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Abstract—In this paper, we present an end-to-end timing model
to capture timing information from software architectures of
distributed embedded systems that use network communication
based on the Time-Sensitive Networking (TSN) standards. Such
a model is required as an input to perform end-to-end timing
analysis of these systems. Furthermore, we present a methodology
that aims at automated extraction of instances of the end-to-end
timing model from component-based software architectures of
the systems and the TSN network configurations. As a proof of
concept, we implement the proposed end-to-end timing model
and the extraction methodology in the Rubus Component Model
(RCM) and its tool chain Rubus-ICE that are used in the vehicle
industry. We demonstrate the usability of the proposed model
and methodology by modeling a vehicular industrial use case
and performing its timing analysis.

I. INTRODUCTION

Designing highly software-intensive vehicular embedded
systems is challenging due to the enormous size and complex-
ity of the software [1]. In addition, the complexity in modern
vehicular software is continuously growing by integration
of network communication mechanisms introduced by Time-
Sensitive Networking (TSN) standards [2], [3], [4]. TSN stan-
dards are attractive solutions to address the high-bandwidth
and real-time communication requirements in vehicular ap-
plications. These standards enhance switched Ethernet with
deterministic traffic shaping mechanisms. More specifically,
TSN supports hard real-time, high bandwidth with low-latency
and low-jitter traffic transmission. These features are supported
by offline scheduled time-triggered traffic enabled by the
Time-Aware Shaper (TAS), resource reservation for different
classes of traffic by a Credit-Based Shaper (CBS), and clock
synchronization [5]. Although TSN standards provide flexible
design of complex and deterministic network communication,
this flexibility comes with the cost of further complicating the
design process due to including several configurable factors
for network devices and traffic.
Model-based Engineering (MBE) and Component-based

Software Engineering (CBSE) approaches [6], [7] are widely
being used to manage the software complexity and for cost-
effective development of vehicular software systems. There
are several domain-specific languages and component models
that can be used to model software architectures of ve-
hicular systems, e.g., AUTomotive Open System ARchitec-
ture (AUTOSAR) [8], Rubus Component Model (RCM) [9],

AMALTHEA1[10], EAST-ADL [11], and Architecture Anal-
ysis & Design Language (AADL) [12], to name a few. All the
models and languages assist the embedded software developers
by structuring necessary information to develop and design
complex distributed embedded software systems.

In addition to managing the design complexity of vehicular
distributed software systems, the developers of these systems
are required to verify real-time requirements that are specified
on their software architectures. The timing requirements can be
verified by performing the end-to-end data-propagation delay
analysis of the software architectures of these systems [13],
[14]. The analysis results can also guide in the refinement of
the software architectures [15]. This analysis is already im-
plemented in several tools in the vehicle industry that support
model- and component-based development of these systems,
e.g., SymTA/S2[16] and Rubus [17]. The analysis requires the
end-to-end timing model as a crucial input. The end-to-end
timing model includes comprehensive timing information of
the vehicular distributed software system. The instances of this
timing model must be extracted from the software architectures
of these systems and provided as an input to the model-based
analysis tools.

In this paper, we present an end-to-end timing model to
represent a distributed embedded system with TSN support.
Moreover, we present an automated methodology to systemati-
cally extract instances of the end-to-end timing model from the
software architectures of these systems. The end-to-end timing
model can be used for end-to-end data-propagation delay
analysis of the systems. We evaluate the proposed method-
ology on an industrial use-case from the vehicular domain
based on RCM developed in Rubus-ICE tool suite [18]. As
a proof of concept, we chose RCM because it is the first
commercially available model that supports comprehensive
modeling and end-to-end data-propagation delay analysis of
TSN-based vehicular distributed embedded systems [19].

The main contributions in this paper are as follows.
• We propose an end-to-end timing model to describe TSN
networks with all configuration parameters in the distributed
vehicular embedded software systems.

• We provide an automated methodology to extract instances
of the end-to-end timing model from component-based
software architectures of vehicular systems.

1https://itea4.org/project/amalthea.html
2SymTA/S tool has been acquired by Luxoft (https://www.luxoft.com)
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• We provide a proof of concept for the proposed timing
model and extraction methodology by integrating them with
the component-based software engineering environment of
an industrial tool suite, namely Rubus-ICE.

• We evaluate the proposed model and methodology as well
as their integration with the Rubus-ICE tool suite on a
vehicular industrial use-case.

II. BACKGROUND AND RELATED WORKS

As described in [5], model-based software development of
vehicular embedded systems generically consists of four steps:
(1) modeling the software architecture; (2) extracting timing
properties and requirements from the software architecture;
(3) validate the timing requirements and constraints using end-
to-end data-propagation delay analysis; and (4) refining the
software architecture according to the timing analysis results.

