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Abstract. Real-world applications that are safety-critical and resource-
constrained necessitate using compact and robust Deep Neural Networks
(DNNs) against adversarial data perturbation. MobileNet-tiny has been
introduced as a compact DNN to deploy on edge devices to reduce the size
of networks. To make DNNs more robust against adversarial data, adver-
sarial training methods have been proposed. However, recent research has
investigated the robustness of large-scale DNNs (such as WideResNet),
but the robustness of tiny DNNs has not been analysed. In this paper,
we analyse how the width of the blocks in MobileNet-tiny affects the
robustness of the network against adversarial data perturbation. Specifi-
cally, we evaluate natural accuracy, robust accuracy, and perturbation
instability metrics on the MobileNet-tiny with various inverted bottle-
neck blocks with different configurations. We generate configurations for
inverted bottleneck blocks using different width-multipliers and expand-
ratio hyper-parameters. We discover that expanding the width of the
blocks in MobileNet-tiny can improve the natural and robust accuracy but
increases perturbation instability. In addition, after a certain threshold,
increasing the width of the network does not have significant gains in
robust accuracy and increases perturbation instability. We also analyse
the relationship between the width-multipliers and expand-ratio hyper-
parameters with the Lipchitz constant, both theoretically and empirically.
It shows that wider inverted bottleneck blocks tend to have significant
perturbation instability. These architectural insights can be useful in
developing adversarially robust tiny DNNs for edge devices.

Keywords: · Robustness analysis · Adversarial training · Adversarial
data perturbation · Lipchitz constant .

1 Introduction

Deep Neural Networks (DNNs) are increasingly employed in safety-critical appli-
cations [18]. Recent research indicates that DNNs are susceptible to adversarial
data perturbations, which are small, imperceptible noises that add to the input
data [19,6]. Adversarial data can be generated by different adversarial attack
methods to fool the DNNs [7,14,4]. In addition, the resource-constraint edge
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devices require to employ the tiny DNNs [1]. To this end, some tiny DNNs such
as MobileNet-tiny [12] have been designed to deploy on edge devices with high
accuracy on clean data. However, designing a robust and tiny DNN is a critical
challenge in these applications [26]. To address the robustness of DNNs against
adversarial data, adversarial training methods have been proposed as state-of-
the-art defense methods [14,24,16]. Nevertheless, adversarial training methods
have been analysed for large-scale DNNs such as WideResNet with high capacity
(huge number of parameters) [25,22,10,23]. However, there are no comprehensive
analyses of adversarial training for the tiny DNNs. In this paper, we present
the first robustness analysis for tiny DNNs from the architectural perspective.
Our analysis is based on MobileNet-tiny as the extensive architecture used for
tiny applications. The baseline network architecture of MobileNet-tiny depicts
in figure 1(a). It is composed of n inverted bottleneck block which is configured
with two hyper-parameters: width-multiplier and expand-ratio. We analyse the
impact of increasing the width of MobileNet-tiny on the performance of the
network by expanding the width-multiplier and expand-ratio hyper-parameters of
inverted bottleneck blocks. These expanded blocks are illustrated in figure 1(b).
The width-multiplier increases the width of the network by extending the number
of output channels of the blocks, as shown in figure 1(b)-left. The expand-ratio
hyper-parameter extends the number of middle channels inside the inverted
bottleneck blocks, as shown in figure 1(b)-right. To comprehensively evaluate the
baseline and expanded networks, we leverage different metrics, including natural
accuracy, robust accuracy, and perturbation instability ( the mathematical defini-
tion of the metrics is presented in the section 3.1). Natural accuracy and robust
accuracy measure the ratio of clean and adversarial data that can be correctly
classified by trained DNNs. Perturbation instability shows the difference between
the distribution of the predictions for natural and adversarial data without
focusing on correct labels. To support our observations, we theoretically and em-
pirically analyse the relationship between the width-multiplier and expand-ratio
of inverted bottleneck blocks with the Lipchitz constant. The Lipchitz constant
indicates the stability of the network output to data perturbations, and the
larger Lipschitz constant value corresponds to the instability of the network. The
following important insights have been discovered by our investigation:

1. Extending the inverted bottleneck blocks in MobileNet-tiny with both width-
multiplier and expand-ratio hyper-parameters improves the natural and
robust accuracy and increases the perturbation instability.

2. There is a threshold for expanding the width of the network that improves
the natural and robust accuracy. Beyond the threshold, the improvement is
negligible, and perturbation instability significantly increases.

