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Abstract
Industrial control systems have been targeted by numerous
cyber attacks over the past few decades which causes dif-
ferent problems related to data privacy, financial losses and
operational failures. One potential approach to detect these
attacks is by analyzing network data using machine learn-
ing and employing network anomaly detection techniques.
However, the nature of these systems often involves their
geographical dispersion across multiple zones, which poses
a challenge in applying local machine learning methods for
detecting anomalies. Additionally, there are instances where
sharing complete operational data between different zones is
restricted due to security concerns. As a result, a promis-
ing solution emerges by implementing a federated model for
anomaly detection in these systems. In this study, we in-
vestigate the application of machine learning techniques for
anomaly detection in network data, considering centralized,
local, and federated approaches. We implemented the lo-
cal and centralized methods using several simple machine-
learning techniques and observed that Random Forest and
Artificial Neural Networks exhibited superior performance
compared to other methods. As a result, we extended our
analysis to develop a federated version of Random Forest
and Artificial Neural Network. Our findings reveal that the
federated model surpasses the performance of the local mod-
els, and achieves comparable or even superior results com-
pared to the centralized model, while it ensures data privacy
and maintains the confidentiality of sensitive information.

Keywords: Network Anomaly Detection, Machine Learn-
ing, Federated Learning, Random Forest, Artificial Neural
Network.

I Introduction
Modern industrial communication systems may be com-
posed of a core network of trusted switches and routers de-
veloped in accordance with best industrial practices [35].
For each router in the core network, there may be tens of
end devices. In traditional, off-line, industrial networks, the
set of devices and the topology of the factory, is often static,

meaning that the set of expected traffic flows is well defined
in advance. However, with the rise of Industry 4.0 and In-
ternet of Things (IoT) the end devices may become even
more numerous, less expensive, and likely more vulnerable
to cyber attacks [35]. Such a vulnerability may escalate into
events such as the Colonial Pipeline ransomware attack, that
halted pipeline operations, or even to death of humans [21].
Less dramatic, but almost as common problems occur from
human error, e.g. misconfiguration [25]. All these problems
can be seen as anomalies in the network traffic, i.e. some
deviations from the normal behaviour [4]. One possible mit-
igation is employment of anomaly detection techniques. By
monitoring network traffic, alarms may be raised an attack is
ongoing or when human misconfiguration is detected.

Utilizing Machine Learning (ML) [33] and Deep Learn-
ing (DL) [18] in intrusion detection systems showed good
performance for detecting anomalies in network data. The
ongoing Artificial Intelligence (AI) chip race is expected to
drive down the cost of AI/ML computation, making it more
accessible for various applications [24]. This opens up pos-
sibilities for integrating AI/ML-enhanced anomaly detection
into industrial communication systems, including switches,
routers, and other devices. Consequently, researchers have
focused on developing ML-based solutions [13, 29] to de-
tect anomalies in the network traffic. However, these solu-
tions have certain drawbacks, such as the need for central-
ized data storage for ML models training and the security
risks associated with transmitting data from local nodes to a
central server. Additionally, network bandwidth limitations
and latency issues may arise during data transmission to the
server [22]. To address these limitations, Federated Learn-
ing (FL) has emerged as a promising approach, enabling ma-
chine learning on decentralized data sources while ensuring
privacy, security, and efficiency [17, 12]. Furthermore, FL
has demonstrated remarkable results in the domain of intru-
sion detection. For instance, Tang et al. [32] achieved ac-
curacy levels nearly equivalent to those of centralized deep
learning models when applied to the CIC-IDS-2017 network
intrusion detection dataset. Moreover, Chen et al. [5] intro-
duced the Federated Learning-based Attention Gated Recur-
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rent Unit (FedAGRU), which enhances detection accuracy
by approximately 8%, highlighting the potential of FL in this
domain.