A. Modeling the Software Architecture

There are several software architecture modeling lan-
guages and component models, such as AUTOSAR, RCM,
AMALTHEA, EAST-ADL, AADL, to mention a few.

AUTOSAR is widely used for developing software archi-
tecture for automotive systems. SymTA/S is a commercial
timing analysis and optimization framework that complies with
AUTOSAR. A recent work in [20] integrates AUTOSAR adap-
tive with applicable standards to develop more sophisticated
systems. The proposed three-layer architecture coordinates a
binding between AUTOSAR Adaptive, OPC UA standards3,
and TSN standards. The paper argues that the proposed
architecture lacks maturity since all the involved technologies
in the architecture layers are still under development.

RCM comprises of hierarchical entities which are necessary
to model a distributed embedded system that supports TSN.
At the highest level, the system contains at least two nodes
and a network element that interconnects the nodes. A node
(end-station) is a processing element that provides run-time
environment for one or more Software Applications (SA).
The SA provides spacial and temporal isolation to the part
of overall software architecture within the system. In RCM,
a software architecture is modeled by interconnecting a set
of Software Components (SWCs). An SWC is a design-time
entity that corresponds to a task at run-time or in the timing
model. The SWCs communicate with each other by their
interfaces (a set of data and trigger ports).

To the best of our knowledge, RCM is the first and only
component model that supports comprehensive modeling of
TSN [19]. Recently, there have been some efforts in increas-
ing the performance and applicability of the other modeling
approaches to RCM by model transformation [21]. The work
in [22] proposes a mapping technique between AMALTHEA
and RCM to enable timing analysis of AMALTHEA-based
component models in RCM. In addition, the work in [23]
presents a mapping from EAST-ADL models to RCM with
the aim of enabling the timing analysis of a non-RCM model.

3https://opcfoundation.org/about/opc-technologies/opc-ua/

B. Timing Information Extraction from Software Architectures

Modeling and extraction of timing models from the software
architectures of component-based vehicular embedded systems
that are developed with RCM are presented in [24]. The work
in [24] considers several onboard communication protocols
like Controller Area Network (CAN) [25], CANopen [26],
AUTOSAR COMM [27] and switched Ethernet. However, it
does not consider TSN, which is the main focus of our work.
The work in [19] complements [24] by integrating several

aspects of modeling TSN standards in a component model
with timing analysis perspective. However, the presented TSN
timing model in [19] and the timing model extraction in [24]
are not expressive enough to include all the timing aspects
of TSN. Nevertheless, the complexity of TSN requires signif-
icant automation and optimization in the timing information
extraction and configuration process prior to the end-to-end
data-propagation delay analysis.
A recent work [28] discusses preliminary ideas and work-

in-progress on extraction of timing models from TSN-based
software architectures. In comparison, we propose a compre-
hensive end-to-end timing model and an automated method-
ology for the extraction of end-to-end timing models from
the software architectures of vehicular distributed embedded
systems, which is complemented by an automotive application
case study. Moreover, our work takes into account the integra-
tion and configuration aspects of the TSN timing models.

C. End-to-end Timing Models, Timing Analysis and Verifica-
tion

In order to verify the timing requirements of the chains of
tasks (SWC at the design time) and network messages in the
distributed embedded systems, end-to-end data-propagation
delays (data age and reaction time delays) are calculated and
compared with the corresponding data age and reaction time
constraints. The timing constraints corresponding to the data
age and reaction time delays are part of the timing model of
AUTOSAR standard. The data age delay is the time elapsed
between the arrival of data at the input of the chain and
the latest availability of the corresponding data at the output.
Whereas, the reaction time delay corresponds to the earliest
availability of the data at the output of the chain corresponding
to the data that just missed the read access (of the event) at
the input of the chain [29], [13].
The data age and reaction time delays in a two-node

distributed embedded system which is modeled based on the
conventional task model and with one TSN message are
demonstrated in Fig. 1. The data flows between the task
instances and messages are indicated by dashed orange arrows
in Fig. 1 to indicate the read and write of data in the chain.
There are several works that have also presented end-to-

end data-propagation delay analysis based on the conventional
task model [14], [30]. The work in [17], [15] considered the
analysis for distributed embedded systems that are based on
CAN network. The work in [31] considers the systems that
use Ethernet networks. The works in [14] and [32] presented
the end-to-end data-propagation delay analysis for vehicu-
lar applications, where some of the techniques have been
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implemented in tools to support component-based software
development, e.g., [17] and [33]. The works in [34], [18]
present open research challenges and their solutions when
integrating the timing analysis with model-based development
tools. However, these works only focus on traditional onboard
networks such as CAN without considering TSN.

