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ABSTRACT Multi-agent systems have received a tremendous amount of attention in many areas of research
and industry, especially in robotics and computer science. With the increased number of agents in missions,
the problem of allocation of tasks to agents arose, and it is one of the most fundamental classes of problems
in robotics, formally known as the Multi-Robot Task Allocation (MRTA) problem. MRTA encapsulates
numerous problem dimensions, and it aims at providing formulations and solutions to various problem
configurations, i.e., complex multi-agent missions. One dimension of the MRTA problem has not caught
much of the research attention. In particular, problem configurations including Multi-Task (MT) robots
have been neglected. However, the increase in computational power, in robotic systems, has allowed the
utilization of parallel task execution. This in turn had the benefit of allowing the creation of more complex
robotic missions; however, it came at the cost of increased problem complexity. Our contribution to the
aforementioned domain can be grouped into three categories. First, we model the problem using two
different approaches, Integer Linear Programming and Constraint Programming. With these models, we aim
at filling the gap in the literature related to the formal definition of MT robot problem configuration. Second,
we introduce the distinction between physical and virtual tasks and their mutual relationship in terms of
parallel task execution. This distinction allows the modeling of a wider range of missions while exploiting
possible parallel task execution. Finally, we provide a comprehensive performance analysis of both models,
by implementing and validating them in CPLEX and CP Optimizer on the set of problems. Each problem
consists of the same set of test instances gradually increasing in complexity, while the percentage of virtual
tasks in each problem is different. The analysis of the results includes exploration of the scalability of both
models and solvers, the effect of virtual tasks on the solvers’ performance, and overall solution quality.

INDEX TERMS Multi-agent mission planning, multi-robot task allocation, parallel task execution, integer
linear programming, constraint programming.

I. INTRODUCTION
Multi-Agent1 Systems (MASs) have been widely present in
the robotics domain in the application areas of navigation,
cooperation, and planning [1], [2]. The increase in the number
of robots, and their capabilities, have led to the possibility
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1In this paper, we use the terms robot and agent interchangeably.

to define more complex robotic missions, which is also
desirable from the perspective of the user, or the problem
owner. Amission usually consists of smaller segments, which
are, in this context, represented as atomic tasks. The process
of mapping tasks to robots is usually referred to as the Multi-
Robot Task Allocation (MRTA) problem.

To our knowledge, the first formal definition in its
current scope is proposed by Gerkey and Matarić [3].
This problem represents one of the most fundamental
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classes of problems in robotics and has been an active
research area in different forms for many decades together
with the evolution of the robotics domain, consequently
leading to numerous research papers and MRTA taxonomy
extensions [4], [5].

The robot count in a mission is not the only factor
that defines a mission to be considered complex. The task
account, and the number of constraints describing the mutual
relations between them and the agents, play a pivotal role in
determining the complexity of a robotic mission. Note that
these factors are directly related to the process of producing
a mission plan, which is performed by algorithms. There are
other factors, such as the environmental setting, and changes
in that environment during a mission.

The process of allocating tasks to agents with respect to
agents’ capabilities and task requirements is called Multi-
Agent Mission Planning and is, at its core, equivalent
to the MRTA problem. Although it is possible to let a
human manually plan a mission for very small instances,
solving the MRTA problem efficiently requires automated
planning algorithms to be able to deal with a high number
of tasks and constraints; however, even automated planning
falls short in terms of scalability [6]. It is important to
note, that in this work the focus is on the high level of
abstraction in the planning domain. While task decom-
position and path planning [7], [8], [9] are an important
part of mission planning they are out of the scope of this
work, as they are considered in the mid-level planning or
even in low-level planning by being directly performed on
agents.

As the robots are deployed in the environment where
their allocated tasks are found, their goal is to perform
their tasks as efficiently as possible. In order to achieve this
objective, the mission planner must optimize both the routes
that robots need to take and the times at which tasks will
be performed, depending on their mutual interrelatedness.
Hence, this problem can be described as a mixture of routing
and scheduling problems. Even in their simple forms, both
routing [10]) and scheduling [11] problems are NP-hard.
Consequently, the combination of these two problems is also
at least NP-hard.

From the computational perspective, robotics systems’
capacities have becomemore powerful, over the years, thanks
to the advances in modern parallel real-time computing
technologies [12]), enabling an unprecedented level of
parallelism, in terms of sensing, computation, motion, and
manipulation tasks. As a result, it is plausible to assume
that, more complex missions can be achieved by the robotics
system, including tasks that require only computational
capacity, and no physical actuation, e.g., data processing or
data transmission [13]. The utilization of the additional com-
putational tasks comes at the cost of increased complexity for
the MRTA and, more in general, for the mission planning.
However, possible benefits prove worth the extra complexity,
as exploitation of the possible task parallelismmay ultimately
lead to a shortermission duration and better usage of available
hardware resources.

In this paper, we introduce a new distinction between
physical and virtual tasks in the context of MRTA, and
their relation in terms of parallel execution. This distinction
captures the additional computational capabilities of robotics
systems, and it allows for a more rich specification of the task
set required to complete the mission. Moreover, following
the proposed MRTA taxonomy, we propose a mathematical
formalization of the mission planning problem denoted
as MT-SR-TA. Where MT stands for Multi-Task robots,
SR represents Single-Robot tasks, and TA assumes that we
are dealing with Time-extended Assignment.

This paper has three main contributions:
1) formulation of two models of the MT-SR-TA problem

configuration. The first one is in the form of an Integer
Linear Programming (ILP) problem, and it is verified
in the CPLEX optimization tool. The second model is a
Constraint Programming (CP) model, implemented in
the CP Optimizer. Both models are evaluated on a set
of problem instances;

2) introduction of two task types – physical and virtual
– based on their spatial constraints and discuss their
temporal relations in the possible MT-SR-TA real-
world scenario;

3) a comprehensive analysis of the proposed models in
terms of solution quality and computational time.

A preliminary version of this work appeared in [14].
Additional contributions are: (i) formalization of the problem
as a constraint programming model; (ii) comprehensive
analysis of both ILP and CP models. The motivation behind
the use of CP is to determine if it can outperform the ILP
model implemented in CPLEX, as CPLEX was not able to
efficiently solve many of the problem instances. It has been
shown that for job shop scheduling problems, the CP model
outperforms the ILP model by the order of magnitude [15].
As the problem described in this paper is a mixture of
routing and scheduling problems, CP poses a viable option
to outperform CPLEX.

