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‡Alstom, Västerås, Sweden, aida.causevic@alstomgroup.com

Abstract—Technical advances as well as continuously evolving
business demands are reshaping the need for flexible connectivity
in industrial control systems. A way to achieve such needs
is by using a service-oriented approach, where a connectivity
service middleware provides controller as well as protocol-specific
interfaces. The Message Queuing Telemetry Transport (MQTT)
protocol is a widely used protocol for device-to-device communi-
cation in the Internet of Things (IoT). However it is not commonly
integrated in industrial control systems. To address this gap, this
paper describes the development and implementation of a proto-
type of a connectivity service middleware for MQTT within an
industrial private control network. The prototype implementation
is done in the context of an industrial controller, and used in
a simulated modular automation system. Furthermore, various
deployment scenarios are evaluated with respect to response time
and scalability of the connectivity service.

I. INTRODUCTION

As part of Industry 4.0, new business requirements and
technical advances lead to need of increased flexibility and
heterogeneity in industrial control systems [1], [2]. The need for
an industrial controller to be able to consume and produce data
using different communication protocols is of increasing impor-
tance, as the industrial private control networks may comprise a
plethora of different vendor devices. The network infrastructure
is as well becoming increasingly heterogeneous, including, e.g.,
private 5G networks [3] for wireless sensing and actuation. The
network-centric design strategy, as described by e.g., the Open
Process Automation Standard (O-PAS) [4], requires flexible
connectivity scenarios. Enabling connections between different
controllers in industrial control systems is the subject of many
research works [5]. The industrial control system is designed
as a separate environment for controlling a single process.
Over time, these systems have become increasingly integrated
with outside networks [6]. In the control system development
projects, numerous approaches and standards are established
to facilitate connection through the communication network of
controllers [7], [8].

One method of providing industrial controllers with flexibil-
ity on connectivity is by separating the protocol handling and
control logic into separate services, which may be indepen-
dently deployed. The connectivity service works as a middle-
ware, providing the control service with a well-known signal
interface, while implementing protocol-specific communication
towards the input/output (I/O) devices. Such middleware im-
plementations already exists for several of the traditional field-
buses such as for Modubus [9] and Profinet [10].

The emerging Internet of Things (IoT) paradigm enables
connecting devices in everyday life with different applica-

tions, meeting challenging real-time requirements [11]. Sharing,
processing, and storing huge amounts of data has become
manageable within IoT. Message Queuing Telemetry Transport
(MQTT) [12], is a lightweight messaging protocol, suitable
for constrained environments, e.g., for machine-to-machine
communication within the IoT. Introducing IoT devices and
technologies in the industrial setting, leads to an Industrial IoT,
as a way of increasing amount of available sensor data to a
low cost, increasing the amount of interconnections within an
industrial system [6].

In IoT, MQTT is already a well established protocol for
data exchange, but so far it has not been widely deployed
in industrial settings. As IoT-devices are being adopted also
in industrial systems, there is a need for traditional industrial
controllers to handle MQTT data. Using the middleware design
strategy as outlined above, this work aims at investigating how
to implement and evaluate a connectivity service for the MQTT-
protocol, using a simulated modular automation system [13],
[14] as an industrial use case.

Several previous works discuss different aspects of perfor-
mance measurements of the MQTT-protocol, e.g., considering
the MQTT broker load handling [15], Quality of Service
impact on round trip delays [16], scalability [17], energy
consumption [18] and latency [11]. All of these works provide
insight in limits of the MQTT protocol in certain scenarios,
but neither focus specifically on implementation and evaluation
of a connectivity middleware enabling MQTT in an industrial
setting, which is the main target of this paper.

The main contributions presented in this paper are as
follows:
• develop and implement a prototype of an MQTT connectivity

middleware within an industrial framework;
• response-time measurements in the prototype implementation

for three different deployment scenarios; and
• scalability measurements of the prototype implementation.

