
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. This paper is accepted at the 28th IEEE European Test Symposium (ETS) 2023.

DeepVigor: VulnerabIlity Value RanGes and
FactORs for DNNs’ Reliability Assessment

Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—Deep Neural Networks (DNNs) and their accelerators
are being deployed ever more frequently in safety-critical applica-
tions leading to increasing reliability concerns. A traditional and
accurate method for assessing DNNs’ reliability has been resorting
to fault injection, which, however, suffers from prohibitive time
complexity. While analytical and hybrid fault injection-/analytical-
based methods have been proposed, they are either inaccurate or
specific to particular accelerator architectures.

In this work, we propose a novel accurate, fine-grain, metric-
oriented, and accelerator-agnostic method called DeepVigor that
provides vulnerability value ranges for DNN neurons’ outputs.
An outcome of DeepVigor is an analytical model representing
vulnerable and non-vulnerable ranges for each neuron that can
be exploited to develop different techniques for improving DNNs’
reliability. Moreover, DeepVigor provides reliability assessment
metrics based on vulnerability factors for bits, neurons, and layers
using the vulnerability ranges.

The proposed method is not only faster than fault injection
but also provides extensive and accurate information about the
reliability of DNNs, independent from the accelerator. The ex-
perimental evaluations in the paper indicate that the proposed
vulnerability ranges are 99.9% to 100% accurate even when
evaluated on previously unseen test data. Also, it is shown that
the obtained vulnerability factors represent the criticality of bits,
neurons, and layers proficiently. DeepVigor is implemented in the
PyTorch framework and validated on complex DNN benchmarks.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently emerged to be
exploited in a wide range of applications. DNN accelerators have
also penetrated into safety-critical applications e.g., autonomous
vehicles [1], [2]. Therefore, several concerns are raised regarding
developing and utilizing DNN accelerators in the realm of safety-
critical applications, one of them being the reliability.

Reliability of DNNs concerns their accelerators’ ability to
perform correctly in the presence of faults [3] originating from
either the environment (e.g., soft errors, electromagnetic effects,
temperature variations) or inside of the chip (e.g., manufacturing
defects, process variations, aging effects) [1], [4]. As shown in
Fig. 1, faults may occur in different locations of accelerators
either in memory or logic components and they influence the

The work is supported in part by the European Union through European
Social Fund in the frames of the “Information and Communication Technologies
(ICT) programme” (“ITA-IoIT” topic), by the Estonian Research Council
grant PUT PRG1467 “CRASHLES” and by Estonian-French PARROT project
“EnTrustED”.

Fig. 1: Hardware reliability threats in DNN accelerators and their
impact on the output [1].

parameters (e.g., weights and bias) and intermediate results
(layers’ activations) of neural networks that can decrease their
accuracy drastically [5], [6]. By technology miniaturization, the
effect of Single Event Transient (SET) and Single Event Upset
(SEU) faults in devices is increasing thereby jeopardizing the
reliability of modern digital systems [7].

Recently, several works have been published on the assessment
and improvement of the reliability of a variety of DNNs as well
as on different levels of system hierarchy [3], [4], [8]. Reliability
assessment is the process of modeling the target DNN accelerator
and measuring its reliability with respect to the corresponding
quantitative evaluation metrics. Reliability assessment is the
underlying procedure for improving reliability since it presents
how the system could be influenced by threats as well as which
locations of the system are more vulnerable to them. Therefore,
it is the very first and principal phase of a reliable design process.

Throughout the literature, reliability assessment methods for
DNNs are mainly categorized into two major classes: fault
injection (FI) and resilience analysis. The majority of the
works assess the reliability of DNNs relying on FI, which
provides realistic results on the impact of different fault models
on the system’s execution and is performed directly on the
target platform (accelerator’s software [9] or RTL model [10],
FPGA [11], GPU [12]). FI outputs different evaluations for
DNNs’ reliability by accuracy loss, vulnerability factors, or fault
classification [11], [13], [14]. Moreover, fine-grain evaluations
for finding critical bits can be performed by exhaustive FI or
an optimized method in [15].

Nevertheless, FI methods are prohibitively time-consuming
and carry a high complexity due to the need to inject an enormous
amount of faults into a huge number of DNN parameters as

1

ar
X

iv
:2

30
3.

