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Abstract—Automated Vehicles (AVs) require sensing and per-
ception to integrate data from multiple sources, such as cameras,
lidars, and radars, to operate safely and efficiently. Collaborative
sensing through wireless vehicular communications can enhance
this process. However, failures in sensors and communication
systems may require the vehicle to perform a safe stop or
emergency braking when encountering hazards. By identifying
the conditions for being able to perform emergency braking
without collisions, better automation models that also consider
communications need to be developed. Hence, we propose to
employ Machine Learning (ML) to predict inter-vehicle collisions
during emergency braking by utilizing a comprehensive dataset
that has been prepared through rigorous simulations. Using
simulations and data-driven modeling has several advantages
over physics-based models in this case, as it, e.g., enables us
to provide a dataset with varying vehicle kinematic parame-
ters, traffic density, network load, vehicle automation controller
parameters, and more. To further establish the conditions for
inter-vehicle collisions, we analyze the predictions made through
interpretable ML models and rank the features that contribute
to collisions. We also extract human-interpretable rules that can
establish the conditions leading to collisions between AVs during
emergency braking. Finally, we plot the decision boundaries
between different input features to separate the collision and non-
collision classes and demonstrate the safe region of emergency
braking.

I. INTRODUCTION

To address the challenges of modern transportation sys-

tems and improve traffic safety and efficiency, Connected

and Automated Vehicles (CAVs) offer a promising solution.

Through advanced sensor fusion technologies and Vehicle-to-

Vehicle (V2V) communications, CAVs can enable cooperative

awareness, paving the way for safe, efficient, and Intelligent

Transportation Systems (ITSs). Specifically, automated vehi-

cles can employ Adaptive Cruise Control (ACC) and Coopera-

tive Adaptive Cruise Control (CACC) to closely follow a front

vehicle and promote fuel and road efficiency while increasing

traffic flow. In addition, CAVs can form platoons with a group

of tightly-coupled vehicles called Following Vehicles (FVs)

that follow the lateral and longitudinal movements of a Lead

Vehicle (LV) using onboard sensors and V2V communications.

The benefits that CAVs can endorse are closely tied to

the inter-vehicle distances between the vehicles [1]. For in-

stance, shorter gaps allow higher fuel efficiency by minimiz-

ing aerodynamic drags and also increase road throughput.

However, this creates a challenge when emergency braking

is necessary due to, e.g., encountering a road hazard. Short

gaps, high speed, and the requirement for strong deceleration

to minimize the stopping distance for evading the risk add

to the challenge. Furthermore, wireless communications, a

key enabling technology of CAV systems, can experience

transient communication outages due to path loss, multipath

fading, interference, etc., [2]. These outages can result in time-

varying communication delays, further complicating safety

management in CAVs. Hence, CAV systems must be designed

and operated to avoid inter-vehicle collisions and hazards, as

well as transition to a known safe state in the event of any

failures or malfunctions.

To this end, this paper proposes a data-driven approach to

predict inter-vehicle collisions during emergency braking by

automated vehicles. Our approach trains ML models during the

design phase to learn the input parameter values that lead to

collisions. This knowledge can then be used during runtime

to adjust the input parameter values and prevent collisions

in the event of an emergency. To prepare the datasets for

our study, we conducted extensive simulations of emergency

braking scenarios, varying parameters such as vehicle dynam-

ics, network load, traffic density, speed, message frequency,

controllers, inter-vehicle gaps, etc., and recorded the collision

and non-collision instances. These simulation parameters form

the feature vector, which we use to train several ML models,

including black-box and interpretable models. We evaluate the

performance of these models in classifying emergency braking

events as either collision or non-collision cases. While the

black-box models are evaluated for the sake of comparison,

the main focus of this paper is on the interpretable models,

which provide explanations for the predictions and reasons for

collisions. We analyze these models by ranking features, gen-

erating decision boundaries, and extracting rules for collisions.

The feature ranking allows us to identify the significance of

different parameters in causing collisions during emergency

braking, while the decision boundaries help us understand the

input parameter values leading to the prediction of collisions.