3. The theoretical and experimental values for the Lipschitz constant upper
bound show that increasing the width and depth of the MobileNet-tiny
increase the perturbation instability

Preprint accepted in 27th European Conference on Advances in
Databases and Information Systems (ADBIS 2023)



Hamid Mousavi et al. 2. RELATED WORKS

Conv
Layer

Inverted
Bottelneck

Block-1

Inverted
Bottelneck

Block-2

Stages:  Blocks

Inverted
Bottelneck
Block-m

Input ... Linear
Layer output

Inverted
Bottelneck

Block-1

Inverted
Bottelneck

Block-2

...

Inverted
Bottelneck
Block-m

(a) MobileNet-tiny Network Architecture

(b) MobileNet-tiny expand Network Architecture

Expand network by width-multiplier

1x1 
Conv

Depth-wise
Conv

1x1 
Conv

Expand network by expand ratio

Fig. 1: (a) The baseline architecture of MobileNet-tiny with n inverted bottleneck blocks
and (b) expanded networks by changing width-multiplier (left) and expand-ratio (right)
hyper-parameters.

2 Related Works

2.1 Adversarial data and Defences

The pretrained deep neural networks are vulnerable to adversarial data, which
can be generated by the Fast Gradient Sign Method (FGSM) [7], Projected
Gradient Descent (PGD) [14], and Carlini and Wagner (CW) [3] approaches. In
addition, Auto Attack (AA) [4] is the ensemble of four attacking methods that
generate powerful adversarial perturbed data. Adversarial training is the current
state-of-the-art defense method against adversarial data. The first adversarial
training method employed clean and adversarial data to train a robust deep neural
network [7]. The robustness of the network can be increased by encouraging similar
logits for clean and adversarial data [11]. To enhance robustness, adversarial
training is reformulated as a min-max optimization problem, and the network
is trained exclusively on adversarial data [14]. Theoretically, TRADES [24]
regularizes the loss function for clean data by incorporating a robust loss term
and making a trade-off between them. Improved variants of TRADES have
been proposed to consider regularization terms and reduce the distance between
the distribution of natural data and their adversarial counterpart [20]. We use
TRADES as the default adversarial training method because it uses both natural
and robust loss terms to improve robustness.

2.2 Robustness from Architectural perspective

Researchers have investigated the relationship between robustness against adver-
sarial data and the architecture of DNNs [22,10,23]. Xie et al. [23] have studied
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the impact of the depth of large-scale DNN networks on adversarial training.
They have found that the number of layers in the WideResNet network has a
much more substantial effect on robust accuracy than natural accuracy. Their ex-
periments shed light on the intricate relationship between DNN architecture and
robustness against adversarial data. Furthermore, Xie et al. [5] have also explored
the role of batch normalization layers in the performance of adversarial training,
particularly in large-scale datasets such as ImageNet-1K [5]. Their experiments
demonstrate that proper batch normalization techniques markedly impact robust
accuracy. In addition to the number of layers, the impact of the width of robust
accuracy of the large-scale WideResnet network has been studied in [22]. B.
Wu et al. [22] showed that the robustness against adversarial data is related to
natural accuracy and perturbation stability parameters. Their studies illustrated
that increasing the width of WideResNet improves natural accuracy but disprove
the perturbation stability. They also elaborate that increasing the DNN width
in large-scale networks reduces the overall robust accuracy. H. Huang et al. [10]
obtain a study on the impact of DNN architecture on robustness against adversar-
ial data. According to their results, increasing the network capacity (number of
parameters) does not necessarily increase its robustness against adversarial data.
They also indicate that reducing the capacity in the last blocks of the network
may increase the robustness. H. Huang et al. [10] prove that with a constant
number of parameters, we can find a DNN architecture with the optimum robust-
ness. Although the research as mentioned earlier studies analysed the robustness
of DNNs against adversarial data, but they used large-scale networks such as
WideResNet with 127 million parameters. Due to the increase in the number of
edge devices, it is necessary to analyse the robustness of tiny networks such as
MobileNet-tiny. In this paper, we analyse the robustness of these tiny networks
to find meaningful insights into designing adversarially robust tiny networks.

2.3 Tiny Deep Learning

By increasing the usage of tiny edge devices, the demand for DNNs with lower
resource consumption and inference time is growing [17]. Recently, tiny deep
learning networks [2,15,13] have been proposed to reduce DNNs computation
cost and latency. Network pruning [8] and weight quantization [13] are two
common approaches to compress existing networks without manipulating the
number of layers and hyper-parameters. On the other hand, designing tiny
DNN networks from scratch [17,2,15] is another widely used technique in tiny
deep learning. Tiny DNN networks can be either designed manually [17] or using
AutoML approaches [2]. We use MobileNet-tiny, which is designed based on neural
architecture search method [12]. It has only 0.4M parameters and is significantly
smaller than WideResNet networks. From an architectural perspective, there has
not been any robustness exploration for these tiny networks. This paper analyses
their robustness and finds some insights into designing tiny networks.
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3 Exploring Robustness

To analyse robustness for configurations of MobileNet-tiny, we need to define the
baseline architecture and metrics used for evaluation (Section 3.1). In sections 3.3
and 3.4, we demonstrate the results for expanding the network based on the
width-multiplier and expand-ratio. In section 3.5, we theoretically and empirically
show the relation between these hyper-parameters with the Lipschitz constant.