06
93

1v
1 

 [
cs

.L
G

] 
 1

3 
M

ar
 2

02
3



well as time instances to reach an acceptable confidence level
[16], [17]. The more fine-grain evaluation is required the more
sophisticated experiments should be performed. In addition, most
faults in a FI experiment on DNNs are masked [18] and are
thus unnecessarily examined. Furthermore, the outcome of such
assessment is application/platform specific which can not be
generalized for other platforms [19].

Resilience analysis methods cope with the drawbacks of FI.
They analyze the function of DNNs mathematically and have
the potential to evaluate their reliability with arbitrary metrics.
Therefore, resilience analysis methods can provide a deeper
insight into the reliability evaluations of DNNs with lower
complexity. Moreover, they can be conducted in different fault-
tolerant designs on various platforms [20].

Layer-wise Relevance Propagation (LRP) algorithm is lever-
aged in [21]–[24] to obtain the contribution of neurons to
the output to express their criticality and apply protections to
improve the reliability of DNN accelerators. The sensitivity of
DNN’s filters is obtained by Taylor expansion with given error
rates in [25] for designing an error-resilient and energy-efficient
accelerator.

The conducted resilience analyses in these works are not
able to provide reliability measurement metrics and detailed
vulnerability evaluations. Moreover, they combine the criticality
scores of neurons over individual outputs of the DNNs, thus
resulting in missing important information about the resilience
of DNNs as a whole. Mahmoud et al. [20] proposed different
heuristics for vulnerability estimation of feature maps without
FI. These estimations which are more coarse grain than the LRP-
based methods, lead to hardening the accelerators, however, the
accuracy of the vulnerability estimation methods is remarkably
lower than that of fault-injection methods.

The aforementioned papers on resilience analysis methods
have focused mainly on finding the most critical neurons/weights
in a DNN to protect them against faults in a fault-tolerant
design. In addition, they do not explain sufficiently how a
fault propagates through the network and influence its outputs.
Fidelity framework [26] is proposed to take advantage of both FI
and analyzing DNN accelerators to provide reliability metrics.
However, it requires detailed information of the accelerator
architecture/implementation. To the best of our knowledge, there
is no accelerator-agnostic resilience analysis method for DNNs
that can compete with FI in terms of reliability evaluation to
be less time-consuming, and accurate with fine-grain metrics
enabling different reliability improvement techniques.

In this research work, we introduce the concept of neurons’
vulnerability ranges expressing whether or not a fault at the
output of neurons would misclassify the network. Thus, it
enables a comprehensive reliability study with a novel resilience
analysis method called DeepVigor where the vulnerability factors
of layers, neurons, and bits in a DNN are obtained. The
contributions in this work are:

• Proposing DeepVigor, a novel accurate, metric-oriented, and
accelerator-agnostic resilience analysis method for DNNs
reliability assessment faster than fault injection;

• Introducing and acquiring vulnerability ranges for all

neurons in DNNs, assisted by a fault propagation analysis,
providing accurate categorization of critical/non-critical
faults;

• Providing fine-grain vulnerability factors as reliability
evaluation metrics for layers, neurons, and bits in DNNs,
compared with and validated by fault injection.

The remainder of the paper is organized as follows: the
resilience analysis method is presented in Section II, and the
experimental setup and results are provided in Section III. The
applicability of the method is discussed in Section IV, and the
work is concluded in Section V.

II. DNN RELIABILITY ASSESSMENT WITH DEEPVIGOR

A. Fault Model

In this work, the fault propagation analysis is performed at
the outputs of DNN neurons. However, they will cover a vast
majority of internal faults of the neurons occurring inside the
MAC units and also a large portion of faults in the weights and
neurons’ input activations. It is assumed that only one neuron
has an erroneous output per execution due to faults which is a
common assumption in the literature [15].

For validation by FI, the single-bit fault model has been
applied. While the multiple-bit fault model is more accurate, it
requires a prohibitively large number of fault combinations to be
considered (3n−1 combinations, where n is the number of bits).
Fortunately, it has been shown that high fault coverage obtained
using the single-bit model results in a high fault coverage of
multiple-bit faults [27]. Therefore, a vast majority of practical
FI and test methods are based on the single-bit fault assumption.
Single bitflip faults are injected randomly at neurons’ outputs
and once per execution.

