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Abstract—Industrial systems seek advancements to achieve
required level of quality of service and efficient performance
management. It is essential though to have better understanding
of resource utilization behaviour of applications in execution.
Even the expert engineers desire to envision dependencies and
impact of one computer resource on the other. For such reasons
it is advantageous to have fine illustration of resource utilization
behaviour with reduced complexity. Simplified complexity is
useful for the management of shared resources such that an
application with higher cache demand should not be scheduled
together with other cache hungry application at the same time
and same core. However, the performance monitoring data
coming from hardware and software is huge but grouping of
this data based on similar behaviour can display distinguishable
execution phases. For benefits like these we opt to choose change
point analysis method. By using this method our study determines
an optimal threshold which can identify more or less same
segments for other executions of same application and same
event. Furthermore the study demonstrates a synopsis of resource
utilization behaviour with local and compact statistical model.

I. INTRODUCTION

Many modern industrial systems require performance man-
agement to control machines, improve productivity and predict
future problems. In performance management, it is critical
to maintaining a satisfying service level to achieve business
goals. These levels are highly susceptible to the resource
utilization behavior of applications since the platform are
different. However, different applications may have different
resource utilization behavior during their execution. For ex-
ample, an application is considered to be compute-bound if it
mostly requires the processing unit. An application can be seen
as I/0O bound if it mainly utilizes I/O devices, and similarly, an
application is memory bound if it has high memory utilization.
For compute-bound applications, schedulers usually work well
and keep the services aligned to Service Level Agreement
(SLA) but in case of I/O bound applications, there is a
possibility of some processes stressing others, especially in
case of concurrent applications [1]. Therefore, it is valuable to
know at what time a process demands more resources, such as
cache memory, so that the engineers can separate the processes
that has similar demand on same resources.

Such resource usage knowledge can be obtained through
extensive resource utilization analysis of applications (running
individually or in parallel with others). One way to get
this information is through using Performance Monitoring
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Counters (PMCs). PMCs are special purpose, configurable,
hard-wired registers available in the Performance Monitoring
Unit (PMU) of modern processors to monitor PMU events [2].
These registers are used to count how many times a resource
under observation is been utilized. Characterization of ac-
quired measurements can indicate an application’s behavior
based on distribution of data over a period of time.

There are hundreds of different PMU events to select from,
and any one typically can create thousands of data points per
second of execution. Manual analysis of this wealth of data
is very difficult and time-consuming. As shown in Figure 1
the utilization behaviour can be too rational, affinitive or
hierarchical in nature that one single model is not able to
represent such a complex data. However, a way to reduce the
complexity is segmentation. Therefore, our contribution in this
paper is to automatically analyse the acquired measurements
and determine the application behavior over time. More specif-
ically the idea is to automatically identify segments in the data,
similar to what Tukey formulated:

“At a low and practical level, what do we wish to do? We
wish to separate the varieties into distinguishable groups, as
often as we can without too frequently separating varieties
which should stay together.” [3]

Such distinguishable groups, which we call segments in our
study, are often useful for practitioners, analysts, and engineers
to intuitively visualize similar groups of data. These segments
reflect a particular data distribution over a period of time.
Several methods have been proposed to identify segments or
groups such as clustering, segmentation, time series, change
point detection [4], [S], [6] and basic block frequencies [7].
However, one of the widely used is change points detection
which reports departure from the past norm. These change
points split the behavior into segments based on abrupt change
in the distribution and structure of data [6]. Each segment is
segregated based on a model such as mean, median, standard
deviation [S]. With such a statistical method it is possible to
identify segments without any prior information both when
sequences are independent or dependent of each other.

The case we are investigating here considers complete time
series view and the objective is to provide more accurate
estimation of change in time and magnitude. Therefore, the
proposed solution is an offline method, as part of the manual
analysis of applications, rather than online within a running
system. This is also a common approach to evaluate appli-
cations before going into production or deployment. Such a
solution can be standalone artifact or could be a part of a



bigger intelligent tool. Overall, our work is towards automat-
ically creating a resource utilization profile of an application.
The main contributions presented in this paper are:

Segment detection: Our interest lies where the change
is happening after a stable behaviour. In Figure 1(c), for
LID_PEND_MISS, around timed-sample 850 the count goes
significantly up and keeps the level until before sample 1000.
Such period we call a segment and we aim to automatically
identify appropriate segments based on variance analysis.

