification from a customer per-
spective, level 1 provides the functional design of the complete system, level 2
specifies the detailed description of data transfer and communication between
each module and external environment whereas level 3 deals with the detailed
functional specification of each module at the unit level. The test design phase
is carried out in parallel to the development phase in which test specifications
for each level are created accordingly. The implementation phase deals with
the actual development of each module of the system to realize the system
requirements. After the development of each module, the test designs are ex-
ecuted in an iterative and incremental manner during the testing phase which
has been illustrated on the right side of the figure.

The test execution phase in the embedded system industry is usually car-
ried out at three levels (i.e., Model-in-the-loop (MiL), Software-in-the-Loop
(SiL), and Hardware-in-the-Loop (HiL)) [34]. At the MiL level, the tests are

25



10 Chapter 2. Background & Related Work

Figure 2.2: A simplified version of a V-model

executed on the model representing the requirements of the system to verify the
conformance of the model with requirements as well as computational logic.
Whereas, at the SiL level, the tests are executed on the actual software and
using experimental hardware (i.e. simulation depicting the behaviors of actual
hardware). On the other hand, at the HiL level, the tests are executed on the
actual software and hardware in a simulated or virtual test environment.

The testing complexity and effort needed for each activity in the testing
phase grows with each step [39]. Each defined activity contains different test
objectives, input/output space, and communication format. At the unit and in-
tegration level, the test objectives, as well as the input/output space, are limited
to the functionality of smaller parts of the system. Whereas the complexity
at the system level increases with the increase of the input/output space and
the number of integrated modules which consequently increases the effort of
testing at the system level.

2.2 System-Level Testing Techniques
The primary purpose of the software testing technique is to develop high-
quality test artifacts (i.e., test cases and test scripts) to validate the system
requirements and its reliability. There exist different automated testing tech-
niques such as search-based testing [42], random testing [43], model-based
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2.2 System-Level Testing Techniques 11

testing (MBT) [44], and combinatorial testing (CT) [45] which can be used
to generate test artifacts to validate a SUT automatically with the reduction of
cost in terms of effort and time. However, manual testing is still considered
an equally prevalent technique and has been widely applied in the industry
as a complement to automated software testing [46]. These techniques can
be applied at different levels of testing (e.g., component, integration testing).
However, in this thesis, CT, MBT, and manual testing are conducted at the
system level to empirically evaluate the system’s compliance with its specified
requirements. There exist multiple studies (e.g., [47], [48], [26], [49], etc.) in
the literature which have shown the advantages of CT and MBT in terms of
effectiveness and efficiency to validate safety-critical software at the system
level.

2.2.1 Manual Testing

In manual testing, the test cases for a safety-critical system are designed manu-
ally following certain safety standards defined by different organizations (e.g.,
ISO [20], IEC [21], etc.). It utilizes requirement and test specifications to de-
sign the test cases based on test objective and different structural or behavioral
coverage criteria such as statement coverage and input space partitioning, re-
spectively. The test cases are written in natural language in the form of test
steps consisting of input, expected output, and constraints according to system
requirements. These test cases are then converted into concrete test cases or
test scripts which can be executed manually or automatically on the SUT to
produce test verdicts.

2.2.2 Combinatorial Testing

CT is an automated testing technique that is used to generate a test suite in form
of a coverage array based on the interaction possibilities between the input pa-
rameters of the system [50]. Each row in generated covering array represents a
test case that is used to validate functional requirements. It provides a t-ways
testing strategy to generate a relevant, unique, and a finite number of test cases
in a test suite using different meta-heuristic algorithms. The number of test
cases generated by CT depends on the value of t, which is also known as inter-
action strength. For example, if a test suite is generated using a pairwise (i.e.,
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12 Chapter 2. Background & Related Work

2-ways) interaction strength, the test cases cover all combinations between the
pairs of inputs parameters at least once.

2.2.3 Model-based Testing

MBT [51] is one of the advanced automated techniques that can be used to gen-
erate test cases as well as test scripts automatically using an explicit model rep-
resenting the behavioral and environmental aspects of the system. The model
used by the MBT can be created using different modeling notations such as
Unified Modelling Language (UML), system sequence diagram (SSD), Finite
State Machine (FSM), etc. depending on the test objectives. For example,
for system-level testing, an FSM model consisting of nodes (i.e., depicting
the states of the system), edges (i.e., illustrating the transition between these
states), and guard conditions (i.e., Boolean constraints representing the ex-
pected behavior of the system) is created. Once a model is available, it is
then used to generate abstract test cases based on generation algorithms (e.g.,
random, weight random) and stopping conditions (e.g., edge coverage, require-
ment coverage). These abstract test cases are then transformed into concrete
test cases/test scripts and executed on the SUT to generate test verdicts.