In the case of TSN, there are several additional features
that need to be considered such as synchronization of the end-
stations, and the presence of different shaping mechanisms for
different TSN classes. A recent work in [35] shows that the
existing end-to-end data-propagation delay analysis supports
the non-scheduled TSN classes, but it does not support the
scheduled traffic in TSN.

The end-to-end data-propagation delay analysis results are
typically presented in the form of tables showing individual
response time of each task (SWC) or message and the data
age and reaction time delays. Such information can be used
by the system designer and integrator to refine the software
architecture [15]. Automated refinement of the software archi-
tecture according to the analysis results is an open research
challenge [5] that could be beneficial for improving the scala-
bility and efficiency of the model-based software development
for more sophisticated vehicular embedded systems.

Fig. 1: Demonstration of data age and reaction time delays.

III. END-TO-END TIMING MODEL

In this paper, we consider the end-to-end timing model that
captures the timing information from the software architecture
of TSN in the distributed embedded systems. Such a model
is a necessary input for the analysis techniques and tools to
verify the timing behavior of the software architecture. The
system model consists of two or more end-stations (or nodes),
denoted by E , and at least one TSN network, denoted by N
as shown in Eq. (1):

S := 〈E ,N〉 (1)

The set of networks in the system model is defined by
Eq. (2) as follows:

N := {N1, ...,N|N |} (2)

The networks connect end-stations to each other. The overall
set of end-stations in the system model is denoted by E , as
shown in Eq. (2):

E := {E1, ..., E|E|} (3)

Various components of the end-to-end timing are discussed in
the following subsections.

A. End-station Timing Model
The system model considers single-core end-stations similar

to the model in [19]. In such a system, the computation and
storage resources need to be shared between the SWCs in an
isolated manner. A set of SWCs contributing to a software
functionality are isolated in an application within the end-
station.
The end-station consists of one or more applications as

shown in Eq. (4). The application provides spacial and tem-
poral isolation of the software functionality. In other words,
the applications are isolated in terms of allocated time for
execution, and also allocated memory.

Ei := {Ai1, ..., Ai|Ei|} (4)

Above, i indicates the end-station ID that the application
belongs to. |Ei| is the total number of applications in the end-
station. Aij specifies the application j of the end-station i.
Besides, the criticality level of each application is denoted by
Cij . Each application includes one or more tasks as shown in
Eq. (5).

Aij :=
〈{τij1, ..., τij|Aij |},Cij

〉
(5)

A task, denoted by τijk, has the attributes as shown in
Eq. (6):

τijk := 〈Cijk, Tijk, Oijk, Pijk, Jijk, Bijk, Rijk, Dijk〉 (6)

where k is the ID of the task. The attributes of a task are
specified as follows. Cijk presents the worst-case execution
time of the task, Tijk denotes the period, and Oijk represents
the offset. Moreover, Pijk is the priority, Jijk is the release
jitter, and Bijk is the blocking time experienced by the task.
Finally, Rijk denotes the worst-case response time and Dijk

presents the deadline of the task. Note that we consider a one-
to-one mapping between a SWC (a design-time entity) in the
component model and a task (run-time entity) in an end-station
in the end-to-end timing model.

B. TSN Network Timing Model
The properties of the network Ni are as follows.

Ni := 〈si,Li, Ii,Mi, Slope, Preemption〉 (7)

where, si is the network speed. Li is the set of links connecting
the end-stations to TSN switches and the TSN switches to each
other. Ii indicates TSN classes through which the messages
are communicated. The set Mi holds the TSN network’s
messages. The available TSN classes are shown in Eq. (8).

Ii = {ST,AV B,BE} (8)

where, ST is the highest priority traffic (Scheduled Traffic)
which is scheduled offline with offsets. The class AVB (Audio-
Video Bridging) associates multiple priorities (up to maximum
8 priorities) to the TSN port’s queues which undergo the
CBS mechanism. In AVB class, priorities are specified in
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alphabetical order and can be assigned to all the egress queues.
For example, class A has a higher priority than class B. Class
BE is the lowest priority class (Best-effort) which often does
not have any timing requirements. Each queue in TSN port
can be set to operate under only one of these classes.

A message belonging to the set of messagesMi is denoted
by mij , where i shows the ID of the network the message
belongs to and j is the ID of the message within that network.
The definition of the message in the end-to-end timing model
maps to the same entity in the component model.

mij := 〈Xij , Cij , Pij , Sizeij , Tij ,Lij , Jij , Bij , Rij ,Oij , Dij〉 (9)

where, Xij is the transmission mode which can be periodic or
sporadic. Cij is the worst-case transmission time, Pij is the
priority, and Sizeij is the payload size. The period is shown
by Tij . In the case of sporadic transmission, Tij represents
the minimum inter-arrival time between any two instances of
the message. The set of links in the route of the message is
shown by Lij . The release jitter is shown by Jij and Bij

denotes the blocking time which contributes to calculating the
response time shown by Rij . Moreover, Oij is the offset of
the message in case the priority of the message is ST , and
finally, Dij represents the deadline of the message.