In this paper, we explore FL for network anomaly detec-
tion in a distributed industrial network. To achieve this,
we used the Westermo network traffic data set [31], that
was generated by intentionally introducing various network
anomalies into a simulated factory testbed, including net-
work cyber attacks and network switch misconfigurations.
The network traffic was captured at multiple locations within
the network. The goal of this work is to detect these anoma-
lies using different ML algorithms placed on different loca-
tions in the network. The work focuses on the supervised
ML algorithms [20], including: Logistic Regression, Sup-
port Vector Machine, Artificial Neural Network, K-Nearest
Neighbours, Decsion Tree and Random Forest.

The contributions of this paper cover implementing and
comparing three different approaches using different ML
algorithms for anomaly detection and classification in dis-
tributed network data:

• a centralized approach - where all the data was trans-
mitted to a central node for analysis.

• a local approach - where each switch has the responsi-
bility of detecting the anomalies in its own data.

• a FL approach - where the local switches collaborate to
create a global model.

To the best of authors knowledge the used dataset is an
unique example of open industrial data where the network
data was recorded on multiple locations in a distributed sys-
tem, which makes it perfect to evaluate FL approaches.

Our findings indicate that the FL approach achieved com-
parable or even superior performance to the centralized
model while also ensuring data privacy and security. This
implies that the FL approach holds promise for detecting net-
work anomalies effectively without compromising sensitive
information.

The remaining sections of this paper are structured as fol-
lows: Section II presents the methodology employed in this
research, encompassing details about the dataset, the exper-
iments conducted, and the experimental settings. Section III
presents the results obtained from our experiments. In Sec-
tion IV, we discuss the results, and outline future directions.
Finally, Section V concludes the paper.

II Methodology
This section presents the dataset used, machine learning and
federated learning algorithms, as well as experimental set-
tings.

A Dataset

The Westermo network traffic data set1 [31], was created
to simulate an industrial communication system and gather

1https://github.com/westermo/network-traffic-dataset

data from multiple nodes in the network simultaneously. The
network consisted of six network switches that acted as the
core of the network. These switches utilized the widely
used redundancy protocol, called Rapid Spanning Tree Pro-
tocol (RSTP). To further enhance the simulation, the In-
dustrial Control System SIMulator (ICSSIM), [8], was em-
ployed. ICSSIM was designed to emulate a bottle-filling fac-
tory and consisted of two Programmable Logic Controller
(PLC) nodes, one Human Machine Interface (HMI), and a
simulator for the physical world.

Data collection was made repeatable by utilizing a script
within the Westermo test framework [30]. Initially, a known
normal state was configured. Subsequently, data recording
commenced in three nodes by redirecting network traffic
from these devices to a laptop running the test framework.
The script then iterated through various misconfigurations
and attacks against the devices for approximately 90 min-
utes. The events included:

• Bad-Misconf: misconfigured IP addresses, such as set-
ting an IP to 198.134.18.7 instead of 198.18.134.7 to
simulate human error.

• Bad-Misconf-Duplication: IP duplication to simulate
human error.

• Bad-MITM: a man-in-the-middle (MITM) attack that
intercepted and modified packet contents between a
PLC and the HMI.

• Bad-Portscan1: a single device port scan using NMAP.

• Bad-Portscan2: Multiple device port scan with NMAP.

• Bad-SSH: SSH password guessing.

• Good-SSH: Login over SSH.

Every event was implemented within the test framework, ex-
cept the MITM attack that was conducted using ICSSIM
from a separate Raspberry Pi. Data was collected from three
switch nodes: Right, Bottom, and Left. Upon completing the
data collection process, three PCAP files were generated.

