LICENTIATE THESIS

Extending and Improving the Security
Abstraction Model for Architectural Models of

Autonomous Vehicles

Matthias Bergler
School of Innovation, Design and Engineering (IDT)
matthias.bergler@mdu.se
June 2023

Main Supervisor: Kristina Lundqvist
Co-supervisor: Ramin Tavakoli Kolagari

Abstract

Vehicle manufacturers and software developers are making considerable progress in the
field of autonomous vehicle technology. Nevertheless, the highest level of autonomy, the
fully autonomous vehicle without a driver, has not yet been achieved: according to media
reports, there are still serious accidents involving autonomous vehicles, some of which are
due to faults in the vehicle system. This results in a healthy scepticism, so that semi-
autonomous vehicles have not yet been approved in many countries and there are also still
concerns in society.

From a social point of view, the aspect of the dependability of the algorithms is central:
since increasing digitization can not only lead to internal errors in vehicle control, but also
lead to a risk of external attacks on vehicles due to the opening of many interfaces; this
security aspect must already be taken into account in the early development phases of
vehicle systems.

The EAST-ADL is a domain-specific architecture description language for automotive sys-
tems with comprehensive support for modeling the systems as well as diverse additional
information such as requirements, safety, variability modeling, real-time behavior and so
on. Current research activities at TH Nuremberg have added a Security Annex to EAST-
ADL, the Security Abstraction Model "SAM".

In the context of the present work, the following two contributions were made: 1. addition
of social engineering attacks to SAM, which are an increasing threat, and 2. elaboration
of an EAST-ADL compatible modeling tool support in close cooperation with the tool
vendor Metacase. Further additions to SAM became necessary to fully implement the ISO
21434 "Road vehicles - Cybersecurity engineering" standard; now SAM offers conceptually
as well as tool-supported a comprehensive description of this standard and thus enables
a seamless integration of a complete security model with the EAST-ADL modeling of the
overall system.

The combination of integration and extension of the security abstraction model was sub-
sequently evaluated in a study in cooperation with industry partners for its suitability for
everyday use in the practical development of vehicle systems.

Contents

1 Introduction 3
2 Background 4
2.1 EAST-ADL 4
2.2 AUTOSAR . . . e 5
2.3 MetaEdit+o 6
2.4 TSO 21434 o e 6
2.5 Security 7
2.6 Security Scoring Systems Lo 7
2.6.1 CVSS . . 8

2.6.2 ISO 21434 Scores o o e 9

3 Problem Definition - Security by Design with SAM 11
4 Research Questions 13
5 Research Methods and Process 14
6 Contributions 15
6.1 Research Question 1: Social-Engineering Attacks. 15
6.2 Research Question 2: Model Integration for Applicability Increase 16
6.3 Research Question 3: Integrating ISO 21434 for Cybersecurity Threat Analysis . 21
6.4 SUmMmMary e e 25

7 State of the Art 26
7.1 IT-Security in Vehicles L o 26
7.2 Social-Engineering Attackso Lo 27
7.3 Software Security Analysis Tools. o000 28

8 Conclusion and Future Work 30

1 Introduction

In film and television, especially in the science fiction genre, people’s futuristic dreams,
desires and fears become reality. But these stories not only provide entertainment, they also
provide research incentives for science. Devices such as smartphones or medical devices such as
CT or MRI are based on devices from the Star Trek series [24]. Many of these stories also show
futuristic cities with self-driving modes of transport in which passengers can pursue whatever
activities they want. More and more vehicle manufacturers, such as Tesla, BMW, Mercedes
etc., were influenced to also deal with the topic of autonomous driving. Tesla in particular is
known for its advanced technology. Some success and failure stories have already been recorded
by the media.

Companies like Tesla have shown that autonomous vehicles of the highest level, i.e., completely
without a driver, are possible, and semi-autonomous vehicles are already being tested in traffic.
To make this possible, data from several cameras and LIDAR (Light Detection and Ranging)
systems are used to observe the vehicle environment. Internal processing units evaluate their
surroundings in the form of images and sensor data and use pre-trained Machine Learning al-
gorithms to calculate the necessary actions that have to be taken in order to get through the
traffic accident-free. Unfortunately, these algorithms are not yet 100 percent reliable, maybe
never will, and the tests in traffic repeatedly lead to malfunctions or failures. For example,
obstacles in the form of a truck standing sideways were overlooked [17], curves were taken at
the wrong angle and the vehicle left the lane or entered the opposite lane, or, as in April 2021
[42], the vehicle started to drive independently without a driver. These incidents illustrate
how big the technological gap to a perfectly autonomous vehicle is. These technical deficien-
cies are partly software-related and partly hardware-related and must therefore be handled
differently in terms of their safety. But not only the safety plays a major role, but also the
security against the manipulation of such systems in order to prevent artificial caused accidents
or, for example, people kidnapping. Examples worldwide show how control over vehicles can
be taken over by the simplest means, for example by manipulating the infotainment system
[12]. In combination with an autonomous vehicle, this can lead to devastating results. This
work aims to address the need for secure automotive software systems by utilizing the Security
Abstraction Model (SAM). To provide a better understanding of the development process of
secure automotive systems, the background of various related standards, models, tools, and
scoring systems is discussed in Chapter 2. This includes an overview of EAST-ADL, which is
a domain-specific modeling language for automotive embedded systems, and AUTOSAR, an
open-standard software architecture for automotive electronic control units. Additionally, the
modeling tool MetaEdit+ is discussed, which allows for the creation of domain-specific lan-
guages and the integration of models and code generation.

Furthermore, the 1SO21434 standard for automotive cybersecurity is introduced, which pro-
vides guidelines for the development of secure automotive systems. In Chapter 2, security is
also discussed in more detail, including different types of attacks and countermeasures that can
be used to mitigate these threats. Additionally, scoring systems, such as the Common Vulner-
ability Scoring System (CVSS) and new scores introduced with the ISO 21434, are presented
as tools for evaluating the severity and likelihood of security vulnerabilities and risks.

In Chapter 3, the problem of implementing security by design with SAM is defined, highlighting
the need for a comprehensive model that includes social-engineering attacks and their counter-
measures. This leads to the formulation of research questions in Chapter 4, which guide the
investigation of the different aspects of implementing security by design with SAM.

Chapter 5 provides an overview of the research methods and processes used to address the re-
search questions. The contributions of this work are presented in Chapter 6, which includes the
integration of social-engineering attacks into SAM, the integration of SAM with MetaEdit+ for

improved usability, and the development of different views for different stakeholders to ensure
the comprehensive modeling of security aspects.

The state of the art in meta-modeling for I'T-security in vehicles and social-engineering attacks
is discussed in Chapter 7. This includes an overview of current research in these areas, as
well as related tools and frameworks that can be used to enhance the development of secure
automotive systems.

Finally, Chapter 8 concludes the work by outlining future directions for research in the field
of secure automotive software systems. The integration of SAM with 1SO21434 is discussed as
a potential way to improve the overall security posture of automotive systems. Additionally,
further work is needed to automate the newly introduced scores from [S021434 and to evaluate
the benefits of using SAM in conjunction with industrial partners.

2 Background

The design and development of modern automotive systems require a complex network of
technologies and standards to ensure their safety and reliability. Two widely used standards
for the design and development of automotive systems are the EAST-ADL and AUTOSAR
standards. EAST-ADL is a domain-specific architecture description language for the develop-
ment of automotive embedded systems, while AUTOSAR is a software architecture standard
for automotive electronic control units. Both of these standards provide a framework for the
design and development of automotive systems.

In order to develop secure automotive software systems, it is also important to have a clear
understanding of security requirements and to implement effective security measures. To this
end, several security-related standards and models have been developed, such as the Security
Abstraction Model (SAM) and the ISO 21434 standard for automotive cybersecurity. SAM is
a framework for modeling the security requirements of automotive software systems, while the
ISO 21434 standard provides guidance on the implementation of cybersecurity in road vehicles.
In addition to these standards, tools such as MetaEdit+ provide support for the creation,
modification, and analysis of models such as SAM. These tools can help developers to identify
potential security weaknesses and implement effective security measures.

Another important aspect of developing secure automotive systems is the use of security scoring
systems. These scoring systems are used to evaluate the security posture of automotive sys-
tems and provide guidance on how to improve their security. Some examples of security scoring
systems include the Common Vulnerability Scoring System (CVSS) and the Automotive Safety
Integrity Level (ASIL) system.

Overall, a comprehensive understanding of these standards, models, tools, and scoring systems
is crucial for the development of secure automotive software systems. In this Chapter, we will
provide an overview of each of these topics and their relevance to the development of secure
automotive systems.

2.1 EAST-ADL

As complexity and number of electronic components in automotive systems continue to
increase, it becomes increasingly important to have effective tools and methods for designing and
developing these systems. The Architecture Analysis and Design Language (AADL) [14] has
been widely used in the design and development of safety-critical systems, including automotive
systems. However, AADL has limitations in terms of supporting the design of automotive
systems. To address this, the EAST-ADL (Embedded Automotive Systems and Technologies
Architecture Description Language) was developed.

EAST-ADL is a domain-specific modeling language that provides a set of concepts, notations,

and guidelines for modeling automotive embedded systems. It was developed in the context of
the European Artemis project, which aimed to develop new technologies for embedded systems.
The language was developed to address the specific needs of the automotive industry, including
the need for support for the modeling of safety and reliability aspects of automotive embedded
systems [13].

EAST-ADL includes concepts for modeling the architecture, behavior, and requirements of
automotive embedded systems. The language is based on a component and connector model,
which allows for modular design and reusability of components. This approach to modeling
provides a high level of abstraction, making it easier to understand and manage the complexity
of automotive systems. EAST-ADL also provides support for modeling the interactions between
components and connectors, as well as the functional and non-functional requirements of these
systems.

One of the main benefits of EAST-ADL is its ability to support early-stage design activities, such
as system architecture and requirements modeling. This can lead to a reduction in development
time and cost. Additionally, the language has been designed to be compatible with other
modeling languages, such as AADL and SysML. This makes it easier to integrate EAST-ADL
models into existing development processes.

EAST-ADL has been used in a number of automotive development projects, including the
development of electric and hybrid powertrains, advanced driver assistance systems (ADAS),
and autonomous vehicles.

2.2 AUTOSAR

AUTOSAR (Automotive Open System Architecture) is a global development partnership
of automotive industry companies and suppliers, which aims to develop and establish an open
and standardized software architecture for automotive electronic control units (ECUs) [19].
The AUTOSAR standard defines a software architecture for ECUs that can be used across
different automotive domains, such as powertrain, chassis, and infotainment. It provides a
common language and framework for the development of automotive software, which can help
to reduce development time and costs, as well as improve software quality and maintainability.
The AUTOSAR architecture is based on a layered approach, with each layer representing a
different level of abstraction. The layers include the application layer, the basic software layer,
and the runtime environment layer. The application layer contains the software components
that implement the functionality of the ECU, while the basic software layer provides the basic
software services that the application layer uses. The runtime environment layer provides the
runtime environment for the ECU, including the operating system and communication services.
One of the key benefits of AUTOSAR is its ability to support the development of complex dis-
tributed systems. It provides a standardized communication protocol, known as the AUTOSAR
communication stack, which enables ECUs to communicate with each other over a variety of
communication buses, such as CAN, LIN, and Ethernet. This can help to simplify the devel-
opment of distributed systems and reduce the risk of errors and compatibility issues.

In addition to the communication stack, AUTOSAR also provides a range of other software
components and services, such as diagnostic services, calibration services, and security services.
These components and services can help to improve the functionality, performance, and secu-
rity of automotive software.

AUTOSAR is a widely adopted standard in the automotive industry, and is supported by a
large number of companies and organizations. It is used in a wide range of automotive applica-
tions, from powertrain control to infotainment systems. The standard is continually evolving,
with new releases being published on a regular basis [19].

2.3 MetaEdit+

MetaEdit+ is a powerful tool developed by Metacase in cooperation with the University
of Jyvéskyla for creating and maintaining domain-specific modeling languages (DSMLs) and
code generators. It was developed by MetaCase, a Finnish software company, specialized in
model-driven engineering (MDE) tools and services [35].

MetaEdit+ provides a graphical modeling environment where users can define their own DSMLs
using a simple and intuitive notation. This notation is based on the concept of metamodeling,
which is a technique for defining the structure and behavior of a modeling language. Metamod-
eling allows users to define their own language concepts and syntax, as well as the semantics of
their language.

One of the main benefits of MetaEdit+ is its ability to generate code directly from DSML mod-
els. This code generation capability allows users to automate the generation of software code,
eliminating the need for manual coding. This can lead to significant time and cost savings, as
well as increased software quality.

MetaEdit+ also provides support for model transformations, which allow users to transform
models from one language to another. This is particularly useful in situations where different
stakeholders are using different modeling languages or tools. Model transformations can help
to bridge the gap between different modeling languages, allowing stakeholders to share and
exchange models more easily.

In addition to these features, MetaEdit+ provides a range of other tools and services for MDE.
For example, it includes support for collaborative modeling, version control, and model debug-
ging. It also provides a range of customization options, allowing users to tailor the tool to their
specific needs and requirements.

MetaEdit+ has been used in a wide range of applications and domains, including telecommu-
nications, automotive engineering, and software development. For example, it has been used
to develop DSMLs for the design and development of telecom network protocols, automotive
control systems, and software development processes.

2.4 ISO 21434

The ISO 21434 is an international standard that provides direction on the implementa-
tion of cybersecurity in road vehicles. It was developed by the International Organization for
Standardization (ISO) in collaboration with the automotive industry, cybersecurity experts,
and other stakeholders. The standard provides a framework for managing cybersecurity risks
throughout the lifecycle of road vehicles, including design and development, production, oper-
ation, maintenance, and decommissioning [32].

ISO 21434 is based on a risk-based approach, which means that the level of cybersecurity pro-
tection required for a vehicle is determined by the level of risk associated with the vehicle.
The standard provides guidance on how to assess the level of risk associated with a vehicle
and how to select appropriate cybersecurity measures to mitigate those risks. It applies to all
parties involved in the development, production, operation, and maintenance of road vehicles,
including manufacturers, suppliers, and service providers.

The standard is designed to address the growing cybersecurity risks in the automotive indus-
try. With the increasing use of connected and autonomous vehicles, the risk of cyber-attacks is
becoming a major concern. The standard provides guidance on how to integrate cybersecurity
into the overall development process for road vehicles, including the design of systems, compo-
nents, and software [32].

The guidance provided in the ISO 21434 can help organizations in the automotive industry to
increase the cybersecurity of their products and services, and to better manage cybersecurity
risks. By implementing the guidance provided in the standard, organizations can reduce the

likelihood of cyber-attacks, protect their customers’ privacy and safety, and maintain the in-
tegrity of their products and services.

In summary, the ISO 21434 is an international standard that provides guidance on the im-
plementation of cybersecurity in road vehicles, with a risk-based approach to determine the
level of cybersecurity protection required. The standard applies to all parties involved in the
development, production, operation, and maintenance of road vehicles, and is designed to help
organizations in the automotive industry to better manage cybersecurity risks and increase the
cybersecurity of their products and services.

2.5 Security

According to the International Organization for Standardization (ISO), security is defined
as "preservation of confidentiality, integrity and availability of information by applying a risk
management process and giving assurance that the information and information processing
systems continue to operate correctly in the face of various threats." [§]

The increasing use of connected and autonomous vehicles has highlighted the need for effec-
tive security measures to protect against cyber threats. As vehicles become more connected
and reliant on electronic systems, the potential risks of cyber-attacks on these systems become
greater. In order to address these risks, the automotive industry has developed a range of
security measures and standards.

One of the key challenges of automotive security is the complexity of modern vehicles. Vehi-
cles today include a range of electronic systems, including engine control units, infotainment
systems, and advanced driver assistance systems. These systems communicate with each other
and with external networks, creating a large attack surface for cyber criminals. As a result,
security measures must be integrated throughout the vehicle design and development process
[50].

The automotive industry has developed a range of security measures to address these risks,
including secure communication protocols, firewalls, and intrusion detection systems. These
measures are designed to protect against a range of cyber threats, such as malware, denial-of-
service attacks, and unauthorized access.

In addition to these measures, there are also a number of industry standards that address auto-
motive security. These include the ISO 21434 [32| standard for cybersecurity of road vehicles,
which provides a framework for managing and mitigating cybersecurity risks throughout the
entire vehicle lifecycle, and the SAE J3061 standard for cybersecurity engineering [11], which
provides guidance on integrating cybersecurity into the vehicle development process.

Another important aspect of automotive security is the need for collaboration and information
sharing between different stakeholders in the industry. The Automotive Information Sharing
and Analysis Center (Auto-ISAC) was established to promote collaboration and sharing of cy-
bersecurity information between automotive industry stakeholders, including manufacturers,
suppliers, and government agencies.

In addition to these measures and standards, there is also a growing focus on the importance of
cybersecurity training and awareness in the automotive industry. As cyber threats continue to
evolve, it is important that all stakeholders in the industry, from engineers to executives, have
a solid understanding of cybersecurity risks and best practices.

2.6 Security Scoring Systems

In today’s world of cybersecurity, it is critical to have a way to measure the severity of
vulnerabilities and their potential impact on systems and networks. Scoring systems provide
a standardized method for assessing the severity of vulnerabilities, allowing organizations to

prioritize their response efforts and allocate resources accordingly.

One of the most widely used scoring systems is the Common Vulnerability Scoring System
(CVSS), developed by the Forum of Incident Response and Security Teams (FIRST) [16].
CVSS provides a standardized method for assessing the severity of vulnerabilities based on a
range of factors, including the ease of exploitation, the potential impact on systems and net-
works, and the level of required privileges.

In addition to these commonly used scoring systems, the recently developed ISO 21434 [32]
standard includes an Impact Rating system, which provides a means of assessing the potential
impact of a security threat on the safety of a vehicle. The Impact Rating system takes into
account the severity of the threat, as well as the likelihood of it being realized and the potential
consequences of a successful attack.

Overall, scoring systems such as CVSS and the Impact Rating from ISO 21434 play a critical
role in modern cybersecurity by providing a standardized method for assessing the severity of
vulnerabilities. By prioritizing response efforts and allocating resources accordingly, organiza-
tions can better protect their systems and networks against potential threats.

2.6.1 CVSS

The Common Vulnerability Scoring System (CVSS) is a framework for rating the severity
of security vulnerabilities in computer systems. It was developed by the Forum of Incident Re-
sponse and Security Teams (FIRST) to provide a standardized, open methodology for assessing
the impact of security vulnerabilities. The CVSS framework assigns a score to each vulnerabil-
ity based on its potential impact on confidentiality, integrity, and availability, as well as other
factors such as exploitability and remediation level. The score ranges from 0 to 10, with higher
scores indicating more severe vulnerabilities [16]. The CVSS is widely used in the industry to
prioritize security vulnerabilities and to assist in the allocation of resources for vulnerability
management. The CVSS score is calculated based on a set of metrics, which include the Base
Score, Temporal Score, and Environmental Score. The Base Score provides a measure of the
intrinsic severity of a vulnerability, while the Temporal Score takes into account the current
state of the vulnerability, such as the availability of a patch. The Environmental Score considers
the unique characteristics of an organization’s systems and networks, such as the presence of
mitigating controls. Since the Environmental Score isn’t necessary for this thesis it is not listed
below.

Algorithm 1 Base Score

If (Impact sub score <= 0) 0 else,

Scope Unchanged® Round up (Minimum [(Impact + Exploitability), 10])
Scope Changed Round up (Minimum [1.08 x (Impact + Exploitability), 10])

and the Impact sub score (ISC) is defined as,

Scope Unchanged 6.42 x I.SCpgse
Scope Changed 7.52 X [ISCp,se-0.029] - 3.25 X [[SCpase-0.02]"°

Where,

ISCpase = 1 - [(I-Impactcons) X (1-Impactprey) X (1-Impact apai)]

Algorithm 2 Temporal Score
Round up(BaseScore x ExploitCodeMaturity x RemediationLevel x ReportConfidence)

Attack feasibility rating | CVSS exploitability value
High 2.96-3.89
Medium 2.00-2.95
Low 1.06-1.99
Very low 0.12-1.05

Table 1: Example CVSS exploitability mapping.

2.6.2 ISO 21434 Scores

The ISO 21434 standard introduced three new scores for assessing the cybersecurity of auto-
motive systems: the attack feasibility rating, the impact rating and the risk value determination|32].
The attack feasibility rating assesses the likelihood and ease of a successful cyber attack, con-
sidering factors such as the attacker’s skills, resources, and motivation, as well as the system’s
vulnerabilities and defenses.

The impact rating evaluates the potential consequences of a successful cyber attack on a sys-
tem or component, taking into account factors such as safety, financial impact, and operational
disruption.

The risk value determination combines the impact and attack feasibility ratings to provide a
quantitative measure of the overall risk posed by a particular cyber threat. It helps to prioritize
cybersecurity measures and to communicate the risk to stakeholders.

Algorithm 3 Attack Feasibility Rating
E=822xVxCxPxU

where

E is the exploitability value;

V is the numerical value associated to the attack vector, ranging from 0,2 to 0,85;

C is the numerical value associated with the attack complexity, ranging from 0,44 to 0,77;

P is the numerical value associated with the privileges required, ranging from 0,27 to 0,85; and
U is the numerical value associated with user interaction, ranging from 0,62 to 0,85.

based on the numerical value it is possible to map the results in non-numerical values as seen
in Table 1.

It is also possible to translate the attack feasibility and the impact into numerical values as
seen in Table 2.

Algorithm 4 Impact Rating
The impact rating of a damage scenario shall be determined for each impact category to be
one of the following:

e severe S3: i.e. life-threatening injuries (survival uncertain), fatal injuries;
e major S2: i.e. severe and life-threatening injuries (survival probable;
e moderate S1: i.e. light and moderate injuries; or

e negligible SO: i.e. no injuries

Attack feasibility rating gﬁ?ﬁ;ﬁil fzzlslil]gii ty Impact rating flj)?rlnnelr;;i value I
Very low 0 Negligible 0

Low 1 Moderate 1

Medium 1.5 Major 1.5

High 2 Severe 2

Table 2: Translation of attack feasibility rating and impact rating to numerical values.

Algorithm 5 Risk Value Determination
Based on the attack feasibility rating and the impact rating it is possible to determine the risk
value as seen in Table 3.

Attack feasibility rating
Very Low | Low | Medium | High
Severe 2 3 4 5
. Major 1 2 3 4
Impact rating Moderate 1 2 2 3
Negligible 1 1 1 1

Table 3: Risk value determination matrix.

10

3 Problem Definition - Security by Design with SAM

The Security Abstraction Model SAM [6] is a specification of a modeling language for rep-
resenting security-related properties in automotive software systems. This modeling language
enables a security analysis of attack vectors in the automotive sector and allows for an in-depth
risk analysis. With SAM both potential attacks and countermeasures against these attacks can
be modeled. Furthermore, this allows the connection of security management and model-based
systems engineering on an abstract description level according to the principles of automotive
security modeling. SAM was defined based on security requirements from common industrial
scenarios. It aims to be a solution for representing attack vectors on vehicles and provide a
thorough security modeling for the automotive industry.

The Security Abstraction Model (SAM) is a modeling language that enables the integration
of security-related information in system design. SAM provides a systematic way of specify-
ing security-related requirements, policies, and mechanisms in the system architecture. The
EAST-ADL, on the other hand, is an architectural modeling language used in the development
of automotive systems.

SAM and EAST-ADL are connected through the concept of "Ttem". An Item in the EAST-ADL
represents a functional or non-functional requirement of the system. SAM extends this concept
by adding security properties to the Item, allowing the specification of security requirements
and mechanisms that are necessary to satisfy the functional and non-functional requirements
of the system.

In essence, SAM provides a way to integrate security considerations into the system archi-
tecture by defining security properties for Items in the EAST-ADL model. This enables the
development of secure and reliable automotive systems that meet the required functional and
non-functional requirements while also addressing potential security threats [4]. Item refers to
a number of features of an automotive system. SAM tries to present all important criteria of
the attack vectors, from the adversary’s motivation up to the security breach. This allows a
system to be represented from a security perspective in the early software development phase.
In addition to the attack motivations, SAM also describes all intrinsic and temporal character-
istics of an attack, e.g., effects on the security objectives (confidentiality, availability, integrity,
etc.), the complexity of the attack, the affected object and the vulnerability. In the latest
version, SAM can now also model social engineering attacks |7]. SAM acts as an extension
to the EAST-ADL, because the EAST-ADL addresses relevant aspects of automotive systems
(Being a major requirement for security modeling that is not offered by languages like SysML
[51] or AADL [1], which only offers feature modeling); especially the features of a vehicle of any
kind. In addition, the EAST-ADL speaks directly about functional safety and ISO 26262 in its
Dependability Model. SAM identifies Items, Requirements as well as Hazards from architecture
and dependability modeling and relates them to Attacks and Security Concepts.

Although SAM is developed as part of the EAST-ADL, it is not necessarily bound to EAST-
ADL. SAM as a metamodel is independent of other languages but for connectivity links to
‘Item’ and ‘Requirement’ of the EAST-ADL. In addition, SAM can also be used independently
of the rest of the system model in order to provide an overview of safety critical system parts
before or at the beginning of the system engineering process. Models created according to
SAM permit calculating a vulnerability score based on the Common Vulnerability Scoring Sys-
tem [15]. This scoring system allows a qualitative representation (such as low, medium, high
and critical) of the severity of an attack and thus enables prioritization in the vulnerability
management process. First attempts were to implement a generator that transfers the model
data to an online tool. However, since this would have required a longer modeling time due
to the transfer to the online tool and a permanent internet connection, this idea was rejected.
In the current version, the CVSS calculator is integrated directly into the SAM modeling tool

11

MetaEdit+. The advantage of this is that no internet connection is required and the results
can be viewed in real time next to the rest of SAM models. During the integration, same the
color scheme of the CVSS was used. In this way, other analysis tools can also be integrated [7].