The set of slopes denoted by Slope holds the set of idle
slopes for each AVB port queue connected to a link in the
network (Li). Slope values are used to allocate bandwidth for
each queue assigned to AVB class. Moreover, the Preemption
set holds the set of flags per link in the network (Li). This
list specifies whether the corresponding link to each member
of the set allows pausing transmission of an ongoing frame in
favor of a higher priority frame.

C. Transactional Model

For the sake of end-to-end analysis, the timing model fol-
lows the transactional model in [36] to link the instances of the
tasks and messages into one transaction. A set of transactions
is indicated by Γ, and a transaction, denoted by Γd, contains
a chain of tasks and messages that allow flow of data within
the system. The superscript d indicates the transaction ID.
The chain can either contain several tasks that are within one
end-station or a set of tasks distributed over multiple end-
stations that communicate through the network. An end-station
may include one or more of its tasks in the transaction. The
attributes of a transaction are shown in Eq. (10).

Γd :=
〈
Chaind, T d, ad, rd, Crd

〉
(10)

where the period of the transaction is T d. The notations rd

and ad are the transaction’s reaction time and data age delays
that are calculated by the end-to-end data-propagation delay
analysis. Besides, Crd specifies the set of timing constraints
on the reaction time and data age delays of the transaction.
Chaind represents the chain of tasks in transaction Γd as
shown in Eq. (11):

Chaind := ({τdijα, . . . , τdijΩ},md
i1, {τdnjα, . . . , τdnjΩ}, . . . ,md

ix, {τdkjα, . . . , τdkjΩ})
(11)

In Eq. (11), the order of tasks from left to right shows the
direction of the data flow, which starts from the initiator task
(τdijα), and ends in the terminator task (τ

d
kjΩ) of the transaction.

A transaction can comprise of a set of tasks of one end-
station. In such a case, this end-station is assumed to be
initiator and terminator of the transaction. Moreover, a transac-
tion may comprise of tasks that are located on different end-
stations, then two adjoining tasks in the transaction belong-
ing to two different end-stations communicate via network
messages. All the tasks in the transaction that belong to
the transaction’s initiator end-station (Ei) are specified at the
beginning of the transaction. Similarly, all the tasks belonging
to the transaction’s terminator end-station (Ek) are specified
at the end of the transaction. There can be one or more
intermediary end-stations, such as (En) in Eq. (11), that are
part of the transaction. The first message in transaction is sent
from the initiator end-station. The message sent from each
end-station is placed at the right hand side of the set of end-
station’s tasks in the transaction, immediately after the source
task.

In a TSN network, a message can pass through a set of
links, which are specified by the set (Lij). Since, multiple end-
stations can be engaged in a transaction, multiple messages
must be communicated in a transaction. We assume that there
can be a set of x number of messages in the transaction. The
terminator end-station receives the last message, by the left
most task in its set of tasks. Since, tasks and messages can
be used by multiple transactions the superscript d shows the
transaction ID that uses the task or message. In Eq. (11), md

ix

denotes the message x that is activated by end-station i, and
is involved in the data flow represented by chain d.

D. Timing Requirements Model

The timing constraint on the transaction, Crd, defines the
maximum allowed value of the delays, such as data age
(Aged), and reaction time (Reacd). These constraints are
shown in Eq. (12) for the transaction Γd:

Crd := {Aged, Reacd} (12)

IV. PROPOSED END-TO-END TIMING MODEL
EXTRACTION METHODOLOGY

The proposed methodology aims at automated extraction
of end-to-end timing information from component-based soft-
ware architectures of TSN-based distributed embedded sys-
tems. The extracted timing information is populated in an in-
stance of the end-to-end timing model, which is fed as input to
the end-to-end data-propagation analysis engines. An end-user,
also known as the software architecture developer/modeler,
is able to interact with the component model directly by
manually modeling the software architecture. The software
architecture can be developed using any component model.
As a proof of concept, we use RCM to model the software
architecture. The end-user often has limited or no knowledge
about detailed timing information in the system, but is skilled
in designing software architectures using component models.
In order to retrieve the required timing information to analyze
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and verify the timing requirements on the software architec-
tures, we propose a timing model extraction methodology that
is conceptualized in Fig. 2.
The end-user shown in module a in Fig. 2 develops the

software architecture with the help of the component models
as shown in module b in Fig. 2. Accordingly, the end-to-
end timing model extraction shown in module c in Fig. 2,
coordinates the extraction of an instance of the end-to-end
timing model from the software architecture. Some informa-
tion can be implicitly obtained from the software architecture,
hence there is no need for detailed specification of such infor-
mation by the software architecture developer. Furthermore,
some information includes variable parameters that can be
refined in the software architecture through the configuration
step, as shown by module b2 in Fig. 2. The configuration
step is performed while developing the software architecture.
Besides, this step could also be iterated by the system’s
integrator/configurator or by the automated configuration tools.