The final dataset consists of three CSV-formatted files,
one for each switch node, containing network flow data, gen-
erated by analyzing the PCAP files using the ICSFlowGener-
ator tool [7]. This tool examines the raw data and computes
various characteristics of network flows, including flow net-
work addresses, number of sent and received packets, packet
size, duration, network protocol, average payload size, and
various TCP features such as packet delays, TCP flags statis-
tics, TCP header information, etc. This process resulted in
60 features for each instance in the dataset, where each in-
stance represents one network flow. Additionally, the CSV
files contain four different labels following two different la-
beling strategies: NST [10] and IT [16], for both binary and
multiclass classification. The resulting dataset is obtained by
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processing over 1.8 million network packets to 48657 net-
work flows and is presented in Table 1, which outlines the
class distribution of the generated datasets.

B Dataset pre-processing

During the dataset preprocessing phase, we performed the
following steps:

1. Removing features: The IP and MAC address columns
in the datasets were removed because using this data
makes anomaly detection a trivial task, as most anoma-
lies are initiated from one attacker node. Additionally,
6 other time-related columns were removed. This pro-
cess resulted in 48 features.

2. Feature transformation: Categorical columns were
converted into an array of binary columns using the
one-hot encoding technique. This process resulted in
53 features in total.

3. Data cleaning: Missing values in the dataset (e.g., TCP
features for non-TCP network flows) were filled with
zero.

4. Data normalization: Input variables were normalized.
All input variables are either binary values or real num-
bers. Binary values remained unchanged, while real
numbers were normalized in the range [0, 1] using the
Min-Max normalization technique with respect to the
training set.

5. Label selection: We selected NST labeling strategy by
using ’NST-B-Label’ for anomaly detection and ’NST-
M-Label’ for anomaly classification

6. Label transformation: We changed the class of ’Good-
SSH’ to the ’Normal’ class, as those network flows are
not indeed anomalies.

C Machine Learning Algorithms

In this paper, we are using six supervised ML algorithms to
perform the task of network attack detection and classifica-
tion. This subsection briefly describes those ML algorithms:

1) Logistic regression (LR): LR [23] is a statistical tech-
nique used to analyze the relationship between a characteris-
tic of interest and a set of independent variables. It predicts
the probability of an input belonging to a specific class by
fitting a logistic function to the data. The logistic function
maps the features to a probability score of 0 to 1. Based on
this probability, LR assigns the input to the class with the
highest likelihood, enabling it to perform binary and multi-
class classification.

2) Support Vector Machine (SVM): SVM [1] is an algo-
rithm that finds a hyperplane in a high-dimensional feature
space, which maximizes the separating margin between dif-
ferent classes. The higher-dimensional feature space is cre-
ated by employing kernel functions to transform the data.

3) Artificial Neural Network (ANN): ANN [29] is com-
posed of interconnected nodes, known as neurons, which are
arranged into layers. In this network, each neuron receives
inputs which are multiplied by the weights assigend to that
neuron, and then applies an activation function to generate
an output. This output is used to detect the target classes.
The complexity of the problem determines the number of
hidden layers and neurons of each layer that can be present
in an ANN.

4) K-Nearest Neighbors (KNN): KNN [6] is a distance-
based method that predicts the target class by considering
the K closest training examples in the feature space. The al-
gorithm uses a majority vote of the labels or of these nearest
neighbors to perform classification. The choice of K deter-
mines the balance between bias and variance in the model.
Smaller values lead to more complex models that may overfit
the data, while larger values introduce more bias but reduce
the risk of overfitting. The distance metric used to calculate
proximity is another parameter to tune in this algorithm.

5) Decision Tree (DT): DT [14] is an ML algorithm
formed by decision nodes and leaf nodes. The values of the
features from the dataset are compared with a threshold at
the decision nodes, with each possible outcome resulting in
a branch that can lead either to another decision node or to a
leaf node that contains a final prediction. Different splitting
rules [34] can be used to construct a DT and in this paper we
considered two mostly used ones: gini and entropy.

6) Random Forest (RF): RF [28] is composed of multiple
DTs, where each tree uses a random subset from the training
set. The number DTs is a hyper-parameter of RF. In this
paper, the final prediction of RF is calculated by aggregating
the predictions of the different DTs using the simple voting
technique, which takes a majority vote as the predicted class.