In the next development phase, a report system for safety-critical components of the system
based on ISO 21434 is to be created.

dlass Security

VehideFeatureModeling::VehicleFeature

‘ Feature

«enumeration»

TraceableSpecification Jisib! DevelopmentCategoryKind
‘ Resilience ‘ + isCustomerVisible: Boolean P gory
Asset + isDesignVariabilityRationale: Boolean i
N = y o v newltemDevelopment «enumeration»
+ cautiousness: Resilienceleve + isRemoved: Boolean - N =
+ ProtectionGoal: SecurityGoal [1.%] modificationOfExistingltem ResilienceLevel
+ contentment: ResilienceLeve
+ courage: Resilienceleve ow
-
+ experience: Resiliencelevel +relevantAssets = tuehicleFeature 1 o meT e D
+ knowledge: ResilienceLevel TraceableSpecification intermediate
il high intermediate
TraceableSpecification Vulnerabilityseore =
Dependability::item A

calculationFormula: String [0.1] not defined
+ value:Float

wenumerations
SecurityGoal

+ developmentCategory: DevelopmentCategorykind

B
Confidentiality Target
o +score
- 13
Authenticity Jitem
Reliability 1
Accountability B
TraceableSpecification
1 (Vulnerability
=
Actor . o
Dependability::Hazard + exploitCodeMaturity (E): Strin
HumanActor + remediationLevel (RL): String [
+ reportConfidence (RC): String [0..1]
——— \
* ;“’ ety ‘"('“[E 1] i + value: ImpactRating * + scope () String [0.1]
+ helpfulness: String [0.1] + security procedure concept: String [0.1]
1‘ \VI B

1

TraceableSpecification
‘ e TraceableSpecification

AttackMotivation

+ availabilitylmpact (A): String [0..1]
+ breaksSecurityGoals™: SecurityGoa
+ confidentialitylmpact (C): String [0.1]
+
+

integritylmpact (1): String [0..1]
safetyRelevance: String [0.1]

B = = B

wenumerations»

ImpactRating RiskScore

severe

+ calculationFormula: st
+ ue: string

major

0.1 0.1 moderate

negligible

wenumeration» 5 TraceableSpecification
RequirementsHierarchy N N
SecurityConceptMotivation . s Requirernent +nonFullfilledRequirement
SecurityConcept

standard
certification
documentedattacks

+ formalism: String [0..1]
+ url:String [0.1] *

+ consequencesForQuality®: String
+ motivatedBy*: SecurityConceptMotivation 1+

\|/ {ordered}
. 1 L
UseCase
+subAttack n wenumerationa
ik i mepesfiation SubAttackGroupKind
. SubAttackGroup

accessRequired (Av): String [0.1]

oRr
kind: SubAttackGroupKind AND

+ s
+ attackComplexity (AC): String [0..1] =+
+ privilegesRequired (PR): String [0..1]
+
+

custom

urgency: String [0.1] +subAttackGroup
userinteraction (UI): String [0..1]

«enumeration»
AttackFeasibilityRating

* Tr bleS; ti
+raffic +environment|/, . raceableSpecification
AttackFeasibilityScore
TraceableSpecification Actor
Requirements::Situation Adversary + caleulationFormula: string [0.1]

+ value: AttackFeasibilityRating

Figure 1: The SAM meta model. Higher resolution found at https://www.in.th-
nuernberg.de/professors/BerglerMa/SAM

12

4 Research Questions

Security is a critical concern in the automotive industry, as the increasing reliance on elec-
tronic systems and connectivity expose vehicles to new and evolving security threats. In recent
years, there has been a growing interest in developing security models and standards to ad-
dress these threats. The Security Abstraction Model (SAM) is one such model that provides
a systematic way of specifying security-related requirements, policies, and mechanisms in the
system architecture of automotive software systems.

However, there are still some important questions that need to be addressed in order to fully
leverage the capabilities of SAM and ensure that it remains relevant and effective in addressing
the evolving security threats in the automotive industry.

One important area of focus is social engineering attacks. While SAM has been enhanced to
address these types of attacks, there is still a need to explore what modeling support needs to
be added to SAM to enable comprehensive modeling of social engineering attacks, countermea-
sures, and their relationships to the actor and the rest of the automotive system model. Such
modeling support would be critical in developing effective countermeasures against these types
of attacks.

Another important consideration is how to increase the applicability of the SAM model for
practitioners. While SAM provides a systematic approach to security modeling, it is impor-
tant that the model is easy to use and practical for practitioners in the automotive industry.
Therefore, research should be conducted to explore how the SAM model can be made more
user-friendly and how it can be integrated into existing development processes.

Finally, there is a need to explore the benefits and challenges of integrating the SAM model
with a focus on cyber security into the ISO 21434 standard for automotive cybersecurity. While
this integration would help to improve the overall security posture of automotive systems, there
are likely to be challenges in implementing the SAM model within the context of the ISO 21434
standard. Therefore, it is important to explore the benefits and challenges of this integration
and develop strategies for addressing any challenges that arise.

The SAM model is a valuable tool for addressing security threats in the automotive industry,
but there are still important questions that need to be addressed in order to fully leverage
the capabilities of this model. Based on the previous considerations, the following research
questions arise:

e RQ1: What modeling support needs to be added to SAM in order to enable comprehensive
modeling of social engineering attacks, countermeasures, and their relationships to the
actor and the rest of the automotive system model?

e R(Q)2: How to increase the applicability of the Security Abstraction Model for the practi-
tioner?

e RQ3: What are the benefits and challenges of integrating the Security Abstraction Model
(SAM) with a focus on cyber security into the ISO 21434 standard for automotive cyber-
security, and how can this integration improve the overall security posture of automotive
systems?

13

5 Research Methods and Process

In this chapter, we present the methods utilized to achieve the research goals as seen in
Figure 2. Initially, we describe the research process, followed by an explanation of the concrete
methods used in this thesis. The research questions were formulated based on the current
problem from Chapter 3 and open questions from research and industry in the field of vehicle
safety and security of autonomous vehicles. Chapter 4 provides an overview of the research
questions. The state-of-the-art and state-of-the-practice were then critically examined using
formal research [60] and filtered to identify the most relevant techniques to solve the research
questions. The next step involved defining solutions to various problems, designing and im-
plementing them in the form of algorithms and new methods. Each solution was evaluated
through a suitable study methodology, and the results were published as papers and reports.
The research objectives were achieved when the results agreed with the expected outcome. If
the results did not match, a new methodology was developed and tested based on the experi-
ence gained. Various research methods were utilized in achieving the research objectives. For
instance, the "proof of concepts" method |27] was used to demonstrate that the solution con-
cept works for the first research objective. On the other hand, the "proof by demonstration"
method [27] was employed for research goals 3 and 4, where we presented solutions in the form
of demonstrations to potential users. Additionally, since the solutions might change based on
feedback from practitioners, we need to consider this during the development process.

Result Publications

Problems in
Research and
Industry

State-of-the-art

Y

Research Goal I— ; . . .
[Definition]—)[Smentmc ReseathSolut|on DeﬁmllonH Implementation H Evaluation]

r 3

State-of-the-practice

New Insights-

Figure 2: Research Process

14

6 Contributions

The Security Abstraction Model (SAM) is a well-established framework for modeling the se-
curity requirements of automotive software systems. However, SAM was not originally designed
to model social engineering attacks, which can be a significant threat to the cybersecurity of
automotive systems. To address this gap, we have developed an extension to SAM that en-
ables the modeling of social engineering attacks and their relationships to the actors and the
rest of the automotive system model. This modeling support enables a more comprehensive
understanding of the security requirements of automotive software systems, and it can help
developers to better anticipate and prevent social engineering attacks.

In addition to the modeling support added to SAM, we have also integrated the enhanced
model with Meta-Edit+, a modeling tool that provides support for the creation, modification,
and analysis of SAM models. This integration has enabled us to provide tool support for the
enhanced SAM model, making it easier for developers to use and apply the new modeling fea-
tures. With Meta-Edit+ support, developers can more easily create and modify SAM models
that include social engineering attacks, and they can analyze the models to identify potential
security weaknesses.

Finally, we have also integrated the ISO 21434 standard for automotive cybersecurity into SAM.
This integration allows SAM to model the security requirements of automotive systems in a
way that aligns with the ISO 21434 standard. By incorporating the ISO 21434 standard, SAM
can provide guidance on the implementation of cybersecurity in road vehicles, with a risk-based
approach to determine the level of cybersecurity protection required.

6.1 Research Question 1: Social-Engineering Attacks

Although vehicles cannot become direct victims of such attacks, can be impacted if the
attacks are successfully carried out on employees involved in vehicle development or on private
car owners. Social engineering attacks can provide attackers with access to individual vehicle
parts or even the entire vehicle, and in many cases, these attacks can only be discovered but
not prevented. For example, a quid pro quo attack, in which a victim provides information or
access in exchange for other services, can be difficult to prevent.

Private car owners are a popular target for social engineering attacks due to the different moti-
vations behind such attacks. An attacker may attempt to take control of the vehicle by tricking
the owner into installing malicious software or hardware in the vehicle, as described in [12].
Alternatively, an attacker may seek valuable information about the driver that can be used for
further social engineering attacks on targets related to the victim, such as the victim’s employer.
An attack on a vehicle owner may involve spying on the victim’s vehicle type, contacting the
victim with the identity of a service employee, and trying to obtain information about the
vehicle and its usage behavior in a service conversation. The attacker then contacts the victim
with the identity of a service employee and tries to find out more about the vehicle, the info-
tainment system and its usage behavior in a service conversation. He then offers the victim a
free security update via CD, USB stick or mobile phone app, which the victim can download
from a fake website or receive by post. This update actually installs malicious software that
enables the attacker to read the victim’s mobile phone data or to access the microphone of the
hands-free system in order to record conversations and send them to the attacker via the mobile
data connection of the mobile phone or vehicle. Alternatively, software can also be installed
that gives the attacker control of the vehicle as in [21]. This example is modeled in Figure 3.

To prevent such attacks, possible points of attack via social engineering attacks must be iden-
tified and taken into account during the development of the components. With the current
version of SAM, it is now possible to map social engineering attacks and develop a counter-

15

strategy. This Chapter describes how the original metamodel in SAM [62] was adapted to
enable the representation of social engineering attacks. This was achieved by introducing a
new abstract class called "Target," which generalizes the Item class already known in SAM and
the new HumanActor class required for social engineering attacks. The HumanActor class has
two attributes of the String type, which represent the exploitable human properties of curiosity
and helpfulness. The use of these properties is measured by the ResilienceLevel type, which
ranges from not defined (X), none (N), low (L), to high (H). An association of the Resilience
class refers to the HumanActor class and represents the mental resistance to social engineering
attacks. The Resilience class possesses attributes such as cautiousness, contentment, courage,
experience, and knowledge, which correspond to the ResilienceLevel type and measure the ex-
tent of the property required to defend against the attack.

The Chapter concludes by emphasizing the need for adequate security concepts to counter social
engineering attacks, particularly as the resilience of the victim plays a crucial role in the success
of such attacks. By identifying the possible points of attack and developing counter-strategies
using SAM, vehicle developers can better protect against social engineering attacks on vehicles.
The Common Vulnerability Scoring System (CVSS) is not relevant for the assessment, as the
values in the Resilience class show an assessment of the severity of the attack but an extended
scoring system is under development.

— Information Retrizval
Resiliznce DEu Steali Dri Inf .
Resilience ealing Drivers Information
— = T 0.1
= N —— Confidentialitylmpact: (Hjigh @

Cautionezs: . Yigh i st {Llow e Hands Free System s Infotainment System
Contentment: (Lhow o) L New
Courage: (LI} Low lintermediate R (Ljow

.g - gt SafetyRelevance: (H)igh System Failure . »
Experience: Hjigt |
Knowledge: Hjigh I

|

| -

: : T . A 3

} : Software Update Protection — IE Base 8.8 (High)
! |

! i

) |

| (L)ow conditionPrerequisiteComplexity

_ (C)hanged scope] Temporal 8.1
i/%;:::::::::::: _____________________ (H)igh exploit code maturity (High)

) { (X)Not Defined remediation level

k¥
Car Owner Aftack (Unknown report confidence
Service Call Scam

OperationalSituation
Infotainment System is

T
|
W/

! :_En.immarb_Accessﬂequired: Network
Running PriviegesRequired: No

i
|
|

Urgency: (H}igh _____}

Feq

Update Verfication Concept
Userinteraction: (Rjequired
Confidentialitylmpact: (H)igh = :
./O\r'- —————— E‘egf’w.'mpﬂd') L) o Infrastructure for Update |
: vailabilitylmpact: (Lo c 1 |
Seeurty SafetyRelevance: (Hjigh System Failure on.lc_:ep |

Researcher

e —
Update Check for Infotainment System
|

L

Motivated by standard, documented
attacks

SecurityCancegt —— —

{ Update only available for Authorized W e
Dealer

LM otivated by documented attacks J

Figure 3: SAM model of Service Call Scam.

6.2 Research Question 2: Model Integration for Applicability In-
crease

Although it is possible to create tooling for the Security Abstraction Model (SAM) from
scratch, MetaEdit+ [35], a commercial language workbench, was used to automate most of the
required functionality. This approach only required defining the parts specific to SAM, such
as its modeling concepts, rules, notation, and integration with other tools. Using MetaEdit+
not only speeds up implementation, but also enables easy evolution when the modeling needs
change. Moreover, MetaEdit+ offers implementation of EAST-ADL [36] and other relevant
functionality needed for automotive system development, such as collaborative modeling, ver-

16

sion control, integration with relevant tools applied in automotive, and availability of supporting
services. However, some parts related to tooling, such as showing elements of SAM in the user
interface and deciding how to indicate if constraints are not followed, deserved attention. Con-
straints that are considered mandatory are checked and reported at modeling time, while those
not sensible to check, such as minimum cardinalities in the metamodel, are shown as recom-
mendations in the live check pane at the bottom of the diagram. This way language users get
immediate guidance to create security models.

SAM, like EAST-ADL, originally focused on language concepts and defining the exchange for-
mat via a metamodel. Defining the whole language required covering concrete syntax, all
constraints, language usability topics, as well as integration with other tools. Half of the effort
was on defining the metamodel, constraints, and notation, and almost the second half on imple-
menting ways to calculate vulnerability scores. Feedback loops from two SAM knowledgeable
individuals during the implementation phase led to revising the implementation and parts of
the SAM metamodel. The tooling was tested and verified by using SAM to specify various kinds
of systems and by comparing them with the reference test cases. The implementation started
by integrating SAM in the existing metamodel of EAST-ADL, following the same conventions,
such as security models having the same naming policies, all model elements having a globally
unique identifier (UUID), and SAM following the same package structure as EAST-ADL uses to
organize specifications. SAM concepts were also integrated with already existing EAST-ADL
concepts, like Item from Dependability and 1SO26262, VehicleFeature from variation models
addressing product lines, and Requirements from specifying and tracing with system require-
ments.

MetaEdit+ allows to specify metamodels graphically [34] similarly to UML, SysML, EAST-
ADL or AUTOSAR as well as SAM.This allowed us to integrate all the language constraints,
notations, model checking, and generators in one place, which would have been specified sepa-
rately and resulted in inconsistencies and low quality |58, 5]. By using MetaEdit+, we achieved
a tight integration of the whole language definition, which significantly improved the language’s
quality. Figure 4 depicts the concepts of SAM, as defined in MetaEdit+. The list of Objects
illustrates the key modeling elements of SAM, the list of Relationships shows the connections
between these elements, and the list of Roles demonstrates how an object participates in rela-
tionships by being directed or undirected, having constraints or detailed properties.

[5] Graph Tool: Security - O X

Graph Tools Help
D& aveand cose |) I | @] | B | @
Basics iTyDesl Bindings | Subgraphs | Constraints

Objects Relationships Roles

“| |/ Reference AttackSituation

[AttackMotivation
+ Attack Comment Comment
= |tem 1 SubAttackGroup referred_from
= VehideFeature refer_to
A Vulnerability SubAttack
Resilience @ SubAttackGroup
& Score
SecurityConcept
£\ Hazard
% Actor
HumanActor

== OperationalSituati
v

Figure 4: Defined language concepts of SAM.

To minimize the modeling effort the implementation defines one AttackMotivation and its
concrete subtype is selected from a property. This way the type of AttackMotivation (Harm,
Financial Gain etc.) can be changed without deleting the old one and creating and re-connecting
a new one. This definition, compared to having a language construct for each subtype, is

17

possible because all subtypes have the same properties and constraints. Also, for the reference
from Attack to OperationalSituation, the role AttackSituation has a property to select if based
on Traffic or Environment. Each element of SAM shown in Figure 4 are defined with further
details. Figure 5 shows one such definition: The Vulnerability and its nine properties.

[Object Tool: Vulnerability — [m] X
Object Tools Help

D2 saveanaciose | [0 | P @] | B B | @

Name | Mulnerability
Ancestor | Object
Project EAST
Pronert ties

Local name Property type Data type Unique?
_uuiD _uuiD String (UUID Base64)
Short name Short name String

Name Name String
ConditionPrerequisi ConditionPrerequisiteCo Strin

Scope Scope
ExploitCodeMaturit| ExploitCodeMaturity
RemediationLevel | RemediationLevel
ReportConfidence | ReportConfidence

security procedure (security procedure conce Strin

MM M oM M om oM om om om

Description Description

Description
In order to represent the weak spots in the system architecture, Vulnerability =~ *

describes the weakness and affiliation to one or more ltems.

Figure 5: Definition of Vulnerability.

The first three properties are derived from the EAST-ADL and AUTOSAR metamodels,
while the remaining ones are specific to SAM. These properties are subject to rules and con-
straints, such as the mandatory requirement for the "Short name" property to start with an
alphabetical character, followed by possible characters, numbers or underscores, and the con-
straint of the "Scope of Vulnerability" property to have only two possible values (unchanged or
changed). To enhance usability, we reordered the properties to match the order in which secu-
rity engineers are expected to fill them, following the same order as the vulnerability analysis
tool Common Vulnerability Scoring System CVSS [16]. An example of how the Vulnerability
concept is used is illustrated in the modeled example of an social-engineering attack as seen in
Figure 3 before. The definition of the Vulnerability modeling concept was completed by pro-
viding a description of the concept in SAM, which is available in the help system. Constraints
in SAM can be applied either as part of the metamodel or via a model checker. For instance,
rules on legal connections and uniqueness of element names can be checked and enforced dur-
ing modeling time. The uniqueness of model elements is ensured by defining a constraint for

each element. Figure 7 provides an illustration of the uniqueness constraint for the name of
Vulnerability.

18

Graph Tool: Security — O e
Graph Tools Help

b saveand cise |] 0 | (9] | B BF | ®

Basics | Types Bindings | Subgraphs | Constraints

Bindings

Relationships anersler:tluns Ports Objects

/ Reference Al referred_from m
/* Reference = ltem

/* Reference [*] Requirement

/" Reference I Score

/* Reference

/" Reference

/* Reference

/* Reference
/ Reference

/* Reference

Figure 6: Legal references from Vulnerability.

* Uniqueness Constraint Definer X

Objects of type

L Vulnerability v

must have unique values for property
Short name he

in each graph of this type

Cancel

Figure 7: Constraint for uniqueness of Vulnerability.

Examples of the latter kind of rules are those on completeness. For these kinds of rules
model checking and guidance is provided for language users while it is applied. Implemented
tool support for SAM covered the following constraints:

e Attacks and AttackMotivations may form a tree and cyclic structures are not allowed.
e Attack must refer to at least one Vulnerability.

e Vulnerability must refer to at least one Attack.

e Item must refer to at least one VehicleFeature.

e Item or HumanActor must refer to at least one Vulnerability.

e [tem or HumanActor must refer to at least one AttackMotivation.

Hazard must refer to at least one Item.

SecurityConcept must refer to at least one Requirement.

SecurityConcepts motivated by documentAttack must refer to an Attack.

Requirement must be related to a SecurityConcept.

Score must be connected to one Vulnerability.

Resilience must refer to at least one HumanActor.

19

For the notation we applied a similar style as was already applied in EAST-ADL. In par-
ticular, we used various visual variables for the notation, such as shapes, colors and fonts, as
guided by [38] improving readability, understanding and working with security models. Figure
8 illustrates the notation for the Vulnerability element. The notation is defined with the Symbol
Editor of MetaEdit+.

#* Symbol Editor - Vulnerability

Symbol Edit View Format Align Help
. 0 i
H4pB(9e D LORTTOONL2 DL milcd
[Rectangle ~
[Rectangle
T Text type .
T N
T Tt ame
G G
1 Group Generator...
™\, Line
Property Value ™
Text type
Font #sans
Font style Regular
Font size 12 ==
Font celor []
Underline off v v
< > < >
Color: | [| Fil: |[{ ¥ style: ¥ Weight | 1 v
Active: Text Grid: 10 @ 10 Snap Show || 2| 200% v | @

Figure 8: Symbol definition for Vulnerability.

Alternatively, existing visualizations could be imported and applied. Initially the notation
provided just the basics: A light green rounded rectangle showing the unique name of Vulner-
ability followed by its properties, like Remediation level. To differentiate better the various
notational elements, the symbol definitions were extended with a visual clue on the upper right
corner: See e.g., Software Update Protection vulnerability in Service Call Scam attack (Figure
3). SAM models can be utilized to analyze and compute vulnerability scores. To enable this, a
generator was implemented to export data from models to the Common Vulnerability Scoring
System (CVSS), which provides a numerical score indicating the severity of a vulnerability.
This score can be translated into a qualitative representation, such as low, medium, high, and
critical, to assist organizations in prioritizing their vulnerability management processes. Addi-
tionally, the integration of SAM with other analysis tools is feasible, provided that they offer
programmable APIs or similar mechanisms, and depending on their capabilities, the results
can be included back to the model. To illustrate, MetaEdit+ can display the score directly in
the Vulnerability model element, making the information accessible when tracing from security
properties to requirements, features, and system design in general. To avoid the slow model-
ing and score calculation process that results from using an external web-based calculator, we
implemented the CVSS calculator into the SAM modeling tool. This was achieved by using
the same generator system that produced vulnerability vectors to feed the existing CVSS cal-
culator, which allowed vulnerability scores to be calculated in real-time during modeling. The
Score element was employed to display the results, with the color schemes of CVSS used for the
notation of Score. Figure 3 demonstrates the CVSS calculation during modeling time and the
display of results directly in the model. SAM was tested by applying it to security modeling,
using known security examples as reference cases. During this testing phase, the SAM meta-
model was refined for usability and when used for CVSS calculation. Since the metamodel of
SAM was integrated with the metamodel of EAST-ADL, SAM was also directly applied as an
extension of EAST-ADL (see Figure 10).

20

* Metakdit+ = [m} X

Repository Edit Browsers Metamodel Help
JPr—— n
R P2 g HBE Dew ERG/LO0 48
5 Graph Browser | 05 Type Browser | ¥ Object Browser| EIR Metamodel Browser
Projects Graph types Contents: Object types
EAST-ADL a (5 _EAST-ADL I AttackMotivation
AllocationMatrix 4 Attack
7 AnalysisFunctionRealisation = ltem
["] AnalysisFunctionType =3 VehicleFeature
() BehaviorConstraintTemporalConstraint A Vulnerability
£ BehaviorConstraintType 8 score
¥ BehaviorGraph [SecurityConcept
Dependability £\ Hazard

>

DesignFunctionType A Actor
O eaxmL == OperationalSituation
* EnvironmentModel [Requiremen it
€ ErrorModel QualityRequirement
[] HardwareCompanentType ¢
(5 Package
.7 RequirementsAllocation
& RequirementsModel
A safetyCase
L sccur
= SystemModel
(1) TimingModel
@ Variability
@ VehicleFeatureModel
& VehicleFeatureRealisation
W VerificationValidation

Help | Filter Fiter
Default

EAST-ADL v| Tree | Subtypes v Show: | Object types v

Figure 10: Security package as part of EAST-ADL (Security is selected and highlighted).

6.3 Research Question 3: Integrating ISO 21434 for Cybersecurity
Threat Analysis

ISO 21434:2020 [32] is a standard that provides guidance for managing cybersecurity risks
in the automotive industry, including vehicles with automation capabilities. With the rise of
autonomous and semi-autonomous vehicles, the need for robust cybersecurity measures be-
comes increasingly critical. Vehicle automation relies heavily on software, connectivity, and
data processing capabilities, which can be vulnerable to cyber threats. Therefore, integrating
cybersecurity into vehicle automation systems is crucial to ensure the safety, security, and reli-
ability of these vehicles.

ISO 21434 [32] provides a framework for incorporating cybersecurity into the development, pro-
duction, operation, and maintenance of vehicles with automation capabilities. The standard
emphasizes the need for a systematic approach to managing cybersecurity risks throughout the
entire lifecycle of road vehicles, including those with automation capabilities. This involves
identifying and assessing potential cybersecurity risks associated with vehicle automation, such
as unauthorized access, data tampering, and remote manipulation of vehicle functions. It
also requires developing appropriate mitigation measures to minimize the risk of cybersecurity
threats impacting the safe operation of automated vehicles.

The standard provides guidelines for establishing secure development practices for automotive
systems, including those related to vehicle automation. It emphasizes the importance of in-
tegrating cybersecurity into the entire development process, including secure coding practices,
secure configuration management, and secure software supply chain management. This in-
volves implementing secure coding standards and best practices specifically tailored for vehicle
automation, securing communication channels between vehicle automation components, and
ensuring the integrity and security of software components and updates used in automated
systems.

ISO 21434 also highlights the need for rigorous testing and validation of automotive systems,
including those related to vehicle automation. It provides guidelines for conducting vulnerabil-
ity scanning, penetration testing, and security assessments to assess the security of automated
systems. This involves testing the functionality and security of automated features, identifying
potential vulnerabilities and weaknesses, and validating the effectiveness of cybersecurity mit-
igation measures in automated systems before deployment.

21

The standard emphasizes the importance of complying with relevant regulations and standards
related to automotive cybersecurity, including those that apply to vehicle automation. This
involves understanding and adhering to regulations and standards that specifically address
cybersecurity in automated vehicles, such as UN Regulation No. 156 [55] Software Update
Processes and Management Systems. Compliance with these regulations and standards can
help ensure that automated vehicles meet the required cybersecurity requirements and operate
securely and safely.