2.3 Test Coverage

The test coverage in software testing is a metric that evaluates the thoroughness
of a test suite by measuring the degree of covered elements (e.g., code and re-
quirements) provided by a test suite at the design or implementation level [52].
There exist different test coverage criteria such as branch coverage, statement
coverage, and requirement coverage to evaluate and generate a test suite. How-
ever, in this thesis, we have performed an empirical comparative evaluation of
the test suite generated by the above-mentioned techniques using requirement
coverage and Modified Condition Decision Coverage (MC/DC). We have se-
lected the requirement coverage criterion as it is a de facto standard for our in-
dustrial partner (i.e., Alstom Transportation AB) for the creation of test suites.
Whereas MC/DC has been widely accepted by industrial practitioners as well
as different safety standards (e.g., ISO 26262 [20], IEEE 50657 [22]) recom-
mend it for the testing of safety-critical systems. Moreover, different studies
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2.4 Mutation Analysis 13

(e.g., [24], [53]) showed evidence of the effectiveness of MC/DC adequate test
suite for the validation of safety-critical systems.

2.3.1 Requirement Coverage

For a safety-critical system, it is important to analyze that each safety and do-
main requirements of the system documented in the requirement specification
is covered by a test suite at least once [51]. Requirement coverage is one of the
basic black-box coverage criteria that is used to access the behavioral coverage
of a test suite. It measures the total number of implemented requirements, de-
termines the undocumented requirements in the implementation as well as the
total number of test cases required to cover each requirement.

2.3.2 Modified Condition Decision Coverage

MC/DC is one of the structural coverage criteria to measure the code cover-
age of the implemented functionalities. It is also known as cost-effective and
a stronger coverage criterion by providing relatively higher logical predicates
and path coverage of implemented code than decision and condition/decision
coverage [54]. It evaluates a test suite based on the number of invoked entry
and exit points in a program, the number of possible outcomes covered for
each condition, the number of possible outcomes covered for each decision,
and the number of covered conditions having an independent effect on the de-
cision [55].

2.4 Mutation Analysis

The test coverage criteria can be used to measure the area of code covered by a
test suite and to provide information about the possibilities to improve test ad-
equacy. However, different studies (e.g., [30], [31]) showed that, regardless of
high test coverage, multiple factors can affect the fault detection effectiveness
of a test suite. Hence, in this thesis, to provide a complete evaluation, we have
also measured the fault detection effectiveness of generated test suites using
mutation analysis.

Mutation analysis [56] is an evaluation technique that is used to determine
the fault detection rate of a test suite. It involves creating different versions of
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the original program and inducing small faults representing common program-
ming errors, syntactical mistakes, or logical errors in each version, systemati-
cally. These faulty versions of the original program are known as mutants. The
mutant can be categorized as equivalent and non-equivalent mutants. A mutant
is said to be equivalent if it exhibits similar behavior to the original program
that can not be killed by any test case in a test suite. Whereas a mutant exhibit-
ing different behavior than the original program is considered a non-equivalent
mutant that can be killed by potential test cases in a test suite. After the cre-
ation of mutants, the test suites are designed by a particular testing technique
and executed on the original and mutated versions of the program. If there is a
contradiction between the test results of executed test suites on the original pro-
gram and the mutant version, then the mutant is said to be killed otherwise it is
alive. The mutation score is then calculated based on strong mutation (output-
only oracle) and weak mutation (internal state change or internal oracle) by
determining the number of killed and alive mutants.

2.5 Related Work

This section deals with the state-of-the-art studies that have proposed, investi-
gated, and compared model-based testing techniques to generate test artifacts
(i.e. test cases and test scripts) in different domains. There exist various stud-
ies (e.g. [9], [8], [12], [57], [58], [59], [60], [53], [61], [62], [10], [63], [17],
[64]) that have proposed multiple model-based approaches and tools as well as
evaluated the proposed approaches in terms of test generation efficiency and
fault detection effectiveness. A summary of this literature is presented below.