B. Fault Propagation Analysis

Fig. 2 depicts an overview of the rationale behind the
DeepVigor method. A tiny neural network with few layers
and neurons with given inputs, golden (fault-free) activation
values (inside of neurons), and weights (on the arrows) is shown.
The golden classification output is class1. A fault changes the
neuron’s output by δ which is the difference between the golden
and faulty activation values. This δ that can have either a negative
or a positive value will be propagated to the output layer and may
change the classification result. The fault propagation will make
a difference on each output class as ∆1 and ∆2. Misclassification
happens when the value of the output neuron class2 gets higher
than that of neuron class1.

Thus, the propagation of the fault can be traced from the
neuron to the output and a problem for misclassification can
be expressed as shown in Fig. 2. By solving the problem
of misclassification condition in the output, the value for δ
is obtained as a vulnerability threshold that expresses how
much a fault should influence the neuron to misclassify the
network. Therefore, a vulnerability value range for the neuron is
acquired. In this example, the range (−∞,−5.39) is a vulnerable
range and [−5.39,+∞) is non-vulnerable range. This idea is
generalized for a DNN including multiple output classes and
other corresponding functions in this paper.



Fig. 2: An example of fault propagation analysis model and finding
the vulnerability value ranges for a neuron with a given input.

C. The DeepVigor Method

The steps of the proposed DNNs’ resilience analysis method
(DeepVigor) and its validation are illustrated in Fig. 3. As shown,
an analysis is performed on a set of data (i.e., set1, training
set) and outputs the vulnerability value ranges as well as the
vulnerability factors. Furthermore, FI is performed on the same
and different data (i.e., set2, test set) to validate the outcomes
of the analysis. The steps of DeepVigor are as follows:

Input Data
Set1

Pretrained
DNN

Step1:

Gradient-based

Initialization

Step3: Bitflip 
Mapping

Vulnerability

Value Ranges

Step1: Random
Fault Injection

DeepVigor Analysis

Step3: Validating
DeepVigor

Inputs

DeepVigor
Outputs

Validation Steps

Vulnerability
Factors

Step2: Faults
Categorization

Input Data
Set2

Step2: Neurons'
Vulnerability

Analysis

Fig. 3: Steps of the DeepVigor method for DNNs’ reliability
assessment and its validation.

Step1 - Gradient-based Initialization: In the first step, a
neuron is examined whether or not to be processed for the
vulnerability analysis. For this purpose, assuming a neural
network consisting of L layers with N output classes in
C = {c1, c2, ..., cN}. Neuron k at layer l is selected to be
examined. The neuron’s output is corrupted by adding a sample
positive or negative value as εlk to its output and the feed-forward
of the network is executed over a batch of input data. A loss
function L is defined in Equation (1) as:

L = sigmoid(

N∑
j=0

(Ect − Eci)) (1)

where ct is the golden top class and Ect and Eci are the erroneous
output values corresponding to the respective classes. The loss
function computes the summation of differences between the
value of the golden top class and the other outputs in the

corrupted network and applies a sigmoid function. The golden
top class is what the fault-free DNN outputs as its classification
whether or not it is correctly classified.
L represents the impact of the neuron’s erroneous output on

the golden top class of the network. When the gradient of L
w.r.t. the corrupted neuron’s output for one input is zero, it
means that any error at this neuron’s output does not change
the output classification. Considering a batch of inputs, if the
gradients are zero for a portion of inputs larger than a threshold,
the neuron is disregarded for the vulnerability analysis. In case
most of the gradients are not zero, a range for searching the
vulnerability value is initialized.

Considering εlk is a positive value for one input, in case the
gradient is positive, there is a minimum value 0 < δlk < εlk for
the neuron that if error δlk is added to its output (by a fault
at its inputs or the output value itself) the network’s golden
classification would change. But if the gradient is negative, then
δlk should be searched through the values larger than εlk. A
similar scenario is valid for negative values of εlk.

Step2 - Neurons’ Vulnerability Analysis: In this step, the
vulnerability ranges of neurons under analysis are obtained. Let
RNV (l, k, x) = [rlower, rupper] be a Range of Non-vulnerable
Values for a k-th neuron at layer l with input data x. The bounds
of range R for x are calculated as follows:

{
rupper = min(δlk), δlk > 0, Ect < Eci , i 6= t

rlower = max(δlk), δlk < 0, Ect < Eci , i 6= t
(2)

where ct and ci are the golden top class and any other output
class, respectively, and Ect and Eci are the erroneous output
values corresponding to the respective classes.