Finally, ISO 21434 underscores the need for comprehensive documentation and traceability
of cybersecurity-related activities, including those associated with vehicle automation. This
involves maintaining clear and traceable records of risk assessments, development practices,
testing results, and compliance evidence specifically related to vehicle automation. Documen-
tation and traceability are essential for audit and review purposes, as they provide evidence of
compliance and accountability in ensuring the cybersecurity of automated vehicles.

The Security Abstraction Model (SAM) is a structured framework used by the automotive
industry to manage cybersecurity risks in vehicles. It covers all stages of a vehicle’s lifecycle,
from design and development to production, operation, and maintenance. The emergence of
ISO 21434, a standard focused on cybersecurity engineering in road vehicles, has made it crucial
for the automotive industry to integrate ISO 21434 into SAM to ensure robust cybersecurity
practices.

Integrating ISO 21434 into SAM offers several benefits, including standardization and con-
sistency of cybersecurity practices across the organization, comprehensive risk management
throughout the entire vehicle lifecycle, secure development practices at every stage, robust
testing and validation processes, and compliance with industry regulations and standards re-
lated to automotive cybersecurity.

By incorporating the guidelines outlined in ISO 21434 into SAM, automakers can strengthen
their cybersecurity posture and mitigate cybersecurity risks effectively in vehicles. The in-
tegration of ISO 21434 into SAM promotes a uniform approach to cybersecurity processes,
methodologies, and documentation, making it easier to manage and assess cybersecurity risks
consistently throughout a vehicle’s lifecycle. It also helps automakers comply with industry
regulations and standards related to automotive cybersecurity, which enhances the overall cy-
bersecurity posture of the vehicles.

The integration of the ISO 21434 standard into SAM has changed the metamodel, and new items
have been added to SAM to enable a more detailed and comprehensive risk analysis. The new
items that have been added are Asset, Damage Scenario, Threat Scenario, ImpactRatingScore,
RiskScore, AttackFeasibilityRating, and AttackFeasibilityScore. These items are illustrated in
the example Figure 11, and the current meta-model can be viewed online !.

"https://www.in.th-nuernberg.de/professors/BerglerMa/SAM /

22

<<Asset>>
DataCommunication

+ ProtectionGoal: Integrity

<<Harm>>
Cause Accident

<<OperationalSituation>> Confidentialitylmpact: Low
Vehicle is Driving <<ltem>> <<VehicleFunction>

Integritylmpact: High

BrakeByWire BrakeByWire
Availabilitylmpact: High
SafetyRelevance: High T
BaseScore
ImpactRatingScore RiskScore 71 High
2: Severe <<Vulnerability>>
S:2 Data Brake Communication Security T
<<Attack>> 4 c N B
onditionPrerequisiteC : Low
Interupt Brake Data Communication q
) Scope: not Changed
AccessRequired: Local
attackComplexity: High <<DamageScenario>> ExploitCodeMaturity: Not Defined
Attacker Coliision with Following Vehicle RemediationLevel: Not Defined TemporalScore
— PrivilegesRequired: Low :
ReportConfidence: Unknown 7.1: High
Urgency: Low P 9
Userlnteraction: No
<<ThreatScenario>>

Tempting with BrakingSystem

1

<<SecurityConcept>>
Communication Protection from external Access <<Requirement>>
Communication Protection Concept

AttackFeasibilityScore

1.05: Low Motivated by Standard

Figure 11: Security Model example of the newest version of SAM. The scenario describes a
manipulation of the braking functionality.

The new item Asset complements the existing "Target"” in the metamodel, which can be
both a "HumanActor" and an "Item" in the sense of ISO 26262. The Asset item refers to
any entity that requires protection from cyber-attacks, such as a vehicle, a component of the
vehicle, or any other element that is critical for the safe and secure operation of the vehicle.
According to ISO 21434, a damage scenario is a hypothetical event or sequence of events that
could lead to harm to the vehicle, its occupants, or its surroundings [41]. Tt takes into account
the potential sources of harm, the likelihood of the harm occurring, and the severity of the harm
that could result. The purpose of defining damage scenarios is to identify the risks associated
with the use of the vehicle and to establish measures to prevent or mitigate the effects of those
risks.

With the introduction of the new item "DamageScenario," the consequences of a successful
attack can now be modeled and additionally evaluated by the "ImpactRatingScore." The Tm-
pactRatingScore assesses the impact of an attack scenario based on factors such as the severity
of the damage caused, the extent of the damage, and the duration of the impact.

A threat scenario, according to ISO 21434, is a hypothetical situation or sequence of events
that could lead to a security threat to a vehicle’s functions, components, or data. It includes
the potential sources of the threat, the probability of the threat occurring, and the severity of
the consequences that could result. The goal of defining threat scenarios is to identify potential
security risks and vulnerabilities and to establish measures to prevent or mitigate the effects of
those risks.

By integrating the item "ThreatScenario," it is now possible to describe the attack scenario
more precisely. In addition, in combination with the other newly introduced scores, an assess-
ment of the risk for such a scenario can be given using the "RiskScore" item. The RiskScore
item evaluates the overall risk associated with a given threat scenario based on the probability
of the attack occurring and the potential consequences of the attack.

The already existing item "Attack" was supplemented by the "AttackFeasibilityScore," whereby
the feasibility of an attack can be better assessed. Since the Common Vulnerability Scoring
System (CVSS) is already integrated into SAM; this can be used as a basis for calculations.
Thanks to the successful integration of the ISO 21434 standard into SAM, it is now possible to

23

model and evaluate the following points with more accuracy and precision:

1.

- W

S R

Item Definition

Asset Identification
Identification of Threat Scenarios
Impact Rating

Attack Path Analysis

Attack Feasibility Rating

Risk Value Determination

Risk Treatment Decision

Cybersecurity Concept

According to our research, it appears that SAM already addresses the two remaining topics
of Cybersecurity Goals and Cybersecurity Claims. However, the standard’s language regarding
these points are not entirely clear, and additional research is needed to confirm this thesis with
certainty.

Thanks to the successful integration of ISO 21434, it is not only possible to evaluate vulnerabili-
ties, but also attacks and their impact on a system. For this purpose, new scores are introduced
in the metamodel based on the ISO 21434 standard:

1.

AttackFeasibilityScore: The AttackFeasibilityScore refers to the attack feasibility rating
from the standard. This describes the feasibility of an attack on our system. The cal-
culation basis for this is the already implemented CVSS score. According to CVSS, the
ratings are mapped to numbers and used in the corresponding formula from the standard.
The new formula is (E' = 8.22xVxCxzPxU) |41] where E is the exploitability value; V for
the value of the attack vector; C for the attack complexity value; P for the value of the
privileges required and U for the value of the user interaction. This value can then be
mapped back to a textual evaluation based on the standard.

. ImpactRatingScore: The ImpactRatingScore refers to the impact rating from ISO 21434.

This value describes the severity of the consequences of a damage scenario. The impact
rating can have the values Negligible (0), Moderate (1), Major (1.5) and Severe (2).

RiskScore: The RiskScore refers to the risk value determination from the standard. This
value describes the risk that a threat scenario will occur. According to ISO 21434, this
value can be determined either using a matrix or using your own calculation formulas.
In both cases, the Impact Rating and the Attack Feasibility Rating are used. In our
example, we use the risk matrix provided in the standard as seen in Table 3.

In our example (Figure 11), the following values result for the respective scores:

BaseScore: 7.1 High

TemporalScore: 7.1 High

AttackFeasibilityScore: 1.05 Low (E = 8.2220.5520.4420.6220.85)
ImpactRatingScore: 2: Severe (based on the definition in the standard)

RiskScore: S: 2 (based on the evaluation matrix in the standard)

24

6.4 Summary

In summary, our contributions have been significant in enhancing the Security Abstraction
Model (SAM) to model social engineering attacks, providing tool support through Meta-Edit+,
and integrating the ISO 21434 standard for automotive cybersecurity. Our enhancements to
SAM enable a more comprehensive understanding of the security requirements of automotive
software systems and provide developers with the tools necessary to identify and prevent poten-
tial security weaknesses. By highlighting our contributions, we hope to provide a clear overview
of the enhancements made to SAM and how they can improve the overall cybersecurity of au-
tomotive systems.

25

7 State of the Art

The importance of cybersecurity has grown significantly with the widespread use of tech-
nology in various domains. In recent years, the automotive industry has also been affected
by this trend due to the increasing integration of digital components in vehicles. This has led
to a greater need for I'T-Security in Vehicles to prevent cyber-attacks and ensure the safety
and reliability of modern vehicles. However, even with robust I'T-Security measures in place,
human vulnerabilities can still be exploited through Social-Engineering Attacks. Therefore,
it is essential to educate employees and customers on cybersecurity best practices to prevent
such attacks. In addition, Software Security Analysis Tools have been developed to assist in
identifying and preventing software vulnerabilities during the development process. These tools
provide automated analysis of software code to identify security flaws and can help ensure the
safety and reliability of software used in vehicles. In this chapter, we will discuss the current
state of the art in these three areas, including recent developments, challenges, and future
directions.

7.1 IT-Security in Vehicles

The increase in the number of hacks on cars and other connected devices in recent years

has raised the importance of security measures [54, 23, 20]. These security breaches are not
just rare occurrences, as certain car models or their components, such as Toyota, Hyundai,
Kia, and Volkswagen, have already been hacked [54, 23, 22]. Modern cars, with anti-theft sys-
tems, tire pressure monitoring systems, remote keys, Bluetooth, radios, and telematics access
functionality, face numerous security challenges. Additionally, infotainment systems that offer
access to third-party applications and the internet can be a potential target for social engineer-
ing attacks. As digitalization continues to advance, attackers can gain access to confidential
data and smuggle malicious software into the development process [46]. Customer concerns
and lawsuits on vulnerabilities push the automotive industry to prioritize the implementation
of security measures [54]. However, developing and maintaining secure systems is not an easy
task. Security cannot be an afterthought and should be designed from the very beginning of
the system design [47]. The actual development of secure and trustworthy systems requires
time, expertise from multiple fields and stakeholders, and needs to be integrated into other
development processes and practices. To overcome these challenges, proper security design
practices should be implemented to smoothly integrate security in the development processes
of automotive companies. The increasing digitalization of vehicles resulted in modern vehicles
becoming interconnected computer networks with advanced software components [3, 28, 59|.
Autonomous vehicles will continue this trend towards more communication interfaces for rea-
sons of functionality, safety, and comfort. Therefore, collective research efforts in the field of
vehicle security are crucial for the protection of human lives [3, 28, 59].
The combination of state-of-the-art software components with legacy interfaces and hardware
infrastructure decisions can be risky from an IT security perspective. Insecure and unen-
crypted protocols, such as Controller Area Network (CAN), were not designed in accordance
with today’s security principles, and secure automotive network architectures were not priori-
tized in the past due to the general prejudice of cars’ security due to their technical complexity
[51]. Development processes were sluggish, and the lack of standard guidelines and low soci-
etal pressure led to a rather slow transformation of automotive development processes taking
the security-by-design principle systematically into consideration. Existing countermeasures
against cyber-attacks, such as the use of message cryptography for encrypting, authenticating
or randomizing vehicle-level network messages, focus mainly on concrete attacks and do not
consider the complexity of the access options offered by modern vehicles [51].

26

Defining and enforcing security goals for the automotive system is necessary to improve overall
security. The security goals that should be addressed include integrity, authenticity, confi-
dentiality, reliability, availability, and accountability. Attack vectors, such as gaining remote
control access to the vehicle using the OEMs cloud and/or mobile application’s infrastructure,
getting SecurityAccess via Unified Diagnostic Services (UDS), controlling the car via Onboard
Diagnostic (OBD) injection, and remotely breaking into the telematics unit, can affect multiple
security goals [44, 30, 43, 29, 26, 61, 18]. According to the SAE J 3601 "Cybersecurity Guide-
book for Cyber-Physical Vehicle Systems" [47|, security should be considered throughout the
entire development, production, and operation process of automotive systems. Techniques for
threat analysis and risk assessment, threat modeling and vulnerability analysis, such as attack
trees, table-based, use-case-based, and misuse case-based character, can be linked to require-
ments and design specifications in the early stages of development [47, 10, 31, 45, 33, 37].

7.2 Social-Engineering Attacks

Social engineering attacks are a type of cybersecurity attack that exploit human vulnerabil-
ities to gain access to sensitive information or systems [48]. Unlike traditional attacks that rely
on technical exploits, social engineering attacks manipulate human psychology and behavior
to achieve their goals. Social engineering attacks can take many forms, including phishing,
pretexting, baiting, and quid pro quo.

Phishing attacks are the most common form of social engineering attack. They typically involve
the use of fraudulent emails or websites that trick users into disclosing sensitive information
such as usernames, passwords, or financial data. Pretexting is another common tactic that in-
volves creating a false pretext or scenario to obtain sensitive information or access to a system.
Baiting involves the use of physical devices such as USB drives or CDs that contain malware or
other malicious code. Quid pro quo attacks involve offering something in exchange for sensitive
information or access [48].

To address the threat of social engineering attacks, various countermeasures and best practices
have been developed [2, 9, 39]. These include security awareness training for employees, the
use of multi-factor authentication, and the implementation of security controls such as firewalls
and intrusion detection systems. In addition, security experts recommend that organizations
adopt a "defense-in-depth" approach to cybersecurity, which involves implementing multiple
layers of security controls to protect against a wide range of threats.

Even if the types of attack differ from one another, social engineering attacks always have the
same pattern [40]:

1. Collect information about the target.

2. Develop relationship with the target.

w

. Exploit the available information and execute the attack.
4. Exit with no traces.

Social engineering attacks can also be successful in the automotive industry, creating vul-

nerabilities for subsequent attacks [56]. Therefore, it is crucial to consider these weaknesses
during the development of vehicle components.
Overall, social engineering attacks pose a significant threat to the security of automotive sys-
tems, and it is important for organizations to take proactive measures to prevent them. Ongoing
research and development are needed to stay ahead of the evolving tactics and techniques used
by attackers.

27

7.3 Software Security Analysis Tools

Software security analysis tools are designed to help developers identify and remediate se-
curity vulnerabilities in their code before it is deployed [52, 49]. Three popular examples of
these tools are ThreatModeler, VectorCAST, and Code Sonar [53, 25, 57].

ThreatModeler is a tool that enables developers to model, analyze, and prioritize potential
security threats in their software applications. By using ThreatModeler, developers can create
a detailed and comprehensive threat model that takes into account the specific risks associated
with their software, the assets that need protection, and the potential attackers. The tool
provides an intuitive and user-friendly interface that allows developers to visualize and docu-
ment potential threats, identify vulnerabilities, and prioritize remediation efforts. Additionally,
ThreatModeler integrates with other security tools, such as SAST and DAST, to provide a
complete and comprehensive security testing framework [53, 25].

VectorCast is a powerful software testing tool that helps identify and eliminate vulnerabilities
in code by performing automated testing at various stages of the development process. Vec-
torCast’s static analysis engine can identify potential vulnerabilities in code by analyzing the
source code and identifying potential issues such as buffer overflows, null pointer dereferences,
and other common security issues. VectorCast also includes a dynamic testing engine that
can simulate real-world conditions and identify vulnerabilities that may be missed by static
analysis alone. Additionally, VectorCast can integrate with other security tools, such as SAST
and DAST, to provide a complete and comprehensive security testing framework [57].

Code Sonar is a sophisticated static analysis tool that enables developers to identify and elim-
inate vulnerabilities in code by analyzing the codebase and identifying potential security issues.
Code Sonar’s analysis engine can identify a wide range of vulnerabilities, including buffer over-
flows, null pointer dereferences, and other common security issues. Additionally, Code Sonar
includes a unique feature called the "taint tracker," which can track the flow of data through
the codebase and identify potential security risks associated with the flow of sensitive data.
Code Sonar also integrates with other security tools, such as SAST and DAST, to provide a
complete and comprehensive security testing framework [57].

ThreatModeler, VectorCast, and Code Sonar are all powerful software security analysis tools,
each with its own unique set of strengths and weaknesses.

One advantage of ThreatModeler is its ability to model and simulate complex threat scenarios,
allowing developers to better understand potential vulnerabilities and make informed decisions
about security measures. Its use of threat modeling also helps to identify potential issues ear-
lier in the development process, which can save time and resources in the long run. However,
the tool can be complex to use, and its output can be difficult to interpret without a deep
understanding of security concepts [53].

VectorCast is known for its comprehensive testing capabilities, including support for both static
and dynamic analysis, and its ability to automate a large portion of the testing process. Its
intuitive user interface makes it easy to use for developers, and its integration with other devel-
opment tools makes it an attractive choice for teams using a variety of tools. However, the tool
can be expensive, and its comprehensive nature can lead to a large number of false positives,
which can be time-consuming to sift through |57].

Code Sonar is a popular choice for its ability to identify complex software defects and vulner-
abilities, particularly in C/C++ code. Its advanced static analysis engine is able to analyze
code at a deep level, allowing it to detect issues that other tools may miss. However, its pow-
erful engine comes at a cost - Code Sonar can be resource-intensive and slow to analyze large
codebases. Its output can also be complex and difficult to understand for non-security experts
[57].

Software security analysis tools such as ThreatModeler, VectorCast, and Code Sonar play a
crucial role in ensuring the security and reliability of software applications. By using these

28

tools, developers can identify and eliminate vulnerabilities at various stages of the development
process, reducing the risk of security breaches and improving the overall quality of the software.
Overall, each of these tools offers unique advantages for software security analysis, but also has
its own set of limitations. Choosing the right tool for a given project will depend on the specific
needs and constraints of the project, as well as the expertise of the development team.

29

8 Conclusion and Future Work

The Security Abstraction Model (SAM) is a modeling language that provides a systematic
way of specifying security-related requirements, policies, and mechanisms in the system archi-
tecture of automotive software systems. SAM was initially proposed to address the growing
need for improved security in automotive systems, and its recent enhancements have further
expanded its capabilities.

One of the most significant enhancements to the SAM model is the addition of social engi-
neering attack modeling. Social engineering attacks are becoming increasingly common and
pose a significant threat to the security of automotive systems. The SAM model now includes
the ability to model and mitigate such attacks, which will help to improve the overall security
posture of automotive systems.

Another important enhancement to the SAM model is the provision of tool support. The model
includes tools that aid in identifying potential security threats and in implementing the neces-
sary security measures to mitigate those threats. The tool support feature of the SAM model
is essential in facilitating the integration of security considerations into the system architecture
of automotive software systems.

Integration with the ISO 21434 standard for automotive cybersecurity is another significant
enhancement to the SAM model. The ISO 21434 standard provides guidelines for addressing
cybersecurity threats in the automotive industry, and the SAM model can now be used to ad-
dress those threats more comprehensively. By integrating the SAM model with the ISO 21434
standard, the model can be used to develop more secure and reliable automotive software sys-
tems.

Future work in this area will focus on further refining and improving the SAM model. One
area of focus will be the automation of the newly introduced scores from the ISO 21434 stan-
dard. This will help to streamline the process of addressing cybersecurity threats in automotive
software systems. Additionally, an evaluation study of the effectiveness of the enhanced SAM
model will be conducted with industry partners. This study will help to identify any areas
where the SAM model can be improved and will help to ensure that the model remains effec-
tive in addressing security threats in the automotive industry.

In conclusion, the SAM model has been enhanced to address the growing need for improved
security in automotive software systems. The addition of social engineering attack modeling,
tool support, and integration with the ISO 21434 standard have greatly expanded the capabil-
ities of the SAM model. Future work in this area will focus on further refining and improving
the SAM model, and such work is critical in ensuring the continued success of this model in
addressing security threats in the automotive industry.

30

May 31,2021 14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book ”Social Engineering with SAM”

Social Engineering Exploits in Automotive Software Security: Modeling Human-
targeted Attacks with SAM

Matthias Bergler

Computer Science, Technische Hochschule Niirnberg, Germany. E-mail: matthias.bergler @th-nuernberg.de

Juha-Pekka Tolvanen

MetaCase, Finland. E-mail: jpt@metacase.com

Markus Zoppelt

Computer Science, Friedrich Alexander Universitdit Erlangen, Germany. E-mail: markus.zoppelt @fau.de

Ramin Tavakoli Kolagari

Computer Science, Technische Hochschule Niirnberg, Germany.
E-mail: ramin.tavakolikolagari@th-nuernberg.de

Security cannot be implemented into a system retrospectively without considerable effort, so security must be taken
into consideration already at the beginning of the system development. The engineering of automotive software
is by no means an exception to this rule. For addressing automotive security, the AUTOSAR and EAST-ADL
standards for domain-specific system and component modeling provide the central foundation as a start. The EAST-
ADL extension SAM enables fully integrated security modeling for traditional feature-targeted attacks. Due to the
COVID-19 pandemic, the number of cyber-attacks has increased tremendously and of these, about 98 percent are
based on social engineering attacks. These social engineering attacks exploit vulnerabilities in human behaviors,
rather than vulnerabilities in a system, to inflict damage. And these social engineering attacks also play a relevant
but nonetheless regularly neglected role for automotive software. The contribution of this paper is a novel modeling
concept for social engineering attacks and their criticality assessment integrated into a general automotive software
security modeling approach. This makes it possible to relate social engineering exploits with feature-related attacks.
To elevate the practical usage, we implemented an integration of this concept into the established, domain-specific
modeling tool MetaEdit+. The tool support enables collaboration between stakeholders, calculates vulnerability
scores, and enables the specification of security objectives and measures to eliminate vulnerabilities.

Keywords: automotive systems, social engineering attacks, design, model-based development, modeling, security.

1. Introduction

The importance of security grew as hacks on cars
and other connected devices became widespread
and reported in the general public. Unfortunately,
these are not rare special cases in certain car
models or their particular components: “Hackers
can clone millions of Toyota, Hyundai, and Kia
keys” Greenberg (2020), “A new wireless hack
can unlock 100 million Volkswagens” Green-
berg (2016b), “Helpless in Jeep Cherokee” Tim-
berg (2015). Since modern cars are computers on
wheels, security challenges can be found from nu-
merous systems, such as from anti-theft systems,
tire pressure monitoring systems, remote keys,
Bluetooth, radios (3G, 4G, 5G) and telematics
access functionality. Also, infotainment systems
tend to provide access to 3rd party applications
as well as internet access. Social engineering at-

tacks are also becoming increasingly popular due
to increasing digitalization. The advancing digi-
tal exchange has made it easier for attackers to
gain access to confidential data and thus smuggle
malicious software into the development process
PurpleSec (2021). The headlines on successful
attacks are not only embarrassing, but customer
concerns and lawsuits on vulnerabilities push the
automotive industry to change Timberg (2015).
Developing and maintaining secure systems, how-
ever, is not easy. First, security cannot be an af-
terthought, i.e., a component that may be added
to or removed from an existing system. Second,
security goals and measures to cope with vulner-
abilities cannot be isolated from the rest of the
design and development work. Instead, security
must be designed in already from the very be-
ginning of the system design SAE (2016). Third,
the actual development of secure and trustworthy

Proceedings of the 31th European Safety and Reliability Conference.

Edited by Bruno Castanier, Marko Cepin, David Bigaud and Christophe Berenguer

Copyright © 2021 by ESREL2021 Organizers. Published by Research Publishing, Singapore

ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0_"Social Engineering with SAM” 1

May 31, 2021

2 Matthias Bergler et al.

systems requires effort. It takes time, requires
expertise from multiple fields and stakeholders,
and needs to be linked with other development
processes and practices. These challenges call for
apt security design practices supporting compa-
nies to smoothly integrate security in their devel-
opment processes. We propose a language-based
approach and present a modeling language, called
Security Abstraction Model (SAM) and its new
extension for social engineering attacks with tool
support for specifying security aspects. Unlike
other approaches Cheah et al. (2017); Macher
et al. (2016); Pattaranantakul et al. (2018); Mat-
ulevicius (2017); Microsoft-Corporation (2005),
SAM is fully integrated into a standardized ar-
chitecture description language, in this case the
automotive-specific systems modeling language
EAST-ADL Blom et al. (2013). It not only focuses
on attacks, vulnerabilities and motivations for at-
tacks but relates them with relevant parts of the
automotive system design. Because of this inte-
gration, SAM also enables to start security design
early on — already when the first high-level fea-
tures of the vehicle are defined. This way, security
is not an isolated afterthought but an integral part
of the system development. Together with the tool
support, SAM enables collaboration of system en-
gineers with security engineers, traceability with
system features, requirements, hazards as well as
calculating vulnerability scores. SAM also helps
in specifying security goals and measures to solve
attacks. We demonstrate these via a case study
along with identified benefits on applying SAM.
We start by introducing the relevance of security
in automotive and its current status. Then we go
into social engineering attacks in automotive and
the resulting danger. Afterwards we present SAM
and the changes for covering social engineering,
followed by the detailed tool implementation for
all of its parts. Section 6 demonstrates the tool
use with a practical example before the lessons
learned and directions for future research are dis-
cussed.