Fig. 2: Timing model extraction methodology.
The module c1 extracts the end-to-end timing information

from the model of distributed software architecture that is
augmented with configuration information. The sources of
end-to-end timing information can be classified as follows:

1) User-defined (User): The properties in this category are
extracted from the input specified by the end-user while
developing the software architecture. The end-user may not
have knowledge about the detailed timing aspects of the
system.

2) Software-architecture-derived (SWA-d): This timing in-
formation includes the properties that are either inherited
from other components in the software architecture, calcu-
lated according to the user-defined properties or implicitly
initialized based on other properties set by other sources.

3) Configurable (Conf.): This category holds the properties
obtained from the software architecture, which are con-

figured according to some logical constraints, and algo-
rithms for the sake of optimizing timing performance of
the system. Such parameters could also be defined by
system experts based on their knowledge of the system
requirements, i.e., system configurators or integrators.

4) Analysis-derived (Analysis): The values of the properties
in this category are obtained by performing various analy-
ses, e.g., response-time analysis of individual end-stations,
response-time analysis of TSN network, and end-to-end
data-propagation analysis.

In the end-to-end timing model extraction step, module c1
in Fig. 2, the properties obtained from various sources in
module b, i.e., the software architecture developer, software
architecture and configurators, are mapped to the parameters in
the proposed end-to-end timing model as shown in Table I. In
the next subsections, we explain the end-to-end timing model
specification for each entity, as shown in modules c2, c3, c4
and c5 of Fig. 2.
Finally, the extracted end-to-end timing model is fed into

the end-to-end timing analysis as shown in module d in
Fig. 2. Furthermore, under the procedures in module d1 and
d2 in Fig. 2 the response times of the tasks and messages,
and subsequently the end-to-end delays, i.e., data age and
reaction time delays are calculated under module d3 in Fig. 2.
Subsequently, the results of the end-to-end timing analysis are
propagated back to the distributed software architecture model.

A. Specification of End-station Timing Information

In this step, each extracted property from the node compo-
nent is specified to the associating entity, namely end-station
in the proposed end-to-end timing model.

The software architecture developer (end-user) designs the
software architecture’s hierarchy, which includes the connec-
tions between the end-stations and the arrangement of the
SWCs within an end-station. Therefore, an application (Aij)
and assignment of the tasks to each application is done by
the software architecture developer. The criticality level (Cij)
of each application is associated to the priority of the tasks
included in the application therefore the criticality level of the
application is derived from the software architecture according
to the priority of the tasks included in this application.

The parameters of the end-station that can be set directly
by the end-user include the worst-case execution time (Cijk)
and the task priority (Pijk). These user-defined parameters
can be further used for obtaining the rest of the parameters
in the classes software-architecture-derived, configurable and
analysis-derived.

In case of considering implicit deadlines in the system, the
deadline of the task (Dijk) is equal to the task’s period. As a
result, deadline value is derived from the software architecture.
The deadline can also be assigned according to the system
timing information after performing the end-to-end timing
analysis engines. Therefore, the deadline parameter can be also
considered as configurable parameter.

Task’s period (Tijk) assignment is dependent on whether the
task is independently or dependently triggered. If the task is
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TABLE I: Extracting the proposed timing model for TSN.

Component Proposed Tim-

ing Model (c,
Fig. 2)

Proposed

Parameters

User SWA-d Conf. Analysis

Node End-station

(c2, Fig. 2)
Aij �

Cij �
SWC Task (c2, Fig.

2)

Cijk �

Tijk � �
Oijk � �
Pijk �
Jijk �
Bijk �
Rijk �
Dijk � �

Network Network (c3,
Fig. 2)

si �

Li �
Ii �
Slope � �
Preemption � �

Message Message (c3,
Fig. 2)

Xij �

Cij �
Pij �
Sizeij �
Tij �
Lij � � �
Jij �
Bij �
Rij �
Oij � �
Dijk � �

SWC Chain Transaction

(c4, Fig. 2)
Γd �

Chaind �
T d �

Requirement Requirement

(c5, Fig. 2)
Crd � �

ad �
rd �

independently triggered, then the task’s period is user-defined.
If the task is dependently triggered, the period of the task is
inherited from its predecessor entity (task or message), which
triggers the task.