Equation (2) finds the maximum negative and minimum
positive values induced at the corresponding neuron that do
not lead to misclassifying the input data from the golden
classification. Further, a Range of Vulnerable Values RV V (l, k, x)
for a k-th neuron at layer l with input data x is equal to
RV V = (−∞, rlower) ∪ (rupper,∞).

Note, the equation is applied for a single input data. In the
case of a data set X containing T input data xj the RNV and
RV V will get refined and will be equal to intersections of their
respective ranges over all inputs xj as follows:

RNV (l, k) =
T⋂

j=1

RNV (l, k, xj)

RV V (l, k) =
T⋂

j=1

RV V (l, k, xj)

(3)

The outcome of solving the equations for each neuron and
merging the results over all inputs will be the vulnerability value
ranges for each class separately, each range specifies the impact
of a fault on changing the neuron value whether it influences the
network classification result or not. Fig. 4 depicts different cases
for vulnerability ranges over all numbers. Three vulnerability
ranges are identified as follows:
• Non-vulnerable range: If a fault lay an effect on the

neuron output in this range, no misclassification happens
(hachured-green sections in Fig. 4);



• Vulnerable range: If a fault makes a difference at the
output of the neuron in this range, the output will be
misclassified (cross hachured-red sections in Fig. 4);

• Semi-vulnerable range: If a fault causes the neuron value
to move as an amount in this range, this fault may cause a
misclassification (dashed-grey sections in Fig. 4). Cases d-f
in Fig. 4 happen when the portion of zero gradients in step1
is less than the threshold and more than 1− threshold.

0
-∞ +∞

min_neg max_neg min_pos max_pos
non-vulnerablesemi-vulnerablevulnerable

0
-∞ +∞

0
-∞ +∞

0
-∞ +∞

a)

b)

d)

g)
0

-∞ +∞f)

0
-∞ +∞c)

-∞ +∞e)
0

Fig. 4: Different possible cases of vulnerability ranges for each class
in a neuron.

Step3 - Bitflip Mapping: In this step, DeepVigor maps the
neurons’ bitflipped values over input data on the vulnerability
value ranges to indicate fine-grain vulnerability factors as metrics
for the DNNs’ reliability. For this purpose, the inputs used in
step2 and obtained vulnerability value ranges are fed to the
network and in each bit of each neuron, bitflips are performed. In
each bitflip, the difference in the new value of the target neuron
is calculated and compared with the corresponding vulnerability
range.

Based on the range of what the bitflip maps, the bit is
considered vulnerable or non-vulnerable, respectively. By this
analysis, the number of vulnerable bits of the neurons is obtained
over the inputs. Hence, vulnerability factors of each layer (LVF),
neuron (NVF), or bit (BVF) of the DNN can be defined as
equations (4), (5), and (6), respectively. Vulnerability factors
express the probability of misclassifying the network in case of
the occurrence of a bitflip at the target element.

LV F =

#vulnerable bits in layer

#inputs ×#layer′s neurons× word length
× 100

(4)

NV F =
#vulnerable bits in neuron

#inputs × word length
× 100 (5)

BV F =
#vulnerable times for bit

#inputs
× 100 (6)

D. Validating DeepVigor By Fault Injection

As illustrated in Fig. 3, DeepVigor results are validated by
means of FI over the input data and categorizing faults based
on the vulnerability value ranges. The steps of the validation
process of DeepVigor are as follows:

Step1 - Random Fault Injection: According to the adopted
fault model, when one input is fed to the network, a random
single bitflip is injected into a random neuron in a layer. This
process is repeated several times for one input depending on
the number of neurons and word length of data to reach a
95% confidence level and 1% error margin based on [28]. The
required number of faults is obtained by Equation (7) where
N = word length × #layer′s neurons that represents the
total number of bits in the output of a layer.

#layer′s random faults =
N

1 + (0.012 × N−1
1.962×0.52 )

(7)

Step2 - Fault Categorization: Once a fault is injected, a
difference is produced in the output of the neuron in comparison
with the golden model. In this step, the produced difference by
a fault at the neuron’s output is compared with the obtained
vulnerability ranges, and faults are categorized as:
• Non-critical fault: The produced difference is in the non-

vulnerable range.
• Critical fault: The produced difference is in the vulnerable

range.
Step3 - Validating DeepVigor: To validate DeepVigor by

FI, injected faults are propagated to the output and the network
classification output is examined. The accuracy of the method
is defined based on the two metrics as follows:
• True non-critical faults: Percentage of faults that are cate-

gorized as non-critical and do not change the classification
at the output;

• True critical faults: Percentage of faults that are catego-
rized as critical and change the classification at the output.

