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Marcus Jägemar ID

Sys Compute Dimensioning
Ericsson AB

Stockholm, Sweden
marcus.jagemar@ericsson.com

Jakob Danielsson ID

Sys Architecture
Ericsson AB

Stockholm, Sweden
jakob.danielsson@ericsson.com

Alf Larsson ID

Senior Specialist Observability
Ericsson AB

Stockholm, Sweden
alf.larsson@ericsson.com

Thomas Nolte ID

Networked and Embedded Systems
Mälardalen University
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Abstract—Processing capacity distribution has become
widespread in the fog computing era. End-user services have
multiplied, from consumer products to Industry 5.0. In this
scenario, the services must have a very high-reliability level.
But in a system with such displacement of hardware, the
reliability of the service necessarily passes through the hardware
design. Devices shall have a high quality, but they shall
also efficiently support fault management. Hardware design
must take into account all fault management functions and
participate in creating a fault management policy to ensure
that the ultimate goal of fault management is fulfilled, namely
to increase a system’s reliability. Efficiently and sustainably,
both in the system’s performance and the product’s cost.
This paper analyzes the hardware design techniques that
efficiently contribute to the realization of fault management
and, consequently, guarantee a high level of reliability and
availability for the services offered to the end customer. We
describe hardware requirements and how they affect the choice
of devices in the hardware design of networking systems.

Index Terms—requirements, fault management, hardware de-
sign, networking system, reliability, availability, and serviceabil-
ity;

I. INTRODUCTION

Industry uses embedded systems in several fields: automo-
tive, smart TV, washing machines, smartphones, and wearable
devices, to mention only a very small part of the embedded
market. Also networking uses embedded systems and, due
to specific hardware characteristics, it is called networking
systems. The evolution of virtualization technology [1], [2] has
changed the way of seeing and managing this enormous pro-
cessing capacity [3], introducing the ”softwarized resources”
paradigm [4], [5], and the networking development has moved
this paradigm to the world of connectivity, where everything is
interconnected to everything, everywhere, and all the time [6],
[7]. Notions such as ”fog computing” [8] and ”Internet of
Things” [9] have become increasingly popular and have moved
the concept of ”smart” [10] into previously unthinkable ser-

vice types, opening the door for the Vertical Service [11],
Industry 5.0 [12] and Society 5.0 [13]. The intrinsic quality
of the hardware components has undoubtedly increased over
time, however the failure of a hardware component have a
significantly higher cost due to the increased complexity of
the system [14]. Complete board replacements are, however,
often the only viable strategy to cope with failure state for
a hardware device, which comes at great cost: fault analysis
on-site, board removal, packaging, expedition, board analysis,
and test to confirm the failure condition diagnosis for the
component, and, when possible, faulty hardware replacement.
In telecommunication networks, multi-chip packages, robotics,
automotive, and, more generally speaking, in an increasingly
widespread distributed system, the hardware devices must
work and inter-work properly, react to external disturbances
promptly, and remain resilient as long as possible. Therefore,
maintaining a low value for the system’s hardware failure rate
(and high reliability) is no longer just a problem of component
quality but of the ability to detect, manage and correct a
fault before it becomes a failure condition. Since the ultimate
purpose of fault management is to locate, isolate and recover a
fault condition before it results in a system failure condition,
investing in fault management during hardware design will
make the working state phase of a product stable and lasting.

In this paper, we propose the following:

• mapping of Reliability, Availability, and Serviceabil-
ity (RAS [15]) requirements towards fault management
areas, which simplifies the understanding of the require-
ments for the hardware design;

• a set of fault management hardware requirements for a
networking system that can improve the product lifetime;

• a new power-on-board self-test procedure based on hier-
archical test control system solution.
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Paper Structure

Section II recalls helpful definitions and sets the reference
hardware architecture model. Section III mentions other in-
teresting work in hardware fault management requirements
definition. Section IV maps RAS requirements in five areas
of fault management. Section V describes the RAS require-
ments for the subsystems of the reference architecture. It
also describes possible existing solutions as implementation
examples. Section VI reports the conclusion and possible
future work.