Task’s offset (Oijk) is defined according to the pseudo code
in Algorithm 1. The offset of a task is a configurable property
in case the task is sending/receiving a message through the ST
class in TSN. If the task is not connected to the network,
task offset is derived from the software architecture. Task
offset influences the quality of service of the system. The
offsets can be defined in a manner to reduce the end-to-
end delays (age and reaction) of the transactions. Besides,
there are various other algorithms in literature which consider
different optimization criteria for setting offsets of the tasks
in distributed systems [37].

Finally, the release jitter (Jijk), blocking (Bijk) and re-
sponse time (Rijk) of the task are retrieved from timing
analysis techniques and corresponding engines, such as [38].

Algorithm 1: Specifying task offset.

1 for each Γd ∈ Γ do
2 for each τd

ijk ∈ Γd do
3 if τd

ijk ∈ initiator Ei then
4 if τd

ijk.Oijk is configurable then
5 τd

ijk.Oijk is manually set or automatically
optimized.

6 ST class is used.

7 else if τd
ijk.Oijk is SWA-d then

8 No offset is needed for the task.
9 Release the task at time 0.

10 A non-ST class is used.

11 else if τd
ijk ∈ terminator Ei then

12 if τd
ijk receives ST messages then

13 τd
ijk.Oijk manually set or automatically
optimized according to the received
message’s offset at its last link.

14 else if τd
ijk receives non-ST messages then

15 No offset is needed for the task. Release the
task at time 0.

B. Specification of Network Timing Information

In case of the network, the network speed (si), set of
links (Li) and the available TSN classes (Ii) are properties
that are dependent on the design of the network within the
software architecture.

The set of idle slopes (e.g. slopeA and slopeB) can be
chosen simply by globally assigning a value that applies to
all the links in the TSN network, or it can be individually
assigned for all the links that use AVB traffic, e.g., according
to the load of AVB queues on each of the links. Consequently,
the configuration of the idle slopes requires to deal with a
trade-off between the simplicity of configuring the network
versus the performance achieved by the configuration of the
network.

Finally, the Preemption is the last configurable parameter
set which can be enabled/disabled to optimize the utilization of
the links by the lower priority messages [39]. The pseudo code
in Algorithm 2 shows the strategy to define the idle slopes and
the Preemption set on the TSN links.

We assume that TSN messages inherit properties such as
transmission mode (Xij), period (Tij) (for Event triggered
chains) and priority (Pij) from the message’s sender task in
the transmitter end-station. The deadline of the message (Dij)
is assigned implicitly equal to its period. The deadline of the
messages can be configured according to the same assumption
for the tasks’ deadline. The payload size (Sizeij) of the
message is derived from the software architecture since it
is calculated based on the payload size and the network
speed. The worst-case transmission time (Cij) of the message
is derived from the software architecture based on payload
size (Sizeij) of the message, and network speed (si).

The set of links that the message passes from the transmitter
end-station to reach the receiver end-station, denoted by Lij ,
are derived from the software architecture. In some cases, there
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is only one route that delivers the message to the destination
end-station, therefore it is possible for the software architecture
developer to specify the routes manually. However, in many
cases, there are more than one route from the transmitter end-
station to the destination end-station. Consequently, the set of
links that the message traverses can be configured to optimize
the routing of the message. For example, some works define
routes simply based on the shortest path [40]. On the other
hand, TSN messages can also be re-routed with respect to
the potential failure of the links [41] or according to the load
of each traffic class in the network, i.e, ST or AVB [42].
Hence, the set of routes (Lij) is also specified as a configurable
parameter.

As the pseudo code in Algorithm 3 indicates, the message
offsets per link, denoted by the set Oij , are defined according
to the priority of the message. If the message is assigned to
class ST , there is a set of offsets per links between the source
to the destination of the message. This set can be configured
based on different optimization approaches. For instance, the
optimization algorithm presented in [40] schedules the ST
traffic in a way to reduce the end-to-end delay in the non-
ST traffic. The optimization approaches for scheduling the
ST traffic can be found in a recent survey [43]. If the message
is not ST , the set of offsets per link (Oij) will not be used
and contains all zeroes.

Algorithm 2: Specifying slope and preemption.
1 if simple link setup is desired then
2 Set the idle slopes and preemption GLOBALLY.

3 else if optimized link setup is desired then
4 Set the idle slopes and preemption PER LINK.

C. Specification of Transaction Timing Information

The transactions are specified by the software architecture
developer in order to analyze a chain of tasks and mes-
sages (Chaind) in the system. Tasks in a transaction can be
triggered in two modes, i.e., “independent” or “dependent”.
Independently triggered tasks are activated based on their
individual clocks or trigger sources, whereas dependently
triggered tasks are activated by their predecessor tasks. The
trigger mode for the messages are different depending on the
TSN class defined for the message. If the message is ST , it is
triggered independently based on static offsets defined for it
per link specified in its route to the destination end-station. In
case of the dependent trigger mode, the message is triggered
right after the execution of its predecessor task is finished.
Messages assigned to non-ST classes, such as AVB or BE,
are activated dependently.