D Federated Learning

The goal of the paper is to evaluate how a FL setup influ-
ences the performance of ML algorithms. In a FL setup,
individual models that are trained on individual clients are
merged in a centralized server in order to share the gained
knowledge. Three ML algorithms that have the best per-
formance on individual clients (refer to Section B) are RF,
KNN, and ANN. Since KNN is not a suitable choice for FL
(it keeps all data in the memory which breaks FL privacy
paradigm), we decided to develop RF and ANN in a feder-
ated setup.

1) RF FL: In this paper, we are using an FL framework
for network attack detection and classification based on RF,
which is proposed in [19]. The main idea of the frame-
work is to train independent RFs on clients using the lo-
cal data, merge independent models into a global one on
the server and send it back to the clients for further use.
The independent models can be merged using four differ-
ent methods. The first two methods sort DTs per RF and
select the best ones from each RF based on the accuracy
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Table 1: Statistics of network flows in the Right, Bottom, and Left dataset.

Right Bottom Left All
no % no % no % no %

Normal 3464 73.4% 29159 82.7% 4025 47.2% 36,648 75.3%
Bad-Misconf 261 5.5% 2103 5.9% 313 3.7% 2677 5.5%
Bad-Misconf-Duplication 311 6.6% 2453 6.9% 367 4.3% 3131 6.4%
Bad-MITM 102 2.2% 504 1.4% 102 1.2% 708 1.5%
Bad-Portscan1 9 0.2% 29 0.1% 229 2.7% 267 0.5%
Bad-Portscan2 299 6.3% 397 1.1% 1483 17.4% 2179 4.5%
Bad-SSH 265 5.6% 751 2.1% 1952 22.9% 2968 6.1%
Good-SSH 9 0.2% 8 0.03% 62 0.7% 79 0.2%
Sum 4720 100.0% 35404 100.0% 8533 100.0% 48657 100.0%

(Sorting DTs per RF based on Accuracy - S_DTs_A) or
weighted accuracy (Sorting DTs per RF based on Weighed
Accuracy - S_DTs_WA). The remaining two methods as-
semble all DTs from all independent RFs and select the best
ones based on the accuracy (Sorting All DTs based on Ac-
curacy - S_DTs_A_All) or weighted accuracy (Sorting All
DTs based on Weighed Accuracy - S_DTs_WA_All).

2) ANN FL: Our approach involves training local clas-
sifiers on individual devices using the data stored locally.
Once the local training is complete, the local models are
transmitted to the central server. At the central server, we
perform model aggregation by combining the models from
different devices. We create an ensemble model that aggre-
gates the outputs of the local models. To achieve this, we
employ three different aggregation methods. The first aggre-
gation method, ANN_FL, calculates the average prediction
of the local models’ outputs. This method takes the mean of
the predictions generated by each local model. The second
method, called ANN_FL_Weight, utilizes weighted averag-
ing, considering the relative sizes of the trained datasets on
each local device. The weights, w1,w2, ...,wn, assigned to
the models are based on the proportions of the trained data
on each device. The third method, called ANN_FL_Rank,
also employs weighted averaging, but the weights are as-
signed based on the rank of the local models. Each local
model is assigned an integer rank weight (wi) ranging from
1 to n, with the model created by the smallest dataset as-
signed weight 1 and the model created by the largest dataset
assigned weight n.

E Experimental Settings

To explore the effectiveness of different approaches for
Anomaly Detection (AD) and Anomaly Classification (AC),
in other words binary (2 classes) and multi-class classifica-
tion (7 classes), on network data, three distinct experiments
are conducted: centralized approach, local approach, and FL
approach.

1) Experiment 1 - centralized approach: The fundamen-
tal assumption is that the central node performs AD/AC
by considering all the information received from the nodes.