The remainder of this paper is organized as follows. Sect. II
gives an overview of the required background on MRTA
problems. A discussion on different task types and how
their nature affects the mission planning problem is given
in Sect. III. The ILP formulation of the MT-SR-TA problem
is presented in Sect. IV. The CP formulation of the same
problem is given in Sect. V. Sect. VI describes a real-world
case study of a multi-robot application and how it is solved by
the proposed approach. Sect. VII discusses a more extensive
evaluation of the presented models, implemented in CPLEX
and CPO. Sect. VIII provides an overview of the related work.
Finally, Sect. IX concludes the paper.

II. BACKGROUND
In the MRTA taxonomy for problem classification, Gerkey
and Matarić [3] identified three main problem dimensions
covering a total of 8 different problem configurations. This
taxonomy includes:

• Single-Task (ST) vs. Multi-Task (MT) robots, distin-
guishing problems where robots can execute only a
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single task at a time, from the ones where robots can
execute multiple tasks at the same time;

• Single-Robot (SR) vs. Multi-Robot (MR) tasks, distin-
guishing tasks that require only a single or multiple
robots to complete; and

• Instantaneous Assignment (IA) vs. Time-extended
Assignment (TA), distinguishing between robots having
information only on the next task or being provided with
a complete set of tasks, i.e., schedule.

As stated by the authors, there has been very little work
done related to the problem configurations that include
MT robots, especially the MT-SR-TA configuration. In an
attempt to provide a reasonable approximation to the problem
formulation, Gerkey and Matarić [3] state that the MT-
SR-TA configuration can be seen as an ST-MR-TA with
the set partitioning problem inverted, i.e., splitting a set
of tasks into agent-specific coalitions. However, such a
formulation does not consider the task locations and the time
required for the robots to move between the tasks, thus the
focus is only on the task allocation problem. Moreover, the
interrelatedness of the tasks has not been addressed in [3],
which makes the definition of MT or MR configurations
incomplete.

The next notable contribution to the MRTA taxonomy
was done by Korsah et al. [4] by proposing iTax, which is
a framework aimed at addressing the task interrelatedness
that was missing from the original MRTA taxonomy. Con-
sequently, this work provides a survey on different problem
configurations. Note that the MT configuration lacked a
formal problem definition, and in general, this topic has not
been investigated extensively by the research community.
The authors state that some variants of the Vehicle Routing
Problem (VRP), like pick-up and delivery, can be seen as
an example of MT problem configuration. If we assume
that, from the pick-up time until the delivery we have a
continuously ongoing task, then every stop to pick up or
deliver, other packages can be seen as a form of parallel task
execution. The problem here is the level of abstraction of the
tasks. If we assume that the task starts when the package
is picked up and ends when that package is delivered, the
VRP can be considered to have an MT-SR-TA configuration.
However, it requires a high-level description, since the task
is composed of sub-tasks. Thus, it would be more sensible to
describe such a task as a set of three tasks, i.e., (1) pick-up of
Package A, (2) transit from a pick-up to delivery location, and
(3) delivery of Package A. In this scenario, performing other
tasks between pick-up of Package A, and delivery of Package
A, cannot be seen as a parallel task execution. Moreover, even
if we assume these three tasks to be one monolithic task,
still, tasks are not executed in parallel, but preemptively. For
example, picking up some other Package B, before Package
A has been delivered, can be seen as an interruption of Task A
and not as parallel execution of Task A and B. For this reason,
we discard the VRP as an example of an MT-SR-TA problem
configuration. In addition, even the authors of this taxonomy,
in the tables summing problems for each configuration, left
MT-SR-TA as a blank field.

FIGURE 1. Marked in red is the problem configuration addressed in this
paper, which lies on the iTax and MRTA axis.

From the iTax, we can conclude that if tasks have relations
to other tasks within the same agent’s schedule, the problem
falls into the interrelatedness category of Intra-schedule
Dependencies (ID). On the other hand, if there is a relation
among tasks that are scheduled for execution on different
agents, e.g., Precedence Constraints (PCs), there must exist a
dependency between those schedules. This is called a Cross-
schedule Dependency (XD). Other task dependencies are
covered in the iTax as well, but they are out of the scope of
this paper.

In the taxonomy extension done by Nunes et al. [5],
two new dimensions have been added, a Synchronization
Precedence (SP) and TimeWindows (TW). The former refers
to an ordering constraint, e.g., Task A needs to be completed
before Task B, either by the same agent or a different agent;
here the latter refers to a constraint that a certain task has to
be performed in a predefined time slot. In this work, we focus
on the SP dimension. In addition, Nunes et al. [5] provided a
survey of the literature for other MRTA problem types. For
the problem configuration that is of interest to us, MT-SR-
TA, the conclusion was that this part of the MRTA problem
remained unexplored. Even in the latest MRTA taxonomy
extension byMiloradović et al. [16], theMT part has not been
further explored, but it is rather kept as it was in the MRTA
taxonomy.

As can be seen from the analysis of the most influen-
tial MRTA taxonomies, MT has been almost completely
neglected as a research direction, both from a theoretical and
practical perspective [3], [4], [5], [16]. This is still the case
today.

The visualization of the relevant axes and arising problem
configurations is presented in Fig. 1. This is a subset of iTax
and original MRTA taxonomies and their dimensions. More
precisely, we focus on the Task Type and Concurrency axis
from the original MRTA taxonomy and Dependency axis
of iTax. We omit the Assignment axis, as we assume that
the problem we are addressing is always of Time-Extended
Assignment type. In the figure, the problem configuration
that is the focal point of this paper is marked in red. More
specifically, this paper focuses on a special class of MT-SR-
TA problems, i.e., the [XD]:MT-SR-TA-SP problem.

In the next section, a discussion on different types of tasks
and their mutual relationship will be provided.
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III. VIRTUAL AND PHYSICAL TASK TYPES
In the previous section, we have positioned the problem
that this paper aims to address and framed it within the
MRTA taxonomy. As it can be noted, the distinction between
tasks mostly focuses on the required number of robots for
successful task completion. We propose an additional task
separation, i.e., we distinguish between two types of tasks
that are denoted as virtual and physical tasks. Both virtual
and physical tasks can also be SR or MR tasks.

Virtual tasks are defined as tasks that have no spatial con-
straints for their execution, i.e., they can be executed in any
physical location, and with the level of parallelism allowed
by the computing platform. For example, communicating and
sending proprioceptive data, data analysis, etc. In general,
these tasks can be performed as solo tasks, i.e., they do not
overlap with any other tasks, during the execution of other
tasks, or the transition from one task to the next.

On the other hand, physical tasks are defined as tasks that
are bound to a certain location where they must be performed.
Opposite to virtual tasks, physical tasks cannot be executed
during the transition from one task to the next one. Physical
tasks include physical manipulation of objects, environment
sensing (e.g., scanning seabed, taking photos of objects of
interest, etc.), or using tools (e.g., drilling, welding, etc.).
Contrary to what has been proposed by Nunes et al. [5],
we assume taking pictures of objects to be a physical task as
well since it has to be done at a specific location. However,
taking photos or using a camera, in general, can be a virtual
task as well if it is used, e.g., for localization of the agent.
These types of tasks are either performed as solo tasks or in
parallel with some other task. Note that in this work, we do
not address preemptive tasks.