Additionally, the rules extracted from Decision Tree (DT)

models give us the conditions that lead to collision predictions.

The rest of the paper is structured as follows: Section II

introduces our system model, including different controllers

and their communication settings. After that, Section III re-

views the related works that employ ML models for collision
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Fig. 1: Communication structure with different controllers.

avoidance. Next, we describe the simulation settings and sce-

narios in Section IV that are used to prepare the datasets. The

training and evaluation of different ML models, including the

interpretation criteria of the model predictions, are described in

Section V. The evaluation results are then presented in Section

VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We have identified two primary requirements for predicting

collisions in automated vehicles. Firstly, predictions must be

made based on real-time information such as experienced

communication quality, inter-vehicle gaps, speed, and other

relevant factors. Secondly, ML models must be trained using

accurate data and safeguarded against data tampering by

potential attackers. To address these requirements, we assume

that pre-trained ML models are installed in the vehicles and

that these models can receive updates from trusted sources.

Since these models are installed in the vehicles and can

generate predictions during runtime, they serve as an onboard

prediction tool. In order to predict collisions in the event of

an emergency braking, we use a binary classification model

to approximate a mapping function f for input variables

described in Table I. The class labels TRUE and FALSE

denote collision and non-collision, respectively. Additionally,

our prediction tool generates collision avoidance rules, includ-

ing instructions such as speed, inter-vehicle gaps, deceleration

rates, and emergency braking strategies that must be followed.

Whether a vehicle acts on the predictions or instructions

provided by the onboard prediction tool in a distributed or

centralized manner depends on the type of controller the

vehicle uses. Fig. 1 illustrates three different control strategies:

ACC, Predecessor-Following CACC (PF-CACC), and Leader-

Predecessor Following CACC (LPF-CACC). In ACC, a vehi-

cle follows a desired gap with its predecessor using its onboard

radar sensors to measure the relative distance and speed.

When V2V communications are added to ACC, it becomes

CACC. There are several types of CACC controllers. For

instance, in PF-CACC shown in Fig. 1, a vehicle computes its

acceleration based on information obtained from its immediate

predecessor through V2V communications. Both ACC and PF-

CACC use a Constant Time Gap (CTG) policy, where the

inter-vehicle gaps change with the change in the speed of the

vehicles. When a string of vehicles uses ACC or PF-CACC,

the onboard prediction tool is used in a distributed manner.

However, in a centralized platoon of CAVs using LPF-CACC,

the onboard prediction tool instructions regarding speed, inter-

vehicle gaps, deceleration rates, etc., are communicated to

the following vehicles by the leading vehicle. In LPF-CACC,

the vehicles form a platoon where each vehicle receives

information from both its predecessor and the LV, as depicted

in Fig. 1. Moreover, a Constant Distance Gap (CDG) policy

is followed in LPF-CACC, i.e., the inter-vehicle gaps remain

constant despite speed changes. Note that in the rest of the

paper, the term platoon denotes a group of vehicles using the

LPF-CACC controller, which maintains the CDG policy. In

contrast, a group of vehicles using the ACC or PF-CACC

controller is regarded as a vehicle string that uses the CTG

policy.

In order to evaluate the performance of our proposed col-

lision prediction approach across different automated vehicle

scenarios, we prepared three separate datasets in this study by

simulating the ACC, PF-CACC, and LPF-CACC controllers.

By using multiple datasets with different controllers, we can

better understand the impact of controller choice on collision

prediction accuracy and investigate the potential benefits of

using a specific controller in reducing collision risk.

III. RELATED WORKS

Recent research has shown promise for using ML models

in collision prediction. For instance, Lin et al. investigate the

performance of various ML models for predicting the risk of

accidents within an intersection in [3]. In [4], Chen et al. study

the prediction of rear-end collisions in the internet of vehicles

using a Back-Propagation Neural Network (BPNN). Ribeiro

et al. use the Long Short-Term Memory (LSTM) network

to predict collisions between a motorcycle and a vehicle in

an intersection [5]. Wang et al. propose a Rear-end Collision

Prediction Mechanism (RCPM) using deep learning to predict

collisions [6]. However, the use of black-box ML models in

these works lacks the ability to explain predictions, which is

crucial for sensitivity analysis and understanding the factors

driving predictions.