Research Context

This paper focuses exclusively on the characterization of
hardware components. Readers should consider the following
definitions, architecture, and requirements in the hardware
domain only. This paper does not mention or refer to issues
related to their configuration, use, and, more generally, the
platform software.

II. DEFINITIONS AND SYSTEM MODEL

1) Definitions Summary: This subsection recalls help-
ful definitions for fault management characterization. Many
standards specifies definitions for the reference field, like
ARP 4761 [16] (avionic), ISO 26262 [17] (automotive),
IEC 61226 [18] (nuclear), or IEC 61508 [19] (electri-
cal/electronic control systems). We use a general definition
that maps onto the aforementioned standards.

Definition 1: A failure is the inability of a device to meet
the specified functionality [20].

Definition 2: We define λ as the failure rate of the system.
During the lifetime phase, it tends to remain constant [21].

Definition 3: We define reliability, R(t) (1) (where t is
the time), as the probability of a system to operate correctly,
without a failure condition, during a time interval [0, t],
assuming that the system is performing correctly at the time
0 [22].

R(t) = e(−λt) (1)

Definition 4: MTTF, Mean Time to Failure (2), is the
expected time a system works properly before the first failure
is observed [22].
MTTF is strictly connected to reliability by definition.

MTTF = 1/λ (2)

Definition 5: MTBF, Mean Time Between Failure (3) is
the average time between two consecutive failures of the
system [23].

MTBF =
#operationhours

#failuresametime
(3)

Definition 6: RR, Return Rate (4) is the percentage of
installed products that are returned to the hardware repair
center because of a suspected failure condition.

RR is a fault avoidance requirement type because it is
the most obvious way to reduce costs: high-quality hardware
components are achieved through careful device selection in

Fig. 1. Hardware reference system.

the design test and device screening in the production test.
The return rate is also a function of time [23].

RRannual =
1

MTBFannual
=

24 ∗ 365, 25
MTBFhourly

RRannual =
8766

MTBFhourly
(4)

Definition 7: MTTR, Mean Time to Repair is the average
time required to isolate, repair, and test a fault condition for
the system [21].

2) Reference Architecture: In this subsection, we describe
our reference architecture. The reference architecture consists
of devices and connections that are most common in a net-
working system platform, presented in Fig. 1).

The reference architecture utilizes a Central Processor Mod-
ule (CPM) as a main controller for operations. The pro-
cessor system within CPM is a complex multi-core system.
It contains an internal memory subsystem hierarchy with
different levels of cache memory and TLB’s that connects
to the system memory. The CPM has access to non-volatile
memory (Storage System in Fig. 1) of a size in a range
comparable to or greater than the system memory. The CPM is
responsible for controlling board devices and also maintaining
connections between these devices. The board devices can be
classified by type of connection (PCI-e, ethernet, or serial bus)
and by processing (device processor/FPGA or DSP/hardware
accelerator). Devices can also have dedicated memory (not
necessarily accessible by the CPM). Master Test Controller
eMTC is an IEEE 1149.1 [24] compliant test generator that
controls JTAG test sequences for both internal logic and
external devices. The eMTC is commonly a part of the
CPM system, but we suggest using an external chipset for
this function which will extend the overall test coverage to
also span over the CPM. A power domain and a series of
temperature sensors complete the reference system.

3) Fault Management Techniques: There are four distinct
fault causes: specification errors, implementation errors, exter-
nal disturbances, and random component failures [22], which
can lead to software faults, hardware faults, or both. There are



different techniques for maintaining the system in a working
state, and we group them into three main barriers; fault
avoidance, fault masking, and fault tolerance (see Fig. 2).

Definition 8: Fault avoidance is the set of actions exe-
cuted to minimize the failure rate due to Specification and
implementation errors, external disturbances, and defected
components [22].
Accurate HW/SW design, extensive design review, component
screening, and system verification are typical fault avoidance
techniques.

Definition 9: Fault masking is the set of functions and
features that allows the system to work without impacting its
functionality in case of detected faults [22].
Information redundancy and majority vote algorithms are
fault-masking techniques. An example allows us to understand
better what information redundancy means: the error-detection
codes, like CRC, ECC, or parity bit, add a few bits (in this
sense, more information) to manage the integrity handling of
information. The algorithm adds extra information to the data
used by the system, which enables verification of the data
integrity.