The transaction period (T d) is calculated by finding the
Least Common Multiple (LCM) of the periods of all tasks
within the transaction.

D. Specification of Timing Requirements

All the timing constraints in the transaction, denoted by
Crd, and end-to-end deadline can be either specified by the

software architecture developer when defining the transaction;
or they can be configured according to the network/system
analysis. The reaction time (rd) and data age (ad) delays of the
transaction d are calculated by the end-to-end data-propagation
delay analysis.

Algorithm 3: Specifying message offsets.
1 if mij .Pij is ST then
2 Message offset (mij .Oij) is configurable.
3 Optimize message offsets per link.

4 else if mij .Pij is not ST then
5 SWA-d mode.
6 Message has no offset.

V. EVALUATION ON A VEHICULAR INDUSTRIAL USE-CASE

The end-to-end timing model extraction methodology pre-
sented in the previous section is implemented as a proof of
concept in the Rubus-ICE tool suite. In this section, we take
advantage of a real vehicular use-case to validate the appli-
cability of the proposed end-to-end timing model extraction
methodology. For the sake of evaluations, we first model
a software architecture of a distributed embedded system,
consisting of a set of transactions, in RCM. Then we extract
the end-to-end timing model from the software architecture
in Rubus-ICE. Using the extracted timing model, we perform
the end-to-end data-propagation delay analysis of the software
architecture using the implemented analysis in Rubus-ICE [35]
and discuss the analysis results.

A. Use-case Setup

The network topology in the use-case consists of nine end-
station that are interconnected via three TSN switches as
depicted in Fig. 3. In the topology, all the end-stations are
capable of generating TSN traffic, whereas HU and AVSink
only receive TSN traffic from the other end-stations. The set of
transactions and network traffic in this use-case are presented
in Table II. In summary, there are a set of 10 distributed
chains (transactions). Each transaction includes tasks from
two different end-stations and one message between the end-
stations. The initiator end-station has only one task that sends
the message to the network. The transaction terminator end-
station includes maximum two tasks. On the receiver’s side,
the first task receives the TSN message and activates the
second task in the receiver end-station. We assume that all
tasks in an end-station belong to the same application.

The transactions 1 to 4 are using ST class and the transac-
tions 5 to 10 are using BE class in the network. The offset
of the sender tasks in transactions 1 to 4 are set to the default
value which is 0. Accordingly, the messages transmitted from
these tasks are assigned to ST class. Finally, the idle slopes are
set to 0 for all the links since the AVB classes are not used in
the use-case. The reaction time (Reacd ) and data age (Aged)
constraints on all the transactions are subsequently 70 ms and
45 ms. These constraints are specified by expert integrators
from the industry (providers of the use-case).
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TABLE II: Evaluation settings for the use-case based on the distributed chains (transactions). All times are in milliseconds.

Γd Source

(Ei)
Source tasks (τdijk):

[id, Pijk,Cijk, Tijk]
Message (md

jk):

[id, Pjk,Sizejk, Tjk,Or
jk]

Destination

(Ei)
Destination tasks (τdijk):

[id, Pijk,Cijk, Tijk]

Task 1 Task 2 Task 3

1 Cloud Gateway (3) [τ13,1,1,1,0.05,10] [m1
1,1, ST,1542,10,0.038] AVSink (8) [τ18,1,1,5,0.05,10] [τ18,1,2,4,0.05,10]

2 Remote Control (2) [τ22,1,1,3,0.05,10] [m2
1,2, ST,1542,10,0.038] HU (7) [τ27,1,1,5,0.05,10] [τ27,1,2,4,0.05,10]

3 Camera (9) [τ39,1,1,2,0.05,10] [m3
1,3, ST,1542,10,0.013] HU (7) [τ37,1,1,5,0.05,10] [τ37,1,2,4,0.05,10]

4 GMSL Camera (6) [τ46,1,1,1,0.05,10] [m4
1,4, ST,1542,10,0.025] AVSink (8) [τ48,1,1,5,0.05,10] [τ48,1,2,4,0.05,10]

5 Camera (9) [τ59,1,2,1,0.05,20] [m5
1,5, BE,1542,20,0] AVSink (8) [τ58,1,3,3,0.05,20] [τ58,1,4,2,0.05,20]

6 Remote Control (2) [τ62,1,2,2,0.05,10] [m6
1,6, BE,1542,10,0] AVSink (8) [τ68,1,3,3,0.05,20] [τ68,1,4,2,0.05,20]

7 I/O (1) [τ71,1,1,1,0.05,10] [m7
1,7, BE,1542,10,0] AVSink (8) [τ78,1,5,1,0.05,10]

8 Machine Control (4) [τ84,1,1,1,0.05,10] [m8
1,8, BE,1542,10,0] AVSink (8) [τ88,1,3,3,0.05,20] [τ88,1,4,2,0.05,20]

9 Remote Control (2) [τ92,1,3,1,0.05,10] [m9
1,9, BE,1542,10,0] HU (7) [τ97,1,3,3,0.05,10] [τ97,1,4,2,0.05,10]

10 High-level Control (5) [τ105,1,1,1,0.05,10] [m10
1,10, BE,1542,10,0] HU (7) [τ107,1,3,3,0.05,10] [τ107,1,5,1,0.05,10]

Fig. 3: Use-case from the vehicular domain.