2. Security in Automotive

Automotive system development has always had
to adapt to the latest state of research and eco-
nomic factors. Therefore, modern vehicles be-
came interconnected computer networks in which
many electronic control units (ECUs) communi-
cate with one another and with the environment
(Vehicle-to-X communication). Car manufactur-
ers were producing vehicles that feature advanced
desktop-grade software components. These ve-
hicles have advanced algorithms for assistance
systems and other computer-dominant extensions
that can provide entry points and powerful tools
for malicious attackers. It is thus not surprising
that the number of scientific publications on au-
tomotive security has increased drastically Amen-

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

dola (2004); Hubaux et al. (2004); Wolf et al.
(2004). Considering the fact that autonomous ve-
hicles will continue rather than reverse the trend
towards more communication interfaces for rea-
sons of functionality, safety and comfort, collec-
tive research efforts in the field of vehicle secu-
rity are reasonable; after all, human lives are at
stake every time these “driving computers” are
the target of attacks. Combining state-of-the-art
software components with legacy interfaces and
hardware infrastructure decisions results in a risky
set up from an IT security perspective. Legacy
mechanisms like insecure and unencrypted proto-
cols (e.g., Controller Area Network (CAN)) were
originally not designed in accordance with today’s
security principles. Secure automotive network
architectures were not prioritized in the past due
to the general prejudice of cars’ security due to
their technical complexity (security by obscurity).
Sluggish development processes, lack of standard
guidelines and low societal pressure lead to a
rather slow transformation of automotive develop-
ment processes taking the security-by-design prin-
ciple systematically into consideration. Most ex-
isting countermeasures against cyber-attacks, e.g.,
the use of message cryptography for encrypting,
authenticating or randomizing vehicle-level net-
work messages focus on concrete attacks and do
not consider the complexity of the access options
offered by modern vehicles Zoppelt and Kolagari
(2019). This is mainly due to a solution-oriented
approach to security problems. Defining and en-
forcing security goals for the automotive system
helps to improve overall security. In the presented
work, we address the security goals integrity, au-
thenticity, confidentiality, reliability, availability
and accountability. Many attack vectors often af-
fect multiple security goals at once. Some of the
attack vectors known to cause major threats to
automotive systems include:

e Gaining remote control access to the vehicle us-
ing the OEMs cloud and/or mobile application’s
infrastructure Nie et al. (2018); Lab (2019); Nie
et al. (2017); Lab (2018).

e Getting SecurityAccess via Unified Diagnostic
Services (UDS) Van den Herrewegen and Gar-
cia (2018).

e Controlling the car via Onboard Diagnostic
(OBD) injection Zhang et al. (2016).

e Remotely breaking into the telematics unit Fos-
ter et al. (2015).

e Infecting the system with ransomware Ring
(2015).

According to the SAE J 3601 “Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems”
SAE (2016), security affects the entire develop-
ment, production and operation process of auto-

motive systems. This is described in explicit anal-
ogy to ISO 26262-1:2018 (2018) the functional

May 31, 2021

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

Social Engineering Exploits in Automotive Software Security: Modeling Human-targeted Attacks with SAM

safety standard in the automotive sector, and re-
sults directly from the rule that security must be
considered at the system design stage (’security
by design”). With regard to concrete instructions
in terms of the techniques to be used, the standard
is fairly reserved, but in relation to model-based
automotive system development, SAE (2016)
refers in Appendices A-C to techniques for threat
analysis and risk assessment, threat modeling and
vulnerability analysis (e.g., attack trees) and ex-
plains when these should be used. The referenced
techniques are relevant to the early stages of de-
velopment in that they can be linked to require-
ments and design specifications by their illus-
trative (attack trees Cheah et al. (2017)), table-
based Macher et al. (2016), use-case-based Pat-
taranantakul et al. (2018) and misuse case-based
Matulevicius (2017) character. The development
of threats and related information is typically per-
formed by the STRIDE Threat modeling tech-
nique Microsoft-Corporation (2005) aiming to
identify early possible security problems that may
happen during the operation of a system. This
approach is helpful even today, but what is true
for this approach is equivalent to security model-
ing for enterprise systems: These approaches are
not integrated into the design of the respective
domain. Thus, it is not possible to identify the
iterative cross-relationships between the designed
system and security.

3. Social Engineering Attacks in
Automotive

Thanks to the advanced digitization in commu-
nication, it is now possible to network and ex-
change ideas at any time. Especially during the
COVID-19 pandemic, digitization is a key ele-
ment in economy continuity. However, these dig-
ital communication systems are easily attackable
and offer a weak point for engineering attacks,
as we cannot identify our counterpart directly.
Social engineering attacks in particular become
increasingly popular with attackers, as they often
lead to success despite the comparatively greater
effort involved. This is because they are specially
designed to exploit human weaknesses in behavior
in order to obtain unauthorized access or sensitive
data Mitnick and Simon (2003). The greater effort
with some attacks depends on the fact that they
have to be specially adapted to individual people,
such as an employee of a certain company. Based
on the technical report by the PurpleSec Asso-
ciation, the number of all kind of cyber-attacks
has increased sixfold since the beginning of the
pandemic and 98 percent of the cases are social
engineering attacks PurpleSec (2021).

There are very different types of such attacks.
These can be human-based or computer-based
Xiangyu et al. (2017). Human-based means that
there is direct interaction with a person, e.g. fake

service calls or the well-known grandchildren’s
trick. Computer-based attacks are carried out us-
ing computer or email programs, e.g. phishing
attacks. Even if the types of attack differ from one
another, social engineering attacks always have
the same pattern Mouton et al. (2016):

(i) Collect information about the target.
(i) Develop relationship with the target.
(iii) Exploit the available information and execute
the attack.
(iv) Exit with no traces.

In the automotive sector too, social engineering
attacks may lead to success and create vulnerabil-
ities for further attacks. These weaknesses have to
be taken into account when developing the vehicle
components. Although a vehicle cannot become a
direct victim of a social engineering attack, suc-
cessfully carried out attacks on employees in vehi-
cle development or even a private person can lead
to an attacker gaining access to individual vehicle
parts or the entire vehicle. In many cases, these
attacks can only be discovered but not prevented,
e.g. in the case of a quid pro quo attack, in which a
victim provides information or access in exchange
for other services.

In addition to social engineering attacks on em-
ployees at a vehicle parts manufacturer in order
to gain access to systems, private car owners are a
popular target. There may be different motivations
for the attack. Either an attempt can be made
to take control of the vehicle himself by using
social engineering attacks to trick the owner into
installing malicious software or hardware in the
vehicle, as described in Costantino et al. (2018),
or valuable information about the driver can be
obtained using vehicle data for further social en-
gineering attacks on targets related to the victim,
e.g. the victim’s employer. An attack could look
like this:

First of all, the vehicle type of the victim is spied
out. The attacker then contacts the victim with the
identity of a service employee and tries to find out
more about the vehicle, the infotainment system
and its usage behavior in a service conversation.
He then offers the victim a free security update
via CD, USB stick or mobile phone app, which
the victim can download from a fake website
or receive by post. This update actually installs
malicious software that enables the attacker to
read the victim’s mobile phone data or to access
the microphone of the hands-free system in or-
der to record conversations and send them to the
attacker via the mobile data connection of the
mobile phone or vehicle. Alternatively, software
can also be installed that gives the attacker control
of the vehicle as in Greenberg (2016a). In order to
prevent such attacks, possible points of attack via
social engineering attacks must be identified and
taken into account during the development of the

May 31, 2021

4 Matthias Bergler et al.

components. With the latest expansion of SAM
it is now also possible to map social engineering
attacks and develop a counter strategy.

4. SAM: Automotive Domain Specific
Security Modeling Approach

SAM is a modeling language for representing
security-relevant properties of automotive soft-
ware systems. It enables a security analysis of
automotive attack vectors and conducts a thorough
threat analysis. By means of systematic security
analyses the effort for a potential attack can be
quantified and appropriate counter measures can
be modeled. The approach closely links security
management and model-based system engineer-
ing by an abstract description of the principles
of automotive security modeling. The resulting
specification of SAM is based on security require-
ments that have been extracted from common in-
dustrial scenarios Zoppelt and Kolagari (2018). It
aims to be a solution for representing attack vec-
tors on vehicles and provide a thorough security
modeling for the automotive industry.

4.1. Feature-Targeted Attacks

SAM has a close link to the architecture descrip-
tion via ‘Item’ entity (as in ISO 26262-1:2018
(2018) and Blom et al. (2013)) from the architec-
ture model, playing the role of a ‘Feature’ from
traditional security approaches. SAM aims to ex-
press all the important criteria of the attack vectors
from the adversary’s motivation up to the security
breach—to enable modeling of the system in early
software development phases. In addition to at-
tack motivations, SAM also describes all intrinsic
and temporal characteristics of an attack, e.g.,
effects on the security objectives (confidentiality,
availability, integrity, etc.), the complexity of the
attack, the affected object and the vulnerability.
The reason why we extended EAST-ADL rather
than other languages like SysML or AADL is
that EAST-ADL already addresses relevant as-
pects of automotive systems, namely its product
line nature by specifying explicitly features that
are either visible to customers (e.g., lane detec-
tion or regenerative braking) or on technical level
(e.g., power generation control). EAST-ADL also
directly addresses functional safety and [SO26262
with its Dependability Model. SAM identifies the
same Items, Requirements and Hazards from ar-
chitecture and dependability modeling and related
them to Attacks and Security Concepts. Although
SAM is developed as part of the EAST-ADL, it is
not necessarily bound to EAST-ADL. SAM mod-
els are meant to be used and applied by anyone
wanting to conduct a threat analysis of attacks
in the automotive domain. SAM models have no
aspiration to completeness with the rest of the
systems model and can be used even in the very

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

first phases of the system engineering process.
Though it is advised to comply with the rest of
the EAST-ADL systems model, SAM models can
be used standalone.

4.2. Human-Targeted Attacks

In order to enable the representation of social
engineering attacks in SAM, we had to adapt the
original metamodel (Zoppelt and Kolagari (2018))
to provide the necessary classes®. For this pur-
pose, the new abstract class ‘Target’ was intro-
duced. This class generalizes the Item class al-
ready known in SAM, which represents the con-
nection to the EAST-ADL, and the new Human-
Actor class, which is required for social engi-
neering, as this can only be carried out on the
basis of a person. The new class HumanActor has
two attributes of the String type, which represent
the exploitable human properties of curiosity and
helpfulness. The use of these properties is either
not defined (X), none (N), i.e. not used, low (L),
used slightly, or high (H), used to a high degree.
In addition, an association of the Resilience class
refers to the HumanActor class. This class repre-
sents the mental resistance to social engineering
attacks and possesses the attributes cautiousness,
contentment, courage, experience and knowledge.
They all correspond to the ResilienceLevel type,
with which the extent of the property, required to
defend against the attack, is measured. The differ-
ent levels are low (L), low intermediate (LI), inter-
mediate (I), high intermediate (HI), high (H) and
not defined (X). The higher the demands on the
resilience of a victim, the more successfully a so-
cial engineering attack can be carried out and the
more adequate security concepts must be designed
to counteract it. In section 6 an example of a social
engineering attack with SAM is demonstrated.
A security assessment through social engineering
attacks can be carried out independently of the
assessment of an Item, but it should definitely
be considered. With the extension, SAM remains
backwards compatible, as the use of social engi-
neering attacks is optional in the application. The
Common Vulnerability Scoring System (CVSS)
is not relevant for the assessment, as the values
in the Resilience class show an assessment of
the severity of the attack but a extended scoring
system is under development.

5. Language Implementation

While it is possible to create tooling for SAM
from scratch, we applied MetaEdit+ MetaCase
(2018b), a commercial language workbench, pro-
viding most of the needed functionality auto-
matically: Only parts specific to SAM, its mod-
eling concepts, rules, notation and integration

2https://www.in.th-nuernberg.de/professors/BerglerMa/SAM

May 31, 2021

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

Social Engineering Exploits in Automotive Software Security: Modeling Human-targeted Attacks with SAM

with other tools, needed to be defined. This not
only speeds up the implementation, but also en-
ables easy evolution when the modeling needs
change. MetaEdit+ provided also implementation
of EAST-ADL MetaCase (2019) and other rele-
vant functionality needed for automotive system
development such as collaborative modeling, ver-
sion control, integration with relevant tools ap-
plied in automotive (e.g., programming environ-
ments, Simulink, requirements management etc.)
as well as having availability of supporting ser-
vices. The only parts that deserved attention re-
lated to tooling were those parts not addressed by
most metamodels, such as showing elements of
SAM in the user interface (toolbar and browsers)
based on their relevance, or decide how to in-
dicate if constraints are not followed. In current
definition, constraints that are considered manda-
tory are checked and reported at modeling time.
Those constraints, not sensible to check like min-
imum cardinalities in the metamodel, are shown
as recommendations in the live check pane at the
bottom of the diagram. This way language users
get immediate guidance to create security models.
The original definition of SAM, similarly to the
definition of EAST-ADL, focused on language
concepts and on defining the exchange format via
a metamodel. The definition of the whole lan-
guage also needed to cover concrete syntax, all
constraints, language usability topics as well as
integration with other tools. These are detailed in
the following subsections.

5.1. Implementation of SAM concepts

The implementation started by integrating SAM
in the existing metamodel of EAST-ADL. First,
the same conventions as applied in EAST-ADL
and AUTOSAR were followed: Security models
followed the same naming policies with short and
optional longer names and all model elements
had a globally unique identifier (UUID). Second,
SAM was defined to follow the same package
structure as EAST-ADL uses to organize specifi-
cations. Third, concepts of SAM were integrated
with already existing EAST-ADL concepts, like
Item from Dependability and ISO26262, Vehicle-
Feature from variation models addressing product
lines and Requirements from specifying and trac-
ing with system requirements. Since MetaEdit+
allows to specify metamodels graphically (Meta-
Case (2018a)) similarly to UML, SysML, EAST-
ADL or AUTOSAR as well as SAM we applied
the form-based metamodeling tools of MetaEdit+.
These allow the integration of all other related
language constraints, notations as well as model
checking and generators, which otherwise would
be specified seperately, if at all, in addition to the
metamodel. This tight integration of the whole
language definition improves the quality of the
language greatly. The typical problems from lan-

guages defined in an unintegrated manner, like
inconsistencies and low quality Wilke and De-
muth (2011); Bauerdick et al. (2004), can be more
easily avoided. Figure 1 shows the concepts of
SAM defined in MetaEdit+. The list of Objects
shows the key modeling elements of SAM, the list
of Relationships the connections between these
elements, and the list of Roles how an object par-
ticipates in the relationships, such as be directed
or undirected, having constraints or detailed prop-
erties. To minimize the modeling effort the im-
plementation defines one AttackMotivation and
its concrete subtype is selected from a property.
This way the type of AttackMotivation (Harm,
Financial Gain etc.) can be changed without delet-
ing the old one and creating and re-connecting a
new one. This definition, compared to having a
language construct for each subtype, is possible
because all subtypes have the same properties and
constraints. Also, for the reference from Attack
to OperationalSituation, the role AttackSituation
has a property to select if based on Traffic or
Environment. Each element of SAM shown in
Figure 1 are defined with further details. Figure
2 shows one such definition: The Vulnerability
and its nine properties. The first three are obtained
from EAST-ADL and AUTOSAR metamodel and
the remaining from SAM. These properties have
rules and constraints, such as ‘Short name’ be-
ing mandatory and starting with an alphabetical
character followed by possible characters, num-
bers or underscores (defined as regular expres-
sion: [a—zA-Z] (_?[a-zA-Z20-9]) x_?. An-
other constraint of SAM is that Scope of Vulner-
ability may have only two possible values (un-
changed or changed). To support usability, we
slightly changed the ordering of the properties as
set in the original metamodel to follow the order
in which security engineers are expected to fill
them and follow the same order as the vulnera-
bility analysis tool Common Vulnerability Scor-
ing System CVSS FIRST.Org (2019). The use

[23] Graph Tool: Security - [u} X

Graph Tools Help

b saveanacese | (1 0 | 0] [B B | ©

Basics | Types|| Bindings | Subgraphs | Constraints

Objects Relationships Roles

[AttackMotivation *| | 7 Reference AttackSituation
Attack Comment Comment

= Item 1 SubAttackGroup referred_from

) VehicleFeature refer_to

A Vulnerability SubAttack
Resilience @ SubAttackGroup

8 Score

[SecurityConcept

2\ Hazard

% Actor

HumanActor

== OperationalSituati .

Fig. 1. Defined language concepts of SAM.

May 31, 2021

6 Matthias Bergler et al.

of Vulnerability concept is illustrated in Figure
3. The definition of the Vulnerability modeling
concept was finalized by providing a description
of this SAM concept (see Figure 2 the bottom
of the window). Constraints of SAM are ensured
in two different ways: either as part of the meta-
model or applied via model checker. Examples
of the former are rules on legal connections and
uniqueness of element names. These constraints
can be checked and ensured at modeling time,
i.e., security models always follow them. As an
example Vulnerability can refer to four model
elements only (HumanActor, Item, Requirement
and Score).

5.2. Integration with Score Calculation

Models made with SAM can be applied to analyze
and calculate vulnerability scores. First we imple-
mented a generator exporting data from models to
CVSS to an online tool. CVSS provides a way to
produce a numerical score reflecting the severity
of vulnerability. The resulting numerical score can
then be translated into a qualitative representation
(such as low, medium, high, and critical) to help
organizations properly assess and prioritize their
vulnerability management processes. In the same
way integration with other analysis tools can be
done, or if they provide other mechanisms, like
programmable APIs, the modeling tool can ap-
ply them. Depending on the capabilities of the
analysis system, the results can then be included
back to the model. For example, MetaEdit+ can
show the score directly in the Vulnerability model
element. This information would then be also
available when tracing from security properties
to requirements, features and system design in
general. Since integration from the external web-
based calculator was not possible, and even if
available would lead to slower modeling and score
calculation process, also requiring an online con-

™ Object Tool: Vulnerability - o X
Object Tools Help

DS E Qe | m [0 @B & |®

Name | Mulnerability

Ancestor | Object

Project ST-AD

Pronerties

Local name Property type Data type Unique?
_uuip _uuip String (UUID Base64)

3
Short name Short name String F
Name Name String F
ConditionPrerequisi ConditionPrerequisiteCo|String (Fixed List) F
Scope Scope String (Fixed List) F
ExploitCodeMaturit{ExploitCodeMaturity | String (Fixed List) F
RemediationLevel |RemediationLevel String (Fixed List) F
ReportConfidence |ReportConfidence String (Fixed List) F
security procedure ¢security procedure conce String F

F

Description Description Text

Description
In order to represent the weak spots in the system architecture, Vulnerability ~ *

describes the weakness and affiliation to one or more Items. v

Fig. 2. Definition of Vulnerability.

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

nection, we implemented the CVSS calculator
into the SAM modeling tool. This was done using
the same generator system applied to produce vul-
nerability vectors to the existing CVSS calculator.
The benefit of this latter approach is showing
vulnerability scores immediately. In other words,
scores are calculated real-time during modeling.
We applied the existing Score element to show
the results and followed also the color schemes of
CVSS for the notation of Score. Figure 3 shows
running the calculation at modeling time and dis-
playing the results directly in the model: Base
metric of CVSS in case of Service Call Scam
Attack is 8.8 (high) and CVSS for temporal score
is 8.1 (high).

6. Case Study: Service Call Scam

In this example, we show a social engineering
attack with the aim of getting the vehicle owner
to update the infotainment system with malicious
software. This software is supposed to access the
function of the hands-free system via a back door
and record phone calls or conversations made in
the vehicle and forward them to the attacker via
the internet connection of the smart phone as seen
in Costantino et al. (2018). For this purpose, as in
Figure 3, a service call from the car manufacturer
is faked and the victim is provided with a soft-
ware update for the infotainment system. Since
the identity of the service employee cannot be
confirmed over a telephone call, the victim must
have high values in cautiousness, experience and
knowledge. What makes preventing such an attack
on the part of vehicle manufacturers difficult and
dangerous. Much more defective software could
also be installed, which would result in a loss
of control over the vehicle as seen in Greenberg
(2016a). Since CVSS is also implemented into
the modeling tool, the same metrics are shown
inside the metric element connected to individual
Vulnerabilities (both base and temporal metric
values are ‘high’). This way the resulting metric
scores are not only seen at modeling time but
also versioned, reported and documented along
with the rest of the system design. Based on the
specified security model, we can analyze the at-
tack properties and try to derive SecurityConcept
with requirements that must be satisfied to fix the
vulnerabilities. In this case the requirements are
different choices for update handling.

7. Conclusion

Security must be designed in at an early stage,
be part of the rest of system designs, and be eas-
ily integrated with existing system development
practices. We presented the extension of SAM
for social engineering attacks and addressed the
danger of social engineering attacks to create vul-
nerabilities. We also introduced a tool support

May 31, 2021

Social Engineering Exploits in Automotive Software Security: Modeling Human-targeted Attacks with SAM

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

Information Retrieval

1

Resilience uEu stealing Dri b #
Resilience [ealing Drivers Information
Cautioness: Hyigh m:fﬁ:;magrztl_mpact ()
Contentment: (Lyow il pact:

| Availabilitylmpact: (L)

T @ 0.1
: Hands Free System e 2
E News Infotainment System

Cuura_ge: L L_O""I JEMELER SafetyRelevance: (H)igh System Failure
Experience; Hyig |
Knowledge: Hjigh |
i !
! ! Vuinerabity A
I : Software Update Protection _— @ Base 8.8 (High}
|
|]
: | | (Ljow condtionPrerequisiteComplexity
JI (Cyhanged scope B Temporal 8.1
L L (H)igh exploit code maturity } (High)
i W ()Mot Defined remediation level
Car Owner ATtack @ (Ujnknown report confidence
Service Call Scam e
CperationalSituation i T —:
Infotainment System is [RSERNN_—NY Jtev-s L 1 TG Network | : W
Running PriviegesRequired: Mo | | fieq
Urgency (H)igh | ! Update Verfication Concept
Userinteraction: (Rjequired T |
O IConfidentialitylmpact: (Hjigh . I
e ———— Integritylmpact (Liow !
2 \— \svailabiltyimpact: (Ljow m"a“n'::c;:'_lr:e“:r i~ :
Security ISafetyRelevance. (H)igh System Failure —,g |
Researcher | SeaityCanom
', : Update Check for Infotainment System
| |
|
SeaurityCancast ——= -—— Motivated by standard, documented
Update only available for Authorized S attacks

Dealer
Lr.!utivated by documented attacks J

Fig. 3.

for developing secure automotive systems. The
unique part of the proposed approach is its integra-
tion in existing architecture modeling languages
applied in the automotive industry. In our case
we demonstrated the implementation with EAST-
ADL tooling. The developed modeling support
provides several benefits for development teams:

e Security issues can be considered in relation
to the system design—starting when the first
customer visible features are identified.

e The proposed security language and tool sup-
port, guides developers by considering relevant
aspects such as attacks, their motivation, vul-
nerabilities and relation to vehicle features.

e The security models are related with the rest of
the system designs, with traceability.

e Vulnerability scores can be calculated immedi-
ately and be part of security models.

e Support communication and collaboration
within a team.

We also presented the language implementation
process covering the metamodel with rules, visual
notation and integration with model analyzer. Be-
cause the investment on implementing tool sup-
port is modest, it pays off quickly as all the other
developers can then model with the language, link
with existing designs and produce vulnerability
metrics on the identified attacks. This also indi-
cates that the effort in implementing tool sup-
port for SAM with other modeling languages is
modest—at least with current tooling and tools
having access to the full metamodel. As both
the modeling language and generators are fully

SAM model of Service Call Scam.

open for modifications, the presented approach
also gives full control for the company enabling
future updates, like targeting other vulnerability
analysis tools. Decision makers such as managers
who allocate resources to security and engineers
to implement countermeasures, or people without
a security background who are not interested in
all the details of an attack, may be overwhelmed
by the level of detail of SAM, so due to collab-
orative nature of design work, the main users are
both security engineers and system developers. At
the same time, however, it is essential, especially
for decision-makers, to understand and correctly
assess the threat posed by attacks. This is why an
additional view is needed that does not show all
the details that a fully blown SAM model offers
but can provide a quick overview of the mecha-
nisms of operation and the severity of an attack.
This provides a reliable initial basis for deciding
on the allocation of resources for the creation of
countermeasures. Our future work also focuses
on process: Provide a methodology with a step-
by-step refinement of the available information,
whereby the refinement results on the one hand
in the security expert gaining knowledge about
details of the attack (over time) and on the other
hand in extending the CVSS to consider resilience
for social engineering attacks.

References

Amendola, S. (2004). Improving automotive secu-
rity by evaluation—from security health check
to common criteria. White paper, Security Re-
search & Consulting GmbH 176.

7

May 31, 2021

8 Matthias Bergler et al.

Bauerdick, H., M. Gogolla, and F. Gutsche (2004).
Detecting ocl traps in the uml 2.0 superstruc-
ture: An experience report. In International
Conference on the Unified Modeling Language, pp.
188-196. Springer.

Blom, H., H. Lonn, F. Hagl, Y. Papadopoulos, M.-
O. Reiser, C.-J. Sjostedt, D.-J. Chen, F. Tagli-
abo, S. Torchiaro, S. Tucci, et al. (2013). East-
adl: An architecture description language for
automotive software-intensive systems. In Em-
bedded Computing Systems: Applications, Optimiza-
tion, and Advanced Design, pp. 456-470. 1GI
Global.

Cheah, M., H. N. Nguyen, J. Bryans, and S. A.
Shaikh (2017). Formalising systematic security
evaluations using attack trees for automotive
applications. In IFIP International Conference on
Information Security Theory and Practice, pp. 113—
129. Springer.

Costantino, G., A. La Marra, F. Martinelli, and
I. Matteucci (2018). Candy: A social engi-
neering attack to leak information from info-
tainment system. In 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), pp. 1-5.

FIRST.Org, 1. (2019). First, common vulnerability
scoring system, version 3.1.

Foster, I., A. Prudhomme, K. Koscher, and S. Sav-
age (2015). Fast and vulnerable: A story of
telematic failures. In 9th {USENIX} Workshop on
Offensive Technologies ({WOOT?} 15).

Greenberg, A. (2016a, January). The Jeep Hack-
ers Are Back to Prove Car Hacking Can Get Much
Worse. Wired.

Greenberg, A. (2016b, March). Radio Attack Lets
Hackers Steal 24 Different Car Models. Wired.

Greenberg, A. (2020). Hackers can clone millions of
Toyota, Hyundai, and Kia keys. Wired.

Hubaux, J.-P., S. Capkun, and J. Luo (2004). The
security and privacy of smart vehicles. IEEE
Security & Privacy 2(3), 49-55.

ISO 26262-1:2018 (2018, December). Road ve-
hicles — Functional safety. Standard, In-
ternational Organization for Standardization,
Geneva, CH.

Lab, T. K. S. (2018). Experimental security as-
sessment of bmw cars: A summary report.

Lab, T. K. S. (2019). Experimental security re-
search of tesla autopilot.

Macher, G., E. Armengaud, E. Brenner, and
C. Kreiner (2016). A review of threat analysis
and risk assessment methods in the automotive
context. In International Conference on Com-
puter Safety, Reliability, and Security, pp. 130-141.
Springer.