Another metric for validating the outputs of DeepVigor is
the correlation between LVF and DNN’s accuracy loss. This
correlation shows that the obtained vulnerability factors from
DeepVigor represent the criticality of the components properly.
Since other vulnerability factors (NVF and BVF) are calculated
using the same vulnerability ranges, by validating LVF, they will
be also liable metrics for the resilience analysis, consequently.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

All DNNs, steps of DeepVigor, and its validation are imple-
mented in PyTorch and run on NVIDIA 3090 GPU. To explore
different DNN structures, six representative DNNs trained on
three datasets are examined for the experimental results. We
have experimented with two 5-layer MLPs (one with Sigmoid
and one with ReLU) trained on MNIST, two LeNet-5 with 3
convolutional (CONV) layers, 2 max-pooling (POOL) layers,
and 2 fully-connected (FC) layers trained on MNIST and CIFAR-
10, AlexNet with 5 CONV, 3 POOLs, 2 batch normalization
(BN) and 3 FCs trained on CIFAR-10, and VGG-16 with 13
CONV, 13 BNs, 5 POOLs and 2 FCs trained on CIFAR-100.
The respective networks’ accuracy on the corresponding test
sets are 94.64%, 90.55%, 90.4%, 66.15%, 72.73%, and 69.41%.

Data representation in this work is 32-bit floating point IEEE-
754 and the word length in equations (4)-(7) is 32 bits. For



TABLE I: Accuracy of DeepVigor by fault injection on the same input
data as the analysis.

DNN True non-critical faults True critical faults
MLP-sigmoid-mnist 99.985%∼100% 100%

MLP-relu-mnist 99.991%∼100% 100%
LeNet-mnist 99.992%∼100% 100%

LeNet-cifar10 99.956%∼100% 100%
AlexNet-cifar10 99.973%∼100% 99.955%∼100%
VGG16-cifar100 99.950%∼100% 99.972%∼100%

validation, a layer-wise statistical random FI is performed that
satisfies a 95% confidence level and 1% error margin.

In the first step of DeepVigor εlk is considered −/+10000
for range initialization and the whole search range is [−5 ×
105, 5 × 105]. Finding δlk in all networks by a logarithmic
search is performed for negative and positive numbers separately,
considering a 0.05 difference from the main value. Also, based on
empirical explorations the threshold of neurons’ zero-gradients
for inputs is considered 98% for all experiments. Corresponding
experiments are performed on the whole sets of training (as the
input data set1) and test (as the input data set2) data.

B. Results and Validation

We analyze all neurons of the representative DNNs with
training sets as the input data set1 by DeepVigor and obtain the
vulnerability ranges. In the fault categorization step, faults are
categorized into critical and non-critical classes with an accuracy
close to 100%. Throughout the results from FI experiments,
DeepVigor identified 66.63% to 99.42% of faults as non-critical
over different layers of analyzed networks.

For validation, Table I presents the range of obtained accuracy
values of the method through all layers of DNNs in terms of true
non-critical and critical faults. It is observed that the accuracy
of the method for categorizing non-critical faults is 99.950% to
100% and for critical faults ranging from 99.955% to 100% for
the same data set.

The minor error seen in the results is due to: 1) Considered
error in finding vulnerability values, 2) FI results in ”NaN”
values in 32-bit floating point IEEE-754 while the computations
are being done on a GPU. We have categorized them as critical
faults, 3) the effect of few inputs with non-zero gradients in
step1 as described in II-C.

We have also experimented with FI on the test sets (input
data set2) to see the validity of the analysis on different sets
reported in Table II. As it can be seen, similar high accuracy
values to input data set1 are obtained.

TABLE II: Accuracy of DeepVigor by fault injection on a different
input data from the analysis.