B. Modeled Use-case in Rubus-ICE

The system-level software architecture of the use-case mod-
eled with RCM is depicted in Fig. 4. The system-level software
architecture consists of nine node models that correspond to
the nine end-stations. All the nodes are connected to one TSN
network model, as shown in Fig. 4. In the internal model of
the TSN network as shown in Fig. 5, the flow from all the
sender nodes are either towards HU or AVSink (the only sink
nodes within the system).

The internal software architecture of each node is depicted
in Fig. 6, where the RCM representation of the set of SWCs
within each node is shown by yellow components. For exam-
ple, the software architecture of the Camera node consists of
two SWC, where SWC1 in the Camera node that is used in
transaction 3 (represented by τ39,1,1 in the end-to-end timing
model) has period of 10 ms and sends an ST message with
the priority of 2. Besides, SWC2 in the Camera node is used
in transaction 5 (represented by τ59,1,2 in the end-to-end timing
model) and has a lower priority than SWC1 (priority 1). The
period of SWC2 is 20 ms. Transaction 3 is initiated from the
SWC1 (τ39,1,1) in the Camera node and is terminated at the
SWC2 in the HU node (τ37,1,2), which has the priority of 4.
The terminator task of the transaction (τ37,1,2) is triggered by
the SWC1 in the HU node (τ37,1,1). As a result, the terminator
task inherits the period of its predecessor task, namely SWC1
in the HU node (τ37,1,1).

Fig. 4: System-level software architecture of the use-case.

C. End-to-end Response-Time Analysis Results

Table III presents the results of the end-to-end data-
propagation delay analysis. The results include reaction time
and data age delays of the transactions as well as response
times of the network messages. For instance, transaction 3
contains an ST message with the response time of 0.025 ms.
The data age and reaction time delays of transaction 3 are
subsequently 20.100 and 30.100 ms. Transaction 5 is also
initiated at the Camera node, though from a different SWC,
namely (SWC2), and it is terminated at SWC4 in HU. Trans-
action 5 uses the class BE of the TSN network. The calculated
response time of the message in Transaction 5 is 0.153 ms.
Besides, the data age and reaction time delays of transaction 5
are subsequently 40.300 and 60.300 ms. As the specified data
age and reaction time constraints on all transactions are 70 ms
and 45 ms respectively, it is evident from Table III that all
transactions meet their specified timing constraints.

VI. CONCLUSIONS

In this paper, we presented a detailed end-to-end timing
model of vehicular distributed embedded systems that uti-
lize Time-Sensitive Networking (TSN) standards. This timing
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Fig. 5: The TSN network model of the use-case.
TABLE III: Calculated data age and reaction time delays, and

message response times for each transaction.

Trans. (Γd) Γd.rd (ms) Γd.ad (ms) mij .Rij (ms)
1 30.100 20.100 0.050

2 30.100 20.100 0.050

3 30.100 20.100 0.025

4 30.100 20.100 0.038

5 60.300 40.300 0.153

6 50.300 30.300 0.332

7 20.550 10.550 0.332

8 50.300 30.300 0.178

9 30.300 20.300 0.332

10 30.300 20.300 0.255

model is required as a necessary input for the timing analysis
engines. We also proposed a methodology for automated
extraction of timing information for the instances of this model
from the software architectures of the systems. Hence, the
proposed methodology facilitates automated end-to-end data-
propagation delay analysis of the software architectures of
these systems. As a proof-of-concept, we implemented the
end-to-end timing model and the model extraction method-
ology in an industrial tool suite, namely Rubus-ICE. We eval-
uated the proposed methodology using a vehicular industrial
use-case. In this regard, we modelled the software architecture
of the use case with an industrial component model (RCM) and
performed its timing analysis using the proposed methodology
in Rubus-ICE tool suite. The results demonstrate the applica-
bility of the proposed model and methodology. The proposed
methodology can be adapted for other component models that
use the principles of model- and component-based software
development and use the pipe-and-filter communication among
software components such as AUTOSAR. One future research
direction is to consider back-propagation of the analysis results
for refining the software architecture and re-configuring the
models of TSN networks.
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