MBT proposed approaches: Model-Based Testing (MBT) showed promis-
ing results while dealing with the productivity and time-to-market constraints
of embedded systems. It not only promises to improve reliability and reusabil-
ity features but also expedites the design verification process [57]. Guan and
Offutt [9] proposed a novel MBT approach for the testing of real-time prop-
erties in component-based embedded systems. Particularly, the authors in-
troduced the generation of a Component-based Real-time Embedded Model-
based Test Graph (CREMTEG) from sequence and state diagrams. Subse-
quently, test cases are generated using pre-defined test criteria. The validation
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is performed through prototype implementation in industrial settings. In an-
other study, Marinescu et al. [8] proposed MBT approach by extending EAST-
ADL models with timed automata semantics to generate concrete test cases in
python to perform real-time testing. Enoiu et al. [12] [59] proposed a tool-
supported approach using model checking to generate test cases and provided
an empirical evaluation of the proposed approach by applying it for the vali-
dation of safety-critical embedded systems at unit level. The results showed
that the proposed approach positively affected the testing process in terms of
test coverage and the tool was found to be efficient for test generation. Tseng
et al. [60] introduced an ontology-based MBT approach where sequence dia-
grams are generated from textual Safety Analysis Report (SAR). The proposed
approach is also used to generate scenario test cases for black-box testing.
Gannous et al. [58] introduced the integration of safety certification in MBT
with the proposal of a Model-Combinatorial based testing (MCbt) framework
that allows the generation of both normal behavior and failure paths along
with failure mitigation paths. The applicability of the proposed approach is
demonstrated through a railroad crossing control system case study. The re-
sults showed that the proposed approach is highly efficient in terms of time for
testing safety-critical embedded systems.
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well as reported the lesson learned in adopting the MBT technique for the val-
idation of embedded applications. Jose et al. [63] proposed a hybrid approach
based on combinatorial and MBT and performed a comparative evaluation in
terms of fault detection effectiveness with manual testing tools. The results
illustrated the higher fault detection rate of the proposed approach than manual
testing tools.

Experienced reports on MBT: Alegroth et al. [17] conducted interviews
with different international MBT experts considering technical and non-
technical factors to provide guidance on the adoption and abandonment of
MBT practices. The results of the study have drawn multiple implications
related to the abstract design of models and the aptitude of an individual for
abstraction, collaboration among stakeholders to provide early fault detection,
use of scenario-based requirements, etc. In another study, Garousi et al. [64]
presented an experience report on the adoption of MBT practices to automate
the testing process in the industrial setting of the web application domain.
They also reported the lessons learned as well as various benefits of MBT
practices including improved test coverage, test design, and fault detection
effectiveness.
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Chapter 3

Research Overview

This chapter provides a brief description of the research goals along with the
methodology used to conduct the research activities to achieve the defined re-
search goals.

3.1 Motivation & Research Goal

A safety-critical system consists of different integrated modules and subsys-
tems communicating with each other to perform real-time operations accord-
ing to specified requirements [65]. Verification and validation of safety-critical
functions is carried out at different levels (i.e., unit, integration, and system
level). The scope of testing at the unit and integration level is limited to a com-
ponent/module implementing a requirement or a limited number of compo-
nents/modules communicating with each other, respectively. Whereas system-
level testing ensures the correctness of a system by developing test cases cov-
ering each requirement of the system and determining errors in the implemen-
tation violating the system requirements. The severity of testing effort and cost
increases at the system level with the increase in the number of integrated com-
ponents/modules and subsystems. Hence, the focus of this thesis is to adapt,
apply and evaluate system-level test generation approaches in an industrial set-
ting.

As mentioned in Section 2.2, different automated testing techniques can be
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used to generate the system-level test artifacts. MBT is one of the techniques
that can be applied throughout the V-model at different integration levels de-
pending on test objectives, modeling language, generation algorithm, test se-
lection criteria and scope of the MBT model [51] [66]. During a development
life cycle, MBT is mostly used for the generation of high-level tests focusing
on functional and non-functional aspects of a system [51]. At the system level,
MBT models represent the SUT as a black box containing the details about the
functional and non-functional requirements, and the system environment. At
the integration level, MBT models depict the data flow and the expected behav-
iors between the components interacting with each other. And at the unit level,
the MBT model represents the functional aspects of a component of a system.
Furthermore, it also addresses two non-trivial problems (i.e., the problem of
translating user and consistency requirements into concrete input and the or-
acle problem) of the validation process of a system by generating test inputs
and expected output from the model before the actual implementation of the
system [66]. However, the adoption of MBT is slow and limited in the industry
due to a lack of industrial success stories and practical guidelines, platform-
dependent solutions, and limited empirical studies [17]. This motivates us to
empirically investigate MBT in practice to validate safety-critical embedded
software at the system level.

Main Objective. To adapt, compare, and evaluate model-based test genera-
tion of system-level test artifacts for safety-critical embedded software.

• Subgoal 1 (SG 1). To investigate and study state-of-the-art model-based
test generation tools, and evaluate the selected tool in terms of model
completeness and representativeness in an industrial setting.

• Subgoal 2 (SG 2). To develop and apply a system-level model-based test
generation approach for safety-critical embedded system in an industrial
setting.

• Subgoal 3 (SG 3). To perform a comparative analysis between the
model-based test generation approach, combinatorial-based, and man-
ual approaches in terms of test coverage, fault detection effectiveness,
and efficiency in an industrial setting.
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3.2 Research Method 19

3.2 Research Method

In software engineering, there exist multiple methods (e.g., case study, exper-
iment, survey) to conduct empirical research depending on the research goals,
type of analysis, and interpretation of data (i.e. qualitative and quantitative)
[67] [68]. In this thesis, we focus on qualitative and quantitative data to pro-
vide a better interpretation of research results to the research community and
industrial practitioners.