DNN True non-critical faults True critical faults
MLP-sig-mnist 99.985%∼99.996% 99.911%∼100%
MLP-relu-mnist 99.976%∼100% 100%

LeNet-mnist 99.992%∼100% 100%
LeNet-cifar10 99.952%∼100% 99.970%∼100%

AlexNet-cifar10 99.951%∼99.997% 99.948%∼99.998%
VGG16-cifar100 99.950%∼99.983% 99.972%∼99.998%

To validate the vulnerability factors, Fig. 5 illustrates the
correlation between LVF and accuracy loss for a layer-wise FI on
AlexNet. As demonstrated, there is a close relationship between
the LVF obtained from DeepVigor and accuracy loss in FI, either

the input sets are similar or different. This correlation is observed
similarly in the results for all experimented DNNs. Therefore,
LVF represents the vulnerability of layers competently.

DeepVigor also provides NVF and BVF metrics as vulnerabil-
ity factors for neurons and bits, respectively. As a representative
example, Fig. 6 depicts NVF for layer conv3 of LeNet5-mnist
and LeNet5-cifar10 that the more vulnerable neurons can be
identified. In this figure, the number of neurons is sorted in each
DNN separately, in the ascending order of NVF. Also, BVF for
all neurons in DNNs is obtained and the results show that the
most significant bit of exponents is the most vulnerable bit in
most cases.

conv1 conv2 conv3 conv4 conv5 fc1 fc2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Layers of AlexNet
LV

F
(%

)

LVF Accuracy Loss (same sets) Accuracy Loss (different sets)

Fig. 5: Correlation between LVF and accuracy loss.

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Neurons in Layer CONV3 of LeNet-5

N
V

F
(%

)

LeNet5-mnist LeNet5-cifar10

Fig. 6: NVF of neurons in CONV3 for LeNet5-mnist and
LeNet-cifar10.

C. Run-Time Analysis

DeepVigor enables a fine-grain reliability evaluation for DNNs
faster than exhaustive FI. In our experiments, step1 of DeepVigor
have removed up to 48% of neurons’ vulnerability analysis to
be processed in step2. Moreover, the range initialization in step1
has accelerated the search for finding the vulnerability values for
50% to 99% of neurons in step2 among the DNNs. Based on our
experiments, a complete vulnerability range (as in Fig. 4) for one
neuron can be obtained by 9.1 times feed-forward execution per
neuron on average. While an exhaustive FI experiment runs the
feed-forward by the number of bits (32 in our case) per neuron.
Therefore, DeepVigor requires 3.5 times fewer feed-forwards
translating into a similar amount of speed-up in run-time.

The run-time of DeepVigor depends on:
• Backpropagation execution by the number of neurons step1

(one for positive and one negative numbers per neuron);
• Feed-forward execution by the number of searches for

finding a positive or negative δlk per neuron, in which the



best case is 0 searches (in case of zero gradients), the
moderate case is 14 searches (in case of limited range
initialization), and the worst case is 22 searches;

• Vulnerability analysis of the neurons in the last layer is
performed by simplified mathematics similar to Fig. 2
and requires no iterative feed-forward or searching process
through a wide range of numbers;

• Bitflip mapping is merely performing a bitflip at each
neuron and a comparison with the obtained vulnerability
ranges.

IV. DISCUSSION

DeepVigor method is validated in the previous section, and it
is shown how it can evaluate the reliability of DNNs proficiently
with shorter run-times than FI. Vulnerability ranges enable a
fine-grain and accurate resilience evaluation for neural networks.
They are not limited to representing the single bitflip fault model
and the outcome of the analysis is valid for an erroneous output
for the neurons covering several fault models. This method
enables an accelerator-agnostic analysis for DNNs and results
can be applied to different accelerators.

The outputs of DeepVigor provide different possibilities for
exploiting techniques of reliability improvement, including:
• Selective bits/neurons/layers hardening in accelerators based

on the obtained BVF/NVF/LVF metrics;
• Fault-aware mapping for neurons on the processing ele-

ments of accelerators as in [21], [23];
• Applying range restriction for neurons’ or layers’ outputs

for preventing faults propagation as in [9], [29], [30].

V. CONCLUSIONS

In this work, a novel resilience analysis method for DNNs
reliability assessment named DeepVigor is proposed. The output
of this method is the vulnerability value ranges for all neurons
through the DNNs which result in vulnerability factors for all
layers, neurons, and bits of the DNN, separately. The method
is validated extensively by fault injection and its feasibility to
categorize non-critical and critical faults on complex DNNs
with 99.9% to 100% accuracy is demonstrated. Moreover,
vulnerability factors obtained by the proposed analysis provide
fine-grain criticality metrics for DNNs’ components leading
to different reliability improvement techniques. The DeepVigor
method is very proficient in the evaluation and explanation of the
reliability of DNNs with shorter run-times than fault injection.