The parallelism among tasks can be divided into three
categories: (i) physical parallelism, among two or more
physical tasks; (ii) virtual parallelism, among two or more
virtual tasks; and (iii) mixed parallelism, among a mix of two
or more tasks that can be either virtual or physical.

From a modeling standpoint, two or more physical tasks
that can run in parallel must have the same location, therefore
they can be modeled as a unique task associated with the
given location, and with a duration computed either as
the maximum of the two or more durations (in case they
can all run in parallel) or by solving a local scheduling
problem minimizing the makespan of the physical tasks. For
example, a robot with two arms manipulating two different
objects can be interpreted as parallel execution of two
separate/independent tasks. Consequently, these tasks can
be modeled as a single monolithic task, and the mapping
between the multiple physical tasks to the single monolithic
task is beyond the scope of this work.

The situation with the other two cases is, however,
different. Virtual parallelism cannot always be achieved,
e.g., due to functional dependencies among the tasks, the
contention of the required resources, or simply because the
level of parallelism provided by the computing platform
is not enough to support the amount of concurrent virtual
tasks. Similarly, also mixed parallelism may sometimes not

be possible, for example, because of functional dependencies
among the tasks, or because of physical limitations, e.g.,
scanning the seabed using sonar and using an acoustic
modem for communication is not possible due to possible
interference underwater.

The amount of physical or virtual tasks in a mission
determines if the problem is closer to a routing or scheduling
problem. For example, a mission with more physical tasks is
closer to a routing problem, while a mission with more virtual
tasks can be seen as closer to a scheduling problem. This ratio
between the two task types may affect the performance of the
algorithm in use (see Sect. VII for further elaboration).

IV. ILP MODEL
Before we present a mathematical formulation of the
[XD]:MT-SR-TA-SP problem configuration, we will give a
brief explanation of the problem.

The problem consists of allocating n tasks tom agents with
respect to given constraints. Mainly, task requirements have
to match the agent’s capabilities in order for the task to be
performed by that agent. In addition, there can be ordering
constraints between tasks, meaning that some task has to be
done before others can start. The objective of the optimization
process is to minimize the overall makespan of the mission.
The next section gives a detailed explanation of all variables
and constraints used in creating the ILP model.

A. PRELIMINARIES AND NOTATION
Let s ∈ S be an agent, in a set S := {s1, s2, . . . , sm}

of m agents that need to perform a set of n tasks, T :=

{t1, t2, . . . , tn}; T includes both physical and virtual tasks.
Also, let c be a type of equipment in a set C :=

{c1, c2, . . . , ck} of k types of equipment; each agent is
endowed with one or more pieces of equipment, and every
task requires one specific piece of equipment to be completed.

We denote with σ a source depot in a set 6 :=

{σ1, σ2, . . . , σq} of q source depots and, analogously, let δ

be a destination depot in a set 1 := {δ1, δ2, . . . , δw}, of w
destination depots.

Each agent s starts from a source depot σ and finishes
its tour at a destination depot δ. The superset containing all
the tasks and the source and destination depots is defined as
T̃ := T ∪ 6 ∪ 1. In addition, a superset containing all the
source depots and tasks elements is defined as T6

:= T ∪6.
Analogously, a superset containing all the destination depots
and tasks is defined as T1

:= T ∪ 1. These supersets
are defined for convenience, as they make the rest of the
formulation more readable and compact. Both source and
destination depots and tasks are nodes in the graph G(T̃, E),
where E is the set of edges in the graph. Source depots (as
well as destination depots) can be seen as ‘‘dummy’’ tasks,
in the sense that they are still nodes in the graph, but special
conditions apply to them. In the case of source depot, we can
never have an edge in the graph leading to a source depot from
any other node, thus source depots are always regarded as
root nodes of the graph. In contrast, destination depot nodes
can never have an edge leading out of the node. This means
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that once the destination node is reached, it is the end of the
path for the agent that reached it. Destination depot nodes
differ from Task nodes as destination depots can be visited
multiple times, e.g., all agents might end their missions in
the same destination depot. Destination depot nodes may
also remain unvisited. Both source and destination nodes are
instantaneous, i.e., they do not have any duration compared to
Task nodes. In addition, source and destination nodes assume
the definition of physical tasks, i.e., they cannot be virtual.
In order to maintain the definition correctness, when a set
contains other elements besides the elements of the set T,
we will refer to all elements in those sets as nodes, while if
the elements are only a subset of T, they will be referred to
as tasks.

Every edge e(i, j) connecting two nodes i, j ∈ T̃, out of
which at least one is virtual, regardless of the assigned agent,
has a cost ωijs = 0. The cost matrix � = [ωijs]n×n×m is
symmetrical, i.e., ωijs = ωjis.
The model has three decision variables xijs, τi, zijs. The

decision variable xijs ∈ {0, 1} defines if the agent s travels
from node i to node j, and is defined as

xijs =


1, if s ∈ S visits node i ∈ T6 immediately before

node j ∈ T1,

0, otherwise.

The decision variable τi ∈ Z≥0 defines the starting time of a
node i. The decision variable zijs ∈ {0, 1} is a binary variable
that is indicating if a task i is started before a task j by an
agent s. In other words, if τi ≤ τj, and both tasks i and j are
allocated to the agent s, zijs = 1. In any other case zijs = 0.

Every task i ∈ T has a duration ξis ∈ Z≥0, representing the
amount of time agent s needs in order to complete task i; if
node i ∈ 6 ∪ 1, its duration ξis will be equal to 0, since it
is associated with a source or destination depot, and no task
needs to be performed.

Precedence relations among tasks are described by the
adjacency matrix 5 = [πij]n×n, where i, j ∈ T, and

πij =


1, if task i is finished before task j started, denoted

as i ≺ j,
0, otherwise.

In addition, every task i ∈ T requires certain equipment φc(i)
for its successful completion, with φc : T 7→ C. Each agent
s ∈ S has a set of available equipmentCs ⊆ C. An equipment
matrix defines which tasks can be performed by agent s, and
it is defined as

aijs =


1, (i ∈ 6, j ∈ T ∧ φc(j) ∈ Cs) ∨

(i ∈ T ∧ φc(i) ∈ Cs, j ∈ 1) ∨ (i ∈ 6, j ∈ 1)∨
(φc(i) ∈ Cs ∧ φc(j) ∈ Cs ∧ i, j ∈ T),

0, (i, j ∈ 6) ∨ (i, j ∈ 1).

