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Abstract—Probabilistic approaches have gained attention over
the past decade, providing a modeling framework that enables
less pessimistic analysis of real-time systems. Among the different
proposed approaches, Markov chains have been shown effective
for analyzing real-time systems, particularly in estimating the
pending workload distribution and deadline miss probability.
However, the state-of-the-art mainly considered discrete emission
distributions without investigating the benefits of continuous ones.

In this paper, we propose a method for analyzing the workload
probability distribution and bounding the deadline miss proba-
bility for a task executing in a reservation-based server, where
execution times are described by a Markov model with Gaussian
emission distributions. The evaluation is performed for the
timing behavior of a Kalman filter for Furuta pendulum control.
Deadline miss probability bounds are derived with a workload
accumulation scheme. The bounds are compared to 1) measured
deadline miss ratios of tasks running under the Linux Constant
Bandwidth Server with SCHED DEADLINE, 2) estimates de-
rived from a Markov Model with discrete-emission distributions
(PROSIT), 3) simulation-based estimates, and 4) an estimate as-
suming independent execution times. The results suggest that the
proposed method successfully upper bounds actual deadline miss
probabilities. Compared to the discrete-emission counterpart, the
computation time is independent of the range of the execution
times under analysis, and resampling is not required.

Index Terms—Real-time systems, Hidden Markov Model,
Probabilistic Schedulability Analysis, Deadline Miss Probability

I. INTRODUCTION

Real-time systems are commonly characterized as hard or
soft. Whereas in a hard real-time system deadlines must always
be met, in a soft real-time system deadline misses lead to a
deterioration of the Quality of Service (QoS) [1] or Quality of
Control (QoC) [2], but can be tolerated to a certain extent. This
implies that the number of deadline misses is bounded such
that QoS or QoC can be retained at an acceptable level [3].

Hidden Markov Models (HMMs) have been utilized to
model execution times in systems with dependencies, where
there is regularity in the variation of the execution times.
In [4], [5], the authors have modeled execution times as
Markov models with discrete emission distributions, including
estimating the deadline miss probability under a Constant
Bandwidth Server (CBS). Emission distributions have also
been modeled as continuous Gaussian distributions [6], [7].

The missing link is that the application of HMMs with
continuous emission distributions has been limited to only
estimating execution times, but not the workload distributions
and deadline miss probabilities.

This paper focuses on the problem of bounding the deadline
miss probability of a real-time task, using HMMs with contin-
uous emission distributions. In the literature, two concepts re-
lated to probabilistic deadlines are commonly used. The Dead-
line Miss Probability (DMP) is interpreted as the expected
ratio of missed deadlines to the number of jobs in a long (tend-
ing to infinite) time interval. The Worst-Case Deadline Failure
Probability (WCDFP) is interpreted as an upper bound on the
probability of a deadline miss for any single job [8]. This paper
focuses on DMP, i.e., the long-run frequency interpretation.

More specifically, in this paper, we address the problem
of upper bounding the deadline miss probability under
reservation-based scheduling of a periodic task, where
execution times are modeled by a Markov chain with
Gaussian emission distributions. We propose an iterative
workload accumulation scheme, where workload distributions
are accumulated sequentially over task periods. The scheme
starts from the point of workload depletion, that is a task
period with zero carry-in workload. The method provides an
upper bound on the deadline miss probability for the overall
HMM, and for each of its states separately.

The method is evaluated with a task controlling a Furuta
pendulum [9]–[11]. The obtained bound is compared with the
deadline miss ratio of the control task running under the Linux
kernel implementation of CBS, SCHED_DEADLINE [12].
The bound is also compared to the deadline miss probability
estimates using a discrete-emission distribution Markov
Model [5], [13], a simulation of the fitted continuous-time
HMM, and an estimate with independence assumption.

An extended version of this paper is available online1

along with code and data.

II. RELATED WORK

Davis and Cucu-Grosjean provide a comprehensive survey
on probabilistic schedulability analysis techniques [8], along
with a survey on probabilistic timing analysis [14].

Dı́az et al. [15] presented a response time analysis for
periodic tasks where execution times are independent random
variables and showed that the backlog is a Markov chain.

Ivers and Ernst [16] addressed the case where execution
times are dependent and proposed the use of Fréchet bounds.

1https://github.com/annafriebe/ContMM RT BoundDMP
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Extreme Value Theory (EVT) has been applied in
measurement-based statistical analysis of execution
times [17]–[19] and response times [20]–[22] to find the prob-
abilistic Worst-Case Execution Time (pWCET) and probabilis-
tic Worst-Case Response Time (pWCRT). The pWCRT is an
upper bound on the probability of exceeding a response time
for every valid sequence of program executions based on find-
ing the distribution of the extreme values. Maxim et al. [23]
have shown that EVT-based methods provide sound results.
EVT is applicable in cases of dependence, as long as there is
stationarity [24] or extremal independence [25]. The pWRCT
can be obtained from convolutions of pWCET distributions.
Marković et al [26] provide an optimal down-sampling algo-
rithm minimizing the pessimism and a convolution algorithm
with better time complexity compared to previous techniques.

Real-time queuing theory [27] provides methods for
analyzing the response time distribution specifically in the
case of heavy traffic when utilization is close to 1. Zagalo
et al. [28] provide approximations based on queuing theory
for response-time distributions of a system with fixed-priority
preemptive scheduling. Execution times and interarrival times
are independent random variables and deadlines are implicit.

Bozhko et al. [29] proposed a response time analysis with
Monte Carlo simulation for fixed-priority preemptive schedul-
ing with execution times as independent random variables.

Safe analytical approximations of accumulated workload
distributions from independent tasks under fixed-priority pre-
emptive scheduling have been provided by Marković et al [30].

Chen et al. [31] showed how a bound for the WCDFP
can be found from synchronous release combined with
additional carry-in or inflation of the execution times. This
analysis regards systems of sporadic tasks where execution
times are independent random variables, with fixed-priority
preemptive scheduling, where jobs are aborted at their
deadline. The analysis refutes and corrects the work of
Maxim and Cucu-Grosjean [32].

Von der Brüggen et al. [33] provided a method for over-
approximating the WCDFP under EDF for tasks with different
execution modes. This includes derivation for acyclic task
chain dependencies among a bounded number of subsequent
jobs. The number of intervals considered is substantially
reduced due to the observation that the probability of a
deadline miss in an interval is bounded by the probability
that the processor does not idle in the same interval.

Mills and Anderson [34] provide response time and
tardiness bounds for soft real-time tasks with stochastic
execution times, in a server-based scheduler. In this work,
execution time dependence is considered within but not across
time windows. A larger window leads to greater tardiness
bounds. Liu, Mills, and Anderson [35] further proposed the use
of independence thresholds, where independence is assumed
for execution times exceeding a determined threshold value.

The CBS is used in the evaluation and fulfills the
requirements outlined in Section III. It was introduced by
Abeni and Buttazzo [36] and used to obtain probabilistic
deadlines for QoS guarantees [37]. Analysis under CBS has

TABLE I
CONTRIBUTION OVERVIEW.