We have used a mixed methodology to conduct our research based on for-
mulated research goals (presented in Section 3.1). We have used case studies
and experimentation as research methodologies to evaluate the proposed solu-
tion using industrial examples. The mapping of research methods with research
goals is shown in Table 3.1.

Table 3.1: Research method mapping with type of data and research goals

Research Goal(s) Type of Data Analysis Case Study Experiment
SG 1 Qualitative ✓
SG 2 Qualitative & Quantitative ✓ ✓
SG 3 Qualitative & Quantitative ✓ ✓

3.2.1 Research Process

We have defined our research process in six iterative steps: (1) Review of in-
dustrial system and processes, (2) Problem identification and formulation, (3)
Proposal of a solution, (4) Solution/Tool implementation, (5) Validation, and
(6) Publication of research results. This is captured in Figure 3.1.

1. Review of Industrial System and Processes: We have conducted this
step to understand the industrial systems, practices, and processes adopted by
industrial practitioners at Alstom. This was done as a preparation to identify
their needs and challenges.

2. Problem Identification and Formulation: This step was done to
identify industrial problems based on the analysis carried out in the previous

3.2 Research Method 19

3.2 Research Method

In software engineering, there exist multiple methods (e.g., case study, exper-
iment, survey) to conduct empirical research depending on the research goals,
type of analysis, and interpretation of data (i.e. qualitative and quantitative)
[67] [68]. In this thesis, we focus on qualitative and quantitative data to pro-
vide a better interpretation of research results to the research community and
industrial practitioners.

We have used a mixed methodology to conduct our research based on for-
mulated research goals (presented in Section 3.1). We have used case studies
and experimentation as research methodologies to evaluate the proposed solu-
tion using industrial examples. The mapping of research methods with research
goals is shown in Table 3.1.

Table 3.1: Research method mapping with type of data and research goals

Research Goal(s) Type of Data Analysis Case Study Experiment
SG 1 Qualitative ✓
SG 2 Qualitative & Quantitative ✓ ✓
SG 3 Qualitative & Quantitative ✓ ✓

3.2.1 Research Process

We have defined our research process in six iterative steps: (1) Review of in-
dustrial system and processes, (2) Problem identification and formulation, (3)
Proposal of a solution, (4) Solution/Tool implementation, (5) Validation, and
(6) Publication of research results. This is captured in Figure 3.1.

1. Review of Industrial System and Processes: We have conducted this
step to understand the industrial systems, practices, and processes adopted by
industrial practitioners at Alstom. This was done as a preparation to identify
their needs and challenges.

2. Problem Identification and Formulation: This step was done to
identify industrial problems based on the analysis carried out in the previous

35



20 Chapter 3. Research Overview

Figure 3.1: Overview of the research process applied in the thesis

step. We have also formulated an overall research goal based on the identified
problem and challenges that we may encounter while using state-of-the-art
MBT tools and techniques for automatic test generation in industrial settings.
In Paper A [69], we started with an investigation of MBT tools from the
literature. We then evaluated the modeling efforts of the selected tool and
behavioral differences between the test cases written manually and generated
through MBT.

3. Propose Solution: The investigation based on test generation capa-
bilities and modeling aspects of MBT tools in Paper A led us to propose a
model-based test script generation framework to generate test artifacts (i.e.,
abstract test cases and test scripts) in Paper B [70]. We have also defined some
mapping rules to generate concrete test scripts implemented in C# language
to utilize the Alstom-specific testing framework in a real industrial setting.
The proposed framework was developed and improved through continuous
feedback from the testing team at Alstom.

4. Implement Solution: After proposing the MBT framework for test
script generation at the system level, an initial prototype (TIGER tool) was
developed in C# language using Microsoft Visual Studio and the source
code is available on GitHub. Moreover, for evaluation purposes, we have
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also implemented a combinatorial-based test script generation tool (i.e.,
CATSGen), which contains similar implementation details and mapping rules
to TIGER.

5. Validation: The test scripts generated through the prototypes were
deployed and executed using the Alstom testing framework and validated
by producing test verdicts in an industrial setting. In Paper C [71] and D,
we have conducted a comprehensive and comparative evaluation of the test
suites developed by MBT, CT, and manual testing practices. We defined and
used different metrics to evaluate and compare the test suites in terms of test
coverage, test generation efficiency, and fault detection effectiveness. It is im-
portant to mention here that all the validations of generated test scripts and the
framework are done at the SiL level using the virtual test environment of a train.