Qian [7] proposes a two-phase approach for vehicle colli-

sion prediction. The first phase uses LightGBM, a gradient-

boosting framework based on tree learning algorithms, to

predict collisions. If a collision is predicted, the second phase

uses the K-nearest neighbor model to determine the time of

the predicted collision. However, the author does not provide

any interpretation of the predictions in this work. In [8], Ferni

et al. consider a dataset obtained through simulations with

features such as speed, acceleration, distance, braking force,

and packet error rate to identify collisions during braking in a

platoon. The authors then use Logic Learning Machine (LLM)

to generate a set of rules to find safety regions during braking

in a platoon. Mongelli et al. [9] extended the prior work

[8] to conduct intelligibility analysis on string stability in a

platoon through knowledge extraction and sensitivity analysis



of collision avoidance during braking. String stability refers

to the ability of a control system to dampen disturbances

or perturbations propagating from the LV to the FVs in a

string of vehicles. The use of interpretable ML models and the

explanation of predictions in the works [8] and [9] represent

a great strength. The authors demonstrate how this approach

can help devise rules for collision avoidance and maintain

string stability in vehicle platoons. However, the simulations

conducted in these works do not account for the time-varying

communication delays caused by changing neighboring traffic

densities. Instead, packet error rates were used to characterize

the communication medium. In contrast, our work simulates

a variety of parameters that affect communication quality

and collisions during emergency braking. Additionally, we

examine different types of controllers and analyze the factors

contributing to collisions when using these controllers.

IV. SIMULATIONS FOR DATASET GENERATION

This section outlines the controllers and emergency braking

strategy employed for the simulations, followed by a descrip-

tion of the simulation scenarios used to generate the datasets.

The simulations in this paper are carried out using Platoon-

SAFE [10], a simulation tool for evaluating platoon safety

during, e.g., cruising and emergency braking, using realistic

modeling of wireless communications. In the simulations, the

Physical (PHY) and Medium Access Control (MAC) layer

parameters follow the IEEE 802.11p specifications [11]. In

addition, the free space path loss model (α = 2) and the

Nakagami-m fading model (m = 1.86) are used to simulate

the path loss and fading effects, respectively.

A. Control Laws and Parameters

The control laws proposed by Ioannou and Chien [12],

Ploeg et al. [13], and Rajamani et al. [14] are used to represent

ACC, PF-CACC, and LPF-CACC, respectively. Table I lists

the parameter values, such as CTGs and CDGs, speeds, packet

size, and beacon intervals used for simulations. In addition, for

readers’ convenience, we express various CTGs in meters for

different speeds in Table II.

B. Emergency Braking Strategy

In the simulations carried out in this paper, the Synchronized

Braking (SB) strategy proposed in [15] is used during the

emergency braking maneuver. With the SB strategy, the LV

broadcasts Hazard Warning (HW) messages upon encounter-

ing a road hazard and instructs the FVs to wait for a τwait

period before braking. The rationale behind waiting before

braking is to synchronize the braking actions of the vehicles

to mitigate the effects of communication delays. Studies have

shown that braking hard and starting to brake as soon as

a message is received can lead to collisions, particularly in

scenarios where communication delays are high [2]. Therefore,

a delay-aware emergency braking strategy, e.g., SB, is better

in terms of collision avoidance and minimizing the stopping

distance of the LV since a higher deceleration can be used.

However, collisions may still happen with the SB strategy if

the experienced communication delays are significantly higher

than the predicted τwait period. The onboard prediction tool

can also instruct the vehicles to pursue the τwait period that

is required to avoid potential collisions.