Discrete Emission Continuous Emission
Overview of the theoretical contributions

Timing Analysis (TA) [4], [5] [6]
DMP analysis [4], [5] This paper

Comparison of the models and their analysis properties
State No. identification – [6]
Adaptive TA – [7]

DMP analysis:
Time and space complexity

Dependent on:
- resampling scale
- execution time range

Requires full steady-
state distribution [5].

Independent of
- resampling scale
- execution time range

Iterative procedure with
an adjustable complexity.

been performed with execution times [38], [39] and interarrival
times [40], [41] modeled with probability distributions.

Tasks with dependent execution times have been modeled
as Markov chains and analyzed under CBS by Frı́as et
al. [4], [5]. The steady-state response time distribution was
calculated, while the results were compared to running the
task under Linux SCHED_DEADLINE. The time of such
analysis depends on the range of execution time values, the
number of states, and the scaling factor for resampling [42].

Execution times have been also modeled as continuous
Gaussian distributions in the context of emission distributions
of a Markov chain [6], [7]. We are not aware of any work
that analyzes this model in terms of response times or
deadline miss probabilities. In this paper, we aim to bridge
this gap and enable the use of HMMs with Gaussian emission
distributions for schedulability analysis. Similarly as in the
work of Frı́as et al. [4], [5], dependencies are explicit in
HMM, and the task is running in a CBS. The CBS provides
isolation from other tasks in the system so that the pending
workload considers only the workload from previous jobs of
the same task, instead of the workload from other tasks as in
most works concerning response times.

For a general comparison of the probabilistic model with
discrete- and continuous emission distributions, refer to
Table I. The shaded entries represent the contributions of this
paper.

III. SYSTEM MODEL AND NOTATION

The notation used in the paper is outlined in Table II. We
use the superscripts ∗, ↑, and ↓ to indicate the true values,
upper, and lower bounds, respectively.

We will use the concept of upper bounding random
variables, as defined in Definition III.1. This is also referred
to as the usual stochastic order [43] or the first-order statistical
dominance [44]. In this paper we use the term upper bound
as in Davis and Cucu-Grosjean [14].

Definition III.1 (cf. [14], [43], [44]). Let X and Y be two
random variables. We say that X is greater than or equal to
Y (i.e., X upper bounds Y), if the Cumulative Distribution
Function (CDF) of X is never above that of Y , and we denote
this relation by X ≥Y .
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TABLE II
OVERVIEW OF NOTATION USED IN THIS PAPER.

Symbol Description
Basic notation

T Task period
Ji Job at task period i
ai Arrival time of Ji
di Absolute deadline of Ji
D Relative deadline
P Server period
Q Server budget
n Number of server periods in a task period
k Number of server periods in a relative deadline
S Number of Markov states
M State transition matrix
N Number of task periods in workload accumulation

Values of random variables
ci Execution time of Ji
fi Finishing time of Ji
vi Workload at task period i

h
Accumulation sequence of state visits

in Markov chain since workload depletion

h̃
Accumulation vector of the number of visits

in each Markov state since workload depletion
Probability distributions and probabilities

C Execution time distribution

Vh,Vh̃

Workload distribution associated with
an accumulation sequence or vector

mi,j Transition probability from state i to state j
ξ(s) Stationary probability of being in s

pin(s,h̃) Probability of entering s with h̃

pco(s,h̃)
Probability that h̃ in s carries

workload to the next task period
pwd(s) Probability of workload depletion in s
pdm Deadline miss probability
β(s)N Probability of being in state s with h longer than N .

To upper bound workload distributions, we will use the
partial Gaussian distribution, as defined in Definition III.2.
Let us consider a Gaussian N (µ,σ2) with probability density
function f(x|µ,σ2). Φ(x) is the cumulative density function
of the standard normal distribution.

Definition III.2. We define a partial Gaussian distribution
N tail(µ, σ2, α), originated from a Gaussian distribution
N (µ,σ2), as:

f tail(x|µ,σ2,α)=

{
0, x≤α

1
Φ(µ−ασ )

·f(x|µ,σ2) x>α
. (1)

In a partial Gaussian distribution, the probability for the
values lower than α is set to zero and the remaining is
normalized so that the distribution integrates into one.

In the derivation of workload distributions, we use
convolutions as defined in Definition III.3.

Definition III.3. The convolution of f and g, denoted with
the ∗ operator is:

[f ∗g](z)=

∫ ∞
−∞

f(z−x)·g(x)dx.

A. Task Model

A real-time task τ consists of a sequence of jobs Ji, i∈N.
The arrival time of Ji is ai. The tasks are periodic, with no

ai

P

fi

Q

ai+1 difi+1

Task computation

Unused part of
server reservation

Computation of the other
reservations

Edges of the server periods

Fig. 1. An illustration of the task model and the reservation-based server.

jitter, i.e., ai+1 = ai + T , with a0 being the arrival time of
the first job. The execution time of Ji is ci and its finishing
time is fi. The jobs may be preempted, and fi ≥ ai + ci.
The execution time ci is modeled as a random variable.
The random variable R models the overall duration from
activation time to finish time of a job.

The deadline of a job Ji is di = ai +D, where D is the
relative deadline. Jobs are executed until completion, even
when a deadline is missed. The relative deadline can be
longer than the task period. We consider the probability of
a deadline miss pdm, that is the overall probability that a job
finishes after the deadline, pdm=P(R>D).

B. Scheduling Algorithm

The analyzed task is the single task served by a reservation-
based server. Within each server period P , the task is
guaranteed to receive Q units of processing time. The fraction
of the processing time dedicated to a task (bandwidth) is
B =Q/P . The server period divides the task period evenly,
i.e., T = n ·P , where n is a positive integer. We also define
k, a positive integer that is the number of server periods in
the relative deadline D, D= k ·P . The CBS with a properly
selected server period is one example of a server fulfilling
these requirements, and is used in the evaluation.

An illustration of the task model and reservation-based
server is shown in Fig. 1. In this illustration, the task period
is divided into three server periods, and the bandwidth is
0.5. As illustrated, the deadline of a job does not need to
be within a task period from the arrival; the relative deadline
may be longer than the period.

IV. EXECUTION TIME MODEL AND ANALYSIS

A. Markov Chain Execution Times

In this section, we consider a task, where the execution time
distribution is described by a Markov model characterized
by the triplet 〈S,M,C〉. S= {1,2,...,S} is the set of S states,
S ∈ N. M is the S × S state transition matrix, where the
element ma,b represents the conditional probability of being
in state b at task period i + 1, given that at task period i
the state is a. C = {C1,C2, ... ,CS} is the set of execution
time distributions, or emission distributions related to the
respective state. These are modeled as Gaussian distributions
with mean µs, and variance σ2

s , i.e., Cs∼N (µs,σ
2
s).

The motivation for using Gaussian distributions is based in
simplicity and tractability. The representation requires only a
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State 1

State 2

State S

...

Task period 1 2 3 4 5

Fig. 2. Illustration of the period-by-period workload accumulation sequence.

few distribution parameters, as opposed to the discrete case
where the probabilities of each execution time value need to
be stored, subject to a defined scaling factor. Applicability
of the Gaussian model has been demonstrated in [6], where
an HMM with Gaussian emission distributions was shown to
be a valid model in a video decompression use case. Also, it
has been successfully used in the context of applications with
dynamic behavior where adaptability is relevant [7]. Although
the modeling of execution times of each HMM state as a
Gaussian distribution may seem simplistic, several states with
such distributions can be combined to form a more general
distribution shape. The state-independence assumption does
not severely hinder the model’s generality due to the transition
probabilities. Trivially, we can envision a model where
arbitrarily many states are modeled with Normal distributions
with close to zero variance while transition probabilities
define the essence of the job execution time dependence.