Definition 10: Fault tolerance is the five main components
of fault management: detection, location, isolation, prediction,
and recovery of the fault to avoid system malfunction [20].
We also list two other important definitions for fault manage-
ment:

Definition 11: Fault coverage is the probability that fault
management detects and handles any system fault.

Definition 12: Fault reporting is the capability of fault man-
agement to identify, collect and propagate fault information
into the system.
Fault reporting is essential to understand how to cope with,
and recover from a fault condition.

III. RELATED WORKS

The functional requirements and the need for time-to-market
products often drive hardware design. Fault management spec-
ifications unluckily arrive later in the product development
process. Bidokhti [25] describes the consequence of not con-
sidering the Reliability, Availability, and Serviceability (RAS)

Fig. 2. The three fault barriers [22].

requirements from the first design phase to the product quality.
Chalermarrewong [26] proposed a hardware failure prediction
model for high-performance computing systems firmly based
on asset migration. The work of Siasi [8] also focuses on
the dynamic configuration of resources used in a fog net-
work to protect the serviceability of the Service Function
Chains (SFC). Kundu [27] analyzes the effects of hardware
reliability on Artificial Intelligence (AI) and Machine Learn-
ing (ML) systems, emphasizing, above all, the consequences
of external disturbances on the reliability of memory circuits.
They propose system techniques to increase fault tolerance
specific for AI/ML architectures and neuromorphic hardware,
such as the ”Fault-aware training”, but not very characteristic
of the hardware itself. Scargall [28] in his book describes
what it means to have RAS requirements, even if limited to
persistent memory components. Yao [29] have carefully ana-
lyzed the RAS requirements for the memory of a data center,
describing the fault management with a multi-technological
approach very close to the multi-layer framework proposed
in [30]. Finally, we mention the work of Safari [31] about the
fault tolerance techniques for embedded systems of the power,
energy, and thermal domains, even if they also focus only on
these two domains. Our paper does not consider the fault tree
analysis and the evaluation of the probability of faults for the
node (a possible reference is the work of Das [32]).

IV. REQUIREMENT TREE

Any fault management technique (see Section II-3) imple-
ments one of the RAS requirements, no matter to which barrier
it belongs, as shown in Fig. 3. The requirement tree recalls
and extends the requirement classification done by Bidokhti
in [25], and creates a map between the requirements and the
five macro fault management domains.
Reliability

• MTTF is a fault avoidance requirement type and is
based on the quality of service expectations. The device
selection shall be based on the vendor’s MTTF value to
guarantee the λ is as low as possible during the product’s
lifetime.

• Our target position is that the annual RR shall not exceed
a single-digit percentage for networking systems. Since
the RR refers directly to the installation, our proposed
way to ensure high product quality is a high level of fault
coverage during the production’s hardware screening.
Finally, after the product installation, the RR can be
reduced through fault tolerance: not only with recovery
mechanisms from a fault condition but also with the
implementation of the ”degraded function condition”: a
system that can isolate the faulty component and restore
to a working condition, but with reduced performance.

Availability The items listed in the availability group match
what we previously described as the main components of a
fault management framework in [20] and, by definition, belong
to the fault tolerance requirement class. In this Section, we
only add comments and concepts that allow a mapping into
any other of the five macro fault management domains related



Fig. 3. The requirements tree.

at the beginning of the Section. More intricate descriptions
of functions behind the macro fault management framework
components are available in [30]. We list the availability
components as follows:

• Detection: self-test (both power-on and runtime) and
runtime hardware monitoring are typical examples of
fault detection functions and belong to the fault cover-
age requirement class. Increasing the fault coverage is
mandatory to avoid the ”bad state”, where the system
loses the fault detection capability: a possible fault will
remain unannounced, with the unpleasant drawback that
the fault propagation will crash the system without any
chance to run a root cause analysis.

• Location: Fault information and fault reporting, is just
as crucial as fault management’s ability to detect a
faulty component. In [20], we previously discussed the
importance of taxonomy for error indications, where it
is also possible to find a description of the topology
in the domain of possible recovery actions. Using a
standard format for fault reporting (for example, the
syslog format [33]) is valuable because the hardware-
platform-applications ecosystem can manage it.