Matulevicius, R. (2017). Security risk-oriented
misuse cases. In Fundamentals of Secure System
Modelling, pp. 93—105. Springer.

MetaCase (2018a). The graphical metamodeling
example.

MetaCase (2018b). Metaedit+ user’s guide.

MetaCase (2019). East-adl tutorial.

14:55 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

”Social Engineering with SAM”

Microsoft-Corporation (2005). The stride thread
model.

Mitnick, K. D. and W. L. Simon (2003). The
art of deception: Controlling the human element of
security. John Wiley & Sons.

Mouton, F., L. Leenen, and H. Venter (2016).
Social engineering attack examples, templates
and scenarios. Computers & Security 59, 186—
2009.

Nie, S., L. Liu, and Y. Du (2017). Free-fall:
Hacking tesla from wireless to can bus. Briefing,
Black Hat USA 25, 1-16.

Nie, S., L. Liu, Y. Du, and W. Zhang (2018).
Over-the-air: How we remotely compromised
the gateway, bcm, and autopilot ecus of tesla
cars. Briefing, Black Hat USA.

Pattaranantakul, M., R. He, Q. Song, Z. Zhang,
and A. Meddahi (2018). Nfv security survey:
From use case driven threat analysis to state-of-
the-art countermeasures. [EEE Communications
Surveys & Tutorials 20(4), 3330-3368.

PurpleSec (2021). 2021 cyber security statistics
the ultimate list of stats, data & trends.

Ring, T. (2015). Connected cars - the next target
for hackers. NetworkSecurity 11, 11-16.

SAE, S. (2016). j3061, cybersecurity guidebook
for cyber-physical vehicle systems. Nr 1, 52.
Timberg, C. (2015, July). Hacks on the Highway.

Washington Post.

Van den Herrewegen, J. and F. D. Garcia (2018).
Beneath the bonnet: A breakdown of diagnostic
security. In European Symposium on Research in
Computer Security, pp. 305-324. Springer.

Wilke, C. and B. Demuth (2011). Uml is still
inconsistent! how to improve ocl constraints in
the uml 2.3 superstructure. Electronic Communi-
cations of the EASST 44.

Wolf, M., A. Weimerskirch, and C. Paar (2004).
Security in automotive bus systems. In Work-
shop on Embedded Security in Cars, pp. 1-13.
Citeseer.

Xiangyu, L., L. Qiuyang, and S. Chandel (2017).
Social engineering and insider threats. In
2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery
(CyberC), pp. 25-34.

Zhang, Y., B. Ge, X. Li, B. Shi, and B. Li (2016).
Controlling a car through obd injection. In
2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud), pp. 26—
29. IEEE.

Zoppelt, M. and R. T. Kolagari (2018). Sam: a
security abstraction model for automotive soft-
ware systems. In Security and Safety Interplay of
Intelligent Software Systems, pp. 59-74. Springer.

Zoppelt, M. and R. T. Kolagari (2019). What
today’s serious cyber attacks on cars tell us:
consequences for automotive security and de-
pendability. In International Symposium on
Model-Based Safety and Assessment, pp. 270-285.
Springer.

Exhibition&Conference

o -..it’s @ smarter world

@ embeddedworld=o=2

Integrating Security and Safety with Systems
Engineering: a Model-Based Approach

Matthias Bergler

Technische Hochschule Niirnberg
Niirnberg, Germany
matthias.bergler@th-nuernberg.de

Abstract—Development of reliable systems requires that safety
and security concerns are acknowledged during system
development. Adding them afterwards is risky as many concerns
are missed if not elicited together with the system requirements.
Unfortunately, languages for systems engineering, like SysML,
typically ignore security and safety forcing development teams to
split the work into different formats, languages and tools without
easy collaboration, with limited traceability, separate versioning
and restricted use of automation that tools can provide. We
present a model-based approach targeting automotive that
integrates safety and security aspects with other system
development practices. This is achieved via a comprehensive
domain-specific modeling language that is extendable by language
users. We demonstrate this approach with practical examples on
how security and safety concerns are recognized along with
traditional system design and analysis phases.

Keywords—model-based development; security, safety, domain-
specific language; system engineering; software engineering

I. INTRODUCTION

The development of reliable systems requires the
consideration of safety aspects during system development.
Adding them afterwards is difficult and error-prone, as
important stakeholder concerns can be lost. Unfortunately,
systems engineering languages such as SysML [12] typically
ignore safety and security, forcing development teams to divide
the work into distinct subsections: Safety and security are
defined in different formalisms and languages, without clear
traceability, collaborative work and use of other automations
that tools can provide.

We present a model-based approach targeting the
automotive domain that integrates safety and security aspects
into the rest of system development practices. This is achieved
through a modeling language that combines systems engineering
concepts with those of safety and security. Thus, modeling is not
only about specifying a system with blocks, signal connections,
etc., but at the language level, security-relevant aspects such as
attacks and vulnerabilities as well as safety-relevant aspects such
as hazardous events and feature flaws are considered too. Safety
and security are thus directly present in the development
language as first-class citizens, just like the other aspects
relevant for the specification and modeling of systems.

Juha-Pekka Tolvanen
MetaCase
Jyviskyld, Finland
jpt@metacase.com

Ramin Tavakoli Kolagari

Technische Hochschule Niirnberg
Niirnberg, Germany
ramin.tavakolikolagari@th-nuernberg.de

Our work on integrated language development is based on
collaborative work over several years with automotive
companies, researchers, and tool providers [2]. We demonstrate
the approach with practical examples on how security and safety
concerns are recognized with system design — covering
traceability and automatically conducting several relevant
safety-related methods such as 1S026262 [4], FTA [8] and
FMEA [13], and security-related methods such as vulnerability
scores [3]. The integrated model-based approach helps to ensure
that safety and security is done for the intended system currently
being developed and assists engineers with automation that tools
can provide, covering editing, tracing, versioning and various
analysis and reporting.

We start by presenting our solution by describing how the
modeling languages are defined and integrated with existing
languages. This is followed by case studies demonstrating the
approach with practical examples. First, we describe how an
existing automotive language is extended with security
modeling: covering both attacks from the social engineering side
and from the technical side. This is followed by describing
language extensions for safety following strictly the functional
safety as defined in ISO26262. For both language extensions we
show examples on their use. We conclude by sharing our
experiences on defining languages for safety and security.

II. DEFINING MODELING LANGUAGES AND THEIR
INTEGRATION

In this section, we give a brief overview of the possibilities
of describing modeling languages (Section II-A) and the
underlying modeling concepts that have been considered in the
creation of safety/security aspects in the automotive context in
the present language (Section II-B and II-C). The section
concludes with a summary of the major benefits of an integrated
modeling approach (Section 1I-D).

A. Metamodelling: description of the allowed structure and
syntax

All computer-based languages, including programming
languages and modeling languages, are defined with some
formalism. For model-based development the languages are
typically defined by metamodels [6]. A metamodel describes the
allowed structure and syntax with which we can create models.
Consider Fig. 1 illustrating a very small fragment of the

www.embedded-world.eu

Class {0}

Block
isEncapsulated: Boolean

Fig. 1. Small part of SysML metamodel

metamodel taken from SysML: A ‘Block’ has one Boolean
property called ‘isEncapsulated’ to define if a block is treated as
a black box element [12]. Based on this metamodel, the ‘Block’
does not have any other properties as those that are defined by
its supertype ‘Class’— and these ‘Class’-specific properties are
omitted from this small metamodel.

Language definition normally also includes constraints to
ensure that the created models are syntactically complete,
correct and consistent. Some of these constraints are expressed
directly in the metamodel whereas others are defined with
additional scripts or constraint definitions. An example of the
former is that an attribute is mandatory and an example of the
latter that an element must have a certain number of connections.

Definition of a general-purpose modeling language, like
SysML or UML, contains hundreds of elements like ‘Class’ and
‘Block’ and their properties like ‘isEncapsulated’. Although
they can be considered as large languages neither of them covers

Event {0}
Event name: String
Description: Text

Basic event
Probability: Humber

Component event {1}

Out
Objects in binding:
Link Basic event, Gate
In In
Gate Link
Gate kind: Fixed List Out n

Fig. 2. Complete metamodel of Fault Tree modeling language

aspects relevant to safety or security. For example, a common
practice for safety engineering is defining fault trees and
performing Fault Tree Analysis (FTA) [8]. Fault trees is also a
language having own metamodel that is independent and thus
unrelated with SysML. Fig. 2 illustrates a metamodel of the fault
tree. This metamodel contains just a few elements but it still
defines the complete FTA language: There are two types of
events: a ‘Component event’ acting as a root for the fault tree
and a number of ‘Basic events’ causing an error with some
probability. Both elements have ‘Event name’ and ‘Description’
properties that are inherited from the abstract supertype ‘Event’.
In addition, ‘Basic event’ has a ‘Probability’ property to indicate
how often the event can occur. Third element is a ‘Gate’ to
indicate relationships among these three elements. Gate has a
property ‘Gate kind’ with values like AND, OR for Boolean
logic. Finally, a ‘Link’ element allows relating a root component
event to a ‘Gate’ and those can be again linked with other gates
or basic events.

In addition to the definition of a metamodel and related
constraints, modeling languages also have notation for humans
to create and read the models. Once notational symbols are
given, a modern tool can provide the desired modeling support.
Fig. 3 shows an example of fault tree modeling in a tool based
on the metamodel defined in Fig. 2. This modeling editor, and
related functionality, is provided automatically based on the
language definition. In the example model ‘flat burns down’ is a
component event that is the single root element, and there are
two different types of gates with five different basic events. As
basic events have failure probabilities, the tool can subsequently
calculate the probability of the component failure.

If fault tree modeling should support other aspects, like link
to other subtrees of faults the metamodel could be extended.
Therefore, tools giving access to the metamodel (as in Fig. 2)
enable users to extend the modeling capabilities directly without
any lock or waiting for features from the tool vendor. This gives
engineers tooling that can fit exactly to the needs and gives
control over the ways systems are specified. Engineers using the
tool can dictate, not tool providers.

In our example, the metamodel of fault tree and SysML are,
however, disconnected which is understandable as capturing
risks and safety concerns were not targeted when SysML was
defined. However, we can identify connections between these
two languages. For example, the root component of the fault tree
most likely should refer to at least one of the blocks in SysML
so that failure of the system block could be measured. Also, if
working in automotive systems and on their functional safety the
modeling support should be able to express ‘Item’, ‘Hazard’,
‘HazardousEvents’ that are all defined in the safety standard [4].
In the modeling approach presented in this paper, this desired
connection between systems and safety as well as security
modeling is fully supported via the language definition.

We present next language extensions that cover security and
safety concerns related to automotive systems using EAST-ADL
language that is made for developing automotive systems [2].
The principle of language extension and the practices described
here are not limited to any particular modeling language though.

% Fault tree: Plat burns, 2. February 2022, 10:22 — O X
Graph Edit View Types Format Align Help
- -~ = L
BE& +LDHH|D + || LOE| X
=N
4 Component event A
Flat burns down
AN Flat burns down
4) Gate 0.0191585
AND
4 < Basic event 8
Combustibles [l
Fire out of control
Short o
Smoking
Spark Combustibles Fire out of
P D/\D control
2
Property | Value
Y Object type Gate
ONONC
Smoking Spark Short
v
< >
Probability of Flat burns down: 0.0191585 2~
v
Active: OR: Gate Grid:10@10 [¥] Snap [] Show | 2| 100% v | @

Fig. 3. Fault tree modeling based on the metamodel defined in Fig. 2.

B. Security related capabilities of this approach

Security Abstraction Model (SAM) targets representing
security-related properties in automotive software systems. This
modeling language enables a security analysis of attack vectors
in the automotive sector and allows for an in-depth risk analysis.
With SAM both potential attacks and countermeasures against
these attacks can be specified. This allows the connection of
security management and model-based systems engineering on
an abstract description level according to the principles of
automotive security modeling. SAM was defined based on
security requirements from common industrial scenarios. It aims
to be a solution for representing attack vectors on vehicles and
provide a thorough security modeling for the automotive
industry.

SAM has a close link to the system architecture description
via the modeling entity ‘Item’ being part of the architecture
model of EAST-ADL, an Architecture Description Language,
aligned with the AUTOSAR automotive standard [2]. Item
refers to a number of features of an automotive system. SAM
tries to present all important criteria of the attack vectors, from
the adversary's motivation up to the security breach. This allows
a system to be represented from a security perspective in the
early software development phase. In addition to the ‘Attack
motivations’, SAM also describes all intrinsic and temporal

characteristics of an ‘Attack’, e.g., effects on the security
objectives (confidentiality, availability, integrity, etc.), the
complexity of the attack, the affected object and the
‘Vulnerability’. The latest version of SAM address also social
engineering attacks [1].

Fig. 4 describes the metamodel of SAM. SAM acts as an
extension to the EAST-ADL, because the EAST-ADL addresses
relevant aspects of automotive systems (being a major
requirement for security modeling that is not offered by
languages like SysML [12] or AADL [15], which only offers
feature modeling); especially the features of a vehicle of any
kind. In addition, the EAST-ADL speaks directly about
functional safety and ISO 26262 in its Dependability Model.
SAM identifies the same ‘Item’, ‘Requirement’ and ‘Hazard’
from architecture and dependability modeling and relates them
to “Attacks’ and ‘Security Concepts’.

Although SAM is developed as part of the EAST-ADL, it is
not necessarily bound to EAST-ADL. SAM as a metamodel is
independent of other languages but for connectivity links to
‘Item’ and ‘Requirement’ of the EAST-ADL. In addition, SAM
can also be used independently of the rest of the system model
to provide an overview of safety critical system parts before or
at the beginning of the system engineering process. For more
information about SAM please see [16][17].

www.embedded-world.eu

class Security

TraceableSpecification

«enumeration»
ResilienceLevel

‘ hicl .

Feature «enumeration» ‘

Resilience

DevelopmentCategoryKind

ow +
ow intermediate +

cautiousness: Resilienceleve
contentment: Resilienceleve
courage: Resilienceleve
experience: Resilienceleve

intermediate +
high intermediate

isCustomerVisible: Boolean
isDesignVariab
isRemoved: Boolean

newltemDevelopment ‘

ityRationale: Boolean medificationOfExistingltem

+ o+ o+

high

knowledge: Resilienceleve
not defined

1
+vehicleFeature

TraceableSpecification

AN

(i

f

-
[ﬁ 01

| Score
TraceableSpecification + calculationFormula: String [0.1]
Dependability::ltem + value:Float [0.1]
=
B + developmentCategory: DevelopmentCategoryKind +score
Actor
HumanActor feiost L. 1
4+ curiosity: String [0.1] +item TraceableSpecification
+ helpfulness: String [0.1] Vulnerability
1%

+ conditionPrerequisiteComplexity: String

+ exploitCodeMaturity: String

+ remediationLevel: String [0..1]

TraceableSpecification B lon s + reporiCenfidence: String [0..1]
AttackMotivation SecurityGoal TracsableSpecification + scope: String [0.1]
D ility::Hazard + security procedure concept: String [0..1]

+ availabilityimpact: String [0..1] Confidentiality
+ breaksSecurityGoals*: SecurityGoa ntegrity * 1.*
+ confidentialitylmpact: String [0..1] Availability
+ integritylmpact: String [0..1] Authenticity
+ safetyRelevance: String [0.1] Reliability

Accountab

bil TraceableSpecification

ification r ification

InformationRetrieval FinancialGain ProductModification

TroceableSpecification

ity 7

+nenFullfilledRequirement 4

TraceableSpecification

Requirements::Requirement

+ formalism: String [0..1]
+ url:String [0..1]

‘ RequirementsHierarchy

=
SecurityConcept i L
«enumeration» {ordered}
+ consequencesForQuality*: String SecurityConceptMotivation
+ motivatedBy*: SecurityConceptMotivation
standard
* certification
documentedAttacks
=
UseCase
Attack *~ 4subAttack Traceablespecification
= 0.1 SubAttackGroup
+ accessRequired: String [0..1]
+ privilegesRequired: String [0.1] # |+ kind:SubattackGroupkind ‘
+ urgency: String [0..1]
+ userinteraction: String [0..1] +subAttackGroup
+ = 1=
=
s attack «enumerations
+trav”ﬁ+e‘:vv|mnment . = SubAttackGroupKind
TraceableSpecification Actor o
Requirements: :OperationalSituation Adversary AND

custom

Fig. 4. Security metamodel. View Online at https://www.in.th-nuernberg.de/professors/BerglerMa/SAM/

Models created according to SAM permit calculating a
vulnerability score based on the Common Vulnerability Scoring
System [3]. This scoring system allows a qualitative
representation (such as low, medium, high and critical) of the
severity of an attack enabling prioritization in the vulnerability
management process. First attempts were to implement a
generator that transfers the model data to an online tool.
However, since this would have required a longer modeling time
due to the transfer to the online tool and a permanent internet
connection, this idea was rejected. In the current version, the
CVSS calculator is integrated directly into the SAM modeling
tool MetaEditt. The advantage of this is that no internet
connection is required and the results can be viewed in real time
next to the rest models. During the integration, we oriented

ourselves to the color scheme of the CVSS. In this way, other
analysis tools can also be integrated [1]. We demonstrate the use
of the security modeling extension and CVSS calculation with
examples in Section III.

C. Safety-related capabilities of this approach

To integrate aspects of functional safety, we followed
functional safety standard ISO 26262 applied in automotive [4].
As in ISO 26262 an ‘Item’ is related to ‘Hazards’ and these are
related to ‘Hazardous events’, which in turn can be classified
according to ‘Severity’, ‘Exposure’ and ‘Controllability’. All
these elements are also elements in the metamodel, like
modeling objects or their properties. Fig. 5 shows the overview
of the complete metamodel for dependability modeling for
safety as defined in EAST-ADL.

Troceablespedification

Fegiure

VehideFeatureModeling:-VehideFeature GEMUMEraTion:

DevelopmentCategorykind

Item +vehicleFeature

+ developmentCategory: DevelopmentCategoryKind e

izCustomeryizible: Boolean
zDesgnvanabiftyRationale: Boolean
iERemoved: Boolean

newltemDevelopment
medificationOfExicting ltem

sitem |\ L.* 14 /N +item

aEnumMErations
SafetyConstraints:-ASILKind

e

wedFrom | /1..*

Troceghles pecification
HazardousEvent

clazzificationAzsumptions: String [0..1]
controdiability: Controliability ClassKind

AEIL_&
Troceablespecificotion —— " Troceobles pecificotion ASIL_B
+nonFulfiledrequiremen =
FeatureFlaw = Requirements::Requirement AZILT
. ASIL_D
+ formakizm: String [0..1] am
..'
+malfunction Hrequ ent/| -
aEnumMErations
TroceableS pecificotion EAElement| SeverityClasskind
Hazard safetyRequirement:SafetyGoal =0
+ hazandClassification: ASILKind o
52
53
+hazard / -

+Oipe

exposure: ExposureCiasskind
hazardtizssification: ASILKind
seyerty: SevertyClazskind

+ o+ o+ o+ o+

+traffich |/ * BT

Envirgnment

Trocechlespecification Troceables pedification
Requirements:-situation UseCases::-UiseCase

Fig. 5. Dependability package of the metamodel

The dependability package includes support for defining and
classifying safety requirements through preliminary Hazard
Analysis Risk Assessment (HARA), tracing and categorizing
safety requirements according to their role in the safety life-
cycle, as well as formalizing safety requirements using safety
constraints. The dependability package itself is an extension to
the automotive architecture modeling language EAST-ADL
which already covers the modeling support for features,
functions, hardware and related allocations. This full metamodel
is described at http://east-adl.info/Specification.html along with
the new version currently under review.

The metamodel shows how the integration with system
architecture specification is established: the ‘Item’ (as defined in
ISO 26262) is connected to features of the vehicle. As illustrated
in Fig. 5 also constraints for this connection are defined making
it mandatory (multiplicity is 1..¥). In the metamodel of EAST-
ADL, these individual features and their subfeatures are again
connected via their context to any element in system
architecture, such as to HardwareComponentTypes or
FunctionTypes. Another form of connecting dependability

+made)
L. . wenumerations
+eafestate) controllabilitydlasskind
EAElement|
oo
ratinghiode Behavior::Mode o1
- - cz
= + condition: String
- C3
T nalhisasures aEnUmEration:
- ExposurediassKind
Relgtionship E1
Requirements:: E2
Regquirements Relotionship E3
E4

modeling for safety is to apply ‘Requirement’ defined already in
EAST-ADL and relate it with ‘Safety Goals’ and ‘Feature
Flaws’.

To formalize and assess fault propagation within the system,
the dependability package also includes support for error
modeling and organizing evidence of safety in a Safety Case.
These are defined also via metamodels albeit not presented in
Fig. 5. The integration of the system developed, the nominal
system, and the error models is defined in the metamodel with
trace links. Also, to minimize the modeling effort, automated
error model generation based on system models is possible - and
described with examples in Section I'V.

D. Benefits from integrated languages

Integration of security and safety concerns with the language
for system development offers several benefits over using
separated languages — and tools and formats:

www.embedded-world.eu

e Trace and analysis: A change in system engineering
models or in safety/security-related models can be traced
and analyzed. For example, all elements in system design
that the safety-related ‘Item’ and its ‘Hazard’ can be
related with can be identified. Similarly, if the system
design is changed, e.g., by removing a feature, the related
security or safety models can be identified and removed
too — as they have become obsolete.

e Collaboration: Access to the system design as well as to
security and safety aspects enables collaboration with
fast feedback loop. If the modeling tools are not file-
based, but apply a shared repository, then collaboration
is even possible real-time. It is also up to tool features if
access and collaboration is managed in some form, like
allowing safety engineers to view system designs but not
change them.

e Versioning: All models can be versioned together. There
is no need to work with possible different formats,
versioning systems, or collect data from different sources
to get the complete picture at a particular point of time.

e Once the models share the same metamodel it is possible
to run model checking and model transformations, like
automatically produce initial safety models for the
currently designed system. This way safety engineers
don’t need to manually create all safety models and they
can better assure that their safety analysis is based on the
planned system. With traces they can also follow what
changes are made in the planned system too. Also,

security aspects can be analyzed in the same way such as
calculating vulnerability scores as described with
example in Section II1.

e Last and most importantly, security and safety design
become tightly related to system designs sharing the
same model structure.

III. SECURITY EXAMPLE

To illustrate the practical application, we show two scenarios
of malware injections as examples for possible attacks: One via
social engineering attacks and one via vehicle-to-vehicle attacks.
In the first example an attacker attacks vehicle-to-vehicle
communication in autonomous vehicles to install malware. The
second attacker uses a social engineering attack to trick the
owner into installing malicious software.

Fig. 6. shows the first case on how vehicle-to-vehicle
communication is used in autonomous driving vehicles to
infiltrate malware into the attacked vehicle via an attacking
vehicle and what suitable countermeasures are available.
Autonomous vehicles must know themselves and their
surroundings very well in order to navigate through traffic as
safely as possible. This requires not only many sensors and their
evaluated data, but also the ability to communicate with other
vehicles (Vehicle 2 Vehicle) or their environment (Vehicle 2
Everything) in an emergency. Many development projects in the
field of autonomous driving are already taking place and aim to
increase driving safety. But it is precisely the additional
communication interfaces here that give rise to the possibility of
attacks from outside: the attacker only must pose as a

Harm
Tacking Over Control
- = [t
Confidentialitylmpact: (L)jow @
. P W2V Syst :
Integritylmpact: (Lyow —3 Ne::f Em —_—— Onboard Wireless
[Availabilitylmpact: (H}igh
SafetyRelevance: (H¥igh System Failure "
|
|
- |
1 1
Vulnarsbility ‘
V2V Communication Traffic —_— @ Base 8.5 (High)
I (L}ow conditiocnPrerequisiteComplexity
(Clhanged scope " Temporal 7.9
(H)igh exploit code maturity T~ (High)
\y/ (X)Mot Defined remediation level
Attack @ (Unknown report confidence
Malware Attack I
CperationalSituation ; T jl
LRSI ¢ MAccessRequired: Network | : W
Running) PriviegesReguired: (Ljow | | 75
Urgency: (L)ow J' : Communication Verfication
Userinteraction: Mo T | Concept
Confidentialitylmpact: No : == :
Integritylmpact: (Llow |
S 2wl - il Communication Data Handling |
. l&vailabilitylmpact: {Hjigh Concept |
Security SafetyRelevance: (H)igh System Failure T |
Researcher | SecurityCancept
L fy 1
i : { Connection Authentication Concept 1
I _} Between Different Vehicles

SsourityConce
{ Checking If Cemmunication Data
Contains Maleware
“.mt'n.fated by documented attacks J

Fig. 6. Injecting Malware via V2V communication

attacks

tldut'n.fated by standard, documented

trustworthy vehicle or environmental object and can thus
establish a data connection to the attacked vehicle. The attacker
can then use this data connection to install malware or steal
sensitive user data. Therefore, it must be ensured that both the
communication between the vehicles is sufficiently
authenticated beforehand and that the transmitted data is
checked for possible attacks such as the direct installation of
malware or access to internal program structures through a
memory overflow.

In the second example Fig. 7 shows a social engineering
attack with the aim of getting the vehicle owner to update the
infotainment system with malicious software. Due to the
advanced digitization worldwide, more and more things are
being done online without meeting the person opposite in
person. It is also possible to install updates for infotainment
systems simply from a downloaded file on a USB. However, this
is precisely where the danger lies that one becomes the victim of
a social engineering attack and corrupted software is installed on
one's system, which serves as a gateway to further attacks. Fig.
7 shows such an example. The attacker first spies on the vehicle
type, license plate number and other details of the intended
victim. Contact is then made with information about a required
service update for the vehicle's on-board computer, which the
owner can easily install himself. If the victim is persuaded, the
attacker will send them the software via a fake website, a CD or
a USB stick. The victim installs the malicious software and the
attacker gains access to the system via a back door and can, for
example, listen to calls made by the victim via the hands-free kit
or use the navigation system to track the victim's location.