B. Overview of the Proposed Approach

We will obtain an upper bound on the expected deadline
miss probability of a randomly selected job of the task in a
reservation-based server. The proposed method is based on
a workload accumulation scheme. The main idea is outlined
below, followed by the details in the remaining subsections.

In each task period, task τ is guaranteed nQ units of
processing time. The pending workload at the i-th task period
is denoted as vi and defined as in [37]:

vi=max(0,vi−1−nQ)︸ ︷︷ ︸
carry-in workload

+ci. (2)

where the first term accounts for the previous workload,
initially set to 0, and the first period is v1 = c1. An example
of how the workload evolves according to the Markov chain
model is shown in Fig. 2.

We start with zero initial pending workload and for each job
arrival with carry-over workload, one task period of workload
is accumulated. In the event of an idle point with no carry-
over workload, the next job arrival results in a new workload
accumulation sequence at task period 1 in Fig. 2. The
dashed red and solid blue lines depict two possible workload
accumulation sequences resulting from job arrivals in state
2 at task period 5 from the most recent point of workload
depletion. The accumulation sequence is modeled as a random
variable H that can take the values of any possible workload

accumulation path. In Fig. 2, with the dashed red path we
denote one possible value h=(S,S,1,2,2), taken by H.

Definition IV.1. Each arrival of a job Ji results in an
accumulation sequence h(Ji). We assume that the task is
in state s when Ji arrives. If there is an idle point directly
prior to the arrival, the resulting h(Ji) = (s). If there is
carry-over workload from the previous job, the resulting
h(Ji) is the h(Ji−i) resulting from the previous job arrival,
with s appended as the last component.

In this way, each job that arrives is related to one specific
h that models the accumulated workload since the last idle
point, and the state of this job is always in the last component
of the corresponding h.

Davis and Cucu-Grosjean [8] list three interpretations of
the probability of a deadline miss: “1) As a probability with
a long-run frequency interpretation equating to the expected
number of missed deadlines divided by the total number
of deadlines in a long (tending to infinite) time interval.
2) As the probability that a randomly selected job will miss
its deadline, which is broadly equivalent to the long-run
frequency interpretation. 3) As a bound on the probability that
any specific job will miss its deadline.” We use interpretation
1, the long-run frequency interpretation. In the steady-state
this is equivalent to the expected probability that a randomly
selected job misses its deadline.

Let H(j) be the set of all the permutations with repetitions
of accumulation sequences h of length j, of the states
S={1,2,...,S}.

Definition IV.2. The Deadline Miss Probability DMP(j) for
the j-th job since the last depletion point is defined as

DMP(j)=
1∑

∀h∈H(j)pin(h)

∑
∀h∈H(j)

pin(h)·pdm(h) (3)

where the set H(j) represents accumulation sequences
resulting from job arrivals at the j-th task period from the last
idle point. pin(h) is the probability of the event where a job
arrival results in the accumulation sequence h, and pdm(h) is
the conditional deadline miss probability for jobs resulting in
accumulation sequence h at their arrival.

Definition IV.3. The Deadline Miss Probability DMP is the
expected deadline miss probability of a randomly selected
job from the task, and it is obtained as

DMP=

∞∑
i=1

DMP(i)
∑

∀h∈H(i)

pin(h). (4)

Note that, since each job arrival results in one specific
accumulation sequence, the sum of pin(h) over all h equals 1.
Problem: The sum of Eq. (4) has a countably infinite number
of terms. This paper investigates how to find a bound for
DMP with a finite number of terms.

In the remainder of this section, we will provide an upper
bound on DMP by finding the upper bounds on pin and
pdm. We show that pin(h) depends on the probability of
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workload depletion in each state, the transition probabilities
and the execution time distributions along h. The conditional
probability of deadline miss pdm(h) for jobs resulting in an
accumulation sequence h depends only on the execution time
distributions along h. The workload accumulation process is
divided into two steps. First, we compute the upper bounds
on pin and pdm of accumulation sequences up to length N ,
thus approaching the true deadline miss probability. To make
a safe bound, we then sum the pin values in the remaining
accumulation sequences of length N+1 to infinity, assuming
that pdm for these periods is 1. This sum is referred to as β.
This finally leads to the safe upper bound on DMP in Eq. (35).
We further enlist the steps for deriving a safe bound on DMP.

Section IV-C: To determine upper bounds on pdm
and pin in Eq. (4) we need to find upper bounds on the
pending workload distributions associated with each state and
accumulation sequence. This is done in Eqs. (21) and (25).

Section IV-D: Bounds on pin depend on the probability
of carry-over workload pco from the previous step and
the transition probabilities ma,b. In the first step of the
accumulation process, pin depends on the probability of
workload depletion pwd for each state. With pwd propagating
along the accumulation, each pin is a linear combination of
pwd for the different states.

Section IV-E: Bounds on pwd are derived, relying on the
sum of pin in accumulation periods after N , denoted as β.
Section IV-F: In this section, we derive a bound on β. This
is given in Eq. (32), and is utilized for computing the lower
bounds on pin, pco and finally V .

Section IV-G: In this section bounds on pdm are presented,
using the bounds on V(h) (workload distribution associated
with an accumulation sequence), pin and β. The upper bound
of pdm for a state is defined in Eq. (34). The deadline miss
probability of a job resulting in a specific accumulation
sequence is accounted for with this sequence, even if the
relative deadline is longer and the actual deadline miss does
not occur until after other jobs have arrived.

The parts are tied together in the iterative workload
accumulation algorithm presented along with an example in
Section V. In Fig. 3 the process is illustrated with reference
to the different sections. Section IV-C is not referenced in
the figure as it is a basis for all the remaining sections.

C. Bounding the Conditional Pending Workload Distribution
Associated with a Workload Accumulation Sequence

We seek upper and lower bounds of the conditional
pending workload distribution conditioned on having a
given accumulation sequence since the most recent point of
workload depletion. The upper bounding distributions are
needed for the upper bounds of pdm. The upper and lower
bounding distributions are used to derive bounds on pin, pco,
β and pwd. As an example from Fig. 2, we want to define
the pending workload distribution in state 2 at task period 5,
provided that the transitions since workload depletion have
been along the path marked as dashed red, h=(S,S,1,2,2).

Initialize first workload accumulation
period, Section IV-D and initialize β.

Calculate bounds
for pwd and pdm,

Sections IV-E and IV-G.

Stopping criteria met?

Workload accumulation and
pwd bounds completed.

Calculate β, Section IV-F

Add next workload
accumulation period,

Section IV-D.

yes

no

Fig. 3. The workload accumulation process.

We denote the conditional pending workload distribution,
conditioned on a given accumulation sequence h as Vh with
a probability density function P(v|H=h).