Segment-wise statistical model: Once the potential seg-
ments are known, finding a local statistical model for each
segment seems a viable solution for representing complex
data series in a compact way using simple statistical methods.
The model provides information about how much resource
utilization is expected during that interval of time. Thus,
instead of permitting static over-provisioning for the entire
execution period, resource allocation can be optimized to the
segment lengths.

This paper begins with a technical background in Section II
to provide relevant knowledge required to easily understand
the contribution made through this work. Next, Section III
explains the proposed approach to achieve the goal of the
study. Section IV extends the readers knowledge for imple-
mentation details and experimental setup. After successful
implementation, results are being discussed in Section V. We
also relate our work to the state-of-the-art in Section VI
Finally the anticipated future work followed by the conclusion
wraps up the paper in Section VII.

II. BACKGROUND

We collect the data using Performance Monitoring Counters
to observe hardware utilization of an application. The seg-
ments are then detected using Change Point Detection method.
And finally a compact representation of each segment is
provided using statistical methods. We present these concepts
in Section II-A, Section II-B, Section II-C respectively.

A. Performance Monitoring Counters

The PMU is typically implemented as a set of registers
programmed with a particular event to be counted. After a
user specified time, the counted events can be read from
the registers. These registers are configured to count events
which is an observable activity, state, or signal coming from
hardware, software, or kernel [8] such as Instructions Retired,
Cache Hits, Cache Misses, CPU Clock Cycles. The name and
number of events can vary on different platforms and different
models [2]. The events which are common across other
platforms are called architectural events (such as Instructions
Retired, UnHalted Core Cycles) and events which are not
consistent across various platforms are called non-architectural
(such as L1D_PEND_MISS) [2]. The event-counting approach
can be polling or sampling where polling means the arbitrary
request for count and sampling is an interrupt-based collection
of event count [9]. An interrupt can either be generated based
on time or when the counter exceeds a certain threshold. Our
approach for data collection is interrupt-based timed sampling.

There are several tools available to acquire PMU measure-
ments but it is possible to have variations in measurements

depending on profiling tool, hardware type, starting time,
reading technique, measurement level, noise etc. [9] but mostly
they are good approximations.

B. Change Points Detection

Change point is a method of detecting structural and distri-
butional changes based on statistical methods like mean, stan-
dard deviation, and variance. The analysis can be parametric or
non-parametric. A parametric analysis estimates by explicitly
providing the location and/or the number of change points
which is somewhat vulnerable to deviation [10]. On the other
hand, non-parametric analysis does not require a probability
distribution assumption beforehand. These methods can be
offline or online. Online methods use a subset of data series
whereas offline methods use complete data series, from start
to end, to make an analysis.

Some of the commonly used methods are likelihood ratio
and Bayesian point of view for single change point and
multiple change points detection respectively. From a Bayesian
point of view, it is possible to update the probability of hy-
pothesis with more data and a penalized contrast function [4].
The process is offline and the penalized contrast function starts
with splitting the data series into two. An empirical estimation
of statistical property (such as standard deviation, root mean
square level, slope) is then calculated for each. Next, the sum
of deviation from all the points in each part is calculated to
see how much residual error exists. The Sum of aggregated
deviations of each part gives a total residual error. This process
is repeated until the final residual error is minimum [11].
Therefore, the Bayesian point befits the aim of our study.

Some of the popular applications of change points detection
are signal processing, genome, trend analysis, time series,
intrusion detection, spam filtering, website tracking, quality
control, step detection, edge detection, and anomaly detection.

C. Statistical Methods

Statistical methods are a conventional approach to analyse,
interpret, and present huge amounts of data into meaningful,
brief notation. Statistics are valuable for engineers to identify
working ranges, behavior, relations, level of significance and
dispersion of data. Some of the common measures are stan-
dard deviation, mean and root mean square level. Standard
deviation is the measure of spread, to show how much the
data points are distant from the mean of the data set. A
low standard deviation means that the data is closely clustered
around the mean whereas a high standard deviation means that
the data is dispersed over a wide range of values.