Equipment constraints do not affect the source and
destination depot nodes, i.e., an agent s cannot have ‘‘wrong’’
equipment for depot nodes. In other words, an agent cannot
violate equipment constraints in source and destination
depots.

Lastly, matrix R = [rij]n×n can be defined, where i, j ∈ T,
which specifies which tasks can be performed in parallel

rij =

{
1, if tasks i and j can be done in parallel,
0, otherwise.

The matrix R is symmetrical.
This problem can be seen as a combination of a routing and

scheduling problem. In the next section, we will introduce the
routing part of the problem.

B. ROUTING PART OF THE FORMULATION
In the following, we present the constraints related to the
routing part of the problem, with a brief explanation of what
is their interpretation in natural language.

It is forbidden for an agent s to visit nodes with incorrect
equipment, defined in the equipment matrix (As):

xijs ≤ aijs, ∀i ∈ T6, ∀j ∈ T1, ∀s ∈ S. (1)

Exactly one agent can start a task (Eq. (2)), and it can do it
exactly once:∑

s∈S
∑

i∈T6 xijs = 1, ∀j ∈ T, (2)

Moreover, the agent that starts task j must also finish it:∑
i∈T6

xijs =

∑
k∈T1

xjks, ∀j ∈ T, ∀s ∈ S. (3)

The start of every tour has to be at a source depot (Eq. (4)),
while the final destination must always be at one of the
destination depots (Eq. (5)):∑

i∈6

∑
j∈T1

xijs = 1, ∀s ∈ S, (4)

∑
i∈T6

∑
j∈1

xijs = 1, ∀s ∈ S. (5)

Note that some agents can go directly from a source depot to
a destination depot without performing any of the tasks, i.e.,
xijs = 1, i ∈ 6, j ∈ 1. This means that the agent is not used
in the final plan.

Finally, self-loops on the nodes are forbidden:

xiis = 0, ∀i ∈ T̃, ∀s ∈ S, (6)

With these constraints, the routing part of the problem has
been defined, and it is based on the definition of CTSP and
ECTSP problems [17], [18]. The next section presents the
scheduling part of the problem. It is important to note that
the routing part of the problem, on its own, does not remove
possible sub-tours from appearing in the solution. However,
in the combination with the scheduling constraints, sub-tours
are eliminated from the final solution.

C. SCHEDULING PART OF THE PROBLEM
In the following section, we present the constraints related to
the scheduling part of the problem, with a brief explanation of
what is their interpretation in natural language. The relation
between xijs and zijs is expressed as:

xijs ≤ zijs, ∀i ∈ T6, ∀j ∈ T1, ∀s ∈ S, (7)
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meaning that if an agent s visits a node i right before a node
j (xijs = 1), then zijs = 1. If this is not the case, i.e., if node
i is not visited before node j, then zijs = 0 and also xijs = 0.
The case when xijs = 0 and zijs = 1 indicates that task j is
done after task i, but not immediately after, by agent s. We
introduce Eq. (8) to prevent possible cycles in variable z, i.e.,
if task i is performed before task j, then it can never be that
task j is also performed before task i thus removing possible
cycles. ∑

s∈S
(zijs + zjis) ≤ 1, ∀i, j ∈ T. (8)

Eq. (9) maintains the transitive property of variable zijs. It
ensures that if a node i is visited before a node k , and node k
is visited before node j, then node i must be visited before a
node j.

ziks + zkjs − zijs ≤ 1, ∀i ∈ T6, ∀j ∈ T1, ∀k ∈ T, ∀s ∈ S.

(9)

In the model, we include also precedence constraints between
tasks, i.e., a task i must be completed before task j, i ≺ j.
Specifically, for every agent s such that zijs = 1, the earliest
schedule time for a task j is the sum of: (i) the starting time
of the node i (τi), (ii) the duration of the node i (ξis), and (iii)
the cost of moving from node i to task j (ωijs), i.e.:

τi + ξis +

∑
s∈S

(ωijs · zijs) ≤ τj, ∀i ∈ T6,

∀j ∈ T̃, ∀s ∈ S, i ≺ j. (10)
The sum of zijs over all the agents is equal to 0 in the case
when task i and task j are not performed by the same agent,
thus removing the travel distance ωijs from the equation.
In contrast, when the sum of zijs over all the agents is equal
to 1 it indicates that agent s performs both tasks i and j.
The disjunctive constraint defined by Eq. (11), in conjunc-

tion with Eq. (8), ensures that no two tasks can overlap on the
same agent unless it is allowed by their parallelism, expressed
by the matrix R:

τj +M · (1 −

∑
s∈S

zijs) ≥ τi + Pij, ∀i ∈ T6, ∀j ∈ T̃,

(11)

whereM is a big integer number, and Pij is a non-negative
real number that expresses the time difference between the
starting time of task i (τi) and the starting time of task j (τj).

Pij =

∑
s∈S

zijs · (ωijs + ξis) · (1 − rij),

∀i ∈ T6, j ∈ T1, s ∈ S. (12)

In case tasks i and j are not performed by the same agent, i.e.,∑
s∈S zijs = 0, Pij is also equal to 0. Pij also has the value of

0 in the case where either task i, or j, or both are virtual and
parallel execution is allowed, i.e., rij = 1.
With this definition of Pij a wide range of task relations

can be covered, both physical and virtual. This will be
demonstrated in Sect. VI on a case study for multi-robot agent

planning, and in Sect. VII, on a range of different problem
instances.

In some cases, tasks may require to be executed by the
same agent, e.g., they may need to use the results produced
by other tasks, like sending the data that was previously
collected. If this happens, a new constraint needs to be
added. Therefore, let U[n×n] be a (symmetric) matrix, whose
elements are defined as uij = 1 if tasks i,j must be executed
by the same agent, and uij = 0 otherwise. Thus, the constraint
can be expressed as:∑

s∈S
(zijs + zjis) = 1, ∀i, j ∈ T, uij = 1, (13)

constraining the allocation of both tasks i and j to one single
agent. Note that Eq. (8) does not force two tasks to be
executed by the same agent.

Constraints (7)–(13) define the scheduling part of the prob-
lem and in conjunction with constraints (1)–(6) formulates
the ILP model of the XD:SR-MT-TA problem configuration.

D. OPTIMIZATION PROBLEM
To solve the previously described problem it is necessary to
allocate all tasks in T to a set of available agents S, avoiding
task repetition, while respecting equipment and precedence
requirements, andminimizing themission time. The resulting
optimization problem can be expressed as:

minimize
x,z,τ

max
i∈1

(τi)

subject to Constraints (1)–(13).

Gini [19] defines a collection of possible objective functions
to be used depending on the mission requirements. We chose
to minimize the makespan of the mission.