3.1 Baseline Network and Evaluation Metrics

We take the MobileNet-tiny [12] network as the baseline architecture. Figure1(a)
show the overall architecture of this network. This architecture consists of 6
inverted bottleneck blocks that we expand them to generate a wider network. We
denote the width-multiplier and expand-ratio for all inverted bottleneck blocks
as W and E, respectively. For the baseline network, the width-multiplier and
expand-ratio are set to 0.35 and 6, respectively. We explore the impact of W
and E while other hyper-parameters are fixed. In terms of metrics, we consider
different aspects of the performance of the tiny network as follows.

Natural Accuracy: the ratio of examples that are correctly classified as:

AccNat =
#{x : ∀x ∈ D, f(θ;x) == y}

#examples
(1)

D, f(θ; .), and y indicate the test dataset, network, and correct labels.
Robust Accuracy: ratio of adversarial data that are correctly classified as:

AccRob =
#{x : ∀x̂ ∈ B(x, ϵ), f(θ; x̂) == y}

#examples
(2)

where B indicates the lp norm ball around the natural example x.
Perturbation instability: the difference between the prediction of the net-

work for natural and adversarial examples. We use the KL-divergence statistical
measure to compute the perturbation instability as:

PertInst = Ex∼DKL(f(θ;x), f(θ; x̂)) (3)

Where E and x̂ indicate the expectation function and adversarial example.

3.2 Experimental setting

We train the explored networks using TRADES [24] on the CIFAR-10 training
data. For adversarial training settings, we use l∞ norm by setting the maximum
perturbation size to ϵ = 8/255, and use 10-steps PGD with step size α = 2/255.
For robustness evaluation, we use a 20-PGD attack to generate adversarial data
with the same perturbation size (ϵ = 8/255) on CIFAR-10 test data.
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Fig. 2: The dynamics of natural accuracy, robust accuracy and perturbation instability
with regard to training epochs and fixed expand-ratio (E = 6) on CIFAR-10 dataset.

3.3 Exploring Different width-multipliers

We first explore the impact of different width-multipliers on the baseline
MoblieNet-tiny architecture. For each inverted bottleneck block with the same ex-
pand ratios (E = 6), we explore different width multipliers (W = {0.35, 0.65, 1.0}.
Since we need to have a tiny network that is suitable for edge devices, we do not
use a larger value than 1.0 for the width-multiplier. The dynamics of natural
accuracy, robust accuracy, and perturbation instability measures with regard to
the training epochs for these three adversarially trained networks are plotted in
figure 2. By following the dynamics of the metrics in different epochs, we find that
increasing the width-multiplier leads to improve natural and robust accuracy,
but it also increases the perturbation instability. The other important finding is
that the improvement of natural and robust accuracy is negligible (or sometimes
reduced) after a threshold for width-multiplier. Table 1 shows the results for
training MobilNet-tiny with different width-multiplier and fixed expand-ratio
(E = 6). As shown in the table, increasing the width multiplier from 0.35 in the
baseline network to 0.65 improves the natural and robust accuracy by 9.01% and
8.09% but moving from 0.65 to 1.0 have 0.91% improvement in natural and hurt
robust accuracy by 0.89%. In addition by increasing the width-multiplier from
0.35 to 0.65 and 1.0 the perturbation instability increase by 20.13% and 26.46%
It means that adversarial training increases the difference between the prediction
of the network for natural and adversarial examples.

3.4 Exploring Different expand-ratios

We also explore the impact of the expand-ratio hyper-parameter on the robustness
of MobileNet-tiny. The baseline MobileNet-tiny has a fixed width-multiplier of
W = 0.35 for all inverted bottleneck blocks. We investigate different values
for expand-ratio as E = {6, 10, 20, 29}. Like the width-multiplier, we do not
significantly alter the expand-ratio to remain in the tiny regime. The dynamics
of natural accuracy, robust accuracy, and perturbation instability metrics in
the training epochs are plotted in figure 3. Furthermore, table 2 indicates the
best results for different expand-ratios. We find that the expand-ratio has a
similar effect as the width-multiplier. However, increasing it until a threshold
improves the natural and robust accuracy, but it compromises the perturbation
stability. To compare the impact of the width-multiplier and expand-ratio, we set
these hyper-parameters to have a similar number of parameters. To this end, we
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Fig. 3: The dynamics of natural accuracy, robust accuracy and perturbation instability
with regard to training epochs and fixed width-multiplier (W = 0.35) on CIFAR-10
dataset.

made a network by increasing the width-multiplier to 0.65 with the same expand
ratio as the baseline and created another network by using 29 for expand-ratio
and the same width multiplier as the baseline. Both networks have almost 1.08
million parameters. The expanded network with width-multiplier shows 0.17%
better robust accuracy than the expanded network with expand-ratio. In terms of
perturbation instability, expanding the network with width-multiplier, increases
the instability by 2.59% compared to the expand-ratio.