6. Publication of Research Results: The results of investigations and
evaluations were published in the form of research papers as shown in Sec-
tion 4.3.
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Chapter 4

Contributions

In this chapter, we present a summary of the contributions to realize the de-
fined goal of this thesis along with a mapping of each contribution towards the
subgoals.

4.1 Thesis Contributions

In this thesis, we have proposed an MBT test script generation framework,
and empirically investigated, compared, and evaluated the effectiveness and
efficiency of it in an industrial environment using multiple case studies and
experiments.

(C1) In Paper A [69], we have conducted an investigation for the selection of
a MBT tool and have provided an empirical evaluation of the selected
tool, GraphWalker (GW), in terms of model completeness and represen-
tativeness to generate abstract test cases. Moreover, we have performed
a comparative analysis between manually written test cases by industrial
practitioners at Alstom in Sweden, and the test cases generated by GW
based on a specific modeling notation (FSM), generator algorithms, and
coverage criteria in terms of behavioral differences.

(C2) In Paper B [70], we have implemented a Model-Based Test scrIpt Gen-
Eration fRamework (TIGER), based on GW, for system-level test scripts
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in C# language. We have also provided an evaluation of the proposed
framework by executing generated test scripts at the SiL level using
model-level mutation testing.

(C3) A thorough evaluation of test artifacts (i.e., test cases, test scripts) gen-
erated by MBT (using TIGER), combinatorial, and manual testing tech-
niques in terms of MC/DC and requirement coverage is presented in
Paper C [71]. We have investigated the MC/DC conditions to determine
the least dominant condition affected by each technique. Moreover, we
have proposed a cost model to evaluate the efficiency of each technique.
Finally, we have performed a comparative analysis to determine the dif-
ferences and overlaps (i.e., multiple instances of different or similar test
inputs, expected outputs, and constraints, respectively) between the gen-
erated test cases.

(C4) In Paper D, we have implemented an CT-based test script generation tool
(CATSgen) and provided a comparative empirical evaluation of the test
suites developed by manual, CT and MBT in terms of fault detection
effectiveness. We have also analyzed the sensitivity of each test suite
towards mutant operators as well as performed an analysis between the
mutation scores and coverage levels achieved by each testing technique.

Figure 4.1 represents a generic, practical workflow of software testing us-
ing manual, CT and MBT techniques along with the specific contributions (C).
The workflow has six steps: (1) requirements and requirement analysis, (2) do-
main knowledge of the tester in manual testing and creation of models for MBT
and CT, (3) selection of test generation criteria, algorithms, and tools in case of
MBT and CT, and the creation of test design in manual testing, (4) creation of
test cases and test scripts, (5) execution of test scripts, and (6) generation of test
verdict. The arrow from step 5 to step 2 represents the iterative nature of the
workflow, which is triggered when a fault occurs during test execution due to a
specific reason (e.g., incorrect translation of abstract test cases to concrete test
cases/scripts, change/misinterpretation of requirement or parameter/signal).
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Figure 4.1: A workflow of software testing techniques and mapping of contributed areas
of the included papers

4.2 Individual Contribution

I am the primary researcher, driver and author of all the included papers. How-
ever, all the other co-authors have contributed with their valuable ideas, dis-
cussions and reviews. The supervision team has also contributed in refining
the text.

4.3 Included Papers

All the included papers in this thesis have a contribution toward the research
goal and the mapping of these contributions is shown in Table 4.1.

In Paper A, we have provided the selection criteria of MBT tools, our initial
experience with the selected tool (i.e., GW), and examined the modeling effort
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Table 4.1: Mapping of research papers towards the contribution of individual research
subgoals

SG 1 SG 2 SG 3
C1: Paper A ✓ ✓
C2: Paper B ✓
C3: Paper C ✓
C4: Paper D ✓

in terms of model completeness and representativeness to realize SG 1 whereas
the evaluation of MBT and manually created test cases in terms of behavioral
differences is done to achieve SG 3. The SG 2 is fulfilled in Paper B in which
we have proposed and implemented the model-based Test scrIpt GenEratIon
fRamework (TIGER) and applied the proposed framework to generate and val-
idate test scripts in industrial settings. In Paper C and D, we have provided a
complete evaluation of the MBT-generated test suite and performed a compar-
ative analysis between MBT, CT, and manually created test suites in terms of
test coverage, test effectiveness, and efficiency to accomplish the SG3.