The lower and upper bounds for this conditional pending
workload distribution depend only on the number of visits in
each state in the accumulation sequence and are independent
of their order. We model the accumulation vector as a random
variable H̃ that takes values as S-dimensional vectors of
non-negative integer values, where each value represents the
number of visits in a state. This means that the dashed red
and the solid blue accumulation sequence lines in Fig. 2 will
contribute to the same accumulation vector at task period 5
since they both have the same number of visits in each state,
that is h̃= [1,2,...,2]. We define the operation h̃[s] as taking
the s-th element of h̃. We also define h̃+s as h̃ with the s-th
element incremented by one, to simplify the notation of the
accumulation vector in s with carry-in workload from h̃.

The number of accumulation vectors of length N in a
system with S states is

(
N+S−1

N

)
= (N+S−1)!

N !(S−1)! , as opposed
to SN accumulation sequences where ordering is taken into
account. For a fixed number of states S, the number of
accumulation vectors to consider increases with the number
of accounted periods as O(NS−1).

Recalling Definition III.1, we derive an upper bound
conditional pending workload distribution V↑

h̃
≥Vh.

In the following, we show that a partial Gaussian
distribution (see Definition III.2) upper bounds the conditional
pending workload distribution. An illustration is shown in
Fig. 4. The black curve illustrates the exact convolution result.
When we replace it with the partial Gaussian distribution
(the blue curve and the red line), the probabilities of lower
workloads (the blue area) are moved to higher workloads (the
orange area), which gives an upper bound.

Theorem 1. The conditional pending workload distribution
Vh̃ associated with each state s and accumulation vector h̃
is upper bounded by N tail

(
µ(h̃),σ2(h̃),α(h̃,s)

)
.

We prove this by induction. For clarity, we state Lemma 2
for the base case, and Lemma 3 for the inductive step.
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Fig. 4. Illustration of a convolution result with an upper bounding partial
Gaussian distribution.

Lemma 2. The partial Gaussian distribution N tail
(
µs,σ

2
s ,0
)

upper bounds the conditional pending workload distribution
Vh̃ in state s immediately after a point of workload depletion.

Proof. In the first step after workload depletion, the
conditional pending workload distribution Vh equals the
execution time distribution of the entered state s. Excluding
negative values and normalizing gives an upper bounding
distribution, as probabilities are moved from lower workload
values to higher. Thus, N tail

(
µs,σ

2
s ,0
)

is an upper bound.

Consider a non-zero carry-over workload in a transition
from state sp with accumulation vector h̃, and an upper bound
on the workload distribution N tail(µ(h̃),σ2(h̃),α(h̃,sp)), into
state s. We show that the conditional pending workload
distribution is upper bounded by the partial Gaussian
distribution N tail(µ(h̃+s), σ

2(h̃+s), α(h̃+s, s)). Below, in
Eqs. (5) and (6) we define µ(h̃+s) and σ2(h̃+s). Eqs. (7)
and (8) are used to simplify the expression of the starting
value α(h̃+s,s) of the resulting upper bounding distribution,
defined in Eq. (9). Here sf−1(q,µ,σ2) denotes the inverse
survival function at q of a Gaussian distribution with mean µ,
and variance σ2. Eq. (8) defines K(h̃,sp), the normalization
factor needed for the conditional probability calculation. In
the proof, the execution time distribution Cs is convolved with
an upper bound of the carry-over workload distribution to
get a bound on the pending workload distribution. The upper
bound of the carry-over workload is the part extending past
the task period of the upper bounding workload distribution
in sp with h̃. K(h̃,sp)

−1 is the integral of this part, to get a
probability distribution integrating to one.

µ(h̃+s)=µs+

S∑
i=1

h̃[i]·(µi−n·Q) (5)

σ2(h̃+s)=σ2
s+

S∑
i=1

h̃[i]·σ2
i (6)

α∆(h̃,sp)=max(0,α(h̃,sp)−n·Q) (7)

K(h̃,sp)=

[
Φ

(
µ(h̃)−n·Q−α∆(h̃,sp)

σ(h̃)

)]−1

(8)

α(h̃+s,s)=

{
0 h̃=0

sf−1( 1
K(h̃,sp)

,µ(h̃+s),σ
2(h̃+s)) h̃ 6=0

. (9)

Lemma 3. When transitioning with non-zero carry-over
workload from state sp with accumulation vector h̃ into state

s, and with an upper bound on the workload distribution in
the previous task period V↑ as N tail(µ(h̃),σ2(h̃),α(h̃,sp)), the
conditional pending workload distribution is upper bounded
by N tail(µ(h̃+s),σ

2(h̃+s),α(h̃+s,s)).

Proof. The strictly positive carry-over workload distribution is
the normalized workload tail beyond the task period processing
time. This can be formally expressed with the following term,
N tail

(
µ(h̃)−n·Q , σ2(h̃) , max(0,α(h̃,sp)−n·Q)

)
.

The execution time distribution in state s is described by
N (µs, σ

2
s). The resulting upper bound on the conditional

workload distribution V↑
h̃+s

in state s with accumulation

vector h̃+s is the result of the convolution, Definition III.3, of
the probability density functions of the execution time and the
upper bound on the positive carry-over workload. This holds
because execution times are independent random variables
and the dependence of the Markov model is restricted to the
transition probabilities.

To simplify the notation in the convolution expansion, we
introduce the following:

µR(z)=
(z−µs)·σ2(h̃)+(µ(h̃)−n·Q)·σ2

s

σ2
s+σ2(h̃)

(10)

σ2
R=

σ2
s ·σ2(h̃)

σ2
s+σ2(h̃)

(11)

µΣ∆ =µs+µ(h̃)−n·Q (12)

σ2
Σ =σ2

s+σ2(h̃). (13)

Expanding the convolution for V↑
h̃+s

:∫ ∞
−∞

f
(
z−x|µs,σ2

s

)
·f tail

(
x|µ(h̃)−n·Q,σ2(h̃),α∆

)
dx

=K(h̃,sp)

∫ ∞
α∆

f(z−x|µs,σ2
s)·f(x|µ(h̃)−nQ,σ2(h̃))dx

=K(h̃,sp)·f
(
z|µΣ∆,σ

2
Σ

)
·
∫ ∞
α∆

f
(
x|µR(z),σ2

R

)
dx, (14)

where the last step isolated the part of the expression that is
independent of x. We recognize the integral in the second
factor of Eq. (14) as the survival function or 1-CDF at
α∆ of N (µR(z),σ2

R). This is monotonically increasing and
converges to 0 as z goes to −∞, and it converges to 1 as z
goes to ∞. Thus, we can find a value α(h̃+s,s) where the
area under the curve of the exact convolution of the pending
workload distribution up to α(h̃+s,s) equals the area between
the curves of the exact pending workload distribution and the
partial Gaussian distribution, N tail(µΣ∆,σ

2
Σ,α(h̃+s,s)) from

α(h̃+s,s). An illustration is provided in Fig. 4. Using K for
normalization of the partial Gaussian distribution ensures that
the tail of the upper bound approaches the tail of the full
convolution asymptotically. Finding α(h̃+s,s) gives:

K(h̃,sp)·
∫ ∞
α(h̃+s,s)

f
(
x|µΣ∆,σ

2
Σ

)
dx=1. (15)

As we know that the result of the convolution integrates to
one, this shows that the two regions described and illustrated

6
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Fig. 5. An illustration of a convolution result and the Gaussian distribution
that forms a lower bound.

in Fig. 4 have the same area. Replacing the exact convolution
with the partial Gaussian is equivalent to moving probability
weight from lower pending workload values to higher, leading
to an overestimate. We have:

µ(h̃+s)=µΣ∆ (16)

σ2(h̃+s)=σ2
Σ (17)

α(h̃+s,s)=s·f−1

(
1

K(h̃,s)
,µΣ∆,σ

2
Σ

)
. (18)

This concludes our proof.