Countermeasures for this would be, for example, an update lock,
which only official car workshops can bypass with special
devices, but also a warning from the infotainment system itself
that no new one is necessary and thus warns the victim well
before something is installed. To model this, the latest extension
of the SAM metamodel for social engineering attacks was used
(https://www.in.th-nuernberg.de/professors/BerglerMa/SAM/).

Modeling support for safety covers calculating and
displaying CVSS score for the attacked components. In Fig 7 the
base and temporal scores are both ‘high’ for the vulnerability
with values 8.8 and 8.1 respectively. While the calculations can
be omitted, showing them at modeling time helps security
engineers easier to identify possible weak points and initiate
countermeasures as early as the design phase.

Since SAM supports comprehensive threat modeling that
captures very detailed interrelationships between the properties
of the attack and the vulnerability as well as their relationships
to the architecture, some of which are not known in practice or
should not be captured in all details for pragmatic reasons, a
step-by-step approach to modeling with SAM makes sense.
Therefore, we introduce different levels of modeling details,
where Level 1 only models the motivation of the attacker,
whereas Levels 2 and 3 are based on more details and
information and thus enable a better representation of the threat
situation; of course, this more detailed representation is
accompanied by a higher development effort. Modeling tool also
assist here security engineer to complete the specification by
informing what elements can be considered next.

P — Information Retrieval
Resilience DEE Stealing Drivers Information
— - It 0.1
z . pp Confidentialitylmpact: (Hligh @
Cautioness Integritylmpact: (Lyow — IETISEREEE ———= Infotainment System
MplatstsdLDn Availabitylmpact: (Ljow B
Courage: (LI} Low lintermediate i i S ;
Experience: {H)igh SafetyRelevance: (Hligh System Failure o
Knowledge: (HJigh I
| L3 T |
1 1
: : Vulnarabiity ‘
| : Software Update Protection e m Base 8.8 (High)
|
|
: | I (Ljow conditionPrerequisiteComplexity
_: (Cihanged scope] Temporal 8.1
—53—;:::::::::::: _____________________ (H)igh exploit code maturity . (High)
’ \/ (%Mot Defined remediation level
Car Owner Attack & {Uynknown report confidence
Service Call Scam ——
OperationalSituation i T _=
Infotainment System is S ——— l4ccessRequired: MNetwork | : W
Running ; PriviegesRequired: No | | i
Urgency: {Hyigh i : Update Verfication Concept
Userinteraction: (R)equired - |
Confidentialitylmpact: (High LY = i
Integritylmpact: (Lyow :
i ST T T Availabil'rtylmpa.ct' (Liow Infrastructure for Update |
: X (Lo |
Security SafetyRelevance: (H)igh System Failure Con_fept |
Researcher L | SecurityCaromt
i : Update Check for Infotainment System
| |
: S

Dealer
Lr.h:lt'n.fated by documented attacks

SecurityConoent —_—
Update only available for Autherized

Fig. 7. Injecting Maleware via Social Engineering Attack

attacks

t.1utWat&d by standard, decumented J

www.embedded-world.eu

Hiarm
RemoteControlVehicle

ECUs

BusSystem
Mew News

1

Fig. 8. Level 1 Representation of an attack in SAM

|'r'e.'11]

Level 1 is an entry level when working with SAM. It is to be
used if only the motivation of the attacker is known about the
attack(s) in question. This information already allows a
pragmatic overview of the situation, a reference to the
architecture of the automotive software system and an
assessment of the severity of the attack, which is particularly
relevant from a management perspective. As in Fig. 8, in Level
1 only the motivation is specified; specifically, this is one (or
more) of the subclasses of ‘AttackMotivation’, i.e. either
‘Harm’, ‘InformationRetrieval’, ‘ProductModification’ or
‘FinancialGain’.

The link between attack motivation and item plays a central
role here. It arises from considerations of which item(s) is/are
endangered by the attack. In Level 1, no details are known yet,
so the item can be an umbrella term. For example, it is known
that the car's bus system needs to be attacked for a given attack.
However, it is not yet possible to say exactly which items are
affected. Therefore, a "bus system" item can be created that
includes a group of items. However, the item must be specified
because it forms the connection to the rest of the automotive
software architecture. Without the item, the threat modeling
would be detached and would have no context to the rest of the
architecture.

At Level 2, a more detailed threat analysis already takes
place. The methodical orientation on Level 2 is recommended as
soon as details about the attack are known, especially regarding
the attribute ‘breaksSecurityGoal’. The collection of (selected)
details about the attack(s) are on the one hand not very time-
consuming, but on the other hand offer a significantly better
assessment of the threat situation compared to Level 1, since the
focus of analysis is now no longer on human experience, but on
technical feasibility. The entity Attack inherits the attribute
breaksSecurityGoals of AttackMotivation. However, it is
important to note that a single motivation for an attack can be
divided into several subattacks, which can have different
breaksSecurityGoals.

In addition to the breaksSecurityGoals, the reference to the
followUpAttacks must also be modeled and the reference to the
affected item must be established. The risk associated with the
attack can be assessed qualitatively (which SecurityGoals are
broken) or quantitatively (how many SecurityGoals are broken);
this represents an improved assessment compared to Level 1,

Attack
3.3. Root Privilege

AccessRequired: Metwork
PrivilegesRequired: Mo

Urgency:
Userinteraction: No
Confidentialitylmpactho

Integritylmpact: No
Availabiltylmpact: Mo
SafetyRelevance: Mo
Breaks security goals: Confidentiality,

cD ltem
New

Integrity, Authenticity, Accountability

ECUGateway K=
New

Attack
3.4 Access of Embedded System (IC
and Parrot)

|
\ Attack

3.5 Access of Embedded System
(Gateway)

lAccessRequired: Network
PrivilegesRequired: Mo

Urgency:

Userinteraction: Mo
Confidentialitylmpact: No
Integritylmpact: No

lAvailabilityImpact: No

SafetyRelevance: MNo

Breaks security goals: Confidentiality,
Integrity, Availability, Authenticity, Reliability,

lacceszRequired: Network
PriviegesRequired: No

Urgency:

Userinteraction: Mo
Confidentialitylmpact:No
Inte-grityimpact: No

|availabilitylmpact: Mo
SafetyRelevance: No

Breaks security goals: Confidentiality,
Inte-grity, Availability, Authenticity,

|&ceountabiity Reliability, Accountability

ECUIC_or_ECUPar 5T
New

Attack
3.5 Wehicle Dysfunction Through
Injected CAN Messanes

IAccessRequired: Network
FriviliegesRequired: No
Urgency:

Userinteraction:]
Confidentialitylmpact: No
Integritylmpact: No

lAwvailabilitylmpact: No

SafetyRelevance: No

Breaks security goalz: Confidentiality,
Integrity, Availability, Authenticity, Reliability,
\Bccountability

ECU lem
New

Fig. 9. Level 2 Representation of an attack in SAM

where the analysis is only carried out based on the motivation of
the attack.

A Dbetter assessment of the severity of an attack results from
the calculation of a score, for example analogous to the Common
Vulnerability Scoring System (CVSS, see level 3). Level 2 is not
detailed enough to calculate this score, but an initial assessment
based on the experience of security experts can already be made
and documented in the Score entity. To make it clear that this
score is experience-based and has not been calculated, the
attribute ‘calculationFormula’ is left empty in this case. Score
can be omitted if no experience values are available.

ISO/SAE 21434 has been in place since 2021 to ensure a
complete risk assessment analysis of cyber-attacks on vehicle
systems [5]. This standard was developed because of the need to
counteract against cyber-attacks due to the increasing
networking of vehicle systems. The standard is related to the
UNECE regulation R 155 "Cyber security and cyber security
management system". The application of ISO 21434 is
considered as a building block to facilitate certification.
However, ISO 21434 does not cover all the requirements of R

155. To develop a reporting system for SAM that is
understandable for different viewers, it makes sense to do this
based on ISO 21434. The main steps in performing an ISO/SAE
21434 compliant threat analysis and risk assessment are (in order
of an idealized linear execution):

1. Item Definition (Section 9.3)

Asset Identification (Section 15.3)

Identification of threat scenarios (Section 15.4)
Impact Rating (Section 15.5)

Attack Path Analysis (Section 15.6)

Attack Feasibility Rating (Section 15.7)

Risk Value Determination (Section 15.8)

Risk Treatment Decision (Section 15.9)

Cyber Security Goals (Section 9.4) [WP-09-03 & RQ-09-07]
10. Cyber Security Claims [WP-09-04 & RQ-09-06]
11. Cyber Security Concept (Section 9.5)

A A I S

Most of the points listed are already implemented by SAM,
including points 1, 2, 3, 4, 9, 10 & 11. Therefore, only the
following points 5, 6, 7 & 8 have to be added to SAM to be able
to create a reporting system based on ISO 21434. The points 9
to 11 are also fulfilled by the fact that they are applied
holistically and not just domain-specifically and thus also cover
the aspect of cybersecurlity.

IV. SAFETY EXAMPLE

We focus next on safety and illustrate dependability
modeling, error modeling and automated FTA/FMEA analysis
that are possible due to metamodel extensions for safety. Fig. 10
shows the dependability model for PowerWindowController.
This dependability model closely follows functional safety
standard 1SO26262 as has been defined in the metamodel (see
Fig 5). In top of Fig. 10, PowerWindowController is considered
as an item. Next, a hazard ‘Window obstacle not detected’ is
specified and related to HazardousEvent ‘Window does not
stop’. This Hazardous event is related to the use case that
window action is requested. It may also be linked - albeit not
described in the Fig. 10 - to other scenarios linked to traffic
situation, environment or to operating mode. In other words, the
model follows the metamodel as defined based on ISO 26262.

The example also describes the work on hazard analysis in
which Severity, Exposure and Controllability and ASIL values
are being defined. The dependability model also defines the
safety goal with a safe state “PreventMovement”. It reduces the
ASIL level to an acceptable level (B) with Requirements #7 and
#9 that are already defined in the requirements model.

Thanks to the integrated metamodel safety design is not
separated from the rest of the systems modeling. The integration
is achieved by an ‘Item’ called PowerWindowController that,
according to the metamodel, can refer to one or more features.
In our example the item refers to the PowerWindow feature of
the vehicle. This feature is defined in the feature model of
EAST-ADL and is illustrated in Fig. 11.

Item
PowerWindowController
Modification

indow obstacle not'
detected

HazEvent
(Window does not stop
UseCase, Window action

Severity=51 requested

Exposure=E1
Controllability=C1 ﬁ

\ASIL=A

T SafetyGoal\
ProtectionForObstacle
ASIL=B
Safe State=PreventMovement

Kind: Safety QReq|
PWC_Req7

Kind: Timing QReq|
PWC_Req9

If no request is issued from the
switch, the window shall not move

The controller shall issue a stop
within 200 ms of endStop

detection

FunctionalSafetyConcept
PWC_Halted: Functional

TechnicalSafetyConcept
PWC_MandatoryStop:
Technical

A A

Fig. 10. Dependability model of PowerWIndowController

The features of Power Window are defined by systems
engineers along with its functional architecture (as illustrated in
Fig 12). Features in the feature model map to individual
elements in the functional architecture. This enables traceability
between system designs and safety designs.

System design as in Fig. 12, however, is not directly suitable
for safety design as it does not identify and capture typical safety
aspects like faults, failures or failure rates. Design models also
include information that is not relevant for safety work adding
unnecessary complexity for safety engineers. Consider for
example the small system illustrated in Fig. 12. It shows the
functional architecture of a PowerWindow controller: its
functions, ports and connections among them. Functions are
classified, have a more detailed internal hierarchical structure,
and their ports have interfaces and data types. Some of these
aspects, like classification of functions or data type definitions,
are not directly relevant in safety design, but are necessary to
generate the implementation (like AUTOSAR ARXML,
Simulink models etc.).

www.embedded-world.eu

1
EEFeature

‘ DriverWindow Control ‘

B

N

Passenger¥indow Control

-

PinchProtection

needs
\ —

‘ BasicUpDownP

0..7)

PinchProtectionP
\ J \ A

Fig. 11. Features of power window

Adding safety-related information, like faults or failure
logic, directly to the design model is often not practical because
it would quickly make the model complex with too many details.
For safety analysis, unlike design, we also usually need several
models covering different analysis scenarios. One solution is to
generate the initial safety models from design specifications. For
example, Fig. 13 shows the result of such a transformation: an
initial error model produced from the system design shown in
Fig. 12. The error model is then detailed for safety analysis
focusing on failures, faults, and error types. Safety engineers
may then add error behavior to this model or add other aspects
of safety, like e.g., in Fig. 13 a FailureOut port is added to
analyze an error on obstacle detection (top right in the model
with blue thick border for propagation).

With error modeling, safety engineers can specify various
faults and failure logic without changing the actual system
designs. Yet, there is a link from error models back to nominal
planned system descriptions. As error models can specify failure
logic (Boolean and temporal) the models also serve as the basis

for automated Fault Tree Analysis (FTA) and Failure Modes and
Effects Analysis (FMEA) [8][13]. This means that rather than
creating fault tree diagrams manually (as in Fig. 3 earlier), they
can be generated. For this purpose, we implemented model
transformation that takes error models and translates them to the
formats needed by FTA/FMEA tools. Since the transformations
are fully automated the cost and effort to carry FTA and FMEA
are greatly reduced. Fig. 14 shows the result of running the
transformation from error models to analysis tools for FMEA.

Development of safety-critical functions with the model-
based approach starts with hazard analysis and risk assessment
in the dependability model, is detailed with error models for
FMEA, and ends with verification of safety goals and safety
requirements. Since models contain the needed information, it is
possible to generate the documents like functional and technical
safety concepts as well as verification and validation of safety
goals (as done e.g., in [14]).

PositionSensor_FD: PWC_PS_T
<FunctionalDevice>

[»]position
[»]current

Y]

windowPosttionin

—@

PinchDtc_AF: PWC_PinchDetection_T
<AnalysisFunction>

isObstacle []

WinController_AF: PWC_WinController_T WinMotor_FD: PWC_WinMotor_T |

EndStopDtc_AF: PWC_EndStopDtc_T

<AnalysisFunction> <FunctionalDevice>

AnalysisFunction [»] obstacie cmd cmd_cntrl
}//Z CurrentSensor_FD: PWC_CS_T ¥]positon el = }Endst] isEngStop [endst L J
P <FunctionalDevice> postio isEndStop endStop
motorCurrentin L sensedCurrentVal [p] [»]current [P]req_a
o motorCurrent
arbitrat¥dReq
{ FP_Win?w"i‘t:?:\;:'g:eﬂfe(:;»'ds_T WinArbitrator_AF: PWC_WinArbitrator_T
b 4 g <AnalysisFunction>
switchReglin switchReqVal [p] passeqgerieq [»]pSwitchReq b
req_a [»] %
PSwitchRegin ~
motorCurrentOut
D_WinSwitch_FD: PNC_WS_T
<FunctionalDevice> ari
switchRegin switchReqVal [p] 2 [»]dswitchReq
L J

DSwitchReqin

Fig. 12. Functional architecture of PowerWindow controller

%5 ErrorModel: PWC_FAA, 17. November 2019, 11:54 - [ul X

Graph Edit View Types Format Align Help

Ba|l4pm(9C |+ DILPOBE X [0
DO@e#MMEOCO| B~ |

4 [EnorModelPrototype ~
CurrentSensor_FD
D_WinSwitch_FD

EndstopDtc AF PositionSensor_FD: PWC_PS_T PinchDtc_AF: FWC_PinchDatection T

F.P_WmSwwt:h_FD p| positionin sensedPositionVal [- P position isObstacle ||
PinchDtc_AF postion
windowPostionin | current Error

PositionSensor_FD
WinArbitrator_AF opstackounderr
WinController_AF
WinMetor_FD postgh
@ IntemalFaultPrototype
¥ ProcessFaultPrototype

B & |

isObshacle

WinController_AF: F{C_WinController_T

4 [W FaultinPort EndStopDtc_AF: PWC_EndStopDtc_T] obstacle cmd
DSwitchReqin v CurrentSensor_FD: FWC_CS_T] position KEndStop [——s——fp]endston
sensedCurrentval [b}—_8-—w]current »|req a
Property Value
€3 Graph type ErrarMode
Shortname | PWC_FAA . 3) .
Name FP_WinSwitch_FD: PWC_WS_T WinArbitrator_AF: FWC_WinArbitrator_T
Show warning Yes [»]switchRegh switchReqVal (e pSwrl:hREq req_a
Description PSwitchReqin [»]dswitchReq
D_WinSwitch_FD: PWC_WS_T
[»]switchReqhn switchRegVal]
D
v
< >
| Warning: Same relationship short name used for "position”: <FaultFailurePropagationLink>, <FaultFailurePropagationLink>. Give a unique short name for every relations
Active: None Grid: 10 @ 10 Snap [show | 2 100% v /@

Fig. 13. Functional architecture of PowerWindow controller

These automations make safety work easier and faster to do language, namely to EAST-ADL. For this reason, the actual
as well as reduce manual error-prone routine tasks. Perhaps most ~ language implementation required us to only specify the
importantly, they enable feedback from safety analysis earlier to extensions (as in Fig. 4 and 5) and link them to the existing

be acknowledged in the system design. metamodel. The effort and process would be largely the same as
if these would be added to other languages, like to AADL or
V. EXPERIENCES ON THE LANGUAGE DEFINITION SysML - given that these languages would have language

Our efforts on implementing security and safety modeling constructs (elements in the metamodel) that are suitable for
have been related to existing automotive system development extension and integration with safety and security.

SN &1 on-FMEsOutputiindechtmi 2~ ¢) @ Failure Modes and Effects A..

File Edit View Favorites Jools Help

H%P Failure Modes and Effects Analysis
'S

FaultTrees | FMEA

Show FMEA results of: | Direct and Further Effects ™| Number of rows per page: [1

FMEA

FirstPage ~ PreviousPage CurrentPage:1of1 NextPage Last Page

Failure Mode System Effect Severity|Single Point of Failure
© ABS_VariableCorrupted (1) C-L2 AAErrorDescription.pBrakeActuator AllWheel.braking failure AL |0 true
O ABS_VariableFailToUpdate (2) 0-L2 AAErrorDescription.pBrakeActuator Allwheel.braking failure AL [0 false
Failure Mode System Effect Severity|Single Point of Failure|
(O ABS_VariableCorrupted (19) C-L2 AAErrorDescription.pBrakeActuator AllWheel.braking failure AL |0 true
(O ABS_VariableFailToUpdate (20) 0-L2 AAErrorDescription.pBrakeActuator AllWheel.braking failure AL (0 false
Failure Mode System Effect Severity|Single Point of Failure|
() ABS_variableCorrupted (37) C-L2_AAErrorDescription. pBrakeActuator_AllWheel.braking_failure_AL |0 true
) ABS_variablerailToupdate (38) 0-L2 AAErrorDescription.pBrakeActuator AllWheel.braking failure AL [0 false
Failure Mode System Effect Severity|Single Point of Failure
O ABS_variableCorrupted (55) C-L2_AAErrorDescription.pBrakeActuator Allwheel.braking failure AL 0 true
(O ABS_variableFailToUpdate (56) 0-L2 AAErrorDescription.pBrakeActuator Allwheel.braking failure AL|0 false
Failure Mode System Effect Severity|Single Point of Failure|
(O BatteryCurrentSensor_ADDataFailToUpdate (74) C-12 AAErrorDescription.pBrakeActuator AllWheel braking failure AL |0 true
0-L2 AAErrorDescription.pBrakeActuator AllWheel.braking failure AL |0 true v

Fig. 14. Results of fault tree analysis and failure modes and effects analysis.

www.embedded-world.eu

The language definition steps consist of:

1. Defining the metamodel for the extensions and linking
them with the existing language definition. Linking
enables reuse, references and traces between model
elements.

2. Setting constraints to keep specifications consistent and
ensure syntactic completeness and correctness.

3. Defining notation that fits or resembles the domain
being addressed (e.g., safety, security).

4. Implementing generators for model checking and trace
as well as producing various kinds of artifacts like data
for FMEA or CVSS.

In this paper we described the first two steps via the
metamodel in Section II. Defining the notation in step 3 deals
with symbol definitions and the work by Moody [10] can be
applied directly here. The actual implementation of notations
then varies on tools as some require programming them whereas
for others they can be imported as images without much
additional work [9].

The last step on generators then brings in more automation
possibilities for checking, tracing, reporting and generating
code, simulations etc. In our case the generators targeted
external tools for performing Failure Mode and Effects Analysis
(FMEA) as well as calculating vulnerability scores. In both cases
implementing the actual generators were straightforward as for
both needs specifications of the formats to be generated were
available. The second kind of generators were those reporting
the work in trace reports or various other documents. These were
performed in the same MetaEdit+ tool.

The effort to create modeling support goes mostly to
identifying and testing the suitable level of abstraction. We did
not measure the effort on the safety side, but for the security side
after having the initial metamodel (as in Fig. 4), its
implementation into a modeling tool was done in the period of
two calendar weeks by one person. Verification and validation
were done by other people using the language for typical
modeling cases.

It is important to note that if the tools provide access to the
language definitions the modeling support can be extended
incrementally based on the needs. For example, both the
metamodel definitions addressing security and safety have
evolved because of the changes in the modeling requirements
and because learning from the language usage. This makes the
suggested approach also future proof as we already know that
possible new requirements can be addressed. Access to the
metamodel and generators also gives possibilities to adapt the
support for company specific needs - as described in [14]. We
are also aware of a case in developing ADAS systems in which
modeling support of EAST-ADL is extended with concepts like
Safety Measures.

VI. CONCLUSIONS

We have presented a model-based approach for integrating
safety and security concerns with the rest of system
development. This is achieved via an integrated modeling
language that provides modeling support for safety and security

at language level similarly we have got used to with traditional
system and software modeling languages. We demonstrated our
approach been applied with practical examples. The benefits of
integration include:

e Collaborative development: Access to the system design as
well as to security and safety aspects enables collaboration
with fast feedback loop.

e Trace and analysis are possible — even at modeling time —
between different aspects of the developed system.

e All work items can be versioned together. There is no need
to work with possible different formats, versioning systems,
or collect data from different sources to get a complete
picture.

e Automated analysis and transformations: combined models
can be used as input for checking and model transformations,
like automatically producing initial safety models for the
currently planned system design.

e Security and safety design becomes tightly related to system
designs sharing the same model structure.

With EAST-ADL and its extensions these benefits are
already available [2], but the same principles can be applied if
other modeling languages would be extended. For example,
extend SysML instead of EAST-ADL, or add metamodel of
RAAML from [11] instead of the dependability metamodel of
EAST-ADL.

REFERENCES

[1] Bergler, M. et al. Social Engineering Exploits in Automotive Software
Security: Modeling Human-targeted Attacks with SAM. Proceedings of
the 31st European Safety and Reliability Conference (ESREL 2021), 2021

[2] EAST-ADL, 2021,
[Accessed 21 April 2022].

[3] First, Common Vulnerability Scoring System version 3.1: Specification

Document, 2019, https://www.first.org/cvss/specification-document
[Accessed 21 April 2022].

[4] 1ISO Functional Safety, 26262-1, 2018
[5] ISO/SAE 21434:2021 - “Road vehicles - Cybersecurity engineering”
https://www.iso.org/standard/70918.html [Accessed 16 May 2022]

[6] Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling full code
generation, Wiley-IEEE Computer Society Press, 2008

http://www.east-adl.info/Specification.html

[71 Kiritzinger, D., Fault tree analysis, in Aircraft System Safety, Elsevier,
2017

[8] Lee, W.S., Grosh, D. L., Tillman, F. A, Lie C. H., Fault Tree Analysis,
Methods, and Applications - A Review. IEEE Transactions on Reliability,
Volume: R-34, Issue: 3, Aug. 1985.

[91 MetaCase, MetaEdit+ User’s Guide. [Online]. Available at:
https://metacase.com/support/55/manuals/, 2018 [Accessed 21 April
2022].

[10] Moody, D., The Physics of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering, IEEE
Transactions on Software Engineering, vol. 35, no. 6, 2009.

[11] OMG, Risk Analysis and Assessment Modeling Language (RAAML),
https://www.omg.org/spec/RAAML/1.0/Betal/PDF, 2021 [Accessed 21
Jan 2022].

[12] OMG, System Modeling Language, version 1.6. [online] Available at:
https://www.omg.org/spec/SysML/, 2019 [Accessed 21 April 2022]

[13] Reifer, D., Software Failure Modes and Effects Analysis, IEEE
Transactions on Reliability, Volume: R-28, Issue: 3, 1979.

[14] Sari, B., Fail-Operational Safety Architecture for ADAS/AD Systems and [16] Zoppelt, M. Tavakoli Kolagari, R., SAM: A Security Abstraction Model

a Model-driven Approach for Dependent Failure Analysis. Springer, for Automotive Software Systems, ISSA/CSITS@ESORICS, 2018.
2020. [17] Zoppelt, M., Tavakoli Kolagari, R., UnCle SAM: Modeling Cloud
[15] SEL, Architecture Analysis and Design Language (AADL), Attacks with the Automotive Security Abstraction Model, 2019.

https://www.sei.cmu.edu/our-
work/projects/display.cfm?customel_datapageid 4050=191439,191439
[Accessed 13 May 2022]

www.embedded-world.eu

Automotive Software Security Engineering
based on the ISO 21434

Technical Report
Matthias Bergler and Ramin Tavakoli Kolagari

May 6, 2023

1 Introduction

The first chapter of the paper provides an overview of the importance of automotive security and the
increasing threat posed by cyberattacks. It highlights the critical role of ISO 21434, a standard for
automotive cybersecurity engineering, in ensuring the security of automotive systems throughout their
lifecycle. The chapter also introduces the Security Abstraction Model (SAM), a framework for automo-
tive system design and development, and discusses the need to integrate ISO 21434 with SAM to enable
effective implementation of cybersecurity measures. Finally, the chapter outlines the goals and structure
of this work, which aims to explore the practical application of integrating ISO 21434 into SAM and
provide insights into the benefits and challenges of this approach.