Since standard deviation is the square root of variance one
might choose standard deviation over variance because it is a
smaller unit, which in some cases is easier to work with. Also,
it is less likely to get the impact of skewing. Variance treats all
the numbers in the series in a same way regardless of whether
they are positive or negative, which is an advantage when the
direction of data is not important. A disadvantage of variance
in case of larger outlying values is skewing so this is not
necessarily a calculation that offers perfect accuracy [12].

Finally, to have a dimensionless analysis, we use Coefficient
of Variance. It is a ratio of standard deviation to mean. Since



it is percentage so the comparison between data of different
units becomes coherent.

III. PROPOSED SOLUTION

We have devised a method that is univariate because it
involves one variable; the measurement of PMU event with
respect to time. We start with presenting the definition of
measurement approach, change point and segment.

Measurement Approach: For application, p, we define
a set of PMU events, F, of size n. For each e€ E, a
measurement series, r,,, is a series of L data points collected
at frequency, f [13]. We run the test application z number
of times so that multiple measurements for each e € F are
acquired in R, = {ry, : 1 < m < z}.

Change Point: For a measurement series, r,,, a change
point, pts;, is the point in time where the statistical model
changes abruptly. A measurement series, 7,,,, can have d num-
ber of change points such that pts(r,,) = {pts; : 1 <j < d}.

Segment: Given a set pts(r,,) of d values, we can split the
series of L points in r,, into a partition of d+1 segments de-
fined as S(pts(rm)) = {[1, ptsi], (pts1, ptsal,, ..., (ptsa, L]}

The total number of segments may vary depending on the
size and behavior of p. If no change point is detected then
whole series is denoted by one segment. The number of change
points are always one less than the total number of segments.

Applying these concepts, we propose a solution consisting
of following steps:

1) Segment Detection — In this step, our method identifies
a threshold for which root mean square error becomes
persistently low. This threshold is considered optimal
threshold and can be used as model threshold for any
measurement of same PMU event of same application.

2) Segment-wise Statistical Model — Next, we find local
model of each segment in terms of standard deviation
and mean for a given segment length.

A. Segment Detection

Initially, our method determines the individual working
threshold for each measurement so that an optimal threshold
can be derived which can work for any measurement of a PMU
event of a application. Thus we present three-step segment
detection as:

1) Compute Primary Threshold: For each measurement,
we compute the threshold for which the residual error is
persistently low. We start with loading R. measurements
for x number of runs of an application at step I, as
shown in Algorithm 1. Then through step 2 till 12, by
using different values as threshold from 1 to maxzThresh
we determine where the residual error starts to increase.
During this process we compute change points with
threshold ¢ of current iteration j at step 4. Resultant
threshold and residual error are initialized during first
iteration at step 5 but for later iterations through steps
8 to 12 we seek to identify threshold where residual
error becomes consistently low. For example, if residual
error was low at threshold 2 and same residual error was
received at threshold 3 then it means the method can

sustain low residual error up till threshold 3 therefore
primary threshold should be 3 in such case. This was
an important consideration during the experiment to
nicely stop the detection process and report the primary
threshold for PMU event e with decent accuracy.

2) Compute Optimal Thresh: Next, the method computes
optimal threshold from all the primary thresholds at
step 13. The subroutine receives series of thresholds &
residual errors and computes optimal threshold based
on median of corresponding residual errors of primary
thresholds from each measurement. Therefore first the
median is computed at step 19 then matching residual
error is identified through steps 21 to 24 . If the matching
residual error is found then we take the corresponding
threshold into thresh otherwise we find a residual error
closer to median of primary residual errors into thresh,
as shown from step 22 to 23. The subroutine then
returns optimal threshold into th at step 13 as optimal
threshold for a PMU event of an application.

3) Compute Segments: Finally, we compute segments for
each measurement from step 14 to 17 and report change
points and residual error for a PMU event e.

This three step process can be repeated for any or each of the
PMU event. Therefore above described method is illustrated as
a method to determine optimal threshold th which can detect
d number of change points. These change points eventually
provides the number and length of segments as describe in the
definition of segment in Section III.

B. Segment-wise Statistical Model

Once the segments with decent accuracy are detected a
compact illustrations of resource utilization behaviour of each
segment is presented using statistical methods. A PMU event
having zero or one segment shows no variability to model
so such PMU event is not profiled. Also a PMU event with
too many segments is also pruned away because it means the
behaviour is too arbitrary or inconsistent to profile.