Considering all states sp containing the accumulation
vector h̃, we define:

α∆(h̃)=max(0,max
∀sp

α(h̃,sp)−n·Q). (19)

We use this instead of Eq. (7) in Eqs. (8) and (9). With these
lemmas, we are ready to prove Theorem 1.

Proof. We prove this by induction.
Base case: For the task period after workload depletion, this
follows by Lemma 2.
Inductive hypothesis: If we have such a workload distribution
upper bound for all states and accumulation vectors in one
task period, it also holds for the next period.
Inductive step: This follows from Lemma 3 and taking the
maximum α in Eq. (19).

With similar reasoning, we can use a Gaussian distribution
as a lower bound of the pending workload distribution
V↓
h̃
≤ Vh. This is illustrated in Fig. 5. As K > 1, and the

area under the curve equals one for both the Gaussian
distribution with mean µΣ∆ and variance σ2

Σ and the result
of the convolution, replacing the workload distribution with
the Gaussian implies moving probability weight from higher
workload values to lower, thus providing a lower bound.

D. Bounds on the Joint Probability of Being in a State with
an Accumulation Vector

Each state s in each task period is associated with one or
more accumulation vectors, h̃. Each accumulation vector in a
state is associated with lower and upper bounds on the joint
probability of the events being in s and a job arrival resulting
in the the accumulation vector h̃ p↓in(s,h̃) and p↑in(s,h̃). Each
accumulation vector in a state is also associated with lower and
upper bounds on the probability of the workload contributing
to carry-over into the next period, p↓co(s,h̃) and p↑co(s,h̃).

In the first period, with no carry-in workload, each state is
associated with a single accumulation vector containing zeros
except for the current state which is set to 1. The probability
of entering a state in the first period after workload depletion
depends on the stationary probabilities ξ(s) of being in each
state, the probability of workload depletion pwd(s) in each
state, and the transition matrix. The stationary probabilities
and the transition matrix are known, but the probability of
workload depletion in each state is unknown at this stage. In
Section IV-E we will describe how to retrieve this. Assuming
that we have lower and upper bounds on the probabilities
of workload depletion, p↓wd(s) and p↑wd(s), we can calculate
lower and upper bounds on the probability of entering the
states in the first workload accumulation period as

p↓in(s,h̃)=

S∑
sp=1

ξ(sp)·p↓wd(sp)·msp,s (20)

p↑in(s,h̃)=

S∑
sp=1

ξ(sp)·p↑wd(sp)·msp,s. (21)

Since there is only one accumulation vector in each state in
the first accumulation period, there is no dependency on h̃.

For the following periods, accumulation vectors are created
by copying each accumulation vector from the states in
the previous task period and incrementing the current state
element by 1. We denote this vector as h̃+s. Note that paths
from different states in the previous period can lead to the
same accumulation vector. The joint probability of the events
being in s and a job arrival resulting in h̃+s depends on
the probability of h̃ contributing to carry-over into the next
period in all states, and transition probabilities.

The probability that the workload contributes to carry-over
into the next period is the probability of being in the state
with this accumulation vector times the probability that the
conditional pending workload exceeds the available processor
time in a task period. We define the random variables X∼V↓

h̃

and Y ∼V↑
h̃

. The probability of carry-over into the next period
is bounded by p↓co(s,h̃) and p↑co(s,h̃), further calculated as:

p↓co(s,h̃)=p↓in(s,h̃)·P(X>n·Q) (22)

p↑co(s,h̃)=p↑in(s,h̃)·P(Y >n·Q) (23)

with V↓
h̃

given as N (µ(h̃), σ2(h̃)), and V↑
h̃

as
N tail(µ(h̃),σ2(h̃),α(h̃)).

The joint probability of being in s and a job arrival
resulting in h̃ is respectively lower and upper bounded by:

p↓in(s,h̃+s)=

S∑
sp=1

p↓co(sp,h̃)·msp,s (24)

p↑in(s,h̃+s)=

S∑
sp=1

p↑co(sp,h̃)·msp,s. (25)

E. Bounds on the Probability of Workload Depletion
Bounds on the probability of workload depletion for each

state are used to calculate pin in the first step after workload
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Fig. 6. An illustration of the possible valid region of p↓Σ
in for two states, if

the true probabilities of workload depletion would be used as p↓wd in Eq. (20).

depletion in Eqs. (20) and (21), and are further propagated
to all pin. The true workload depletion probability p∗wd is
unknown, and in this section, we will derive bounds for it.
Had p∗wd been known, and input as p↓wd in Eq. (20), the sum
p↓Σin of the lower bounds on the probabilities associated with
all accounted accumulation vectors would be lower than the
stationary probabilities for all states. Using h̃∈(s,i) to denote
the set of accumulation vectors associated with state s in task
period i, we formulate:

p↓Σin (s,pwd)=

N∑
i=1

∑
h̃∈(s,i)

p↓in(s,h̃)≤ξ(s), ∀s. (26)

We define β(s)N as the probability of being in s with
workload accumulation past N .

β(s)N =

∞∑
i=N+1

∑
h̃∈(s,i)

pin(s,h̃) (27)

We also define e(p↓Σin ) as the error introduced by using the
lower bounding Gaussian distribution in place of the true
convolution result. Had we known the true p∗wd and input it
as p↓wd in Eq. (20) that would give values of p↓Σin in the blue
area of Fig. 6.

Had the true workload depletion probability p∗wd been
known and input as p↑wd in Eq. (21), the sum of the upper
bounds of the probabilities p↑Σin associated with all accumula-
tion vectors would be greater than the stationary probabilities
minus the probability of being in the state with longer accumu-
lation vectors β(s)N , for all states. This is outlined in Eq. (28):

p↑Σin (s,pwd)=

N∑
i=1

∑
h̃∈(s,i)

p↑in(s,h̃)≥ξ(s)−β(s)N ,∀s. (28)

We define e(p↑Σin ) the error introduced by using the upper
bounding partial Gaussian distribution in place of the true
convolution result. If we input true workload depletion
probabilities as p↑wd in Eq. (21) the resulting p↑Σin would be in
the range depicted as green in Fig. 7. This allows us to find
a bound of the true probabilities of workload depletion to
values that are mapped within both the blue region of Fig. 6
and the green region of Fig. 7.

ξ(1)−β(1)

ξ(2)−β(2)

β(1)

e(p↑Σ
in )(1)

β(2)

e(p↑Σ
in )(2)

p↑Σ
in (1)

p↑Σ
in (2)

p∗wd valid region

p↓wd search region

Fig. 7. An illustration of the possible valid region of p↑Σ
in for two states, if

the true probabilities of workload depletion would be used as p↑wd in Eq. (21).

An upper bound of the workload depletion probability pwd
is found for each state as the maximum of the values that
lead to p↓Σin along the orange lines of Fig. 6.