C. Simulation Scenarios for Generating the Dataset

In this study, we conducted rigorous simulations to generate

datasets for training and evaluating the ML models. We

systematically varied the parameters listed in Table I that affect

communication delays and collision events during emergency

braking. Each simulation run changed only one parameter

while keeping others constant, and the resulting data was used

to create three separate datasets based on the control policy

used in the vehicles, i.e., ACC, PF-CACC, and LPF-CACC.

Within each dataset, all vehicles in the same vehicle string or

platoon utilized the same controller. Moreover, to simulate the

periodic beacons and HW messages during cruising and emer-

gency braking, we employed Cooperative Awareness Messages

(CAMs) and Decentralized Environmental Notification Mes-

sages (DENMs), respectively [16]. Upon emergency braking,

if the inter-vehicle gap between any pair of vehicles at zero

speed is greater than zero, it is considered a non-collision case.

In order to generate different emergency braking scenarios, we

also vary the τwait period, which is required for SB.

In summary, we generated three different datasets for three

different controllers, i.e., ACC, PF-CACC, and LPF-CACC, in

which the emergency braking is performed with the SB strat-

egy. In these datasets, the independent variables (features) are

the parameters presented in Table I with their corresponding

values. Moreover, to specify the collision and non-collision

cases, a binary variable (TRUE or FALSE) is considered as

the dependent variable (label) across the three datasets. In

particular, after preprocessing the raw simulation data, the final

dataset for the ACC controller contains 4794 labeled instances

with four features, and the datasets for both PF-CACC (459

instances) and LPF-CACC (948 instances) have ten features

each. The reason for the smaller number of features in the

ACC dataset is that vehicles using the ACC controller do not

rely on V2V communications and instead use onboard sensors.

V. ML MODELS FOR COLLISION PREDICTION AND ITS

INTERPRETATION

This section outlines the ML models used for collision

prediction and the criteria used to evaluate the models and

interpret their predictions.

A. ML models for Collision Prediction

In this paper, we evaluate the effectiveness of different ML

models in predicting collisions during emergency braking. To

this end, we assess the performance of five commonly used

and relatively simple models: Decision Tree (DT) and Random

Forest (RF), which are interpretable models, and Logistic

Regression (LR), Support Vector Classifier (SVC), and Multi-

layer Perceptron (MLP), which are black-box models. To em-

phasize interpretability, DT models with different parameters

are used for different datasets to interpret the prediction of



TABLE I: Input parameters for simulations and dataset generation.

Parameter [Identifier] Value Parameter [Identifier] Value

Controllers [Ci] ACC, PF-CACC, LPF-CACC CTGs with ACC [CTGACC ] 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2 s

CTGs with PF-CACC [CTGCACC ] 0.2, 0.3, 0.4, 0.5 s CDGs with LPF-CACC [CDGCACC ] 3, 4, 5, 8 m

String size [Ns] or platoon size [Np] 7, 8, 10, 12 No. of neighboring vehicles [Nh] 100, 200, 300, 400, 500

Beacon interval (platoon) [fp] 50, 100 ms Beacon interval (neighbors) [fh] 10, 20, 30, 40 ms

DENM Interval [fdenm] 50, 100 ms Packet size [B] 100, 500 B

Leader speed [ẋLV ] 80, 100 kmh−1 Deceleration rate [ẍ] –6, –8 ms−2

TABLE II: Various CTGs (s) expressed in meters.

CTGs (s) 0.2 0.4 0.5 0.6 0.8 1.0 1.2

80 kmh−1 6.44 10.88 13.1 15.32 19.76 24.2 28.64

100 kmh−1 7.55 13.11 15.89 18.67 24.23 29.79 35.35

TABLE III: Confusion matrix and different classification perfor-
mance metrics.

Total Instance Prediction

P + N Positive Negative

T
ru

e Positive
True Positive False Negative

(TP) (FN)

Negative
False Positive True Negative

(FP) (TN)

Precision: TP
TP+FP

; Recall: TP
TP+FN

collisions. Specifically, DT models with eight, two, and seven

leaves are used for ACC, PF-CACC, and LPF-CACC datasets,

respectively. In order to assess the performance of the ML

models, we adopt the widely used holdout method, where 75%

of the dataset (training dataset) is used to train the model, and

the remaining 25% (test dataset) is used for evaluating the ML

models.