Although ILP representation for these kinds of problems is
very common, it is not the only possible approach. In the next
section, we will present a constraint programming model in
order to compare both models and solvers. The results of this
comparison are given in Sect. VII.

V. CP MODEL
Now, we will present the problem formulation in a form
of constraint programming. The formulation of the model
is adapted to the solver (IBM CP Optimizer) syntax. For
a more detailed description of modeling using Constraint
Programming and ILOG CP Optimizer, please refer to [20]
and [21]. However, for completeness, we will briefly
introduce the main concepts used in this model.

Interval Variable dvar is a decision variable that has a
domain of dom(dvar) = {⊥} ∪ {[ st, et)|st, et ∈ Z≥0, st ≤

et}, where st defines the task’s start time and et the task’s
end time. The difference of (et − st) = td represents the
task duration. An interval variable can be optional, i.e., it can
be left up to the solver to decide if the variable is absent
or present. If we define a fixed interval variable as dvar ,
then, in the case the variable is absent, dvar =⊥, and in the
case the variable is present, dvar = [ st, et). This is a very
important property of interval variables that allows tasks not
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to be performed if an alternative task is chosen. Most of the
variables used in this model will be interval variables.

Alternative Constraint models an alternative amongst
several optional variables. It is defined as {dvar, {dvar1,
. . . , dvarn}}; if an interval variable dvar is present, then
exactly one of intervals {dvar1, . . . , dvarn} is present.
Moreover, dvar starts and ends at the same time as the chosen
variable in the interval. This constraint is used in our model
to express the allocation of tasks to agents and the allocation
of agents to destination depots.

Precedence Constraint models different ways of prece-
dence. The one that is of interest to us is the precedence
between the end time of one interval and the start time of
another one (in CPO endBeforeStart(dvar1, dvar2)). We use
this constraint in the model to define the relations between
two tasks, where one has to end before the other one can start.

NoOverlap Constraint disallows any given pair of
interval variables to overlap. Since our model deals with
multitasks, overlapping is defined by the matrix R, and it is
related only to tasks assigned to the specific agent and not
across all agents.

AlwaysEqual Constraint returns a constraint that ensures
that, whenever a decision interval variable dvar is present,
a state function f is defined everywhere between the start and
the end of the decision interval variable dvar .
State Function is a decision variable whose value is a set

of non-overlapping intervals over which function f is defined.
Between these intervals, f is not defined, usually because of
an ongoing transition between two states.

Now the CPmodel of [XD]:MT-SR-TA-SP can be defined.
First, let us define theDecision Interval Variables (DIVs). The
tasks to be performed are represented by the union of sets of
physical PT and virtual VT tasks. The total number of tasks
is n = |PT| + |VT|. We also define the set of all tasks to be
T = PT ∪ VT, where each element ti ∈ T corresponds to a
single DIV. Similarly, a source depot is denoted as σi ∈ 6,
and a destination depot is denoted as δi ∈ 1. DIVs related to
source depots are fixed to allow the mission to start at time
0. The number of agents is equal to the number of source
depots, i.e., m = |S| = |6|. All mentioned DIVs are set
as present.

Now we can define an allocation matrix A[n×m] with rows
representing tasks and columns agents. Each element aij is
a decision interval for allocation of task i to agent j. Since
a task can be allocated to one and only one agent, aij, it is
set to optional. As it is stated previously, not every agent
can perform every task. In the case of agent j not having the
necessary equipment to perform task i, the decision interval
aij is set to absent. Another matrix that we need to define
is the allocation matrix AD[m×|1|], where each element adij
is a decision interval for the allocation of the agent i to the
destination depot j. An agent can be allocated to only one
destination depot, hence, adij is set to optional.
Transition distances between physical tasks, source, and

destination depot are expressed with the matrixM, where ωijs
is the cost of transitioning from state i to state j with agent s.
The transition distance matrix M must satisfy the triangular

inequality. Virtual tasks are not part of the transition matrix.
Based on the transition matrixM, we can define a set of state
functions fi ∈ F, where each element fi represents a state
function of agent i. The indices of the matrixM are numbered
according to the sequence {1, . . . , |6| + |PT| + |1|}, where
the first |6| indices are associated with the source depots, the
next |PT| indices are associated with the physical tasks, and
the last |1| indices are associated with the destination depots.
For the sake of notation, let us introduce the following subsets
of indices, Ps := {1, . . . , |6|}, Ppt := {|6| + 1, . . . , |6| +

|PT|}, and finally Pd := {|6| + |PT| + 1, . . . , |6| + |PT| +

|1|}, that are going to be used in the following formulation.
The objective is the same as in the ILP model, i.e.,

to minimize the makespan of the mission. It is assumed that
an agent has finished its mission when

minimize maxδi∈1(StartOf {δi})

subject to constraints (14) – (22).
Constraint (14) states that for every task ti, one and only

one agent from the set of available agentsAi can be selected to
perform task ti. For example, if the decision interval variable
a23 is set to present by the solver, it means that task 2 is
allocated to agent 3.

Alternative(ti,Ai), ∀ti ∈ T. (14)

where Ai indicates the i-th row of the matrix A. Constraint
(15) states that every agent ends its tour at one of the
destination depots. For example, if the decision interval
variable ad14 is set to present by the solver, it means that
agent 1 is ending its tour in destination depot 4.

Alternative(δi,ADi), ∀δi ∈ 1. (15)

Precedence constraints are imposed with Eq. (16). If task ti
precedes task tj, then task ti must end before task tj can start.

EndBeforeStart(ti, tj), ∀ti, tj ∈ T, ti ≺ tj. (16)

Enforcing all tasks to be assigned to a specific agent before
that agent can reach the destination depot is ensured with
Eq. (17).

EndBeforeStart(aij, adjk ), (17)

for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , |1|}.

Constraint (18) states that tasks cannot run in parallel on
individual agents except when it is allowed with the matrix
R, i.e., task i and task j can run in parallel only if rij = 1.

NoOverlap(aik , ajk ), (18)

for every i, j ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}, rij ̸= 1. In order
to enforce the agents’ position at the source depot at the start
of their mission, we introduce Eq. (19).

AlwaysEqual(fi, σi, Psi ), ∀i{1, . . . ,m}, (19)

where Psi is the i-th element in the set Ps. In order to enforce
the agents’ position at one of the destination depots at the end
of their mission, we introduce Eq. (20).

AlwaysEqual(fi, adij, Pdi ), (20)
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for every i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , |1|}. Constraint (21)
uses a state function to model the positions of agents with
respect to physical tasks.

AlwaysEqual(fi, aji, Pptj ), (21)

for every i ∈ {∀s ∈ S|φc(j) ∈ Cs}, j ∈ Ppt , where the set
{∀s ∈ S|φc(j) ∈ Cs} is the set of agents that can execute the
physical task j that requires the equipment φc(j), as they have
the correct equipment Cs.
In case it is required that the same agent performs both

tasks i and j, constraint (22) can be used.