Theorem 4. The state-wise maximum of pwd taken within
the region of pwd leading to p↓Σin (s)≤ξ(s) for all states, and
where equality holds for all but at most one s is an upper
bound of pwd.

Proof. Each p↓in(s,h̃) is a linear combination of pwd for all
states, this follows from Eqs. (20), (22) and (24). Combined
with Eq. (26) it follows that p↓Σin (s) is also a linear combination
of pwd for all states, which for some positive factors Ai,s is:

p↓Σin (s,pwd)=

S∑
i=1

Ai,s ·pwd(i) (29)

Assume that we have the true workload depletion probability
p∗wd. For an arbitrary state dimension j in pwd, we can
increase pwd(j) with an amount δs,j so that we reach a plane
defined by:

p↓Σin (s,pwd)=Aj,s(p
∗
wd(j)+δs,j)+

S∑
i=1,i6=j

Ai,sp
∗
wd(i)=ξ(s)

For the lowest δs,j , the first plane we encounter along the
line, we have p↓Σin (i)≤ξ(i),∀i 6=s.

Because the true p∗wd gives p↓Σin (s) ≤ ξ(s) and due to the
linear combination, it follows that at least one dimension of
pwd is an upper bound at every point in the planes defined
by p↓Σin (s,pwd) = ξ(s), including the point with equality for
all s: the upper right corner on the orange lines in Fig. 6.
If a particular dimension does not have an upper bound at
this point, we have an upper bound on one of the planes,
as the black dot illustrated in Fig. 6. The plane separating
the region of the plane with upper bounds on this dimension
from the region with underestimates will cross at least one of
the orange lines, which ensures that an upper bound will be
found in the region. Illustrations of possible separating planes
are dashed lines in Fig. 6. This concludes the proof.

Similarly, a lower bound on the workload depletion
probability pwd is found for each state as the minimum of the
values that lead to p↑Σin along the orange lines of Fig. 7. By
using the lower bound from Fig. 7 to determine the endpoints
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of the orange sections in Fig. 6 and the upper bound from
Fig. 6 to determine the endpoints of the orange sections in
Fig. 7 e(p↓Σin ) and e(p↑Σin ) can be ignored. The endpoints are
adjusted if they are outside the valid range for pwd, that is
if the probabilities are lower than 0 or higher than 1. As all
p↓Σin (s) and p↑Σin (s) depend linearly on all pwd(s), we only
need to consider the endpoints of the orange sections.

F. Probability Bound on Longer Workload Accumulation

In this section, we derive a bound for β, the sum of pin
in task periods beyond N , as defined in Equation (27). β
decreases monotonically with each accumulated period, as
all probabilities are non-negative. For each period, β(s)
decreases with at least the lower bound on the probability of
being in the state in the same period, i.e.

β(s)N ≤β(s)N−1−
∑

h̃∈(s,N)

p↓in(s,h̃)=β(s)↑aN (30)

We also know that β is at most the stationary probability
minus the lower bound on the probabilities accounted for, i.e.

β(s)N ≤ξ(s)−
N∑
i=1

∑
h̃∈(s,i)

p↓in(s,h̃)=β(s)↑bN (31)

Thus, given a safe bound of β in one accumulation period,
we can obtain safe bounds for the following period as the
minimum of right-hand sides of Inequalities 30, and 31.

β(s)↑N =min(β(s)↑aN ,β(s)↑bN ) (32)

G. Upper Bounding the Deadline Miss Probability

We can then calculate an upper bound on the expected
deadline miss probability of a randomly selected job as
defined in Eq. (4). The deadline miss probability pdm(s, h̃)
of a job conditioned on the events being in state s and the
job arrival resulting in the accumulation vector h̃ is upper
bounded by p↑dm(s, h̃). This bound regards the last job of
accumulation sequences h ending in state s and corresponding
to h̃. The bound is the probability that a random variable
Y ∼V↑

h̃
exceeds the amount of time k ·Q allocated to the job,

and it can be computed as:

p↑dm(s,h̃)=P(Y >k ·Q) (33)

where the distribution V↑
h̃

can be computed as
N tail(µ(h̃), σ2(h̃), α(h̃, s)), and it upper bounds the actual
distribution Vh̃ as per Theorem 1. When randomly selecting a
job, the probability of drawing a job executing in state s with
workload accumulation captured by h̃ is the joint probability
of being in s with h̃. In Section IV-D we derived the upper
bound of this probability as p↑in(s,h̃). We derive the bound
of the deadline miss probability conditioned on being in a
state s by considering all events of being in s with h̃ up until
N accumulation periods. For longer accumulation vectors we
set pdm to 1. The probability of drawing a job with a longer
accumulation vector when randomly selecting a job is the
probability of a job arrival in s resulting in a longer accumu-
lation vector, and is upper bounded by β↑N (s). The probability

of a job arrival in s is the stationary probability ξ(s). The
upper bound on the deadline miss probability in a state is:

p↑dm(s)=
β(s)↑N
ξ(s)

+

∑N
i=1

∑
h̃∈(s,i)p

↑
in(s,h̃)p↑dm(s,h̃)

ξ(s)
. (34)

Theorem 5. The deadline miss probability DMP is upper-
bounded by p↑dm, i.e., DMP≤p↑dm, where

p↑dm=
∑
∀s

(
β(s)↑N+

N∑
i=1

∑
h̃∈(s,i)

p↑in(s,h̃)p↑dm(s,h̃)
)
. (35)

Proof. Eq. (33) is an upper bound on the deadline miss
probability conditioned on the events being in state s with
accumulation vector h̃, as N tail(µ(h̃), σ2(h̃), α(h̃, s)) is an
upper bound on the workload distribution as per Theorem 1.

Eq. (34) upper bounds the expected deadline miss
probability of a randomly selected job conditioned on being
in state s. For accumulation vectors h̃ up until length N ,
Eq. (33) is utilized to upper bound pdm(s,h̃), and pin(s,h̃)
upper bounds the probability of randomly selecting a job
in state s with h̃. β(s)↑N upper bounds the probability
of randomly selecting a job in s with longer accumulation
vectors, and pdm(s,h̃) is upper bounded by 1 in this case. From
the definition of conditional probability we divide by ξ(s).

Eq. (35) applies the law of total probability on Eq. (34)
over all the states s.

V. ITERATIVE WORKLOAD ACCUMULATION

We propose an iterative approach where workload periods
are successively accumulated. The process is illustrated in
Fig. 3 and is ended when one of the following criteria is met:
1) The upper bounds of the workload depletion probability of

all states have turned from decreasing to increasing, or the
lower bounds have turned from increasing to decreasing.

2) A maximum number of task periods is reached.
The first condition is met if the workload depletion probability
bounds for each state converge, or if the region within the
bounds starts to grow. With each accumulation period,
a convolution is performed, potentially increasing the
error introduced by using the upper and lower bounding
distributions in place of the true convolution result. This is
illustrated by the white space between the blue area and the
orange lines in Fig. 6, and by the white space between the
green area and the orange lines in Fig. 7. If the increase in
this error is not compensated by a sufficiently low probability
of the associated accumulation vectors, the bounding region
of the workload depletion probability can start to increase,
and we stop the workload accumulation process.