This process requires merging three distinct datasets into a
single entity, which is then divided into training, validation,
and testing sets in proportions of 70-10-20%, respectively.
The training dataset is used to develop an AD/AC model,
while the validation dataset is used to fine-tune hyperparam-
eters of different ML algorithms. Finally, the performance
of these models is evaluated using the test dataset.

2) Experiment 2 - local approach: In this approach, the
individual nodes are responsible for conducting AD/AC us-
ing models generated using their local data. To simulate this
scenario, we partition the three datasets into training, vali-
dation, and testing subsets, preserving the same proportions
as in Experiment 1. We independently trained ML models
using each training subset and used the validation subset to
determine the optimal hyperparameters. Subsequently, we
assessed the performance of these models on their respec-
tive test subsets, as well as on the test subsets of other nodes.

3) Experiment 3 - FL approach: In this approach, the
server takes on the responsibility of creating an AD/AC
model without directly receiving training data from the lo-
cal nodes. The approach combines the individual models
trained by the nodes in Experiment 2 to develop a central-
ized model. To evaluate the effectiveness of the FL model,
we assess its performance using the three distinct test sets
from each local node (Right, Bottom and Left test set), as
well as using the all test dataset together (All test set).

To improve the estimation of model performance, opti-
mize data utilization, and mitigate bias, we employed 5-fold
cross-validation. This approach involves creating separate
models for each fold and obtaining average performance re-
sults across the folds [26]. Additionally, our datasets consist
of imbalanced data with varying instances of anomalies and
normal classes. To tackle this challenge, we measure ac-
curacy in percentage, and F1-score, recall, and precision in
[0,1] range for all experiments. Among these metrics, we
primarily utilize the F1-score for comparison, as it is based
on precision and recall and exhibits a similar correlation to
accuracy.
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III Results
In this section, we present the results from the three exper-
iments: centralized approach, local approach, and FL ap-
proach, for both AD and AC.

A Experiment 1 - centralized approach

The results of Experiment 1, where the ML algorithms are
tested on the entire dataset, are shown in Table 2. RF ob-
tained the best performance, with F1-score around 0.85 for
AD and 0.81 AC. Then, very closely, ANN and KNN ob-
tained a F1-score of between 0.82 and 0.84 for AD, and 0.78
to 0.80 for AC. Finally, we can see how the worst perfor-
mance is obtained by SVM and LR for both problems. An
interesting remark can be made for LR, which increases its
F1-score by 0.05 from AD to AC. All other algorithms have
a lower F1-score when solving AC in comparison to AD. RF
and ANN are selected to be used in a FL setup as the best
performing and most suitable algorithms.

B Experiment 2 - Local approach

The results of Experiment 2, where ML algorithms are
trained and tested locally on the clients, using their own sub-
sets, are shown in Fig. 1. The same pattern between AD
and AC can be noticed since all the algorithms have a simi-
lar performance independently of the problem to be solved.
For instance, KNN training with the Right subset and testing
on the Bottom subset has poor performance for both AD and
AC. The only algorithm that does not have a correlation is
LR, which performs much better for AD than for AC.

Additionally, we can see similarities between the algo-
rithms. The first group, formed by Decision tree-based al-
gorithms (DT and RF), performs in the same way. We can
see how, independently on which data we train or test, we
can have satisfactory performance. This means that the al-
gorithm can retrieve information from subsets with a small
amount of data (Left and Right) and still perform AD or AC
on the big subset (Bottom). In contrast, the second group,
formed by KNN, SVM, and ANN, cannot obtain any knowl-
edge from the Left and Right subsets that can be used on
the Bottom subset. This last statement is also true when per-
forming AC with LR.

C Experiment 3 - FL approach

The results of ML algorithms that are implemented in a FL
setup are presented on Fig. 2 and further discussed in this
subsection. Each FL algorithm from the server is compared
to its own client versions, on three separate testing sets and
the entire testing set.