The remainder of this paper is organized as follows. Sec-
tion II and III provides details on the system architecture and
prototype implementation. Section IV describes the experimen-
tal set-up evaluation results as well as the impact, shortcomings,
and potential future extensions. Section V concludes the paper.

II. PROPOSED SYSTEM ARCHITECTURE

In this section we describe the design of the middleware
prototype that will provide an industrial controller with MQTT
connectivity. The controller is designed for industrial processes
and is highly available in control applications. The different



software components required by the controller are developed
as stand-alone control services, which are integrated and exe-
cuted using a node manager. The node manager abstracts inter-
service communications, operating system functionalities, etc.,
which allows for a network-oriented architecture. Development
of a connectivity service for the MQTT protocol, integrated in
the node manager architecture, is the selected way of creating
the middleware prototype.

The MQTT protocol uses an additional component for mes-
sage queuing, a broker service, leading to a system architecture
as depicted in Fig. 1, in which the execution service is the
existing software for executing control application logic, the
MQTT connectivity is the developed middleware, adding com-
munication capabilities for the MQTT protocol. The services
both execute as a part of a node manager, which contains basic
services such as handling the configurations and communica-
tion with higher layers in the system.
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Fig. 1: System architecture.

Industrial Use Case: During development of the prototype, an
industrial use case is used, which contains a distributed control
system designed according to the modular automation design
strategy [13]. The use case consists of numerous processing
modules which can be exchanged, reconfigured, interconnected
in different ways, and individually controlled. The target pro-
cess for the use case is an Ice Cream Factory (simulator) as
it has variability and some meaningful physical interactions
and transformations in the ice cream mixture flowing through
different modules. An overview of the system in the industrial
use case is depicted in Fig. 2. A detailed description of the
simulation environment is provided in [19]. Each of the module
controllers in the system contains specific control logic handled
by an execution service, and a connectivity service for handling
of the simulated I/O.

The simulator is used as ”software in the loop” [20] inter-
acting with real industrial controllers. It uses a configuration
file describing all simulated modules, including their physical
properties, I/Os, and interconnections, to configure all instances
and simulation signals. Additionally, the simulator receives data

from the connectivity service via the MQTT broker and sends
and writes the data to MQTT queues. All output signals are
sent to the MQTT SendQueue which can queue messages on
the MQTT broker. The clients receive the data through MQTT
ReceiveQueue from the broker.
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Fig. 2: Industrial Use case: Simulated ice cream factory.

III. PROTOTYPE DESIGN AND IMPLEMENTATION

The prototype design of the connectivity service is depicted
in Fig. 1. The node manager runs the execution and connectivity
services. The existing control service is also accessible via
the Open Platform Communications United Architecture (OPC
UA) protocol for industrial purposes. As described in Section II,
the simulator performs the function of publishing and subscrib-
ing data to the MQTT broker and, as such, simulates the I/O
data of sensors and actuators. The simulator consists of the data
of interest published on the MQTT broker. An external input
can change this data. However, it is essential to emphasize that
the input data from the simulator used in this design can be
replaced by the real-world input data received via one of the
sensors.

The purpose of the prototype is to provide data-exchange
for one module in the Ice Cream Factory, between the simu-
lator and the execution service. The transferred data contains
information about the characteristics of the module I/O signals,
representing sensors and actuators. Some of these signals
are input values (analog/digital), and some are output values
(analog/digital). Each signal is accessible via a different MQTT
topic. The root of the topic for reading data from the MQTT
broker is SimulationOut and the root topic for writing data to
the MQTT broker is SimulationIn. The data is published to
the MQTT topics when the simulator starts its execution. For
example, it is possible to access one parameter by subscribing
to the topic SimulationOut/T1/Level. T1 represents specified
module, and Level represents an analog output parameter of
the module T1. The subscribing hierarchy on the topics related
to specified parameters is described in Fig. 3. As a part
of the development, choosing the proper broker service to



perform specified functionalities and exchange data between
the simulator and the connectivity service is essential. The
preferred broker is the Mosquitto1 broker installed on devices
running the simulator.
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Fig. 3: Hierarchy of topics related to specified parameters.