The second condition is needed in the case where the
bounds on the workload depletion probabilities or deadline
miss probabilities diverge from the beginning. This may be
due to insufficient bandwidth provided to the task in the CBS,
or because the errors introduced are too large. The second
condition is also activated when we have a slow convergence
of the workload depletion probability bounds.
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Fig. 9. The region between the upper and lower bounds on the per-state
probability of workload depletion in the example, along with the estimates
obtained from simulation in red.

As an example, we take a Markov model defined by:

S=2, M=

(
0.9 0.1
0.7 0.3

)
, C={N (20,9),N (40,16)}.

The stationary probabilities are 0.875 for state 1 and 0.125
for state 2. In our example, the CBS is defined such that
n=4 and Q=8. The deadline is defined by k=8.

First, we use the bound on the probability of longer
workload accumulation as described in Section IV-F. We
initialize the accumulation with one period after workload
depletion, and β to (0.1238,0.0397), the probability of being
in states 1 and 2 respectively with workload carried over
from at least one task period. These probabilities are obtained
from the simulation. In Fig. 8 the obtained bounds for β for
the two states as we add accumulation periods are displayed
in black. Estimated probabilities of longer accumulation
histories obtained from simulation are displayed in blue.

The upper and lower bounds of the probabilities of
workload depletion obtained with these values for β are
shown in black in Fig. 9, along with estimates obtained by
simulation shown as red lines. The workload accumulation
stops at the maximum number of task periods, 20.

In Fig. 10 the bounds on the deadline miss probabilities
during the workload accumulation process of our example are
displayed. The parts of the second terms resulting from the
sum over the accumulation vectors are shown as dashed. In
the example, this sum approaches the pdm from simulation,
and the pessimism comes from the pessimism in β. These
bounds are compared to the results from the simulation.
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Fig. 10. The bounds on the deadline miss probabilities during the workload
accumulation process of the example, along with results from simulation.

VI. EVALUATION

A. Goal of the Evaluation

We aim to evaluate the proposed method of bounding
the deadline miss probability pdm for a task controlling a
Furuta pendulum [10], i.e., a rotary inverted pendulum. The
dynamics of the Furuta pendulum are simulated by another
task. The arm and pendulum angles are retrieved from the
pendulum simulator, which provides an asynchronous TCP
server. These values are fed into a Kalman filter [45], that
estimates angles and angular velocities around an upright
position, and these estimates are used in a PD controller for
stabilizing the pendulum in the upright position at angle 0
of the arm. The resulting control signal is then sent to the
simulator. An HMM is fitted to the execution time trace, as
outlined in [6]. From the fitted HMM we calculate the bound
on the pdm for each state according to Eq. (34), and the
overall bound according to Eq. (35), which is compared to:
• Linux-CBS: The empirical deadline miss ratio (DMR)

under Linux SCHED_DEADLINE.
• Sim-Cont: DMR estimated from entering execution times

generated from the fitted Markov Model in a CBS simulator.
• Ind: DMR, assuming independence, that is, entering the

randomly reordered execution times in a CBS simulator.
• PROSIT: Deadline miss probability obtained with PROS-

ITool [13], using a discrete emission distribution HMM
fitted with PROSITool from the same execution time trace.

The bound for the state with the highest pdm is compared to
the deadline miss ratio of this state from the CBS simulator,
as the other methods do not provide per-state estimates.

With these experiments, the applicability of the method for
a small, yet realistic, use case is illustrated.

B. Test Setup

The tests are run on a Raspberry Pi 3B+ single-board
computer with Raspberry Pi OS patched with PREEMPT_RT.
The control program contains a square root implementation
of a Kalman filter [45] and runs at a control frequency of
500Hz. It is scheduled with the Linux CBS implementation
SCHED_DEADLINE and is pinned to a core set up as an
exclusive cpuset. The simulator is run at the same frequency,
with the highest priority FIFO scheduling, and is pinned
to another core, similarly set up as an exclusive cpuset.
The simulator’s TCP server is run in a separate thread. The
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scaling governor is set to performance for all cores while
USB Ethernet and WiFi were disabled during the tests.

Timing information is collected with the ftrace frame-
work, trace-cmd is run, recording sched_switch events.
The execution time is calculated as the time from the process
is switched in until the time when it is switched out. Execution
time traces are obtained from running the control program with
a high bandwidth, long period setting of SCHED_DEADLINE,
where each job finishes within the period.

The timing trace recorded from 50000 jobs of the control
task is shown in Fig. 11. The sequence exhibits a run-in
period with a higher proportion of execution times at 0.5ms.
Therefore, we use the sequence starting from job 2000 for
fitting the HMM. The density distribution of the execution
times and the autocorrelation of the execution times starting
from job 2000 are shown in Fig. 12.

Three different configurations of server budget and period
ratios are evaluated:

1) Q=0.06 ms, n=5, k1 =8, k2 =10,
2) Q=0.07 ms, n=4, k1 =6, k2 =8, and
3) Q=0.08 ms, n=4, k1 =6, k2 =8.

For each configuration, two relative deadlines are evaluated.
The test program is run under SCHED_DEADLINE

with different server budget, period ratio, and deadline
configurations. The program contains a check for missed
deadlines and outputs the number for each 500-job-interval.

C. Markov Model

Starting from 10 initial states, the method described in [6]
identifies an 8-state HMM. The means, standard deviations,
and stationary probabilities of the states are listed in Table III,
and the transition matrix in Eq. (36). State 3 has the highest
mean and standard deviation. The stationary probability of

this state is low, 0.7%, but the probability of staying in this
state once it is reached is 63%, increasing the DMP.

.739 .051 .002 .003 .162 .001 .041 .001

.056 .350 .012 .000 .523 .008 .051 .000

.000 .310 .633 .003 .000 .044 .010 .000

.006 .000 .002 .408 .004 .054 .000 .526

.000 .038 .002 .003 .834 .001 .121 .000

.000 .000 .004 .681 .063 .225 .000 .028

.377 .011 .001 .000 .500 .000 .107 .003

.009 .001 .002 .296 .000 .038 .001 .654


(36)

D. Evaluated Methods

In the evaluation, we compared five different methods:
• Linux-CBS : A deadline-miss ratio resulting from

experiments. Linux SCHED_DEADLINE is configured with
each setting of server budget Q, task to server period ratio
n and the relative deadline to server period ratio k. The
task period is kept at 2ms, so the bandwidth varies between
the tests. For each configuration, 10 runs of the 50000-job
task under SCHED_DEADLINE are performed. Deadline
misses after first 2000 jobs of each run are recorded and
used to calculate the deadline-miss ratio.

• Sim-Cont: A deadline-miss probability derived with
Markov chain simulation. The fitted continuous-emission
Markov model with the parameters from Table III and
transition matrix Eq. (36) is used to simulate a sequence
of 106 samples. The output execution time sequence
is analyzed with the different configurations of server
reservation, period ratio, and deadline.

• Ind: A deadline-miss probability derived from a sequence
of 106 samples, randomly sampled from the execution time
sequence used in the fitting process. The obtained sequence
is analyzed as for Sim-Cont.

• PROSIT: A deadline-miss probability derived with
PROSITool [13]. A discrete-emission HMM with 6 states
and scaling factor for resampling of 10 µs is fitted to the
execution time trace. This model is used with the different
CBS configurations in PROSIT’s solver for the calculation
of steady-state deadline-miss probabilities.