B. Evaluation Criteria of ML models

In order to evaluate the ML models, we employ the classifi-

cation metrics precision and recall, which are illustrated with

the help of a confusion matrix in Table III. Precision measures

the percentage of True Positive (TP) predictions out of all

positive predictions, while recall measures the percentage of

TP predictions out of all actual positive instances. We focus

on these two metrics because detecting the positive class, i.e.,

collisions, is more critical than detecting the negative class,

i.e., non-collisions. Moreover, recall is of greater significance

as a higher recall value indicates fewer False Negative (FN)

results. In safety-critical systems such as CAVs, misclassifying

collisions as non-collisions (FN) is more hazardous than

misclassifying non-collisions as collisions (FP).

C. Interpreting ML Model Predictions

Classifier models such as SVM and Convolutional Neural

Network (CNN) are known to perform well but are often less

interpretable, making it unclear how their internal algorithm

leads to extract predictions. In contrast, DT and RF are simpler

and generate rules that can be more easily read and un-

derstood with domain knowledge, making them interpretable

and useful for extracting knowledge from the model. This is

especially important for understanding the impact of specific

input parameters on the model outcome [17]. It is worth noting

that while LR also produces interpretable predictions in the

form of mathematical equations, understanding these equations

requires both expertise in mathematics and knowledge in

the ML domain. To this end, this paper uses DT or RF

(depending on the recall value and explainability) to interpret

the predictions.

1) Feature Importance: We choose an interpretable model,

such as DT or RF, by evaluating its performance in terms

of precision and recall on the test dataset and considering its

explainability and usability. This model is then used to rank the

features listed in Table I, enabling us to determine which input

parameters have a more significant impact on inter-vehicle

collisions during emergency braking.

2) Rule Extraction: We extract a set of human-interpretable

rules by analyzing the decision path of a DT, which defines

the combinations of input parameter values that lead to the

prediction of collisions during emergency braking. These rules

can be used to develop guidelines for designing safe CAV

systems, e.g., the authors in [8] extract such rules using LLM.

Additionally, the rules can be used to develop a decision

support system that can warn the driver or automatically

trigger an emergency braking system if the input parameters

fall within the range of values that are likely to result in

collisions.

3) Decision Boundaries: In order to identify the parameter

values that lead to collisions during emergency braking, we

employ decision boundaries that separate collision and non-

collision classes. The most important parameters from Table I

are selected according to the feature ranking and plotted in dif-

ferent combinations for each type of controller. The objective

is to visually identify the safe regions of the input parameters

where the parameter values do not lead to collisions.

VI. RESULTS EVALUATION

A. Evaluation of ML models in Predicting Collisions

Table IV presents the performance of various ML models in

classifying collisions and non-collisions for ACC, PF-CACC,

and LPF-CACC datasets; the best results in terms of precision

and recall are highlighted in bold. The results in Table IV

show that DT achieves the highest recall value for the ACC

dataset, although its precision is lower than that of RF and

MLP. On the other hand, for the PF-CACC and LPF-CACC

datasets, RF and MLP exhibit better performance in terms of

precision and recall compared to DT. Specifically, both RF and

MLP achieve the same precision and recall for the LPF-CACC

dataset, but MLP has a slightly higher recall than RF for the

PF-CACC dataset.



TABLE IV: Precision and recall of different ML models. The

highest values are highlighted.

Classifiers
ACC PF-CACC LPF-CACC

Precision Recall Precision Recall Precision Recall

LR 0.570 0.958 0.913 0.792 0.430 0.889

SVC 0.597 0.986 0.913 0.792 0.424 0.933

DT 0.486 0.993 0.913 0.792 0.472 0.933

RF 0.903 0.910 0.923 0.906 0.953 0.911

MLP 0.944 0.944 0.891 0.925 0.956 0.956

One possible explanation for why DT performs better with

the ACC dataset could be that this dataset has fewer features,

as the communication-related features in Table I do not apply

to the ACC controller. Due to the simplicity of the dataset, DT

can efficiently classify between collisions and non-collisions

by simple decision boundaries. In contrast, the PF-CACC

and LPF-CACC datasets include communication parameters,

resulting in more complex relationships between input param-

eters, which could explain why RF and MLP perform better

than DT in these datasets.