REFERENCES

[1] A. Bosio et al., “Emerging computing devices: Challenges and oppor-
tunities for test and reliability,” in 2021 IEEE ETS. IEEE, 2021, pp.
1–10.

[2] H. Forsberg et al., “Challenges in using neural networks in safety-critical
applications,” in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC). IEEE, 2020, pp. 1–7.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] W. Li et al., “Soft error mitigation for deep convolution neural network
on fpga accelerators,” in 2020 2nd IEEE AICAS. IEEE, 2020, pp. 1–5.

[6] M. A. Neggaz et al., “Are cnns reliable enough for critical applications?
an exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83,
2019.

[7] A. Azizimazreah et al., “Tolerating soft errors in deep learning accelerators
with reliable on-chip memory designs,” in 2018 IEEE International
Conference on Networking, Architecture and Storage (NAS). IEEE, 2018,
pp. 1–10.

[8] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104, p.
101689, 2020.

[9] Z. Chen et al., “A low-cost fault corrector for deep neural networks through
range restriction,” in 2021 51st IEEE/IFIP DSN. IEEE, 2021, pp. 1–13.

[10] D. Xu et al., “A hybrid computing architecture for fault-tolerant deep
learning accelerators,” in 2020 IEEE 38th International Conference on
Computer Design (ICCD). IEEE, 2020, pp. 478–485.

[11] D. Xu et al., “Reliability evaluation and analysis of fpga-based neural
network acceleration system,” IEEE TVLSI, vol. 29, no. 3, pp. 472–484,
2021.

[12] P. M. Basso et al., “Impact of tensor cores and mixed precision on the
reliability of matrix multiplication in gpus,” IEEE Transactions on Nuclear
Science, vol. 67, no. 7, pp. 1560–1565, 2020.

[13] F. F. dos Santos et al., “Analyzing and increasing the reliability of
convolutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[14] N. Khoshavi et al., “Shieldenn: Online accelerated framework for fault-
tolerant deep neural network architectures,” in 2020 57th ACM/IEEE DAC.
IEEE, 2020, pp. 1–6.

[15] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical machine
learning systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–23.

[16] M. Taheri, M. H. Ahmadilivani et al., “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 ISQED. In press, 2023.

[17] M. Taheri, M. H. Ahmadilivani et al., “Appraiser: Dnn fault resilience
analysis employing approximation errors,” in 2023 DDECS. In press,
2023.

[18] A. Bosio et al., “A reliability analysis of a deep neural network,” in 2019
IEEE LATS. IEEE, 2019, pp. 1–6.

[19] A. Ruospo et al., “Pros and cons of fault injection approaches for the
reliability assessment of deep neural networks,” in 2021 IEEE LATS. IEEE,
2021, pp. 1–5.

[20] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in
cnns,” arXiv preprint arXiv:2002.09786, 2020.

[21] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[22] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[23] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[24] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, 2020.

[25] W. Choi et al., “Sensitivity based error resilient techniques for energy
efficient deep neural network accelerators,” in 2019 DAC, 2019, pp. 1–6.

[26] Y. He et al., “Fidelity: Efficient resilience analysis framework for deep
learning accelerators,” in 2020 53rd IEEE/ACM MICRO. IEEE, 2020,
pp. 270–281.

[27] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[28] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

[29] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural networks
and improving their fault tolerance using clipped activation,” in 2020 DATE.
IEEE, 2020, pp. 1241–1246.

[30] B. Ghavami et al., “Fitact: Error resilient deep neural networks via fine-
grained post-trainable activation functions,” in 2022 DATE. IEEE, 2022,
pp. 1239–1244.


	I Introduction
	II DNN Reliability Assessment with DeepVigor
	II-A Fault Model
	II-B Fault Propagation Analysis
	II-C The DeepVigor Method
	II-D Validating DeepVigor By Fault Injection

	III Experimental Results
	III-A Experimental Setup
	III-B Results and Validation
	III-C Run-Time Analysis

	IV Discussion
	V Conclusions
	References