• Isolation: The fault location is the system’s ability to
avoid the effects of a faulty condition of a component
in adjacent devices. Fig. 3 displays a connection between

”Location” and ”Fault reporting” to emphasize the need
to provide the best information for recovery action to the
fault management. In this sense, the isolation’s granu-
larity directly impacts the redundancy cost necessary to
maintain the system in fully-functional working condi-
tions. For example, a generic error indication for a mem-
ory device requires the availability of a spare memory
device. In contrast, the ability to identify the error in
memory on a single array allows significantly cheaper
redundancy solutions. While reporting a fault indication,
the more fine-grained is the hardware granularity, the
lower will be the redundancy cost.

• Recovery: There are two possible methods: passive re-
covery (fault-masking) and active recovery (fault toler-
ance). Passive recovery features includes Error Correcting
Codes (ECC), scrubbing, and data poisoning (information
redundancy techniques), while software and hardware re-
dundancy techniques, such as error handler, Post Package
Repair (PPR), or spare components, are part of active
recovery.

• Prediction: The application of AI/ML allows analysis of
system data. AI/ML can recognize patterns in data set as
possible risk of a fault condition and act on the system
before this happens (fault avoidance) or recognize when
a device begins to work in non-optimal states, allowing
a replacement with spare elements before this causes a
fault condition (fault-masking) [34].

Serviceability
• MTTR. From the definition of serviceability, we derive

how it depends on the availability of the mechanisms
used by the system for error recovery (on-site or off-site).
The MTTR value also depends on available recovery
techniques. For example, a system can recover a memory
soft-error fault by reinitializing the device, an operation
that would have an MTTR of the order of a few minutes.
On the other hand, a system can recover a memory hard-
error by an on-site replacement with spare elements, thus
keeping the MTTR value low but with a higher product
cost. Instead, if the system design requests an offline
device replacement, the MTTR value could be even more
than several weeks, with a higher maintenance cost.

V. FAULT MANAGEMENT HARDWARE DESIGN
CHARACTERIZATION

In this section we define the list of hardware features
that designers shall consider when designing service-oriented
networking system hardware platforms. We list a summary
on how RAS requirements impacts the hardware design of an
networking system as follows:

Hardware shall be able to detect errors (fault coverage).
General examples of hardware detection feature are the con-
nectivity terminations, that shall supervise the link termination
according to the physical link standard specification [35], and
the data flow supervision.

Hardware shall be able to correct errors (fault mask-
ing and fault recovery). A typical example is Single Error



Fig. 4. The hierarchical start-up chain.

Correction / Double Error Detection (SECDED) algorithm for
memories device.

Hardware shall be able to report errors (fault reporting).
Any device shall report detected corrected or uncorrected
errors to the software.

Hardware shall be able to isolate the errors (fault
isolation and fault recovery). Hardware shall provide features
to avoid fault propagation in the system. A typical example is
the data poisoning.

Hardware shall be able to provide self-test validation
(fault coverage and fault avoidance). Any device shall be
able to run a sanity check by command or automatically in
case of power-on. Hardware shall provide a fault supervision
verification mechanism like, for example, the error injection.

A. eMTC

This section introduces an innovating power-on-board
self-test procedure based on the usage of an external master
test controller (eMTC) engine.

The eMTC’s primary function is the verification of the
board devices integrity during the power-on-board self-test.
It shall have persistent storage to load the test configuration
file. Multiple test configuration files allow eMTC to execute
specific tests on demand. eMTC decides to execute different
configuration file based on latest event before the processor
reset. For example, an indications set by the CPM in a
persistent memory before the processor reset, like the ID
of a component in a faulty state. The flexible test coverage
option in the eMTC allows for the execution of a single
component instead of testing the entire board, reducing
the MTTR. On power-on, the board test could run in a
hierarchical model (see Fig. 4). As a first action, the Power
Management unit (PM) validates and stores the status of the
Master Test Controller (eMTC) before letting eMTC continue
the power-on test. eMTC validates and stores the central
processor’s status and inform PM to continue the power-on
cycle. Any processing device on board could participate
in this hierarchical power-on-test cycle: the device’s status
could be validated and stored before letting PM continue the
power-on cycle and allow device processor (DP) to run next
verification phase. The overall process requires non-volatile
storage per any object involved in the power-on test chain.
The persistent memory of an eMTC can work as a ROM
hardware inventory table that lists all devices on board, their

unique ID, and the corresponding memory map. The ROM
table allows protection from malicious and unauthorized
device replacement and supports fault management to manage
the status of the devices.