In conclusion, choosing an ML model that suits the dataset

characteristics and allows for interpretability is crucial. Table

IV shows that interpretable models such as DT and RF exhibit

good recall values. For safety-critical systems, these models

are preferred over black-box models like MLP as they offer

better insights into the decision-making process.

B. Interpreting the predictions of DT or RF

1) Feature Importance: Figs. 2, 3, and 4 depict the feature

importance rankings for the ACC, PF-CACC, and LPF-CACC

datasets, respectively. The feature importance for the ACC

dataset is ranked using DT, which exhibits the highest recall

value in Table IV. In contrast, for the PF-CACC and LPF-

CACC datasets, RF is used to rank the feature importance

since it shows higher precision and recall than DT, as shown

in Table IV.

Fig. 2 shows that deceleration rate and time gap are the most

crucial factors during emergency braking situations when the

ACC controller is engaged during cruising. This is because

vehicles using ACC rely only on their onboard sensors, which

are subject to detection, processing, and actuation delays.

Consequently, a longer inter-vehicle gap is necessary when the

preceding vehicle undergoes sudden deceleration to ensure a

timely response to the braking and avoid a collision. However,

when communication is added on top of ACC in the PF-CACC

algorithm, the experienced communication delays become the

dominant factor that dictates the likelihood of collisions. This

finding is illustrated in Fig. 3, which shows that the beacon

interval of neighboring vehicles is the most significant feature

identified by the RF classifier. The number of neighboring

vehicles and their beacon frequency largely determine the

data density. As a result, the vehicles in the string experience

higher communication delays in scenarios with dense data

traffic due to a higher channel-busy ratio. Fig. 4, which

presents the feature importance for the LPF-CACC dataset,

also highlights the substantial impact of neighboring vehicles

0.0 0.1 0.2 0.3 0.4
Feature importance

Vehicle string size
Speed

CTG
Deceleration rate

Fig. 2: Feature ranking for ACC dataset using DT.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Feature importance

Beacon interval of string vehicles
Deceleration rate

DENM interval of string vehicles
Packet size

Speed
Neighboring vehicles

Vehicle string size
Waiting time

CTG
Beacon interval of neighbors

Fig. 3: Feature ranking for PF-CACC dataset using RF.

and their beacon intervals on the communication quality and

the likelihood of collisions. In addition, Fig. 3 demonstrates

that the time gap and waiting time before braking using

the SB strategy significantly influence inter-vehicle collisions

during emergency braking when PF-CACC is employed during

cruising. Similar results can also be observed with the LPF-

CACC dataset, as depicted in Fig. 4. Nevertheless, the inter-

vehicle gap remains the most crucial factor when using the

LPF-CACC algorithm. This is because the inter-vehicle gaps

with the LPF-CACC algorithm are considerably shorter than

with the PF-CACC algorithm, increasing the demand for

attainable communication quality. In LPF-CACC, if there is

a temporary communication outage between an ego vehicle

and the lead vehicle, the maintained short inter-vehicle gaps

can potentially lead to collisions in the event of emergency

braking. Moreover, as shown in Fig. 4, platoon length is also

important when operating with the LPF-CACC algorithm. The

rationale is that the rear vehicles in a platoon experience longer

delays due to path loss and fading effects, which increases with

an increased distance between the transmitter (the LV) and the

receiver (an ego vehicle).