1.1 Motivation Security and Automotive

The automotive industry has been rapidly evolving with the advent of connected and autonomous ve-
hicles. While this has brought about many benefits, such as improved safety features and enhanced
driving experiences, it has also raised concerns about the security of these advanced vehicles. The in-
creasing reliance on software, communication networks, and data exchange in modern cars has made
them vulnerable to various cybersecurity threats, including unauthorized access, data breaches, and re-
mote manipulation Wang et al. (2021); Luo et al. (2021). As a result, the motivation for security in the
automotive industry has become a critical concern for automakers, regulators, and consumers alike.

One of the primary motivations for security in the automotive industry is to protect the safety and
privacy of vehicle owners and passengers. As connected vehicles collect and transmit large amounts
of data, including personal information, location data, and driving behavior, there is a heightened risk
of data breaches and privacy violations. Malicious actors could exploit vulnerabilities in the vehicle’s
software or communication networks to gain unauthorized access to sensitive data, leading to identity
theft, financial fraud, and other serious consequences. Ensuring the security of connected vehicles is
crucial to safeguard the privacy and personal safety of the users Schoettle and Sivak (2014).

Another motivation for security in the automotive industry is to prevent unauthorized access and tam-
pering of the vehicle’s critical systems, such as the engine, brakes, and steering. As connected vehicles
are equipped with multiple electronic control units (ECUs) that communicate with each other, there is
a risk of cyber attacks that could compromise the integrity and functionality of these systems. For ex-
ample, hackers could remotely manipulate the vehicle’s controls, leading to potential accidents or even
life-threatening situations. Therefore, robust security measures are needed to prevent unauthorized ac-
cess and tampering of critical systems in connected vehicles, ensuring their safe operation Guan et al.
(2022).

Furthermore, protecting the reputation and brand image of automakers is another motivation for secu-
rity in the automotive industry. A successful cyber attack on a connected vehicle could not only result

in financial losses due to recalls, lawsuits, and damages but also have long-term consequences for the
automaker’s reputation. Consumers trust that their vehicles are secure and safe to use, and any breach
of that trust could significantly impact the brand’s image and customer loyalty. Therefore, automakers
have a strong motivation to invest in robust security measures to protect their reputation and brand image
Turel et al. (2007).

Moreover, regulatory requirements and industry standards also serve as a motivation for security in the
automotive industry. Governments and regulatory bodies around the world are increasingly enacting laws
and regulations to address the cybersecurity risks associated with connected vehicles. For instance, the
European Union’s General Data Protection Regulation (GDPR) includes provisions for data protection
and privacy in connected vehicles Andrasko et al. (2021); Hamulék et al. (2021), and the United States’
National Highway Traffic Safety Administration (NHTSA) has issued guidelines for cybersecurity in
vehicles Park and Choi (2020); Das et al. (2019). Additionally, industry organizations, such as the
Society of Automotive Engineers (SAE) and the Automotive Information Sharing and Analysis Center
(Auto-ISAC), have developed cybersecurity best practices and standards for the automotive industry Al-
Jarrah et al. (2019). Compliance with these regulations and standards is essential for automakers to meet
legal requirements and demonstrate their commitment to security.

The increasing connectivity and autonomy of vehicles have brought about a growing motivation for se-
curity in the automotive industry. Protecting the safety and privacy of vehicle users, preventing unautho-
rized access and tampering of critical systems, safeguarding the reputation of automakers, and ensuring
compliance with regulatory requirements and industry standards are all key motivations for enhancing
security in the automotive industry. As the reliance on software, communication networks, and data ex-
change in vehicles continues to grow, it is imperative for automakers to prioritize cybersecurity measures
to mitigate potential risks and protect the integrity, safety, and privacy of connected vehicles and their
users.

1.2 Importance of integrating ISO 21434 into SAM

The Security Abstraction Model (SAM) is a comprehensive approach used by the automotive industry
to manage cybersecurity risks in vehicles. It provides a structured framework for identifying, assess-
ing, and mitigating cybersecurity threats throughout the vehicle’s lifecycle. With the emergence of ISO
21434 Macher et al. (2020), a standard specifically focused on cybersecurity engineering in road vehi-
cles, integrating ISO 21434 into SAM becomes crucial for ensuring robust cybersecurity practices in the
automotive industry for the following reasons:

1. Standardization and Consistency: ISO 21434 provides a globally recognized standard for manag-
ing cybersecurity risks in the automotive industry. By integrating ISO 21434 into SAM, automak-
ers can ensure that their cybersecurity practices are standardized and consistent across the organi-
zation. This promotes uniformity in cybersecurity processes, methodologies, and documentation,
making it easier to manage and assess cybersecurity risks consistently throughout the vehicle’s
lifecycle Macher et al. (2020).

2. Comprehensive Risk Management: ISO 21434 emphasizes the importance of identifying, assess-
ing, and mitigating cybersecurity risks throughout the entire development and operational lifecycle
of vehicles. By integrating ISO 21434 into SAM, automakers can establish a comprehensive risk
management approach that covers all stages of the vehicle’s lifecycle, from design and develop-
ment to production, operation, and maintenance. This ensures that cybersecurity risks are effec-
tively managed at every stage, reducing the likelihood of potential cybersecurity incidents Macher
et al. (2020).

3. Secure Development Practices: ISO 21434 promotes the integration of cybersecurity into the entire
development process of automotive systems. By integrating ISO 21434 into SAM, automakers
can ensure that secure development practices are followed consistently across all stages of the
vehicle’s lifecycle. This includes secure coding, secure configuration management, and secure

software supply chain management, ensuring that cybersecurity is considered at every step of the
development process Macher et al. (2020).

4. Testing and Validation: ISO 21434 emphasizes the importance of rigorous testing and validation of
automotive systems to identify and fix potential cybersecurity vulnerabilities. By integrating ISO
21434 into SAM, automakers can establish a robust testing and validation process that includes
vulnerability scanning, penetration testing, and security assessments. This helps in identifying and
fixing cybersecurity vulnerabilities before the vehicles are deployed, reducing the risk of potential
cyber attacks Macher et al. (2020).

5. Conformance to Regulations and Standards: ISO 21434 is gaining increasing recognition and
adoption by regulatory bodies and industry organizations as a standard for managing cybersecu-
rity risks in the automotive industry. By integrating ISO 21434 into SAM, automakers can ensure
compliance with industry regulations and standards related to automotive cybersecurity. This in-
cludes requirements such as the UN Regulation No. 155 Cybersecurity and Software Updates,
which mandates compliance with ISO 21434, Compliance with industry regulations and stan-
dards helps automakers demonstrate their commitment to cybersecurity and enhances the overall
cybersecurity posture of the vehicles Macher et al. (2020).

Integrating ISO 21434 into the Security Abstraction Model (SAM) is essential for the automotive
industry to ensure robust and consistent cybersecurity practices. It promotes standardization, compre-
hensive risk management, secure development practices, testing and validation, and compliance with
industry regulations and standards. By incorporating the guidelines outlined in ISO 21434 into SAM,
automakers can strengthen their cybersecurity posture and mitigate cybersecurity risks effectively in ve-
hicles Macher et al. (2020).

1.3 Study Contributions

The goal of this paper is to provide an overview of the benefits, considerations, challenges, and practical
applications of integrating the ISO 21434 standard into the existing Security Abstraction Model (SAM)
processes for the automotive industry. Specifically, our research aims to:

1. Explain relevance and necessities of integrating ISO 21434 into SAM: Our efforts will provide an
overview of the benefits of integrating ISO 21434 into SAM, which include improving the quality
and safety of software in vehicles, increasing customer satisfaction, and reducing costs associated
with software defects and security breaches.

2. Provide an overview of the key considerations and challenges of the full support of ISO 21434 by
SAM: We will discuss the scope of ISO 21434 and how it fits within the SAM framework. It will
also provide an overview of the key processes and activities in SAM that need to be adapted or aug-
mented to integrate ISO 21434 effectively. Additionally, we will examine the specific challenges
involved in integrating ISO 21434 into SAM, such as resistance to change, lack of resources, and
the need to train personnel on new processes and tools.

3. Demonstrate the applicability of SAM that fully supports the ISO 21434: We will provide an
automotive system model (the braking system) together with an attack model based on the latest
SAM version reflecting various aspects of the standard considering nine process steps (of a total
of eleven process steps defined by the standard).

2 Background

The second chapter discusses the growing importance of automotive cybersecurity in the context of the
increasing use of software and connectivity in modern vehicles. The chapter introduces ISO 21434,

a standard for automotive cybersecurity engineering that provides guidelines for the development and
validation of secure automotive systems and the Security Abstraction Modell (SAM) and its role in
facilitating the integration of various components and systems within a vehicle. The chapter concludes
by emphasizing the need for integrating ISO 21434 with SAM to ensure the security of automotive
systems throughout their lifecycle and to enable effective implementation of cybersecurity measures.

2.1 1SO 21434

ISO 21434 is a standard that specifically focuses on cybersecurity engineering in road vehicles. It was
published in 2020 by the International Organization for Standardization (ISO) as ISO 21434:2020 -
”Road vehicles — Cybersecurity engineering”’Macher et al. (2020). This standard provides a comprehen-
sive framework for managing cybersecurity risks in the automotive industry, with the ultimate goal of
ensuring the security and integrity of vehicles and protecting them from cyber threats.

The objectives of ISO 21434 are to provide guidance and requirements for integrating cybersecurity
engineering practices into the entire lifecycle of road vehicles. The standard aims to establish a sys-
tematic and proactive approach to cybersecurity, covering all stages of vehicle development, production,
operation, and maintenance. ISO 21434 provides guidelines for managing cybersecurity risks, estab-
lishing secure development practices, conducting testing and validation, and ensuring compliance with
regulations and standards.

The main objectives of ISO 21434 can be summarized as follows:

1. Cybersecurity Risk Management: ISO 21434 emphasizes the importance of identifying, assessing,
and mitigating cybersecurity risks throughout the entire lifecycle of road vehicles. It provides
guidance on establishing a systematic and proactive approach to cybersecurity risk management,
including risk identification, risk assessment, risk mitigation, and risk monitoring. The objective
is to ensure that cybersecurity risks are effectively managed throughout the entire lifecycle of the
vehicle, reducing the likelihood of potential cybersecurity incidents.

2. Secure Development Practices: ISO 21434 promotes the integration of cybersecurity into the entire
development process of automotive systems. It provides guidelines for establishing secure devel-
opment practices, including secure coding, secure configuration management, and secure software
supply chain management. The objective is to ensure that cybersecurity is considered at every step
of the development process, reducing the risk of potential cybersecurity vulnerabilities in the final
product.

3. Testing and Validation: ISO 21434 emphasizes the importance of rigorous testing and validation of
automotive systems to identify and fix potential cybersecurity vulnerabilities. It provides guidance
on conducting vulnerability scanning, penetration testing, and security assessments to identify
and address potential cybersecurity risks. The objective is to ensure that vehicles are thoroughly
tested and validated for cybersecurity before they are deployed, reducing the risk of potential cyber
attacks.

4. Compliance with Regulations and Standards: ISO 21434 recognizes the importance of compliance
with industry regulations and standards related to automotive cybersecurity. It provides guidance
on ensuring compliance with applicable regulations and standards, such as UN Regulation No.
155 Cybersecurity and Software UpdatesUNECE (2021a). The objective is to ensure that vehicles
meet the requirements of relevant regulations and standards, demonstrating the commitment to
cybersecurity and enhancing the overall cybersecurity posture of the vehicles.

ISO 21434 is a standard that aims to provide a comprehensive framework for managing cybersecurity
risks in the automotive industry. Its objectives include cybersecurity risk management, integration of
secure development practices, testing and validation, and compliance with regulations and standards. By
following the guidelines outlined in ISO 21434, the automotive industry can establish robust cybersecu-
rity practices and ensure the security and integrity of vehicles in the face of evolving cyber threats.

2.2 Relationship between ISO 21434 and Vehicle Automation

As vehicle automation continues to advance, with the development of autonomous and semi-autonomous
vehicles, the need for robust cybersecurity measures becomes increasingly critical. Vehicle automation
relies heavily on software, connectivity, and data processing capabilities, which can be vulnerable to
cyber threats. Therefore, integrating cybersecurity into vehicle automation systems is crucial to ensure
the safety, security, and reliability of these vehicles Macher et al. (2020).

ISO 21434:2020, titled ”Road vehicles — Cybersecurity engineering,” is a standard that provides guid-
ance for managing cybersecurity risks in the automotive industry, including vehicles with automation
capabilities. This standard is designed to address the unique cybersecurity challenges associated with
vehicle automation and provides a framework for incorporating cybersecurity into the development, pro-
duction, operation, and maintenance of these vehicles.

The relationship between ISO 21434 and vehicle automation can be understood in the following key
aspects:

1. Cybersecurity Risk Management for Vehicle Automation: ISO 21434 emphasizes the need for a
systematic approach to managing cybersecurity risks throughout the entire lifecycle of road ve-
hicles, including those with automation capabilities. This involves identifying and assessing po-
tential cybersecurity risks associated with vehicle automation, such as unauthorized access, data
tampering, and remote manipulation of vehicle functions. It also requires developing appropriate
mitigation measures to minimize the risk of cybersecurity threats impacting the safe operation of
automated vehicles.

2. Secure Development Practices for Vehicle Automation: ISO 21434 provides guidelines for estab-
lishing secure development practices for automotive systems, including those related to vehicle
automation. It emphasizes the importance of integrating cybersecurity into the entire development
process, including secure coding practices, secure configuration management, and secure software
supply chain management. This involves implementing secure coding standards and best practices
specifically tailored for vehicle automation, securing communication channels between vehicle au-
tomation components, and ensuring the integrity and security of software components and updates
used in automated systems.

3. Testing and Validation for Vehicle Automation: ISO 21434 highlights the need for rigorous testing
and validation of automotive systems, including those related to vehicle automation. It provides
guidelines for conducting vulnerability scanning, penetration testing, and security assessments
to assess the security of automated systems. This involves testing the functionality and security
of automated features, identifying potential vulnerabilities and weaknesses, and validating the
effectiveness of cybersecurity mitigation measures in automated systems before deployment.

4. Compliance with Regulations and Standards for Vehicle Automation: ISO 21434 emphasizes the
importance of complying with relevant regulations and standards related to automotive cybersecu-
rity, including those that apply to vehicle automation. This involves understanding and adhering
to regulations and standards that specifically address cybersecurity in automated vehicles, such as
UN Regulation No. 156 Software Update Processes and Management Systems UNECE (2021b).
Compliance with these regulations and standards can help ensure that automated vehicles meet the
required cybersecurity requirements and operate securely and safely.

5. Documentation and Traceability for Vehicle Automation: ISO 21434 underscores the need for
comprehensive documentation and traceability of cybersecurity-related activities, including those
associated with vehicle automation. This involves maintaining clear and traceable records of risk
assessments, development practices, testing results, and compliance evidence specifically related
to vehicle automation. Documentation and traceability are essential for audit and review purposes,
as they provide evidence of compliance and accountability in ensuring the cybersecurity of auto-
mated vehicles.

ISO 21434 provides guidance for integrating cybersecurity into the development, production, opera-
tion, and maintenance of vehicles with automation capabilities. It emphasizes the importance of cyber-
security risk management, secure development practices, testing and validation, compliance with regula-
tions and standards, and documentation and traceability, specifically tailored for vehicle automation. By
following the guidelines provided by ISO 21434, automotive stakeholders can enhance the cybersecurity
posture of automated vehicles and ensure their safe and secure operation.

2.3 EAST-ADL

The Architecture Analysis and Design Language (EAST-ADL) is a modeling language used in the auto-
motive and embedded systems domain for describing the architecture and design of complex automotive
systems. It provides a comprehensive and systematic approach for modeling the software and hard-
ware components, their interactions, and their relationships with the environment in which they operate.
EAST-ADL enables engineers to capture the architectural design decisions, analyze the system’s behav-
ior, and support the development of automotive systems with higher quality, safety, and efficiency Cuenot
et al. (2010).

EAST-ADL was developed by a consortium of European automotive manufacturers, suppliers, and
research institutes as part of the European research project "Model-Based Analysis and Design of Novel
Architectures for Dependable Electric Vehicles” (MAENAD) Manead (2021). The project aimed to
develop a modeling language and associated analysis techniques to support the design of advanced em-
bedded control systems, particularly in the automotive domain.

Some key features of EAST-ADL include:

1. Comprehensive Modeling Capabilities: EAST-ADL provides a rich set of modeling concepts and
notations for describing the architecture and design of automotive systems. It allows engineers
to model the system’s structure, behavior, and interactions, including the software and hardware
components, their interfaces, their connections, their modes of operation, and their communication
and data exchange mechanisms Cuenot et al. (2010).

2. Support for Functional and Non-functional Requirements: EAST-ADL allows engineers to capture
both functional and non-functional requirements of automotive systems. This includes modeling
the system’s functionality, performance, safety, reliability, and other quality attributes. EAST-
ADL also supports the modeling of timing, resource allocation, and other system-level constraints
Cuenot et al. (2010).

3. Analysis and Simulation Capabilities: EAST-ADL provides analysis and simulation capabilities
that enable engineers to evaluate the behavior and performance of the system at the architectural
level. This includes support for model checking, simulation, and other analysis techniques to
detect potential design flaws, performance bottlenecks, and other issues early in the development
process Cuenot et al. (2010).

4. Integration with Other Modeling Languages: EAST-ADL is designed to be compatible and in-
teroperable with other modeling languages commonly used in the automotive domain, such as the
AUTOSAR (AUTomotive Open System ARchitecture) standard. This allows engineers to integrate
EAST-ADL models with models developed in other modeling languages, facilitating system-level
analysis and simulation Cuenot et al. (2010).

5. Tool Support: Several modeling tools and frameworks are available that support the use of EAST-
ADL, providing engineers with a graphical user interface and automated analysis capabilities.
These tools help streamline the modeling and analysis process, making it more efficient and ef-
fective Cuenot et al. (2010). The modeling tool MetaEdit+ Tolvanen and Rossi (2003) has a full
integration of the EAST-ADL as well as a full integration of SAM. So a wholesome modeling
process is ensured.

EAST-ADL is a powerful modeling language used in the automotive and embedded systems domain
for describing the architecture and design of complex systems. It provides comprehensive modeling
capabilities, supports functional and non-functional requirements, offers analysis and simulation capa-
bilities, integrates with other modeling languages, and has tool support, making it a valuable tool for
automotive system design Cuenot et al. (2010).

2.4 SAM

The automotive industry is undergoing a significant transformation with the rapid advancement of software-
intensive technologies, such as connected cars, autonomous driving, and electric vehicles. However, this
increasing complexity and connectivity also bring about new challenges in terms of cybersecurity, as
vehicles become vulnerable to various cyber threats, including hacking, data breaches, and remote ma-
nipulation.

In response to these challenges, the Security Abstraction Model (SAM) Zoppelt and Tavakoli Kolagari
(2019); Bergler et al. (2021); Bergler, Tolvanen, and Kolagari (Bergler et al.) has emerged as a significant
concept in the automotive industry. SAM provides a structured approach to model, analyze, and enforce
security aspects in the development of automotive software systems. It aims to improve the security
assurance, streamline the development process, and enhance the resilience of vehicles against security
threats.

The importance of SAM in the automotive industry can be highlighted in several key aspects:

1. Comprehensive Security Management: SAM offers a comprehensive framework for managing
security concerns in automotive software development. It provides a systematic approach to iden-
tify, analyze, and mitigate security risks throughout the entire development lifecycle of vehicles,
from design and implementation to testing and deployment. SAM helps automotive manufacturers
and suppliers to effectively manage security aspects in their software systems, ensuring that the
vehicles are protected against potential cyber threats.

2. Standardization and Consistency: SAM provides a standardized and consistent approach to mod-
eling and analyzing security aspects in automotive software systems. It offers a common lan-
guage and methodology for describing security threats, security architectures, and security analy-
sis techniques. This standardization enables better collaboration among different stakeholders in
the automotive industry, such as automakers, suppliers, and security experts, and helps to ensure a
consistent and unified approach to security across different automotive systems.

3. Enhanced Security Assurance: SAM supports the development of more secure software systems
by providing a structured approach to security assurance. It enables the identification of potential
security risks early in the development process, allowing for timely mitigation measures to be
implemented. SAM also provides a way to systematically verify and validate the security measures
in place, improving the overall security assurance of automotive software systems.

4. Improved Efficiency and Resilience: SAM helps streamline the development process of automo-
tive software systems by providing a structured approach to security. It reduces the complexity
and ambiguity of security considerations, making it easier for developers to integrate security mea-
sures into their software designs. This improved efficiency allows for more effective development
of secure software systems, reducing the risk of security breaches and enhancing the resilience of
vehicles against threats.

5. Compliance with Industry Standards: SAM aligns with industry standards and guidelines for au-
tomotive security, such as ISO 21434, AUTOSAR, and EAST-ADL, which are widely adopted in
the automotive industry. By incorporating SAM into the development process, automotive manu-
facturers and suppliers can ensure compliance with these standards and guidelines, demonstrating
their commitment to security best practices.

SAM plays a crucial role in addressing the security challenges faced by the automotive industry. It
provides a structured approach to model, analyze, and enforce security aspects in the development of
automotive software systems, leading to improved security assurance, streamlined development process,
and enhanced resilience against threats.

3 Case Study Braking System

The following scenario is described as an example of the use of SAM and the new features of ISO 21434:
Imagine a situation where a hacker gains unauthorized access to the data communication network of a
car’s braking system. The hacker then intentionally interferes with the communication signals between
the car’s brake control module and the wheel speed sensors. As a result, the brake system receives
incorrect information about the speed of the wheels and the car’s braking distance. This causes the brake
system to malfunction and fail to engage, even when the driver presses the brake pedal. Consequently,
the car is unable to slow down or stop in time, and it collides with another vehicle or object, causing
an accident. In this scenario, the hacker’s malicious actions disrupt the normal operation of the car’s
braking system, creating a dangerous situation that puts the driver, passengers, and other road users at
risk of injury or death.

3.1 EAST-ADL System Model of the Braking System

The EAST-ADL is an architecture description language that models the core of a system and has manifold
complementary models that capture additional information, such as timing, variability, dependability and
so on. The modeling of the core has two main and widely appreciated features in practice: first, the
system model is described on predefined abstraction levels, starting with an abstract feature modeling
as well as two architecture description levels, where the analysis level is a purely functional logical
description and the design level already includes a description of hardware and software; second, the
component-oriented approach to architecture description is based on a type/prototype concept, which
allows for the reuse of components from a component library.

In this Figure 1 we see a small excerpt from the abstract level (the Vehicle Level) and the first ar-
chitecture description level (the Analysis Level). The item “BrakeByWire”, which is to be understood
in accordance with the item definition from the standard ISO 26262, refers in this case to the vehicle
feature “"BrakeByWire” from the Vehicle Level and is realized by the function " BBW_FAA” from the
Analysis Level. We can see the internal components of the function " BBW_FAA” in the lower part of
the figure, consisting of a sensor ”BrakePedal” and four actuators ”ABS” (one actuator for each wheel)
and a control unit.

3.2 Security Model of the Braking System

As previously discussed, the integration of the ISO 21434 standard into the Security Abstraction Model
SAM has many advantages for the automotive industry. The integration of the ISO made some demands
on the meta model. The following addressed points from the ISO therefore had to be checked or inte-
grated to complete SAM:

1. Item Definition (ISO 21434 Section 9.3): The item definition is a central component of ISO 21434
and describes the definition and specification of safety-critical elements in a vehicle. It is about
gaining a comprehensive understanding of the functions and characteristics of these elements in
order to identify and eliminate potential vulnerabilities in the system. The item definition includes
a comprehensive analysis of the safety-critical elements, including their functions, interfaces, data
flows, requirements, and risks. It also considers the interaction of the elements with each other and
with other systems. The item definition is a crucial step in the process of automotive cybersecurity
development, ensuring that the systems meet the security requirements and are protected against
potential threats.

«ltem» «VehicleFeature»

BrakeByWire BrakeByWire

1<<realizedBy>>

v

«AnalysisFunction»
BBW_FAA
«FunctionalDevice»
ABS_FR: ABS
—HE| BrakeTorqueln
«FunctionalDevice» «'ABnaIisi(s:FUQct\Ic;n»
: BrakePedal - BrakeControfler
«FunctionalDevice»
BrakeTorqueFR ABS RL: ABS
BrakeRequest >:| BrakeRequest
BrakeTorqueRL BrakeTorqueln

BrakeTorqueFL

VYV

BrakeTorqueRR «FunctionalDevice»

ABS_FL: ABS

BrakeTorqueln

«FunctionalDevice»
ABS_RR: ABS
BrakeTorqueln

Figure 1: This figure shows the Analysis Architecture of the braking function based on EAST-ADL.

2. Asset Identification (ISO 21434 Section 15.3): Asset Identification is another critical component
of ISO 21434 that plays a crucial role in the development of secure automotive systems. Asset
Identification refers to the process of identifying the assets that need to be protected within the
system. These assets may include hardware, software, data, or other resources that are critical to
the proper functioning of the system. The goal of Asset Identification is to gain a comprehensive
understanding of the assets and their characteristics in order to properly assess the risks associated
with each asset and develop effective security measures. This process involves a detailed inventory
of all assets and their associated risks, as well as the establishment of asset classifications and their
criticality levels. By properly identifying and classifying assets, the development team can better
understand the security requirements of the system and ensure that adequate security measures are
implemented to protect the system against potential cyber threats.

3. Identification of Threat Scenarios (ISO 21434 Section 15.4): Threat scenarios are a critical part
of ISO 21434 and involve identifying potential cybersecurity threats that could impact automotive
systems. This includes identifying potential attack vectors and the potential impacts of a successful
cyberattack. By using threat scenarios, the development team can develop more effective security
measures and reduce the risk of a successful cyberattack. They are an essential part of ensuring
the safety and security of automotive systems.

4. Impact Rating (ISO 21434 Section 15.5): Impact Rating is a process in ISO 21434 used to evaluate
the potential impact of a cybersecurity threat on the system by assigning a severity level to each
potential threat based on its potential harm and feasibility of mitigation. This helps prioritize
security efforts and allocate resources accordingly to ensure the safety and security of automotive
systems.