4.3.1 Paper A

Title: Model-Based Testing in Practice: An Industrial Case Study using
GraphWalker

Authors: Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu,
Athanasios Stratis, Aitor Arrieta, Goiuria Sagardui

Status: Published in The 14th Innovations in Software Engineering Con-
ference 2021 (ISEC 2021)

Abstract: Model-based testing (MBT) is a test design technique that sup-
ports the automation of software testing processes and generates test artifacts
based on a system model representing behavioral aspects of the system under
test (SUT). Previous research has shown some positive aspects of MBT such
as low-cost test case generation and fault detection effectiveness. However,
it is still a challenge for both practitioners and researchers to evaluate MBT
tools and techniques in real, industrial settings. Consequently, the empirical
evidence regarding the mainstream use, including the modeling and test case
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generation using MBT tools, is limited. In this paper, we report the results
of a case study on applying GraphWalker, an open-source tool for MBT, on
an industrial cyber-physical system (i.e., a Train Control Management System
developed by Bombardier Transportation in Sweden), from modeling of real-
world requirements and test specifications to test case generation. We evalu-
ate the models of the SUT for completeness and representativeness, compare
MBT with manual test cases written by practitioners using multiple attributes
as well as share our experiences of selecting and using GraphWalker for indus-
trial application. The results show that a model of the SUT created using both
requirements and test specifications provide a better understanding of the SUT
from the testers’ perspective, making it completer and more representative than
the model created based only on the requirements specification alone. The gen-
erated model-based test cases are longer in terms of the number of test steps,
achieve better edge coverage, and can cover requirements more frequently in
different orders while achieving the same level of requirements coverage as
manually created test cases.

4.3.2 Paper B

Title: A Model-Based Test Script Generation Framework for Embedded Soft-
ware

Authors: Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu,
Athanasios Stratis, Ola Sellin

Status: Published in The 17th Workshop on Advances in Model-Based
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Abstract: The abstract test cases generated through model-based testing
(MBT) need to be concretized to make them executable on the software under
test (SUT). Multiple researchers proposed different solutions, e.g., by utiliz-
ing adapters for the concretization of abstract test cases and the generation of
test scripts. In this paper, we propose our Model-Based Test scrIpt GenEration
fRamework (TIGER) based on GraphWalker, an open-source MBT tool. The
framework is capable of generating test scripts for embedded software control-
ling functions of a cyber-physical system such as passenger trains developed
at Bombardier Transportation AB. The framework follows some defined map-
ping rules for the concretization of abstract test cases. We have evaluated the
generated test scripts using an industrial case study in terms of fault detection.
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We have induced faults in the model of the SUT based on three mutation oper-
ators to generate faulty test scripts. The aim of generating faulty test scripts is
to produce failed test steps and to guarantee the absence of faults in the SUT.
Moreover, we have also generated the test scripts using the correct version
of the model and executed them to analyze the behavior of the generated test
scripts in comparison with manually written test scripts. The results show that
the test scripts generated by GW using the proposed framework are executable,
provide 100% requirements coverage, and can be used to uncover faults at the
software-in-the-loop simulation level of sub-system testing.

4.3.3 Paper C

Title: Evaluating System-Level Test Generation for Industrial Software: A
Comparison between Manual, Combinatorial and Model-Based Testing

Authors: Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu
Status: Published in the 3rd ACM/IEEE International Conference on Au-

tomation of Software Test 2022 (AST 2022)
Abstract: Adequate testing of safety-critical systems is vital to ensure cor-

rect functional and non-functional operations. Previous research has shown
that testing of such systems requires a lot of effort, thus automated testing
techniques have found a certain degree of success. However, automated test-
ing has not replaced the need for manual testing, rather a common industrial
practice exhibits a balance between automated and manual testing. In this re-
spect, comparing manual testing with automated testing techniques continues
to be an interesting topic to investigate. The need for this investigation is most
apparent at system-level testing of industrial systems, where there is a lack
of results on how different testing techniques perform concerning both struc-
tural and system-level metrics such as Modified Condition/Decision Coverage
(MC/DC) and requirement coverage. In addition to the coverage, the cost of
these techniques will also determine their efficiency and thus practical viability.
In this paper, we have developed cost models for efficiency measurement and
performed an experimental evaluation of manual testing, model-based testing
(MBT), and combinatorial testing (CT) in terms of MC/DC and requirement
coverage. The evaluation is done in an industrial context of a safety-critical
system that controls several functions on-board the passenger trains. We have
reported the dominant conditions of MC/DC affected by each technique while
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generating MC/DC adequate test suites. Moreover, we investigated differences
and overlaps of test cases generated by each of the three techniques. The re-
sults showed that all test suites achieved 100% requirement coverage except the
test suite generated by the pairwise testing strategy. However, MBT-generated
test suites were more MC/DC adequate and provided a higher number of both
similar and unique test cases. Moreover, unique test cases generated by MBT
had an observable effect on MC/DC, which will complement manual testing to
increase MC/DC coverage. The least dominant MC/DC condition fulfilled by
the generated test cases by all three techniques is the ‘independent effect of a
condition on the outcomes of a decision’. Lastly, the evaluation also showed
CT as the most efficient testing technique amongst the three in terms of time
required for test generation and execution, but with an added cost parameter of
manual identification of expected outcomes.