Using eMTC has a positive impact on RR reduction. The
cost analysis can indicate the weight of the eMTC usage.
Figure 5 shows the total costs impacts, i.e., production and
maintenance, for the single product installed. If C is the cost
of eMTC, its use allows the elimination of some hardware
components (e.g., resistors and capacitors) with a weight on
the production cost of the Printed Boardd Assembly (PBA)
equal to -0.2C. The maintenance cost due to a 1% reduction in
RR has an impact equal to -2C, which means that the total cost
per single product improves by 1.2C for 1% RR reduction.

B. Central Processor Module

The CPM shall support fault management multi-technology
approach as we proposed in [30]. This approach is possible
only if the hardware supports a ”firmware-by-first” framework:
firmware always manages any fault information from any
device before propagating the fault to the operating system.
Hardware shall pass information about fault type and its
location. Firmware manages faults using configurable control
and a hardware filtering mechanism. The CPM fault detection
framework is called ”Machine Check Architecture” (MCA),
which provides a fine granularity for the fault location and
error counters for device status or statistics collection. MCA
can detect and report any CPM firmware bug as a software
error, and CPM firmware shall be uploaded remotely. The
CPM shall also support device verification (self-test and error
injection).

1) Processor System: The processor system of the central
processor module is a multicore subsystem and core faults
shall be available via MCA. In detail, the hardware shall be
able to isolate a single faulty core, and plug-in/out mechanisms
shall allow for removal of the faulty core from the group of

Fig. 5. The eMTC effect on the product cost for 1% RR reduction



available non-faulty cores. The processor system shall support
virtualization technology via hardware accelerators for virtual
CPU, virtual memory, and virtual IO access. Virtualization of
hardware resources can simplify relocation mechanism.

2) Cache System: The most common hardware platform
has three cache levels: L1, L2, and L3 [36]. The system
shall be able to detect data corruption and invalidate the
entry, avoiding fault propagation. Most L1 cache accesses
are load and store requests for program data and instruction
fetches, and it is the fastest and smallest cache in the system.
Therefore, a parity bit mechanism provides a sufficient level
of protection for the L1 cache. Higher levels of cache requires
more complex algorithms. A proper requirement is that L2 and
L3 caches fault detection and recovery shall be at least ECC
SECDED algorithm.

3) Memory Controller System: ECC memory devices need
a memory controller that supports ECC. Modern memories,
such as DDR5, contain built-in ECC. The previous memory
device generation counts on the memory controller to imple-
ment features like the Sideband ECC and the Inline ECC [37].
The Sideband supervises physical termination of the memory
controller and the inline physical connection to the memory
device. Both Sideband and inline ECC are mandatory features
of a memory controller. The memory controller shall also
support some active fault tolerance techniques:

• Error check and scrub (patrol scrubbing): automatic pe-
riodic memory verification to find and correct a single
error.

• Data poisoning: detect and mark as corrupted memory
containing corrupted bits. The software will manage a
poisoned memory avoiding fault propagation into the
application.

The memory controller provides error counters per cor-
rected, correctable, and uncorrectable memory errors. It is
helpful to rely on a rapid recovering mechanism, avoiding
the board restart to reduce significantly the MTTR in case
of uncorrectable memory errors.

4) Networking System: All networking system faults shall
be available using the MCA.

5) IO System: All IO system faults shall be available using
the MCA. Most I/O devices interface with their controller in
CPM, which is responsible to detect and report I/O device
fault indication through MCA.