PresenceOf (aik ) = PresenceOf (ajk ), (22)

for every i, j ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}. This
completes the CP model of the [XD]:MT-SR-TA-SP problem
configuration. In the next section, we will present a simple
case study to put the defined models into a real-world
perspective.

VI. A CASE STUDY
This case study has the goal to showcase how the presented
formalization of the [XD]:MT-SR-TA-SP problem configura-
tion is mapped to a real-world scenario. A case study showing
a comparison between a mission with parallel and serial task
execution is given by Miloradović et al. [14].

Let us consider a mission scenario, in the precision
agriculture domain, with 3 autonomous agents, i.e., two
Unmanned Aerial Vehicles (UAV 1 and UAV 2) and one
Unmanned Ground Vehicle (UGV). In this case study, the
UAVs have capabilities of visual inspection (e.g., scanning
the crops, or inspecting an animal herd), analyzing gathered
data, and communicating the data to other agents in the
mission, or a computer located on the ground. The UGV
has the capabilities to create prescription maps and apply
fertilizer to crops. These three agents have been tasked with
a mission consisting of 10 tasks, out of which 5 tasks are
virtual, and 5 tasks are physical. For simplicity reasons, let
us use letters to mark the locations of physical tasks, i.e.,
Task 1 has location A, Task 2 has location B, Task 3 has
location C, Task 4 has location D, and finally Task 7 has
location E. The subset containing virtual tasks is consisting
of tasks {5, 6, 8, 9, 10}. The only tasks that can execute in
parallel are tasks (3, 6) and (2, 8), i.e., r36 = r63 = 1, and
r28 = r82 = 1.
Two crop fields need to be scanned, Tasks 1 and 4. The

data needs to be analyzed and forwarded to the appropriate
agent, these are Tasks 5 and 8. Based on that data, the
appropriate agent will be tasked with creating prescription
maps for both crop fields, tasks 6 and 9. Next, based on
the generated prescription maps, the UGV is performing
the tasks of spraying the crops with the optimal amount
of fertilizer, through Tasks 3 and 7. In addition, a visual
inspection of the herd of livestock needs to be done (Task 2),
and the gathered data needs to be sent to the command
center (Task 10).

The aforementioned tasks have several constraints between
them. In the case of tasks (1,5) and (4,8), crop scanning tasks

TABLE 1. Detailed information about tasks in the mission.

have to be done before data analysis tasks, i.e., 1 ≺ 5 and
4 ≺ 8. In addition, tasks 1 and 5 are constrained to be
executed by the same agent. The same applies to tasks 4 and 8.
In tasks 6 and 9, prescription maps of the corresponding areas
are created. Task 6 has a precedence relation with Task 8, i.e.,
8 ≺ 6. This means that gathered data first needs to be sent to
an agent capable of creating prescription maps, in this case,
that is the UGV. For the same reason, 5 ≺ 9. The precedence
relations continue, with 9 ≺ 3 and 6 ≺ 7, where tasks
3 and 7 assume the usage of the UGV for applying fertilizer
to the crops. The UGV is capable of performing task 6, the
creation of a prescriptionmap for Task 7, simultaneously with
spraying crops, which is Task 3. Similarly, UAV 1 is capable
of analyzing and sending gathered data, whilst performing
task 2, which is the inspection of a herd of livestock. Finally,
the data gathered in Task 2 is sent to the command center,
where we also have a precedence constraint Task 2 ≺ 10.
The information about tasks and their mutual relationship is
summed up in Table 1.

The aforementioned mission is given to the CP solver and
the resulting plan is shown in Fig. 2 as three sub-figures,
each representing one agent in the mission. Tasks in Fig. 2
are colored in the following way; green-colored boxes with a
dotted outline represent transits between two physical tasks,
or between source/destination depot and a physical task; red-
colored boxes with a full outline represent physical tasks, and
blue-colored boxes with a full outline represent virtual tasks.
The numbers inside the boxes stand for task IDs.

The plan for UAV 1 is to go to location D and perform
crop scanning task (Task 4). When the UAV 1 is done
with scanning crops, it performs analysis and forwards
gathered data (Task 8) from crops scanning taskwhilemoving
towards location B, where it starts (livestock inspection
(Task 2) simultaneously with sending data gathered from
crops scanning. The next task in the plan is analysis
and forwarding of gathered data (Task 10) from livestock
inspection (Task 2), which is done while transiting from
location B to the destination depot.

The UAV 2 has only two tasks allocated to it. The first
task is crop scanning (Task 1) that is performed at location
A. After crop scanning is completed, UAV 2 proceeds to the
destination depot while performing analysis and forwarding
of gathered data (Task 5) from crop scanning (Task 1).

The UGV does not start its mission at 0 time. Since there
is a cross-schedule dependency between receiving crops data
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FIGURE 2. The optimized mission plan for the case study with parallel task execution.

(Task 5) and creation of prescription map (Task 9) (5 ≺ 9),
the UGV waits until crops data is received to start with a
creation of the prescription map for the crops scanned in
Task 1. During the execution of Task 9, the UGV is moving
towards location C where the fertilization of the crops should
be performed. When the creation of the prescription map
is done, spraying the crops (Task 3) starts its execution.
During the process of spraying crops by the UGV, the UAV
1 finishes sending data (Task 8), which was a prerequisite for
the creation of the prescription map (Task 6) for the crops
scanned in Task 4) to start. Tasks 6 and 8 also have cross-
schedule dependencies. After the completion of Task 3, the
UGV proceeds to its final assignment, another crop field
fertilization (Task 7) . Since the prescription map was created
in Task 6, crop fertilization can start as soon as the robot
reaches location E. Finally, when crop fertilization is done,
the UGV proceeds to its destination depot, and the mission is
completed.

In this small mission, which can also be seen as
a part of a larger mission, we have demonstrated a
real-world use case of a [XD]:MT-SR-TA-SP problem
configuration.

VII. EVALUATION
While CP is a common approach when solving scheduling
operations [22], it is shown that (M)ILP can be competitive
in addressing these types of problems [23], and it has been
widely used for routing operations. The model presented
in this paper can be seen as a mixture of both routing
and scheduling. For this reason, we evaluate our proposed
ILP and CP models by implementing them in the CPLEX
optimization tool and the CP Optimizer, respectively. The
version of both tools is v20.1.0. The implemented models
are benchmarked on an extensive set of test instances, with
gradually increasing complexity, in order to reveal the behav-
ior of the algorithm extensively. The experimental platform
is an i9-9980XE @4.1GHz (18 cores) CPU with 128 GB of
DDR4 RAM. It is worth noticing that the planning activity
is typically carried out offline, before the mission. However,
in case of unexpected events a fast, time-limited, re-planning
is necessary. Each of the solvers is given 2 hours to find the
best solution.