I'V. IMPLEMENTATION AND EXPERIMENTS

We implement the proposed solution using PAPI library
version 5.7.0.0 for the sampling of PMU events with 5 mil-
liseconds frequency. The number of samples may go different
depending on the execution time of the application to profile.
Then, findchangepts() function in Matlab version R2021 is
used to find the segments. The measure of distinction to
compute these segments is root mean square level. Evaluation
of results is performed with the help of Coefficient of Variance.

Test Application: For the experiment we opt to chose 2x2
matrix multiplication of PolyBench bench-marking tool,
known for kernel instrumentation as a test application. The
motive behind its selection is significant use of matrices in
image recognition software. Such applications can enormously
impact the system performance due to their eager resource uti-
lization demands. The execution period of the test application
is around 22 seconds which gives thousands of number of
samples based on 5 millisecond frequency.

Measurements: The same test application was charac-
terised 20 times for its complete execution period. For each



Algorithm 1: Find segments for PMU event e

1 r contains x measurements in R,
2 for j =1 to x do

3 for t = I to maxThresh do
4 (resError, pts) = findchangepts(r(jl, t)

/* tr contains primary threshold
for one measurement of PMU
event e */

5 if t == I then

6 trijl =t

7 relj] = resError

8 if resError == lastResError then
9 trijl =t

10 relj] = resError

11 break

12 lastResError = resError

/* th contains optimal threshold for
all measurements of PMU event e =/
13 th = computeOptimalT hresh(tr, re)
/* Find segments using optimal
threshold */
14 for j = I to x do
15 (resError, pts) = findchangepts(r[j],th)
16 S[j]-pts = pts
17 S[j).resError = resError
/+ Find optimal threshold */
18 function computeOptimalThresh(t, re)
19 med = median of re
20 thresh =0
21 for j = 1 to length(re) do

22 if (re[j] == med) or

(relj] < med and re[j+1] > med) then
23 ‘ thresh = t[j)
24 return thresh

execution period measurements were acquired through re-run
based multiplexing of 4 PMCs available in 4xIntel® Core™ i5-
8250U CPU (Kaby Lake) 1.6GHz using the solution provided
by Imtiaz et al. [13]. The test application running on our
experiment platform returned in total 172 native PMU events.

Results: The PMU event with zero, one or more than 20
change point(s) was pruned away as explained in Section III-B.
These bounds can be re-adjusted based on the total execution
time of process and number of samples. As a result total 53
PMU events were identified with distinct pattern based on
a statistical model. Lastly, we exemplify some of the PMU
events with their segments in Figure 1.

At the end of experiment we evaluate the results to learn
if an optimal threshold can find segments with low residual
error for any measurement of a same PMU event. Therefore
the variance of residual error is examined and validated by
calculating coefficient of variance (CoV'). Since variance
could be a big number depending on unit of data set so for the
readability sake we prefer to express percentage. Therefore,
coefficient of variance (CoV) is a reasonable choice which is

defined as the ratio of the standard deviation (o) to mean (1)
such that CoV = 100 % \/%
Table I shows resultant CoV for some of the PMU events.

We also present maximum residual error received by applying
the proposed method in Table I.

TABLE 1
ACCURACY OF SEGMENT DETECTION METHOD
PMU Event Coefficient of Maximum
Variance (%) Residual Error

Branch Instructions 2.63 1.0130e+05
Retired

Instructions Retired  2.66 1.1767e+05
L1D_PEND_MISS 1.79 1.3675e+05
L1D 1.68 1.0144e+05
TLB_FLUSH_DATA 1.98 1.1829e+05
perf-CPU-CYCLES 4.11 1.2375e+05

V. DISCUSSION

The proposed dynamic approach automatically detects num-
ber and location of segments based on root means square
level. The method does not need to know the number of
change points as an input parameter to find segments. This
sequential method takes the complete data series into account
to be able to iteratively investigate and adjust key points until
the residual error becomes minimum. The results in Figure 1
shows samples on x-axis and resource utilization count on
y-axis. Vertically segmented series shows where there is a
change in resource utilization behaviour. For instance PMU
event Branch Instructions Retired shows how many branch
instructions were completed when the event was sampled.
Figure 1(a) shows how the trend is changing from one segment
to other i.e. going up for segment starting around 250 to 450
and then it goes down during the next segment and then again
it goes up and so on. Also Table I for Branch Instructions
Retired show CoV is only 2.63% and maximum recorded
residual error from actual points is 1.0130e+05 which is quite
nice accuracy for segmentation.