4.3.4 Paper D

Title: An Empirical Evaluation of System-Level Test Effectiveness for Safety-
Critical Software

Authors: Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu
Status: Submitted to the 22nd IEEE International Conference on Software

Quality, Reliability, and Security 2022 (QRS 2022).
Abstract: Combinatorial Testing (CT) and Model-Based Testing (MBT)

are two recognized test generation techniques. The evidence of their fault de-
tection effectiveness and comparison with industrial state-of-the-practice is still
scarce, more so at the system level for safety-critical systems, such as those
found in trains. We use mutation analysis to perform a comparative evalua-
tion of CT, MBT, and industrial manual testing in terms of their fault detection
effectiveness using an industrial case study of the safety-critical train control
management system. We examine the fault detection rate per mutant and the re-
lationship between the mutation scores and structural coverage using Modified
Condition Decision Coverage (MC/DC). Our results show that CT 3-ways, CT
4-ways, and MBT provide higher mutation scores. MBT did not perform better
in detecting ‘Logic Replacement Operator-Improved’ mutants when compared
with the other techniques, while manual testing struggled to find ‘Logic Block
Replacement Operator’ mutants. None of the test suites were able to find ‘Time
Block Replacement Operator’ mutants. CT 2-ways was found to be the least
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effective test technique. MBT-generated test suite achieved the highest MC/DC
coverage. We also found a generally consistent positive relationship between
MC/DC coverage and mutation scores for all test suites.
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Chapter 5

Discussion and Limitations

5.1 Discussion

This section provides a discussion on topics of relevance for the thesis. These
are the choice of testing techniques and coverage criteria, controlling the test
suite size, selection of FBD mutants, the complexity of the SUT, and distribu-
tion of faults.

Choice of techniques and coverage criteria: CT, MBT, and industrial
manual, scripted testing used in our studies are based on different test design
principles. However, one commonality is their applicability at the system
level, where system behavior exhibits itself in different combinations that
need thorough testing. Additionally, MC/DC is endorsed as a recommended
coverage criterion for safety-critical system development by various stan-
dards [20] [21] [22]. On the other hand, requirement coverage is one of the de
facto coverage criteria in industry. Thus, for coverage criteria measurement,
this thesis attempts to research the merits and demerits of the selected test
techniques in terms of MC/DC and requirement coverage.

Controlling test suite size: We controlled the size of the test suite for MBT,
in the way of removing duplicate test cases (two or more test cases with the
same inputs and expected outputs) once test generation terminated. For CT, we
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did not control the test suite size as the test generation was not terminated until
the stopping conditions were met. Due to smaller differences in the number of
test cases between different techniques, we do not know for sure if not control-
ling for the test suite size affects our results, but such an investigation would
need new experiments.

Selection and number of FBD mutants: The FBD mutant operators were
selected to mimic the actual programmers’ mistakes that largely occur due to
misinterpretation of requirements. This was done in consultation with a se-
nior developer at Alstom Transport. These actual mistakes were restricted to
a limited set of operators, thus limiting the number of FBD mutants. Also,
as we write in paper D, one FBD program can be used to generate multiple
instances of code related to two or more similar requirements (requirements
sharing the same logic), with the result that one mutant operator injected in
such FBD programs can produce multiple faults, again limiting the number of
generated mutants. Lastly, our endeavor of system-level testing meant that for
every mutant, we had to compile, execute and do mutation analysis on a real-
world safety-critical system at the software-in-the-loop simulation level. This
incurs quite an effort and is drastically different from unit-level mutations in
small programs that can be compiled and run against tests in seconds.

System complexity and faults distribution: The train control management
system (TCMS) is a high-capacity, infrastructure backbone built on open stan-
dard IP-technology that allows easy integration of all control and communica-
tion requiring functions on-board the train. TCMS either controls or supervises
almost all train functions, such as collecting line voltage, controlling train en-
gines, uploading diagnostic data, opening, and closing doors, etc. All of such
functions are built incrementally and tested in different levels of simulation,
the most important being the software-in-the-loop and hardware-in-the-loop
simulations. A typical TCMS has over 100K lines of code on average, while
the lines of code in different functions (like the fire detection subsystem) vary
between approximately 4K to 8K lines of code. Note that such code is auto-
generated from the FBD programs. We relied on a senior programmer’s exper-
tise to create mutants, however, we can also utilize a fault distribution that can
enable us to inject more (fictitious) faults in the future.
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5.2 Limitations
One of the main limitations of this thesis is the generalizability of the results.
We have used one subsystem of the TCMS with the actual number of parame-
ters/signals and constraints defined in the requirement specification, but more
case studies are required to generalize the results of this thesis to larger sys-
tems.