A. BENCHMARK SETUP
The benchmark consists of 10 problem instances with
different levels of complexity, with respect to the number
of agents, tasks, task types, equipment, and precedence
constraints. We limit the number of different equipment
required by tasks to 3. The number of required precedence
relations is in relation to the number of tasks involved in a
mission, i.e., 0% to 35% of the tasks will have precedence
relations. The number of parallel tasks is set to 50%, while
the number of virtual tasks varies between 10, 50, and 90%
of all the tasks in the mission. The number of tasks and
agents also varies depending on the test instance. The task
duration is randomized in the range of 10 to 500 seconds.
The instances are randomly created with the aforementioned
limitations. The exact numbers for each test instance are given
in Table 2, more specifically, the first row shows the number
of agents available in each problem instance, the next row
shows the number of tasks to be done, followed by the number
of precedence constraints between tasks, the next row shows
the number of source depots per problem instance, and finally,
the number of destination depots.

Two solvers are compared based on the set of 10 different
test instances, which have gradually increasing complexity
in terms of the number of agents, tasks, and precedence
constraints, to better understand the scalability issues of the
solvers. Both solvers are running in deterministic mode,
meaning that they would produce the same solution each run.
For this reason, each test instance is run only once and the
value of this one run is shown in figures and tables in this
section. Each instance was created with a different percentage
of virtual tasks, more preciselywith 10, 50, and 90%of virtual
tasks. We created three different benchmarks with different
percentages of virtual tasks in order to analyze the effect
of virtual tasks on the two solvers. Both solvers are run for
the same amount of time (7200 seconds = 2 hours) and we
compared the best results found, as well as the gap between
the lower bound and the best solution found for every test
instance. In addition, we also compare the convergence speed
of the two solvers.

B. IMPLEMENTATION
The performance of the solver greatly depends on the
way a model is implemented. Although the goal of this
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TABLE 2. Detailed information about each test instance.

TABLE 3. Number of constraints and variables in CPLEX and CPO.

TABLE 4. Results for benchmark 1 with 10% of virtual tasks.

work is not to address the optimization of the implemented
model, but rather to evaluate the proposed model, we do
incorporate some of the implementation details that were
used to configure the solver.

1) CPLEX
Disjunctive constraint (Eq. (11)) is implemented as indi-
cator constraint. The formulations with big-M coefficients
may cause numerical instability. The provided indicator
constraints avoid this problem altogether; however, this
comes at the cost of reduced performance in terms of
convergence time. Ku and Beck [15] performed a comparison
of disjunctive and indicator constraints on a Job-Shop
Scheduling Problem and showed that indicator constraints
are up to three times slower than the disjunctive ones.
Nevertheless, we used the IloIfThen indicator constraints
provided by CPLEX, to avoid potential numerical issues,
as indicated in the CPLEX user’s manual [24]. Finally, the
search emphasis was set to balance feasibility and optimality.

2) CP OPTIMIZER
The constraint programming model is implemented as it is
presented in Sect. V, since the way the model is presented
has been influenced by the CP Optimizer in the first
place. We ran the solver with the enabled Presolve,
and TimeLimit set to 7200 seconds, as stated earlier.

TABLE 5. Results for benchmark 2 with 50% of virtual tasks.

TABLE 6. Results for benchmark 3 with 90% of virtual tasks.

DefaultInferenceLevel is kept at basic, as changing
it to extended yielded worse overall results. The other options
assumed their default values.

The number of constraints and decision variables for each
problem instance is shown in Table 3 for both CPLEX
and CPO. Values for CPLEX are given after the automatic
presolve operation, which is used to reduce the number of
constraints and decision variables by removing the redundant
ones. Eq. (9) is responsible for more than 90% of the total
number of constraints in the case of CPLEX. Provided values
are for the case when 50% of the tasks in the mission are
virtual.

C. RESULTS
The obtained results for the ILP model in CPLEX and the CP
model in CPO are given in Tables 4, 5, and 6. Each benchmark
consists of 10 test instances. In total, we conducted three
different benchmarks, each with a different percentage
of virtual tasks. The reported computation times exclude
the time taken to generate the model from the ILP/CP
formulations.

The first instance is solved by both solvers, with a 0% gap
in each of the 3 benchmarks. When the gap is 0% it means
that the found solution is guaranteed to be the optimal one.
The gap is defined as (bs−bb)

(bs·10−2)
, where bs is the best solution

found, and bb is the best bound. Computation time, however,
differs between the solvers, where CPO is faster to reach the
optimal solution. The situation is similar for Instance 2, where
both solvers reach an optimal solution, but CPO is an order of
magnitude faster. Instance 2 is the last instance where CPO
was able to prove that the solution found was the optimal one.
CPLEX performed better in this regard as it was able to prove
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FIGURE 3. Convergence plot for all 10 instances with 10% of virtual tasks.

the optimality of Instance 3 in Benchmark 1, and Instance 4 in
benchmarks 2 and 3. In these 3 instances, CPLEXmanaged to
find the optimal solution before the set time limit. In the rest
of the instances, in all 3 benchmarks, neither solver managed
to prove the optimality of any found solution. Moreover,
CPLEX was only able to find a lower bound in Instance 4 of
benchmark 1, and Instance 3 of benchmarks 2 and 3. In all
other instances, CPLEX was unable to find any lower bound.

In the first benchmark (Table 4), CPLEX and CPO
produced the same solutions only for the first three instances.
In the next five instances, CPO outperformed CPLEX by 17%
on average. In the last two instances, CPLEX was unable to
find any feasible solution within the given time limit. CPO

was also able to provide a better lower bound for instances
4–10.

In the second benchmark (Table 5), for instances 1-5, both
solvers found solutions of the same quality. For the first
4 instances, CPLEX had the advantage in providing a better
lower bound, while CPO performed better, both in terms of
solution quality and lower bound, as instances got harder. For
the last two instances, CPLEXwas unable to find any feasible
solution within the time limit. In the first 8 instances, CPO
outperformed CPLEX by 12% on average.

The third benchmark (Table 6) showed similar results to
the second benchmark. Both solvers found the same solution
for the first 5 instances, with CPLEX providing a better
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FIGURE 4. Convergence plot for all 10 instances with 50% of virtual tasks.

lower bound in the first 4. CPO performed better with
instances getting harder, compared to CPLEX, both in terms
of solution quality and lower bound. Although, the gap was
significantly large (between 66% and 92%). The last two
instances remained unsolved by CPLEX, the same as in
other benchmarks, however, the average difference on other
instances was only 11% in favor of CPO.