• Bound: A bound on the deadline-miss probability, calcu-
lated according to Section IV with the fitted continuous-
emission Markov model with the parameters from Table III
and transition matrix Eq. (36). The initial β values for the
first accumulation period are retrieved from simulation, and
the maximum number of accumulation periods is set to 10.

E. Results & Discussion

The deadline miss probability bounds and estimates pdm
obtained during the workload accumulation process are shown

TABLE III
CHARACTERIZATION OF THE STATES OF THE FITTED HMM.

State Mean (ms) Standard Deviation (ms) Stationary Prob.
1 0.178 0.002 0.128
2 0.178 0.012 0.045
3 0.323 0.091 0.007
4 0.158 0.003 0.086
5 0.159 0.002 0.509
6 0.169 0.007 0.014
7 0.181 0.003 0.078
8 0.153 0.002 0.133
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Fig. 13. Result from control task analysis.

in Fig. 13, together with deadline miss ratios (DMRs) of
simulation with the Markov Model, the average DMRs of the
executions under SCHED_DEADLINE, and under PROSITool.

The experimental DMRs are lower than those from HMM
simulation and derived from PROSIT, with the exception of
the CBS configuration 0.08/4/8. In this case the pdm from
Linux-CBS is 0.058% compared to 0.021% for Sim-Cont
and 0.0020 for PROSIT. This exception may be due to
chance. It may also be the case that there is a low probability
state that is not captured in the Markov Models.

The HMM simulation Sim-Cont estimates are close to
the PROSIT results, which shows that Gaussian emission
distributions are a useful approximation in this case.

Comparing the HMM simulation Sim-Cont and the result-
ing Bound, the overall bounds are 1.75 to 10 times higher
than the simulation results. For the state with the highest
pdm, the bounds are 1.4 to 3.9 times higher. The bounds are
tighter for higher utilization and shorter relative deadlines.

When fitting an HMM in PROSIT, the number of states
and the scaling factor need to be provided. A number of
combinations of these parameters were tried, and for 6 states
and scaling factor 10 µs, 4 out of 6 states passed the PROSIT
independence tests, the largest part found in the limited manual
exploration. The resampling introduces some pessimism. Other
fitted PROSIT models have resulted in tighter estimates or
optimistic results. The range of execution time values in the
input trace and the scaling factor affect the calculation time

for PROSIT significantly. Decreasing the scaling factor of the
6-state model from 10 to 1 µs increases the computation time
by a factor 3000, from less than 0.5s to about 20 minutes
on our platform. With the continuous approach, there is no
resampling concept, and the calculation time is independent
of the range of execution time values. A direct comparison of
the computation time of the proposed bound and PROSIT has
not been feasible. The Python implementation of the bound
calculation runs the first 4 accumulation periods in less than
a second and 10 accumulation periods in around one minute.

We note that in the evaluated use case, the tightest bound is
reached already at 3-4 accumulation periods. While this allows
for short computation times, the proposed reduction in the
number of considered accumulation sequences is unnecessary
if we consider a very low number of accumulation periods.

Simulations and bounds of the state with the highest pdm
show results 50-100 times higher than the overall pdm. While
this should not be conflated with the Worst-Case Deadline
Failure Probability, we believe that the concept of workload
distribution per state is useful. In future work, we aim to
develop the accumulation sequence approach relating to the
probability of consecutive deadline misses.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a workload accumulation scheme
for upper bounding the deadline miss probability of a task
executing in a Constant Bandwidth Server (CBS), modeled
by a Hidden Markov Model (HMM) with Gaussian emission
distributions. Such a model allows for higher automation in
the fitting process, compared to the discrete case, without
needing to specify the number of states and the scaling factor.
The time required to obtain the bound is independent of the
range of execution times in the analyzed sequence and the
scaling factor. Furthermore, a bound is obtained early in the
process and is iteratively improved.

The presented approach was evaluated over a control task
of a Furuta pendulum. The deadline miss probability bounds
obtained with the method are compared to the deadline miss
ratios of the task running under the Linux kernel implemen-
tation of CBS. The bounds are also compared to the deadline
miss probabilities derived with a discrete emission-HMM [4],
[5], [13], results from the simulation with the fitted HMM, and
a deadline miss probability estimate assuming independence.
All derived bounds in the evaluated case are safe compared
to simulation results, i.e., the overall bounds are 1.75 to 10
times higher, and in the state with the highest deadline miss
probability the bounds are 1.4 to 3.9 times higher. All bounds
are also higher compared to experimental results.

In future work, we aim to extend the method to evaluate
probabilities of missing several consecutive deadlines. The
bounds could potentially be used for monitoring changes in the
deadline miss probability and adapting the Quality-of-Service
(QoS) level.
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[33] G. von der Brüggen et al., “Efficiently approximating the worst-case
deadline failure probability under EDF,” in IEEE Real-Time Syst. Symp.
(RTSS), 2021, pp. 214–226.

[34] A. F. Mills and J. H. Anderson, “A multiprocessor server-based
scheduler for soft real-time tasks with stochastic execution demand,” in
IEEE Int. Conf. Emb. and Real-Time Comp. Syst. and Appl. (RTCSA),
2011, pp. 207–217.

[35] R. Liu, A. F. Mills, and J. H. Anderson, “Independence thresholds:
Balancing tractability and practicality in soft real-time stochastic
analysis,” in IEEE Real-Time Syst. Symp. (RTSS), 2014, pp. 314–323.

[36] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in IEEE Real-Time Syst. Symp. (RTSS), 1998, pp.
4–13.

[37] ——, “QoS guarantee using probabilistic deadlines,” in Euromicro
Conf. Real-Time Syst. (ECRTS), 1999, pp. 242–249.

[38] ——, “Stochastic analysis of a reservation based system,” in Int.
Workshop on Par. and Distr. Real-Time Syst., vol. 1, 2001.

[39] L. Palopoli et al., “An analytical solution for probabilistic guarantees of
reservation based soft real-time systems,” IEEE Trans. Par. and Distr.
Syst., vol. 27, no. 3, pp. 640–653, 2016.

[40] L. Abeni, N. Manica, and L. Palopoli, “Efficient and robust probabilistic
guarantees for real-time tasks,” J. of Syst. and Soft., vol. 85, no. 5, pp.
1147–1156, 2012.

[41] N. Manica, L. Palopoli, and L. Abeni, “Numerically efficient
probabilistic guarantees for resource reservations,” in IEEE Int. Conf.
Emerg. Tech. & Factory Autom. (ETFA), 2012, pp. 1–8.

[42] B. V. Frı́as, “Bringing probabilistic real-time guarantees to the real
world,” Ph.D. dissertation, University of Trento, 2018.

[43] M. Shaked, Stochastic orders, ser. Springer series in statistics. New
York: Springer, c2007.

[44] J. L. Diaz et al., “Pessimism in the stochastic analysis of real-time
systems: Concept and applications,” in IEEE Int. Real-Time Syst. Symp.
(RTSS), 2004, pp. 197–207.

[45] L. Ljung, System identification : theory for the user, 2nd ed., ser.
Prentice-Hall information and system sciences series. Upper Saddle
River, N.J: Prentice Hall, cop. 1999.

13