2) Rule Extraction: In order to generate concise and inter-

pretable rules, we use the same DT models as in Table IV,

which enables us to extract potential collision rules during an

emergency braking. Note that the same DT model can be used

to extract the rules for collision avoidance, which we do not

present here for brevity. We refer the reader to Table I, where

the nomenclature of the input parameters used to represent the

0.00 0.03 0.05 0.08 0.10 0.12 0.15 0.18
Feature importance

Deceleration rate
Packet size

DENM interval of string vehicles
Beacon interval of string vehicles

Beacon interval of neighbors
Speed

Vehicle string size
Waiting time

Neighboring vehicles
CDG

Fig. 4: Feature ranking for LPF-CACC dataset using RF.



rules is provided. Moreover, please refer to Table II in which

CTGs expressed in meters are provided.

a) Rules for ACC dataset: Equation (1) outlines the

rules governing potential collisions for the ACC dataset,

revealing clear relationships between CTGs, deceleration rates,

and speed. For example, the rules indicate that collisions

may occur if the CTG falls between 0.65 and 0.85 s, the

deceleration rate exceeds 7.5 ms−2, and the speed is above

75 ms−1. Similarly, if the CTG is less than 0.35 s and

the ACC controller is in use, deceleration rates between 4.5

and 5.5 ms−2 can lead to potential collisions. These results

suggest that vehicles in a string utilizing an ACC controller

should avoid abrupt deceleration to prevent collisions with the

preceding vehicle.

if (((ẍ ≥ 4.5) ∧ (ẍ ≤ 5.5) ∧ (CTGACC ≤ 0.35))
∨((ẍ ≥ 5.5) ∧ (CTGACC ≤ 0.65))
∨((ẍ ≥ 7.5) ∧ (CTGACC ≥ 0.65)
∧(CTGACC ≤ 0.85) ∧ (ẋLV ≥ 75))) then collision

(1)

b) Rules for PF-CACC dataset: Equation 2 shows that

DT provides only one collision condition for the PF-CACC

dataset. The rationale is that the beacon intervals of the

neighboring vehicles are significantly more important than the

other features, as depicted in Fig 3. Therefore, in this case,

DT is overlooking other features as they may not provide

additional information beyond what is already captured by

the neighboring vehicles’ beacon intervals. When a beacon

interval of less or equal to 0.01 s is used with the neighboring

vehicles, there are collisions in 86.68% of the simulation

runs. This clearly shows the impact of neighboring data and

road traffic on the experienced communication quality during

emergency braking.

if (fh ≤ 0.01) then collision (2)

c) Rules for LPF-CACC dataset: Equation 3 depicts the

rules for the LPF-CACC dataset. Here, we can observe that

the waiting time before braking (τwait) with the SB strategy,

platoon size Np, number of neighboring vehicles Nh, and

CDG are the most dominant factor for inter-vehicle collisions.

For instance, if the platoon length exceeds eight vehicles and

the beacon interval of the neighboring vehicles fh is less than

0.02 s, a collision may occur. The reason is that with the LPF-

CACC controller, a vehicle needs information directly from

the LV, and the inter-vehicle gaps are short. As a result, when

the vehicles, especially the rear ones, experience transient

communication outages with the LV, the maintained short

inter-vehicle gaps are not sufficient to respond to the braking

of a front vehicle.

if (((Np ≥ 8) ∧ (fh ≤ 0.02))
∨((Np ≤ 9) ∧ (Nh ≥ 200) ∧ (fdenm ≤ 0.08)
∧(τwait ≥ 0.07) ∧ (CDGCACC ≤ 6.5)))
then collision

(3)

3) Decision Boundaries: In order to plot the decision

boundaries, we retrain the DT models using two features, one

of which pertains to the inter-vehicle gaps, and the other fea-
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Fig. 5: Decision boundaries for ACC dataset using DT. The top right
value indicates the recall of the model.
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Fig. 6: Decision boundaries for PF-CACC dataset using DT. The top
right value indicates the recall of the model.

ture is chosen based on the feature importance shown in Figs.

2, 3, and 4. While only two features may not capture the full

complexity of the datasets and lead to a less accurate model,

the resultant decision boundaries with two features facilitate

more interpretability than with the ten features. Therefore, it

is crucial to consider the trade-off between interpretability and

model accuracy when such decision boundaries are drawn to

separate the target classes. The decision boundaries for the

ACC, PF-CACC, and LPF-CACC datasets are depicted in Figs.