3.5 Theoretical and Empirical Lipschitz constant

Recent works [9,21] formally prove the relation between Lipschitzness and per-
turbation instability. They show that smaller Lipschitzness (small Lipschitz
constant) leads to decreased perturbation instability and improved robustness. In
this section, we first theoretically show the relation between width-multiplier and
expand-ratio hyper-parameters in MobileNet-tiny with perturbation instability.
Then we empirically analyse this relation to support theoretical findings. The
Lipschitz constant L of MobileNet-tiny architecture measures the rate of change
in the output of the network by changing the input as:

||f(θ;x)− f(θ; x̂)|| ≤ L · ||x− x̂|| (4)

The expected Lipschitz constant for MobileNet-tiny with n inverted bottleneck
blocks with width h and m middle channels is upper bounded by:

L(f(θ;x) ≤
(√

W · h+
√
E ·m

)n (5)

where W and E show the width-multiplier and expand-ratio hyper-parameters
in MobileNet-tiny. This formulation is the conclusion of the theorem in [10]

Table 1: The results of the expanded network by altering width-multiplier and fixed
expand-ratio (E = 6) (Last-checkpoint)
Expand-Ratio Width-Multiplier #MACs #Params AccNat (%) AccRob(%) PertInst Lipchitz L

E = 6

W = 0.35 15.98 0.404 69.23 39.91 3.75 67.24

W = 0.65 45.08 1.088 78.24 48.00 5.63 80.77

W = 0.1 90.68 2.278 79.15 47.11 7.27 85.03
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Table 2: The results of the expanded network by altering expand-ratio and fixed width-
multiplier (W = 0.35) (Last-checkpoint).
Width-Multiplier Expand-Ratio #MACs #Params AccNat (%) AccRob(%) PertInst Lipchitz L

W = 0.35

E = 6 15.979 0.404 69.23 39.91 3.75 67.24

E = 10 23.73 0.523 75.98 46.81 4.76 73.4

E = 20 43.206 0.8218 75.54 46.3 4.51 71.26

E = 29 58.63 1.086 78.72 47.83 6.28 -82.88

for WideResNet large-scale network. This establishes the connection between
hyper-parameters in inverted bottleneck blocks and the Lipschitz constant and
perturbation instability. This theoretical analysis shows that increasing the width-
multiplier and expand-ratio increases the perturbation instability. Additionally,
this formulation shows that adding more inverted blocks to the baseline network
(more depth) exponentially increases the perturbation instability. Our empirical
Lipschitz constant evaluation supports our theoretical findings:

L = Ex∼D max
x̂∈X

||f(θ;x)− f(θ; x̂)||
||x− x̂||

(6)

Where X is the ϵ-ball around the x and x̂ is adversarial data generated by PGD.
We compute this metric for different hyper-parameter configurations. The results
are indicated in figure 4 and tables 2,1. We can observe that when the width of
the network increase by using a larger width-multiplier and expand-ratio, the
empirical Lipschitz constant also increases. Theoretical and empirical analysis of
network perturbation instability agrees.

4 Conclusion

This paper analyses the robustness of tiny deep neural networks (MobileNet-
tiny) from an architectural perspective. Specifically, we explore how the width
of the inverted bottleneck blocks affects the robustness. To generate different
architectures, we change the width-multiplier and expand-ratio hyper-parameters
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Fig. 4: The dynamics of Lipschitz constant with regard to training epochs and altering
width-multipliers (left) and expand-ratios(right)
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that increase the number of channels in inverted bottleneck blocks. Our findings
are: 1) Although increasing the width of the blocks in MobileNet-tiny can improve
the natural and robust accuracy, it also increases the perturbation instability. 2)
After a threshold, expanding the width of the network cannot only improve the
natural and robust accuracy but also increase the perturbation instability. We also
find theoretically and empirically the relationship between width-multiplier and
expand-ratio with the Lipchitz constant, which directly relates to perturbation
instability. It shows that increasing the number of blocks and expanding the
width of the network increase the Lipchitz constant. Our work provides valuable
insights into designing robust tiny networks against adversarial data.
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