1) FL RF: Results for RF are presented on Fig. 2a and
2b, for AD and AC respectively. For both AD and AC,
we can notice that RF from the server outperforms all three
client versions when it is tested on the entire testing set.
When it is tested on the subsets from clients, we can see
that it can reach a performance that is very close to the per-
formance of the client model on the subset of that specific

client. With respect to hyper-parameters that were used on
the server, the methods that assemble all DTs from all inde-
pendent RFs, and then select the best ones (S_DTs_A_All
and S_DTs_WA_All) had the best performance for most of
the independent runs (5 folds). When it comes to splitting
methods and the number of DTs, entropy was the most suc-
cessful splitting rule, while the final number of DTs used in
the server varied from 10 to 90 for AD and from 20 to 35 for
AC.

2) FL ANN: Results for ANN are presented on Fig. 2c
and 2d, for AD and AC respectively. For AD, it is ev-
ident that the FL approach outperforms the single clients
across most of datasets, particularly when considering the
aggregated test set (All). However, there is a slight de-
crease in performance observed on the Bottom test set com-
pared to the model from Bottom client. Similarly, in the
AC task, the FL approach consistently achieves better or
comparable performance to the local models. Notably, a
significant improvement is observed when using the FL ap-
proach on the aggregated test set. As mentioned before, the
potential aggregation approaches included in this work are
ANN_FL, ANN_FL_Weight, and ANN_FL_Rank. From
them, ANN_FL_Weight outperformed other methods on
most of the independent runs (5 folds).

IV Discussion
In this section, we discuss the results by comparing the cen-
tralized, local and FL approaches. Additionally, potential
future directions are presented.

A Comparison of FL approach with the centralized
and local approach

The results of RF and ANN for the different approaches
are given in Table 3. For RF, we can see that the results
of centralized approach are better than for the local one.
This means that by training on a single subset, we gain less
knowledge than by training on the entire dataset. However,
by using FL approach, where the training is done on each
subset separately, same as in the local approach, but the
knowledge is combined, the performance of the algorithm
improves by 0.035 for AD and by 0.026 for AC, compared
to the centralized approach. This improvement is expected
since, even thought independent RFs are trained on the lo-
cal data, only the best DTs from them are kept in the global
model.

In the case of ANN, it is evident that the performance of
centralized approach in AD surpasses the performance of lo-
cal models. This comparison indicates that when conduct-
ing AD with partial observations of network traffic, there
is a potential for performance degradation. However, the
performance of FL approach demonstrates that FL can mit-
igate these performance losses, although it is less effective
than centralized AD when considering ANN. Nonetheless,
FL achieves comparable accuracy in AC when employing
aggregated classification and leveraging shared models.
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Table 2: Results of centralized ML models AD and AC using the entire dataset. Three best algorithms are shown in boldface.

AD AC
ML Accuracy (%) F1-score Precision Recall Accuracy (%) F1-score Precision Recall
LR 75.4814 0.6494 0.5697 0.7548 78.6752 0.7030 0.6393 0.7868
SVM 75.4650 0.6501 0.6560 0.7546 75.4773 0.6494 0.5738 0.7548
ANN 85.1409 0.8273 0.8703 0.8514 84.7031 0.784 0.7454 0.847
KNN 85.9506 0.8450 0.8612 0.8595 85.0731 0.8055 0.7760 0.8507
DT 81.0675 0.8063 0.8038 0.8107 79.5405 0.7862 0.7779 0.7954
RF 86.9125 0.8545 0.8762 0.8691 86.2836 0.8137 0.7876 0.8628

Figure 1: F1-score of local ML algorithms when training and testing on different clients for AD and AC problems. Better
values are shown with a darker blue.

Notably, the FL version of RF consistently outperforms
ANN, as evidenced by their performance on the entire
dataset: 0.89 for AD compared to 0.74, and 0.84 for AC
compared to 0.78.