5, 6, and 7, respectively. In these figures, the blue region

signifies the safe region of emergency braking, and the red

region represents the feature values that may potentially lead

to collisions.

The decision boundary plot in Fig. 5 clearly depicts the re-

gions where collisions and non-collisions occur. For example,

at a speed of 100 kmh−1, a CTG of 0.6 s is necessary to

prevent collisions, and longer CTGs are needed with higher
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Fig. 7: Decision boundaries for LPF-CACC dataset using DT. The
top right value indicates the recall of the model.



deceleration rates for safe emergency braking. Additionally,

regardless of the length of the vehicle string, a 0.55 s CTG is

necessary when using an ACC controller. Although a single

plot from Fig 5 may not depict a complete picture of a safe

region for emergency braking, aggregating the decision bound-

aries from all three plots can yield a more comprehensive and

accurate depiction of the safe region. The decision boundaries

in Fig. 6 reveal that more neighboring vehicles and higher

data density due to shorter beacon intervals result in an unsafe

braking region for the vehicle string when using the PF-CACC

controller. It is also recommended to use a string length of

less than eight because the experienced communication delays

amplify while propagating in the downstream direction of the

vehicle string. Moreover, Fig. 6 shows that a DENM interval

of less than 0.075 s is necessary to ensure safe emergency

braking with PF-CACC. Additionally, the decision boundaries

shown in Fig. 7 for LPF-CACC indicate a similar impact of

neighboring data and road traffic densities as in Fig. 6. An

inter-vehicle gap of 6.5 m is required in dense data and road

traffic scenarios to remain in the safe braking region when

using LPF-CACC. However, longer CDGs may worsen the

communication quality between the LV and the rear vehicles

due to path loss and fading effects [2]. For the same reason,

the decision boundaries reveal that a platoon size should not

exceed eight vehicles with LPF-CACC to remain in the safe

braking region.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a data-driven approach for anticipating

collisions among CAVs during emergency braking using ma-

chine learning. By simulating a wide range of scenarios and

collecting a comprehensive dataset, we have trained several

ML models to predict inter-vehicle collisions and evaluated

their classification performance. Furthermore, we analyze the

predictions of the ML models to identify the parameter values

that are most likely to lead to collisions. The analysis demon-

strates that ML-based data-driven models have the potential

to predict inter-vehicle collisions even under varying wire-

less channel conditions and communication outage scenarios.

Moreover, the evaluation of the ML models indicates that DT

and RF, both interpretable classifiers, can predict collisions

with high accuracy. Furthermore, understanding the reason

behind the predictions provided by these models makes them

a practical option for making online predictions in safety-

critical systems such as CAVs. The prediction interpretation

suggests that when using the ACC controller in a string of

vehicles, the inter-vehicle gap and deceleration rate are vital

factors in preventing collisions during emergency braking. In

contrast, when communication-enabled controllers like PF-

CACC or LPF-CACC are used, communication delays induced

by data traffic from neighboring vehicles are the most critical

factor in emergency braking collisions. Our analysis indicates

that shorter platoon or vehicle string sizes and more frequent

broadcasting of event-driven messages lead to safer regions

for emergency braking. This is because vehicles farther from

the leading vehicle in a platoon or vehicle string experience

longer communication delays, and higher message frequency

may increase the likelihood of receiving a message. Overall,

the results presented in this paper demonstrate that ML-based

data-driven models can play a crucial role in enhancing the

safety of CAVs by predicting collisions and preventing these

by taking preemptive measures.

The datasets presented in this paper serve as illustrative

examples and can be expanded to cover more complex CAV

scenarios. For instance, the study can be extended to explore

cases where platoon vehicles operate distributedly, choosing

their own controllers based on the experienced communication

quality [2]. Moreover, the approach presented in this paper

has the potential to be extended beyond collision prediction

to also predict and explain the string stability phenomena in

automated vehicles, as done by Mongelli et al. in [9].
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