The implementation of the connectivity service is based on
changing or reading the simulator’s data and storing them in-
ternally. To achieve this, functionalities such as Read and Write
need to be implemented. The Read functionality is used to read
the simulated sensors’ readings while the Write functionality
is used for writing the control signals. For this purpose, the
PAHO C++ library2 is used to easily integrate with the node
manager and an existing industrial software development kit.
The PAHO library provides useful functionalities that allow the
connectivity service to connect and publish to the MQTT broker
or subscribe and receive published messages on the topics.

An XML file is used to configure the connectivity, con-
taining information about the broker address where the data
is published, and a list of all I/O signals with their features
and respective topic names. The ability to read the sensory
data and write control signals has to be provided. In order to
read data from the MQTT broker, it is first required to enable
the connection and subscription of the formed client. When the
connectivity service starts its execution, the client subscribes to
all topics that are described as input signals in the configuration.

IV. EVALUATION AND RESULTS

In this section, the developed prototype is experimentally
evaluated. The main idea of the evaluation is to investigate
and measure the developed system’s response time for three
different deployment scenarios, using different signal loads to
assess scalability properties of the system.

A. Deployment scenarios

In the evaluations, three deployment scenarios of the connec-
tivity service are considered within the industrial use case. The
first scenario uses a single-switch setup, depicted in Fig. 4a,
with the network consisting of two nodes. The simulated I/O
and the MQTT broker are running on one node, and the Control
Service, together with the MQTT connectivity, is running on the
other, representing a typical small system set-up. In the second
scenario, in Fig. 4b, the MQTT broker is hosted as a cloud
service, useful, e.g., for a sensors which are geographically
distributed over a large area [21]. This is a kind of worst-
case deployment scenario with regards to network delay, as the
number of hops between the nodes and the broker is unknown.

1https://mosquitto.org/
2https://github.com/eclipse/paho.mqtt.cpp

In the third scenario, Fig. 4c, all components run on a single
node, representing the best-case with regards to network delay.
This scenario represents a traditional controller-centric setup,
with the I/O bus connected to the same embedded device as
the controller.

B. Response time and scalability measurements

In order to measure the response time of the connectivity
service prototype, a special loop-back software is developed,
called the MQTT Stimulator, to provide a functionality repre-
senting wiring a digital output signal to a digital input signal,
see Fig. 5. The Stimulator subscribes to the digital LoopBack
signal, and as soon as a changed value is detected, that value is
set to the SetOut signal. The Stimulator can also be configured
to publish signal-data, every 100 ms, a defined set of signals
are changed and published. This functionality allows to scale up
the number of signals handled by the broker and connectivity.

Using these mechanisms, the time between the connectivity
service writes a value to the LoopBack signal until that value is
detected on the SetOut signal and can be measured, represent-
ing the round-trip from the connectivity service, through MQTT
Broker, to the Stimulator and back again. For each combination
of deployment scenarios and number of messages, the response
time is measured 100 times. After measurement, the average
response time and standard deviation for all scenarios are
calculated.

C. Results

For the first deployment scenario, Fig. 4a, response time
measurement is repeated for the single-switch network, from
the stimulator to the connectivity service. Analyzed numbers
of subscribed signals in these experiments are 1, 100, 500,
700, and 1000, and each message is published each 100ms.
Fig. 6a summarizes the results gathered in this experiment. The
horizontal axis represents the number of messages per 100ms,
and the vertical axis represents the average round-trip response
time.

In the second scenario, the messages are transferred through
a cloud-based MQTT broker. Analyzed number of subscribed
signals in this scenario are 1, 100, 500, 600, 700, 800, and
1000. Fig. 6b shows results gathered through this experiment.
In the third scenario, with all components deployed on a single
node, the response time is evaluated using 1, 100, 500, 700,
800, and 1000 subscribed signals. As a part of the evaluation
process, the standard deviation (σ) for each measured response
time is also calculated, see Table I.