C. System Storage Module

There are two types of non-volatile storage device in an
embedded system: flash and solid disk. The flash is a bootable
device with a limited size, commonly not more spacious than
32GB, while the solid disk can be optional, more spacious, and
can contain application files. The typical distinguishing feature
is that SSDs are typically read in blocks whilst code flash
in words. The secure boot signing system [38] authenticates
and validates the signature on system boot to protect the
flash contents. The authentication phase includes making a
hash-key of the images and comparison to the encrypted
hash-key contained in the signature. The primary purpose of

the signature procedure is to avoid malicious or unwanted
write commands into the flash, but it can also detect a data
retention issue. In case of corrupted data, the processor can
swap from one start address to another address that points
to a backup solution. This way, there is a chance to start
the board and recover the corrupted data via an authorized
flash update procedure. Embedded systems can use SSD disk
instead of HDD for their intrinsic fault tolerance [39]. The
MTTF SSD is higher than HDD [40]. HDD tends to have non-
predictable catastrophic crashes, while SSD fails predictably
because the wear-leveling algorithm spreads block erases and
gradually introduces spare blocks. Most vendors offer disk
state tools, a significant benefit for fault prediction. For the
above reasons, the networking systems use SSD, even if they
are more expensive (cost per GB) than HDD.

D. System Memory Module

As a complementary technique of what sections V-B2
and V-B3 describe for memory fault management, in this
section, we address a beneficial redundancy technique: the
Post Package Repair (PPR). It results in recovering a faulty
memory location in the system by disabling it and using a
spare memory row instead. The number of spare memory
rows is a characteristic of the memory device. The system
memory device shall also support error injection allowing a
fault verification mechanism.

E. Devices

The general requirements are:
• Fault counters: All interfaces between circuit or module

that uses symbol coding shall have saturated counters of
(at least) 32 bits size.

• Fault detectors triggering: All HW faults feature control
register to enable/disable interrupt to the main processor,
read/reset fault occurrence, set/reset threshold, and alarm
filtering. All the hardware fault registers shall be acces-
sible in run-time.

• Interface fault injection: All interfaces between circuit
or module that uses symbol coding should have fault
injection possibilities in random symbol positions.

1) Serial Bus Devices: The Platform Control Hub (PCH) is
often the name of the CPM IO system and connects most I/O
devices inside the CPM. The devices connected to the PCH can
also be PCIe devices, and, in that case, Section V-E2 describes
the helpful features to support fault tolerance. In all the other
instances, protocol handling manages the bus supervision, and
devices shall have a system to report error conditions to
the central processor. Serial bus fault indication ends up in
the MCA registers. MCA registers provide info to populate
the fault log and report with Bus, Device, and Function
information associated with the I/O error. MCA architecture
shall allow for the report of fatal and uncorrectable errors only.
The corrected error information shall be available on-demand
through counters. MCA architecture shall allow a flexible
configuration for the hardware-corrected error reporting, for
example, defining fault reporting based on thresholds and



associating a fault indication to a degraded function condition.
We need device loop capability for all non-PCIe devices to test
the component. JTAG chain for I/O devices shall be possible
for a complete boundary-scan execution.

2) PCIe bus devices: PCIe architecture is a hierarchical
device connectivity structure fully defined in the PCI-express
Base Specification. The PCIe Base Specification also describes
PCIe error and error reporting technology (including link-
level reliability). Note that system software shall configure
all PCIe components and devices to enable Advanced Error
Reporting (AER) capability and generate AERs in case of
detected errors. There are two main components in hierarchical
architecture:

• PCIe root port. The PCIe root ports are part of the CPM
and firmware typically configures them. PCIe technology
allows the delivery of the faulty event using AER for root
ports.

• PCIe devices. All PCIe devices shall be identifiable and
addressable in the system. The error events are deliv-
ered using AER for link supervision and device error
indication. AER error reporting allows fine-grained error
reporting and response.

Any non-correctable internal device error not covered by
the AER error description shall be propagated to the CPM
using MSI/MSI-X interrupt vectors. A correctable error shall
not automatically generate MSI/MSI-X interrupt vectors, but
statistics reporting based on configurable thresholds, fault
mask, and interrupt control.

3) Ethernet bus device: This section covers the fault super-
vision of ethernet links connecting a device to the CPM. The
ethernet physical termination shall provide registers to report
two conditions as suspected faults for the physical ending:
excessive BER and CDR unlock. The physical terminations
shall also provide the following:

• Inbound and outbound loop (external and internal loop
features for the fault coverage).