5. Attack Path Analysis (ISO 21434 Section 15.6): In the context of ISO 21434, Attack Path Anal-

10.

11.

ysis is an important tool for identifying potential cybersecurity threats to automotive systems and
developing appropriate security measures to mitigate those threats. It is a critical component of the
risk management process outlined in the standard and is used to help ensure the safety and security
of automotive systems throughout their lifecycle.

. Attack Feasibility Rating (ISO 21434 Section 15.7): The Attack Feasibility Rating is a process

within ISO 21434 that evaluates the likelihood of a successful cybersecurity attack by assessing
the attacker’s resources and access to information. It helps prioritize security measures and allocate
resources accordingly, based on the most significant threats to the system. This process helps to
ensure the safety and security of automotive systems.

Risk Value Determination (ISO 21434 Section 15.8): ISO 21434 includes a process called risk
value determination, which is used to evaluate the level of risk posed by cybersecurity threats to
automotive systems. This process assigns a numerical value to each threat and helps the devel-
opment team prioritize security measures and allocate resources effectively. By using risk value
determination, the development team can identify and address the most significant threats to the
system’s safety and security, ensuring appropriate security measures are implemented. Overall,
risk value determination is a vital aspect of ISO 21434, supporting the safe and secure develop-
ment of automotive systems.

Risk Treatment Decision (ISO 21434 Section 15.9): The ISO 21434 standard outlines a process
for making decisions about how to treat cybersecurity risks in automotive systems. This involves
selecting and implementing security measures to reduce the risks to an acceptable level. The
purpose of this process is to prioritize security measures and allocate resources effectively.

Cybersecurity Goals (ISO 21434 Section 9.4) [WP-09-03 & RQ-09-07]: The ISO 21434 standard
defines cybersecurity goals for automotive systems. These goals help ensure that the system is
secure against potential threats and that any vulnerabilities are identified and addressed appropri-
ately. The cybersecurity goals specified in the standard are designed to be flexible and adaptable to
different use cases and system architectures. By setting clear goals for cybersecurity, the standard
aims to promote a more systematic and comprehensive approach to cybersecurity in the automotive
industry.

Cybersecurity Claims (ISO 21434 Section 9.4) [WP-09-04 & RQ-09-06]: The cybersecurity claims
defined in the ISO 21434 standard refer to the features and functions of automotive systems that
provide cybersecurity protection. These claims serve as a means of communicating the level of
cybersecurity protection to customers and stakeholders. To ensure that cybersecurity claims are
accurate and reliable, the standard requires that they be based on evidence and that they are veri-
fiable. This helps ensure that customers and stakeholders can make informed decisions about the
security of the system. The standard also provides guidance on how to test and verify cybersecurity
claims to ensure that they are accurate and reliable.

Cybersecurity Concept (ISO 21434 Section 9.5): The Cyber Security Concept is a description of
the security objectives and measures that apply to an automotive system, as defined in the ISO
21434 standard. It serves as a high-level guide for the development of effective cybersecurity
measures and is regularly reviewed and updated throughout the development process.

After making adjustments to the meta model, the previously created scenario has now been replicated
as a security model (see Figure 2. This security model focuses on the "BrakeByWire” feature, which
interfaces with the EAST-ADL in a vehicle. With the integration of ISO 21434 in SAM, new scores such
as ”AttackFeasibility”, “ImpactRating”, and "RiskValue” can now be calculated in addition to the Com-
mon Vulnerability Scoring Systems (CVSS) Mell et al. (2006) Base and Temporal score. These scores
are essential for assessing the level of risk posed by potential security threats and vulnerabilities in the
system. With the ability to calculate these scores in SAM, the system can be analyzed comprehensively

10

and appropriate security measures can be implemented to mitigate potential risks and ensure the safety
and security of the system and its users.

<<Asset>>
DataCommunication

+ ProtectionGoal: Integrity

<<Harm>>
Cause Accident

<<Q 1ation>> Cor pact: Low
Vehicle is Driving Integrityl t High <<|tem>> <<VehicleFunction>

ntegritylmpact: Hig BrakeByWire BrakeByWire

Availabilitylmpact: High

SafetyRelevance: High T

| BaseScore
ImpactRatingScore RiskScore 71: High
2: Severe <<Vulnerability>>
S:2 Data Brake Communication Security T
<<Attack>> Conditior i ity: Low
Interupt Brake Data Communication
S : not Ch: d
AccessRequired: Local Cops: No! ange
attackComplexity: High <<DamageScenario>> ExploitCodeMaturity: Not Defined
Attacker) Collision with Following Vehicle RemediationLevel: Not Defined TemporalScore
PrivilegesRequired: Low
ReportConfidence: Unknown 7.1 : High
Urgency: Low
Userlnteraction: No
<<ThreatScenario>>
Tempting with BrakingSystem
" <<SecurityConcept>>
AttackFeasibilityScore Communication Protection from external Access <<Requirement>>
Communication Protection Concept
1.05: Low Motivated by Standard

Figure 2: This figure shows the Security Model of the braking system based on SAM.

3.3 Scoring Calculation

Thanks to the successful integration of ISO 21434, it is not only possible to evaluate vulnerabilities, but
also attacks and their impact on a system. For this purpose, new scores are introduced in the metamodel
based on the ISO 21434 standard:

1. The Common Vulnerability Scoring System (CVSS) is a framework used to evaluate and measure
the severity of security vulnerabilities. It provides a consistent and standardized way to assess
the potential impact of a vulnerability and assign a score, which can be used to prioritize and
plan security measures. CVSS was developed by the Forum of Incident Response and Security
Teams (FIRST) and is widely used by security professionals and organizations to evaluate and
communicate the severity of security vulnerabilities. This score is already integrated into SAM
Bergler, Tolvanen, and Kolagari (Bergler et al.).

2. AttackFeasibilityScore: The AttackFeasibilityScore refers to the attack feasibility rating from the
standard. This describes the feasibility of an attack on our system. The calculation basis for this is
the already implemented CVSS score. According to CVSS, the ratings are mapped to numbers and
used in the corresponding formula from the standard. The new formulais (£ = 8.22zVxCxPxU)
Macher et al. (2020) where E is the exploitability value; V for the value of the attack vector; C for
the attack complexity value; P for the value of the privileges required and U for the value of the
user interaction. This value can then be mapped back to a textual evaluation based on the standard.

3. ImpactRatingScore: The ImpactRatingScore refers to the impact rating from ISO 21434. This
value describes the severity of the consequences of a damage scenario. The impact rating can have
the values Negligible (0), Moderate (1), Major (1.5) and Severe (2).

4. RiskScore: The RiskScore refers to the risk value determination from the standard. This value
describes the risk that a threat scenario will occur. According to ISO 21434, this value can be
determined either using a matrix or using your own calculation formulas. In both cases, the Impact

11

Rating and the Attack Feasibility Rating are used. In our example, we use the risk matrix provided
in the standard.

In our example, the following values result for the respective scores:
* BaseScore: 7.1 High
» TemporalScore: 7.1 High
 AttackFeasibilityScore: 1.05 Low (£ = 8.2220.5520.4420.6220.85)
* ImpactRatingScore: 2: Severe (based on the definition in the standard)

¢ RiskScore: S: 2 (based on the evaluation matrix in the standard)

4 Integrating ISO 21434 into SAM

The integration of the standard into SAM has changed the metamodel and the items Asset, Damage
Scenario, Threat Scenario, ImpactRatingScore, RiskScore, AttackFeasibilityRating and AttackFeasibil-
ityScore needed to be added as seen in the Figure 2. The current meta model can be viewed online .
The new item asset complements the existing target in the metamodel, which can be both a "Human-
Actor” and an “Item” in the sense of ISO 26262. According to ISO 21434, a damage scenario refers to
a hypothetical event or sequence of events that could lead to harm to the vehicle, its occupants, or its
surroundings. It takes into account the potential sources of harm, the likelihood of the harm occurring,
and the severity of the harm that could result. The purpose of defining damage scenarios is to identify the
risks associated with the use of the vehicle and to establish measures to prevent or mitigate the effects of
those risks. With the introduction of the new item “DamageScenario”, the consequences of a successful
attack can now be modeled and additionally evaluated by the “ImpactRatingScore”. A threat scenario,
according to ISO 21434, is a hypothetical situation or sequence of events that could lead to a security
threat to a vehicle’s functions, components, or data. It includes the potential sources of the threat, the
probability of the threat occurring, and the severity of the consequences that could result. The goal of
defining threat scenarios is to identify potential security risks and vulnerabilities and to establish mea-
sures to prevent or mitigate the effects of those risks. Threat scenarios are an essential part of the risk
analysis process in the development of secure vehicles. By integrating the item “ThreatScenario” it is
now possible to describe the attack scenario more precisely. In addition, in combination with the other
newly introduced scores, an assessment of the risk for such a scenario can be given using the "RiskScore”
item. Based on these scores, a strategy can now be developed as to which measures are to be taken to
avoid them. The already existing item “Attack” was supplemented by the ”AttackFeasibilityScore”,
whereby the feasibility of an attack can be better assessed. Since CVSS is already integrated into SAM,
this can be used as a basis for calculations. The new scores are currently calculated manually because
there is no tool support for the new SAM version. Thanks to the successful integration, the following
points can now be reliably modeled with SAM:

1. Item Definition

2. Asset Identification

3. Identification of Threat Scenarios
4. Impact Rating

5. Attack Path Analysis

6. Attack Feasibility Rating

"https://www.in.th-nuernberg.de/professors/BerglerMa/SAM/

12

7. Risk Value Determination
8. Risk Treatment Decision
9. Cybersecurity Concept

As far as our research suggests, the two outstanding points Cybersecurity Goals and Cybersecurity
Claims are already covered via SAM. However, the standard is not clear here and further research is
therefore required to confirm the thesis with certainty.

5 Conclusion

By providing a structured approach for cybersecurity management of road vehicles, ISO 21434 can
help ensure that cybersecurity considerations are integrated into the development process for automotive
software. However, the process of integrating ISO 21434 into SAM also required adjustments to the
existing meta model.

This paper has provided an overview of the key considerations when integrating ISO 21434 into SAM,
including the benefits and challenges of the integration as well as the practical application of the integra-
tion. The paper has highlighted the importance of adapting or augmenting SAM processes and activities
to integrate ISO 21434 effectively.

By preparing an example, the paper has demonstrated how integrating ISO 21434 into SAM may
improve the quality and security of software in vehicles, which has the potential to result in increased
customer satisfaction, improved brand reputation, and reduced costs associated with software defects and
security breaches.

Next steps in development include a comprehensive evaluation study, as well as providing appropriate
tool support with the new functionality to enable easier use.

The next development steps include both the provision of suitable tool support and an evaluation study
with which the use of SAM in the development process is to be evaluated.

MetaEdit+ will continue to be used for tool support, as good experiences have already been made here
in advance. Thanks to the integration in MetaEdit+, there is not only complete access to the contents of
the EAST-ADL and thus ISO 26262 for functional safety, but also to the security supplement via SAM.
In addition, the newly integrated scores from ISO 21434 can be calculated automatically with MetaEdit+,
as has already been done with CVSS.

The evaluation study is to be carried out in cooperation with representatives from the industry. The
development process of a vehicle component is to be exercised as an example by using the EAST-ADL
and SAM using tool support through MetaEdit+. The representatives from the industry should then give
an assessment and feedback on the usability and benefits of SAM.

13

References

Al-Jarrah, O. Y., C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis (2019). Intrusion detection systems
for intra-vehicle networks: A review. IEEE Access 7, 21266-21289.

Andrasko, J., O. Hamul’ak, M. Mesarcik, T. Kerikmée, and A. Kajander (2021). Sustainable data gover-
nance for cooperative, connected and automated mobility in the european union. Sustainability 13(19),
10610.

Bergler, M., J.-P. Tolvanen, and R. T. Kolagari. Integrating security and safety with systems engineering:
a model-based approach.

Bergler, M., J.-P. Tolvanen, M. Zoppelt, and R. T. Kolagari (2021). Social engineering exploits in auto-
motive software security: Modeling human-targeted attacks with sam. In 37st European Safety and
Reliability Conference, ESREL 2021, pp. 2502-2509.

Cuenot, P., P. Frey, R. Johansson, H. Lonn, Y. Papadopoulos, M.-O. Reiser, A. Sandberg, D. Servat,
R. Tavakoli Kolagari, M. Torngren, et al. (2010). The east-adl architecture description language for
automotive embedded software. In Model-Based Engineering of Embedded Real-Time Systems: In-
ternational Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9, 2007. Revised Selected
Papers, pp. 297-307. Springer.

Das, S., S. R. Geedipally, K. Dixon, X. Sun, and C. Ma (2019). Measuring the effectiveness of vehicle
inspection regulations in different states of the us. Transportation research record 2673(5), 208-219.

Guan, T., Y. Han, N. Kang, N. Tang, X. Chen, and S. Wang (2022). An overview of vehicular cyberse-
curity for intelligent connected vehicles. Sustainability 14(9), 5211.

Hamuldk, O., J. Andrasko, and M. Mesarcik (2021). The digital development of the european union:
data governance aspects of cooperative, connected and automated mobility. IDP: revista de Internet,
derecho y politica= revista d’Internet, dret i politica (34), 7.

Luo, F., Y. Jiang, Z. Zhang, Y. Ren, and S. Hou (2021). Threat analysis and risk assessment for connected
vehicles: A survey. Security and Communication Networks 2021, 1-19.

Macher, G., C. Schmittner, O. Veledar, and E. Brenner (2020). Iso/sae dis 21434 automotive cyberse-
curity standard-in a nutshell. In Computer Safety, Reliability, and Security. SAFECOMP 2020 Work-
shops: DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020, Lisbon, Portugal, September
15, 2020, Proceedings 39, pp. 123—135. Springer.

Manead, M. (2021). About.

Mell, P, K. Scarfone, and S. Romanosky (2006). Common vulnerability scoring system. IEEE Security
& Privacy 4(6), 85-89.

Park, S. and J.-Y. Choi (2020). Malware detection in self-driving vehicles using machine learning algo-
rithms. Journal of advanced transportation 2020, 1-9.

Schoettle, B. and M. Sivak (2014). A survey of public opinion about connected vehicles in the us, the
uk, and australia. In 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp.
687-692. IEEE.

Tolvanen, J.-P. and M. Rossi (2003). Metaedit+ defining and using domain-specific modeling languages
and code generators. In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pp. 92-93.

Turel, H. S., E. M. Yigit, and I. Altug (2007). Evaluation of elderly people’s requirements in public open
spaces: A case study in bornova district (izmir, turkey). Building and Environment 42(5), 2035-2045.

14

UNECE, U. (2021a, Apr). Un regulation no. 155 - cyber security and cyber security management system.

UNECE, U. (2021b, Apr). Un regulation no. 156 - software update and software update management
system.

Wang, Y., Y. Wang, H. Qin, H. Ji, Y. Zhang, and J. Wang (2021). A systematic risk assessment framework
of automotive cybersecurity. Automotive Innovation 4, 253-261.

Zoppelt, M. and R. Tavakoli Kolagari (2019). Sam: a security abstraction model for automotive software
systems. In Security and Safety Interplay of Intelligent Software Systems: ESORICS 2018 Inter-
national Workshops, ISSA 2018 and CSITS 2018, Barcelona, Spain, September 67, 2018, Revised
Selected Papers, pp. 59-74. Springer.

15

References

[1] AADL: Architecture analysis and design language (aadl) (2022), https://www.sei.cmu.
edu/our-work/projects/display.cfm?customel_datapageid_4050=191439, 191439

[2] Aburrous, M., Hossain, M.A., Dahal, K., Thabtah, F.: Experimental case studies for
investigating e-banking phishing techniques and attack strategies. Cognitive Computation
2, 242-253 (2010)

[3] Amendola, S.: Improving automotive security by evaluation—from security health check
to common criteria. White paper, Security Research & Consulting GmbH 176 (2004)

[4] Association, E.A.: Common vulnerability scoring system version 3.1: Specification docu-
ment (2019), http://www.east-adl.info/Specification.html

[5] Bauerdick, H., Gogolla, M., Gutsche, F.: Detecting ocl traps in the uml 2.0 superstructure:
An experience report. In: International Conference on the Unified Modeling Language. pp.
188-196. Springer (2004)

|6] Bergler, M., Tolvanen, J.P., Zoppelt, M., Kolagari, R.T.: Social engineering exploits in
automotive software security: Modeling human-targeted attacks with sam (2021)

[7] Bergler, M., Tolvanen, J.P., Zoppelt, M., Kolagari, R.T.: Social engineering exploits in
automotive software security: Modeling human-targeted attacks with sam. Proceedings of
the 31st European Safety and Reliability Conference (ESREL 2021) (2021)

[8] Brenner, J.: Iso 27001 risk management and compliance. Risk management 54(1), 24-29
(2007)

[9] Campbell, C.C.: Solutions for counteracting human deception in social engineering attacks.
Information Technology & People 32(5), 1130-1152 (2019)

[10] Cheah, M., Nguyen, H.N., Bryans, J., Shaikh, S.A.: Formalising systematic security eval-
uations using attack trees for automotive applications. In: IFIP International Conference
on Information Security Theory and Practice. pp. 113-129. Springer (2017)

[11] Committee, S.I.V.C.S.E., et al.: Sae j3061: Cybersecurity guidebook for cyber-physical
vehicle systems (2016)

[12] Costantino, G., La Marra, A., Martinelli, F., Matteucci, I.. Candy: A so-
cial engineering attack to leak information from infotainment system. In: 2018
IEEE 87th Vehicular Technology Conference (VTC Spring). pp. 1-5 (2018).
https://doi.org/10.1109/VTCSpring.2018.8417879

[13] Cuenot, P., Frey, P., Johansson, R., Lonn, H., Papadopoulos, Y., Reiser, M.O., Sandberg,
A., Servat, D., Tavakoli Kolagari, R., Torngren, M., et al.: 11 the east-adl architecture
description language for automotive embedded software. In: Model-Based Engineering
of Embedded Real-Time Systems: International Dagstuhl Workshop, Dagstuhl Castle,
Germany, November 4-9, 2007. Revised Selected Papers. pp. 297-307. Springer (2010)

[14] Feiler, P.H., Lewis, B.A., Vestal, S.: The sae architecture analysis & design language
(aadl) a standard for engineering performance critical systems. In: 2006 ieee conference
on computer aided control system design, 2006 ieee international conference on control
applications, 2006 ieee international symposium on intelligent control. pp. 1206-1211. IEEE
(2006)

67

[15] FIRST: Architecture analysis and design language (aadl) (2022), https://www.first.or
g/cvss/specification-document

[16] FIRST.Org, I.: First, common vulnerability scoring system, version 3.1 (2019), https:
//www.first.org/cvss/v3-1/cvss-v31l-specification_r1.pdf

[17] Forbes, B.T.: Tesla in taiwan crashes directly into overturned truck, ignores pedestrian,
with autopilot on (2020), https://www.forbes.com/sites/bradtempleton/2020/06/0
2/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestr
ian-with-autopilot-on/?sh=3ec11c5758e5

[18] Foster, 1., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: A story of
telematic failures. In: 9th {USENIX} Workshop on Offensive Technologies ({WOOT?} 15)
(2015)

[19] Fiirst, S., Bunzel, S.: Autosar. Handbuch Fahrerassistenzsysteme: Grundlagen, Kompo-
nenten und Systeme fiir aktive Sicherheit und Komfort pp. 105-122 (2015)

[20] Greenberg, A.: After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix. Wired (2015)

[21] Greenberg, A.: The Jeep Hackers Are Back to Prove Car Hacking Can Get Much Worse.
Wired (January 2016)

[22] Greenberg, A.: Radio Attack Lets Hackers Steal 24 Different Car Models. Wired (March
2016)

[23] Greenberg, A.: Hackers can clone millions of Toyota, Hyundai, and Kia keys. Wired (2020)

[24] Health, U.: 5 real-life medical devices inspired by science fiction (2020), https://www.us
fhealthonline.com/resources/healthcare/5-real-life-medical-devices-inspire
d-by-science-fiction/

[25] Hemel, T.: Automated interactive threat analysis of it architectures (2019)

[26] Van den Herrewegen, J., Garcia, F.D.: Beneath the bonnet: A breakdown of diagnostic se-
curity. In: European Symposium on Research in Computer Security. pp. 305-324. Springer
(2018)

[27] Holz, H.J., Applin, A., Haberman, B., Joyce, D., Purchase, H., Reed, C.: Research meth-
ods in computing: what are they, and how should we teach them? ACM SIGCSE Bulletin
38(4), 96-114 (2006)

[28] Hubaux, J.P., Capkun, S., Luo, J.: The security and privacy of smart vehicles. IEEE
Security & Privacy 2(3), 49-55 (2004)

[29] Lab, T.K.S.: Experimental security assessment of bmw cars: A summary report (2018)
[30] Lab, T.K.S.: Experimental security research of tesla autopilot (2019)

[31] Macher, G., Armengaud, E., Brenner, E., Kreiner, C.: A review of threat analysis and risk
assessment methods in the automotive context. In: International Conference on Computer
Safety, Reliability, and Security. pp. 130-141. Springer (2016)

[32] Macher, G., Schmittner, C., Veledar, O., Brenner, E.: Iso/sae dis 21434 automotive cy-
bersecurity standard-in a nutshell. In: Computer Safety, Reliability, and Security. SAFE-
COMP 2020 Workshops: DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020,
Lisbon, Portugal, September 15, 2020, Proceedings 39. pp. 123-135. Springer (2020)

68

[33] Matulevi¢ius, R.: Security risk-oriented misuse cases. In: Fundamentals of Secure System
Modelling, pp. 93-105. Springer (2017)

[34] MetaCase: The graphical metamodeling example (2018), https://metacase.com/suppo
rt/55/manuals/GraphicalMetamodeling. pdf

[35] MetaCase: Metaedit+ user’s guide (2018), https://metacase.com/support/55/manual
s/

[36] MetaCase: East-adl tutorial (2019)

[37] Microsoft-Corporation: The stride thread model (2005), https://msdn.microsoft.com
/en-us/library/ee823878.aspx

[38] Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE Transactions on software engineering 35(6), 756
779 (2009)

[39] Mouton, F., Leenen, L., Venter, H.S.: Social engineering attack examples, templates and
scenarios. Computers & Security 59, 186-209 (2016)

[40] Mouton, F., Leenen, L., Venter, H.: Social engineering attack exam-
ples, templates and scenarios. Computers & Security 59, 186-209 (2016).
https://doi.org/https: //doi.org/10.1016/j.cose.2016.03.004, https://www.scienced
irect.com/science/article/pii/S0167404816300268

[41] n, L..: Road vehicles - cybersecurity engineering (20222019), https://www.iso.org/stan
dard/70918.html

[42] News, C.G.B.: Tesla’s autopilot ’tricked’ to operate without driver (2021), https://www.
bbc.com/news/technology-56854417

[43] Nie, S., Liu, L., Du, Y.: Free-fall: Hacking tesla from wireless to can bus. Briefing, Black
Hat USA 25, 1-16 (2017)

[44] Nie, S., Liu, L., Du, Y., Zhang, W.: Over-the-air: How we remotely compromised the
gateway, bem, and autopilot ecus of tesla cars. Briefing, Black Hat USA (2018)

[45] Pattaranantakul, M., He, R., Song, Q., Zhang, Z., Meddahi, A.: Nfv security survey: From
use case driven threat analysis to state-of-the-art countermeasures. IEEE Communications
Surveys & Tutorials 20(4), 3330-3368 (2018)

[46] PurpleSec: 2021 cyber security statistics the ultimate list of stats, data & trends (2021),
https://purplesec.us/resources/cyber-security-statistics/

[47] SAE, S.: j3061, cybersecurity guidebook for cyber-physical vehicle systems. Nr 1, 52
(2016)

[48] Salahdine, F., Kaabouch, N.: Social engineering attacks: A survey. Future Internet 11(4),
89 (2019)

[49] Sion, L., Yskout, K., Van Landuyt, D., Joosen, W.: Risk-based design security analysis.
In: Proceedings of the 1st International Workshop on Security Awareness from Design to
Deployment. pp. 11-18 (2018)

69

[50] Sommer, F., Diirrwang, J., Kriesten, R.: Survey and classification of automotive security
attacks. Information 10(4), 148 (2019)

[61] SysML: System modeling language (sysml) (2022), https://sysml.org/

[52] Tahaei, M., Vaniea, K., Beznosov, K., Wolters, M.K.: Security notifications in static analy-
sis tools: Developers’ attitudes, comprehension, and ability to act on them. In: Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. pp. 1-17 (2021)

[53] ThreatModeler Software Inc, ThreatModeler@®) Software, I.: Automated threat modeling
solution (May 2021), https://threatmodeler.com/

[54] Timberg, C.: Hacks on the Highway. Washington Post (July 2015)

[55] UNECE, U.: Un regulation no. 156 - software update and software update management
system (Apr 2021), https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-1566-software-update-and-software-update

[56] Wang, Z., Zhu, H., Sun, L.: Social engineering in cybersecurity: Effect mechanisms, human
vulnerabilities and attack methods. IEEE Access 9, 11895-11910 (2021)

[57] Ward, C.D.: Software verification for a custom instrument using vectorcast and codesonar
(2011)

[58] Wilke, C., Demuth, B.: Uml is still inconsistent! how to improve ocl constraints in the
uml 2.3 superstructure. Electronic Communications of the EASST 44 (2011)

[59] Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In: Workshop
on Embedded Security in Cars. pp. 1-13. Citeseer (2004)

[60] Zelkowitz, M.V., Wallace, D.: Experimental validation in software engineering. Informa-
tion and Software Technology 39(11), 735-743 (1997)

[61] Zhang, Y., Ge, B., Li, X., Shi, B., Li, B.: Controlling a car through obd injection. In: 2016
IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud).
pp. 26-29. IEEE (2016)

[62] Zoppelt, M., Kolagari, R.T.: Sam: a security abstraction model for automotive software
systems. In: Security and Safety Interplay of Intelligent Software Systems, pp. 59-74.
Springer (2018)

70