Messages/100ms 1 100 500 700 800 1000

σ scenario 1 28.8 31.5 22.3 28.6 N/A 69.0

σ scenario 2 50.6 47.5 132.0 153.2 4065 5054

σ scenario 3 15.8 10.6 9.8 10.4 19.9 321.6

TABLE I: Standard deviation (σ) of end-to-end average
response times.
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D. Discussion

The results from the experiments show that the prototype
scales rather well up to approximately 5000 handled messages
per second, until that point all three scenarios have similar
average response times. For the scenario of the connectivity
handling I/O for a single controller, this response time is
sufficient in most cases. As expected, the different deployment
scenarios exhibit different average delays due to the different
network setup, and consequently control loop execution times
must be adapted to these delays. The experiments do not reveal
what component is causing the response time to increase when
reaching approximately 8000-10000 messages per second. The
fact that the single-switch scenario performs better than the
single-node scenario for high-load experiments could indicate
that the internal CPU load is the limiting factor.

The execution time of the Execution task in the connectivity
service is 50ms, and it is expected that the response time is
in the range of the execution time of the connectivity service
with added component delays, including the network delay.

In the scenario using a cloud-hosted broker, an average
response time of between 300ms and 600ms can be acceptable,
but the extreme jumps to above 5000ms for 8000 messages
per second is above what would be generally acceptable for an
industrial system. As mentioned, for single-controller scenarios
that high load would not be required, but assuming that we have
more complex system with several controllers and connectivity
services using the same MQTT broker, the load on the broker
could easily reach these levels. As the scale of the delays in
this scenario is 50-100 times higher than for the others, the
network, or combination of network and broker, is the likely
bottle-neck.

Looking at the standard deviations, which is a measure of
experienced jitter of the message, a similar image is painted,
with a deviation of between 10ms and 20ms for the lower load
experiments scenarios 1 and 3. For scenario 2, the deviation

is higher, and also increases much faster, probably due to
accumulated jitter in intermediate nodes.

Nevertheless, there are several limitations of the proposed
prototype, which calls for further investigation as follows.

Real sensors usage: The simulator simulates signals of
sensors and actuators. It would be more realistic to analyze
connectivity between the controller and real I/O data from
the industrial systems. Data from the industrial system can be
published to the MQTT broker and transferred to the controller.
For future work, complete connectivity of the controller with
the I/O could be implemented.

Usage of other protocols: Messaging protocols other than
MQTT could be utilized in the prototype. The prototype
developed in this way could be reusable in many different
industrial use cases. Therefore, more resources would need to
be invested in further development in order to achieve a more
generic prototype design solution.

Characteristic measurements: The evaluation focused on
response times and scalability. The deployment scenarios for
the prototype can be evaluated using other important parameters
like jitter.

Quality of Service: Another extension of the experimental
evaluation could comprise analyzing how MQTT QoS affects
the response times. In the developed prototype, QoS = 1 is
used. This means, the designed prototype always has the in-
formation that the message is received from the MQTT broker.
Different response times are expected with different QoS values
due to the different amount of information exchanged between
them.

Applicability: The provided implementation and experimen-
tation are done in the scope of a specific use case. The results
are clearly limited to the implementation, but the implemen-
tation is applicable in a multitude of scenarios, not limited to
that of a modular automation system.

V. CONCLUSIONS

This paper presented the development and implementation of
an MQTT connectivity middleware prototype. The prototype
is used for connectivity between the control and simulation
environments within an industrial automation framework. The
prototype is evaluated using three different deployment scenar-
ios: (i) deployment in a single node, (ii) deployment in a single-
hop local network, and (iii) deployment in a cloud broker. The
parameters of interest in these evaluations include response
times and scalability of the connectivity service. The evaluation
results show that the prototype scales well for industrial use-
case scenarios with up to 5000 messages/second, with measured
response times within a satisfactory range.
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