Change point is similar to outlier with a slight difference
i.e in change point there is a time step into a new model (such
as a change in mean value) whereas in the case of an outlier
there is a significant time step out of a single model [5]. This
we can see in data distribution of TLB_FLUSH in Figure 1(e).
In segment starting around 600 and ending around 1850, time
steps out of a single model are ignored as outliers, and the
time series does not split into a new segment for each outlier.
Therefore this segmentation approach is independent of pre-
screening, pruning, or normalization of given data.

In Figure 1(d), last segment of L/D shows consistent higher
LID cache utilization starting roughly from sample 600 to
3700. This knowledge can be useful in the case of hyper-
threading which allows to run more than one thread on each
core. Applications running on a hyperthreaded CPU utilize two
hardware threads that share the same physical processor and
L1 cache so running them in parallel with higher L1 cache uti-
lization may cause L1 congestion. Cache congestion can lead
to bad or unpredictable application performance. Therefore,
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such knowledge can also be used by other automated tools
responsible for decision-making or can be a standalone tool
for critical analyses. For instance, a scheduler or container’s
orchestrator can consider these points to estimate the resource
utilization during these segments.

Furthermore, in Figure 1(f) for perf CPU_CYCLES, seg-
ment starting roughly from 250 to 490 shows high CPU cycle
count which means the application was more active during this
time interval and utilized more computational resources. The
hype in the CPU cycles can be related to dynamic frequency
scaling which allows the microprocessors to adjust the CPU
frequency on the fly depending on the actual needs for power
management. The segments with such hypes can then be useful
if an application may require underclocking or overclocking.

VI. RELATED WORK

To identify similarities and differences between multiple
data sets some of the standard methods are least square and
likelihood. The algorithms for change point detection are E-
Agglomerative, Wild Binary Segmentation, Bayesian analysis
of change points and Iterative Robust detection of change
points [6]. E-Agglomerative is cluster based approach to
estimate change points depending on the goodness of fit [14].
The method is used to detect multiple change points within a
data set. However, many of the methods require pre-screening
to exclude the irrelevant points to obtain an improved accuracy
which is not the case with proposed solution.

Multiple change points was also considered by Yao [15]
where Bayesian point of view was involved which is a form
of statistical reasoning based on calculated probabilities to
provide best possible prediction. Bayesian point of view is
used when the inputs and information is not sufficient to deter-
mine the output. Yao also presented graph based change point
detection for high dimensional and non-euclidean data [16].
He took single-point case to estimate change even when there
is noise in data. The method can even estimate when number
of jumps are unknown and they are within defined bounds.

Another study used randomly sampled basic block frequen-
cies (sparse) without any dedicated hardware support. They
propose Precise Event Based sampling (PEBS) to reduce run
time overhead as one of the prime goals of their study [7]. But
it require extensive normalization of data before processing.

VII. CONCLUSION AND FUTURE WORK

The study has successfully presented how a change in
resource utilization behavior can be automatically identified by
using penalty-based function from a Bayesian point of view.
The Bayesian approach iterates until the change in statistical
function has a minimum residual error. This study has shown
an improved automated approach to determine the empirical
threshold that can provide segments without prior knowledge
of the number of change points. With this method, the total
number and location of segments is reported with a low
segmentation cost. Such knowledge can be a component of
performance management system and can save from exceeding
resource capacities. Moreover, when the data is small and
solitary then differences can be visible to the human eye

but when the data is huge, complex and continuous then a
manual analysis can not help benefit the process management.
Therefore, a boxed representation of each segment can be
further used during performance management, QoS, tuning,
and detection purposes.

Lastly, we keep working on extending the method into a
forked activity which can then be used for reliable decision
making purposes. One of the extension can be providing
these segments details to orchestrator which can consider the
resource utilization demand while scheduling the containers.
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