Additionally, the performance of FL algorithms on differ-
ent classes of anomalies, as illustrated in Figure 3, reveals
interesting findings. Both RF and ANN have a very good
performance for detecting three out of six classes (0:Normal,
5:Bad-Portscan2, and 6:Bad-SSH). On the other hand, both
of them demonstrate poor performance in detecting miscon-
figuration anomalies, however, RF shows some tiny success
compared to ANN that has F1-score equal to 0. A similar
behavior can be noticed with the class 4:Bad-Portscan1, due
to the small number of instances of this class in the dataset.
Furthermore, ANN exhibits weak performance in detecting
MITM attacks, whereas RF is able to detect it with a very
good performance.

It is important to mention that the remarkable perfor-

mances of FL approach are achieved while ensuring data se-
curity and privacy since this approach does not involve trans-
ferring the entire training set to the centralized location.

B Future directions

This paper uses a network traffic dataset, which contains
Operational Technology (OT) network emulation. However,
considering the future of industrial networks, it is expected
that there will be a combination of traditional OT devices,
IT-type network functionalities, heterogeneous services, and
communication protocols over the edge-fog-cloud spectra,
as well as a larger number of potentially inexpensive nodes
[35, 2, 9, 15]. Additionally, network segmentation is a com-
monly used counter-measure to address cybersecurity prob-
lems [11, 27]. Therefore, a first topic for future work could
cover the creation of improved datasets that will include
larger, heterogeneous, and segmented networks to represent
real-world scenarios better. Additionally, the datasets can
be improved by introducing more attacks, and in particular,
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Figure 2: F1-score of local ML models on clients and global ML on the server on different test sets

Table 3: Comparison of F1-score of different approaches on the entire testing set. The best approach per algorithm and
problem is shown in boldface.

Problem: AD AC
Approach: Centralized Local FL Centralized Local FLAlgorithm Min Avg Max Min Avg Max
RF 0.855 0.665 0.768 0.847 0.890 0.814 0.560 0.714 0.812 0.840
ANN 0.827 0.406 0.525 0.727 0.738 0.784 0.395 0.518 0.760 0.784

more network misconfigurations [25], and other human er-
rors that can result in network anomalies. To the best of our
knowledge, human errors are not well covered in network
traffic data sets other than Westermo’s.

Secondly, our results show that ML was not very effective
in detecting misconfiguration. A possible future direction
would be to use hybrid intrusion detection combining rule-
based and learning intrusion detection systems [3].

Thirdly, a promising direction to extend this work is to ex-
plore the feasibility of deploying federated AI/ML-powered
anomaly detection directly within routers. Both the trends
of less expensive AI chips and the advances in network with
a changing edge-fog-cloud spectra would impact this line of
research [35, 2, 9, 24]. By investigating the implementation
of federated AI/ML models at the network edge, fog, and/or
cloud, researchers could explore trade-offs between compu-
tational power, storage possibilities, as well as network la-
tency and load.

V Conclusions

This paper investigates utilizing ML techniques for AD
and AC in industrial communication systems, providing a
comparative analysis of centralized, localized, and FL ap-
proaches. To achieve this, we conducted experiments West-
ermo network traffic data set containing various network
anomalies, such as cyber-attacks and switch misconfigura-
tions. Our study involved implementing centralized and lo-
cal ML models with six different ML algorithms, show-
ing that RF and ANN outperformed the other algorithms,
demonstrating superior performance for AD and AC. Addi-
tionally, we observed that employing only the localized data
from individual nodes in the network significantly decreased
the effectiveness of models when compared to the central-
ized approach. To prioritize data privacy and confidential-
ity of sensitive information while maintaining performance,
we investigated the FL approach by harnessing decentralized
data sources and collaborative model development. Specifi-
cally, we developed a federated version of RF and ANN. Our
research revealed that the federated model achieved compa-
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Figure 3: F1-score of FL RF and FL ANN on the different classes for the entire testing set.

rable or even superior performance when compared to the
centralized model, all while ensuring the preservation of data
privacy and security. This implies that the FL approach holds
promise for detecting network anomalies effectively without
compromising sensitive information.
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