Another limitation is related to the cost of the testing techniques. The cost
model used in this thesis for the evaluation of test generation and execution
time of selected techniques is based on the activities followed by industrial
practitioners at Alstom Transportation AB, Sweden, and defined in [51]. How-
ever, we have not considered the indirect cost and cost of regression testing in
our defined cost model, which includes the maintenance cost of the models,
test suites and tools, etc., hence, considering such costs can also affect the ef-
ficiency results of this thesis. Moreover, the implemented tools based on the
proposed framework in this thesis contain particularities for the generation of
test scripts that may not be applicable to other domains. However, we have
provided some information such as mapping rules and concretization process
that can help adoption in other domains.
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Chapter 6

Conclusion and Future Work

Focusing on the research goal of this thesis, we have explored and examined
the adaption of MBT in industrial settings and proposing a model-based test
script generation framework. We have also performed a comparative empirical
evaluation of test artifacts (i.e., test cases and test scripts) developed by MBT,
CT, and manual testing practices in the industry in terms of cost, test coverage
and fault detection effectiveness.

The results of this thesis showed that MBT-generated test cases using a
random generator algorithm and edge coverage criterion of the selected tool
(i.e., GW) have covered more test scenarios than the test cases generated by
other selected coverage criteria and written manually while achieving a similar
level of requirement coverage as manually developed test cases. Our studies
also showed that the proposed model-based test generation script generation
framework can generate test scripts automatically by taking the FSM model
and XML file (containing the information about signals interacting between
the modules of the system) as inputs.

The empirical evaluation of selected testing techniques has also provided
some meaningful implications. CT is found to be the most cost-efficient tech-
nique than MBT and manual testing but also requires manual efforts to com-
plete the test suite (i.e., the inclusion of expected output and constraints such
as time). Whereas MBT-generated test suites provided the highest MC/DC
coverage than CT and manually written test suites and acted as a superset by
containing the highest number of such test cases that were also part of the test

35

Chapter 6

Conclusion and Future Work

Focusing on the research goal of this thesis, we have explored and examined
the adaption of MBT in industrial settings and proposing a model-based test
script generation framework. We have also performed a comparative empirical
evaluation of test artifacts (i.e., test cases and test scripts) developed by MBT,
CT, and manual testing practices in the industry in terms of cost, test coverage
and fault detection effectiveness.

The results of this thesis showed that MBT-generated test cases using a
random generator algorithm and edge coverage criterion of the selected tool
(i.e., GW) have covered more test scenarios than the test cases generated by
other selected coverage criteria and written manually while achieving a similar
level of requirement coverage as manually developed test cases. Our studies
also showed that the proposed model-based test generation script generation
framework can generate test scripts automatically by taking the FSM model
and XML file (containing the information about signals interacting between
the modules of the system) as inputs.

The empirical evaluation of selected testing techniques has also provided
some meaningful implications. CT is found to be the most cost-efficient tech-
nique than MBT and manual testing but also requires manual efforts to com-
plete the test suite (i.e., the inclusion of expected output and constraints such
as time). Whereas MBT-generated test suites provided the highest MC/DC
coverage than CT and manually written test suites and acted as a superset by
containing the highest number of such test cases that were also part of the test

35

51



36 Chapter 6. Conclusion and Future Work

suites generated by the other testing techniques. It also generated the highest
number of unique test cases that showed an observable effect on the MC/DC
adequacy. MBT-generated test cases are also found to be more similar and
relevant to specification-based manual tests in terms of structure. They can
thus complement the manually written test suite to improve its test coverage
adequacy.

MBT-generated test suites provided a higher fault detection rate than the
manually written test suite, however, it showed a slightly lower fault detection
rate than the test suites generated by 3-ways and 4-ways CT. We also found
that each testing technique has shown a significant level of sensitivity towards
all the mutant operators induced at the FBD level except the operators induced
based on timing constraints, where none of the testing techniques were able
to detect faults. And lastly, we deduced a positive relationship between the
MC/DC coverage and fault detection rate achieved by the generated test suite
of a testing technique.

We conclude that there is no clear winner technique with all metrics we
have used in our studies. However, in a behavior-driven development environ-
ment, the adoption of a hybrid testing strategy with MBT can help in improving
test coverage and fault detection effectiveness of manual test artifacts as well
as automate the V-model activities.

In the future, we will perform the execution and evaluation of test suites
at the hardware-in-the-loop level, explore test suite optimization techniques to
minimize the MBT-generated test suite, and perform a comparative evaluation
with other techniques such as search-based testing. We also see the imple-
mentation and evaluation of online MBT to provide real-time visualization of
requirement coverage, code coverage, and values of signals as another possible
direction of future work.
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