What can be concluded from these benchmarks is that
CPLEX is a viable option for small problem instances,
where guaranteed optimality is necessary. In every other case,
CPO presents itself as a clear winner. Instance 4, in both
benchmarks 2 and 3, shows that a mission with more tasks
is not necessarily more difficult for a solver since Instance 3

was not solved to optimality, contrary to Instance 4. It is
also noticeable that the gap between the solution quality of
CPLEX andCPO narrowedwith the increase in the number of
virtual tasks. Nevertheless, CPO always produced solutions
that are at least as good as the output of the ones by CPLEX,
and it was able to find feasible solutions where CPLEX
has failed to do so. In our benchmarks we had a time limit
fixed to 7200 seconds. While this might be a reasonable
time for some missions, other missions might require feasible
plans in a smaller time span. Particularly in cases where
unforeseen events may change the state of the mission and/or
the environment. In such a situation, a fast response is
necessary in order to ensure the successful completion of
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FIGURE 5. Convergence plot for all 10 instances with 90% of virtual tasks.

the initial mission goal. This is why time is critical when it
comes to re-planning a mission. In order to determine which
algorithm is better in this department, we will take a look at
the convergence rate of both CPO and CPLEX.

Figs. 3, 4, and 5 show the convergence rates for every
instance in each of the three benchmarks.What can be noticed
is that CPO’s convergence rates are far superior to CPLEX.
In most cases (Instances 1–8, except for instances 5 and
8 with 10% virtual tasks, Fig. 3), CPO converges within the
first second. Even for the harder problems, instances 9 and 10,
CPO does most of its convergence within the first 10 seconds,
especially for benchmarks 2 (Fig. 4) and 3 (Fig. 5), i.e., with
50 and 90% of virtual tasks in a test instance. In most cases
(except Instance 2), CPLEX takes longer to find an initial

feasible solution, and more often than not, that solution is
worse compared to the initial solution found by CPO. From
these results, it is clear that CPO ismore suitable for situations
where mission re-planning is needed and that, on average,
CPO is faster to find an initial feasible solution, has a faster
convergence rate, and finds better quality solutions compared
to CPLEX. CPLEX is competitive only in the first two
instances. It is important to emphasize that both CPLEX and
CPO have room for improvement. CPLEX has 76 tunable
parameters, as stated by Hutter et al. [25] in their paper on
automated configurations for MIP solvers. They managed to
improve proving optimality by the speedup factor of up to
52 and to improve gap minimization with a factor of up
to 42, on some MIP problems. Similarly, CPO has a huge
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number of tunable parameters [26], which can greatly impact
the solver’s performance. We used default settings wherever
possible, since parameter tuning is a time-consuming process
on its own, so it should be used only when there is a clear
benefit.

It is can be concluded that both of the proposed approaches
have limitations. CPLEX has the advantage of being able
to provide tighter guarantees on the quality of the solution
found, however, it can be very slow in finding good or even
feasible solutions. CPO on the other hand is much faster,
as Tables 4, 5, 6 and Figs. 3, 4, 5 show, but the guarantees on
the quality of the solution are worse compared to CPLEX.

VIII. RELATED WORK
As stated in Sect. III, there are not many papers on the
problem configuration described in this work. Specifically,
approaches that incorporate Multi-Task Robot systems seem
to be missing from the literature, at least in terms of how it
is defined in the original MRTA taxonomy. That being said,
there are a certain number of papers addressing multitask
robots dimension, e.g., [27]. However, the term multitask
robots, in their work, refers to robots that can do multiple
different tasks, but not simultaneously. Due to the absence
of literature on the problem described in this paper, we will
address some problems that are similar to [XD]:MT-SR-
TA:SP.

Lacomme et al. [28] have presented a model of the
resource-constrained project scheduling problem with rout-
ing. This is a closely related problem, but the vehicles used in
Lacomme’s work can be categorized as Single-Task Robots.
Cordeau and Laporte [29] have presented the dial-a-ride VRP
problem. Depending on the level of abstraction used for tasks,
one can argue that this type of problem falls under the MT-
SR-TA category. However, we do not consider this to be the
case based on the discussion in Sect. II. Nevertheless, this
work is closely related to the work presented in this paper.
The subject of MT robots with an emphasis on complex
task allocation has been addressed by Landèn et al. [30].
Although the authors mention that their problem can be
classified as MT, it is unclear if it really is. By the definition
of [3], MT robots perform tasks simultaneously. The example
Landen et al. provided, refers to scanning two different areas,
A and B, as an MT. This cannot be done simultaneously by
a single agent. Cano et al. [31] have presented a paper where
they perform the allocation of software tasks to CPUs. The
problem is modeled as a multi-objective, multidimensional,
multiple-choice knapsack problem, that falls under theMRTA
category of XD:SR-MT-IA. Each task is a set of task variants
that have different parameters for Quality of Service and
Utilization. Finally, if we consider the ST-MR-TA problem
configuration, which is in a similar problem domain as the
work presented here, Sariel and Balch [32] worked on the
allocation of resource-constrained project tasks to robots.
The work handles the dynamic allocation of tasks with
precedence and synchronization constraints. In addition to
PCs, tasks also require a certain number of robots to execute
them.

IX. CONCLUSION
When a MAS instance consists of a set of very diverse
autonomous agents having extensive computation andmanip-
ulation capabilities, it is necessary to provide a model that can
exploit all possible solutions through appropriate choices for
the agents and task pairs. In this work, we have presented
a mathematical model for the optimization of multi-robot
mission planning, which can exploit task parallelism. Fur-
thermore, we have introduced the distinction between virtual
and physical tasks, characterizing their relations in terms of
parallel task execution. The proposed formulation utilizes the
proposed task separation in an attempt tominimize the overall
makespan of the mission. In particular, we have focused
on the formulation of the [XD]:MT-SR-TA-SP problem
configuration, both as ILP and CP problem, implemented
in CPLEX and CPO, respectively. The mission goal was
the minimization of the longest agent’s makespan over all
the agents. The presented models have been evaluated in
3 benchmarks, each consisting of 10 test instances. The
results of a comparison of CPLEX and CPO have shown
that CPO is far more suitable for this type of problem.
It performed at least equally well, or better, in terms of the
quality of solutions found. It was also able to find better lower
bounds for harder instances. The only advantage CPLEX had
is managing to prove optimality for a limited number of small
instances. These results also exposed CPLEX’s scalability
issue with these types of problems. Future work will extend
this formulation to include Time-Windows and Multi-Robot
tasks. Additionally, further investigation is needed to test CP
Optimizer on larger instances and compare its performance
and scalability to a solver that is not a general-purpose tool
but specifically tailored for this type of problem.
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