• Statistics of the physical termination of the channel to
support fault reporting and to support qualified data for
a possible evaluation of the health status of the physical
termination (fault prediction).

Ethernet connection is a Peer-to-Peer (P2P) type: there is
no hierarchical link control (for example, PCIe), and the
supervision of the link shall be available in both the end peers
of the connection. Status of the link, quality of the link error
(FEC/BER/CRC), statistics, and error injection shall be avail-
able. Twamp (Two-Way Active Measurement Protocol) [41] is
a helpful software feature for evaluating transmission latency.

4) Device Processor: Device processors are specialized
computation circuits that often run software bare-metal with
real-time requirements. Device processors present a less com-
plex architecture than CPM (such as fewer levels in the
cache hierarchy) and, consequently, are cheaper but support
fewer attributes and functions. The features supporting fault
management are also less than the number available in CPM.
We propose to consider a fault management agent for the DP

subsystem, gathering errors and statistics under the coordina-
tion of the CPM control and supervision that will access DP
subsystem fault information on demand or event-driven. The
device process shall store fault information in a memory that
can survive a warm restart. Local memory can suffer from
bit-flip issues, and info redundancy like SECDED shall be
available for L2 cache and above device processor memories.
For L1 cache, memory access will be in the range of data
word size, and, therefore, a parity bit is suitable to prevent
data corruption propagation.

5) DSP Processor: DSP processor subsystems mean the
union of a cluster of DSP or hardware accelerators devoted
to implementing functions with stringent processing require-
ments. DSPs are commonly built as a System on Chip (SoC)
solutions and need a significant amount of volatile memory for
processing data continuously. The SoC shall have independent
fault management, which means that it shall be able to detect,
locate, isolate and recover faulty states and that it shall have
an independent core capable of hosting the error handler for
the implementation of the necessary software redundancy.
The subsystem shall have a JTAG connection to check the
status of components and the connection with the CPM. The
subsystem shall be able to isolate any of the cores detected in
a failure state, which means that the power control shall have
single-core granularity. At the hardware design level, adding
a certain number of spare cores is strongly recommended:
fault recovery can use them as a physical redundancy solution
to cope with a permanent failure condition in a faulty core.
The subsystem of the DSP processor shall be able to rely
on information redundancy for the integrity of the data of its
memories: SECDED is the at-least required capability. Since
CPM shall be considered the primary subsystem, the DSP
processor subsystem shall provide a self-test and verification
mechanism (e.g., error injection) to be performed both in the
initialization phase as a recovery option and on-demand by
the CPM.

F. Power Domain

The networking system shall use two threshold levels for
power control: warning and fault level. The board power
module shall detect a permanent warning or a faulty condition
for the voltage in time. The board power module shall be able
to report power status to the main board controller, both faulty
and recovery event. Hardware redundancy for the power do-
main is mandatory for recovering into a safe condition through
hardware-depending actions, like secondary voltage powered
off or secondary and internal domains cycle verification. Any
subsystem shall use an internal power distribution solution for
fine granular power control (fault containment purpose).

G. Temperature Domain

The board’s test includes a temperature check to stop
execution if the temperature is outside the operating range.
If the temperature reaches levels threatening to destroy the
hardware, the board control system may autonomously throttle
hot devices. Periodical restart or test can then check if the



temperature condition returns to a safe mode range. The tem-
perature sensor supervision detects a faulty board temperature
sensor using a ”reasonable check”: a value is not trustable if
it is not in the sensor’s operating range. For ”not trustable”,
the algorithm considers a sensor in a faulty state if it reports
a value too far from the median temperature distribution.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a comprehensive list of fault man-
agement hardware requirements for the networking system’s
early-stage design phase. With these specific requirements
in mind, we aim to improve the fault tolerance in complex
RAN boards and produce resilient, long-lasting products with
improved RR, MTTF, and MTTR. Our proposed requirements
may also reduce the OPEX and maintenance costs and provide
increased system serviceability that can likely pay back the
fee of the proposed fault management requirements. Two
main areas need more attention: integrating the hardware
feature with higher system layers (firmware and software)
and designing a predictive maintenance algorithm based on
the data and fault information from the new set of fault
management hardware features. Both investigations will allow
for a formal quantification of the expected improvement.
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