
Overlapping Flows

Husni Khanfar

School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Väster̊as, Sweden
Husni.Khanfar@mdu.se

Abstract. The Set of Overlapping Flows (SOF) is a data structure that consists of pro-
gram flows wherein each flow overlaps or is overlapped with at least one other flow in
the set. This data structure enables us to build approaches to computing the control de-
pendencies in unstructured programs on demand. Forming this data structure on demand
is challenging because it requires checking the overlap between each flow in this set and
each flow in the program under analysis. As a result, any static program analysis approach
built on this data-structured foundation is expensive in terms of time. It needs better time
complexity.
Our previous works presented an invented program representation for on-demand compu-
tations: the Predicted Code Block graph (PCB graph). This graph considers conditional
statements as its main blocks. This work enhances the PCB graph to obtain any demanded
SOF from it. The experimental evaluations show that computing the SOFs from the PCB
graph is fast and scalable.

Keywords: Static Program Analysis, Control Dependence, Demand-Driven, Predicated
Code Block (PCB) graph, Set of Overlapping Flows (SOF), Softwre Maintenance, Control
Flow Graph.

1 Introduction

Static Program Analysis examines the source code without running it, and one of its main
methods is Abstract Interpretation. This method abstracts some properties from the semantic of
the code statements to represent the program’s behavior. Each property has an abstract domain
unrelated to the concrete values of the variables in the program. Abstract Interpretation works
mainly with variables (data). Thus, it is also called Dataflow Analysis.

For example, the simple program in Fig 1-A shows that the variable a at the end of the
program might be defined at labels 2 or 4. Further, it concludes that the variable z is not defined
after executing Label 1. The property here is the scope of each definition (assignment), and
the domain of this property is {Defined, Not Defined, Not Known}. This analysis is a dataflow
analysis, and it is called Reaching Definition. It allows us to understand where to use the variables
and the possible assignments of the variables at each program point.

There are five steps to establish a dataflow analysis. The first generates dataflow queries
from the semantics of the source code. In Fig 1-A, the query (b, 1) is generated from Label 1,
while (a, 2) is generated from Label 2. The second step propagates the queries in the forward or
backward flows. Since the program flows are the means of the analysis besides the statements,
dataflow analyses build their algorithms on the Control Flow Graph(CFG), which represents the

MRTC Report, Mälardalen Real-Time Research Centre - Mälardalen University - Sweden
ISRN: MDH-MRTC-349/2024-1-SE
Received in 1-Feb-2024 Accepted in 2-Feb-2024

1

Husni Khanfar

statements as nodes and the flows as edges. In CFG, the nodes are connected by edges, and each
node has two points, entry point and exit point. The third step tracks the propagation of the
queries by saving a copy of each query at each program point it reaches. The fourth step applies a
monotonic dataflow equation to each node. These equations constitute the entire mechanism that
controls the propagation of the queries. Each equation associating with a node allows or prevents
the queries from passing its node individually. Each equation has two inputs: the outputs from
node neighbors and the node semantics. In the final step, dataflow equations run on iterations.
In each iteration, the node equations run sequentially.

The question is whether one iteration is enough to propagate properly the dataflow queries.
Suppose we have the following case: Node A’s output is Node B’s input, which is input to Node
C, and Node C’s output is Node A’s input. In this case, when the equation of Node A runs in
the first iteration, it does not have all the inputs, so its output is incorrect. Thus, we must make
many iterations until all the equations become right. But what is the sign indicating that all
equations are balanced between their inputs and outputs? This balance occurs when an iteration
does not vary any node output. In this case, we reach the Fixed-Point and no more iterations
are needed.

Fig. 1: Example of Dataflow Analysis - Reaching Definitions.

In Fig. 1, the first iteration F (ϕ) generates a dataflow query from each assignment in the
format of (var, label) and then propagates it in all forward paths. The second iteration F (F (ϕ))
produces different sets of queries in some points, such as Entry(3) and Exit(3), rather than
F (ϕ). Thus, the dataflow analysis makes another iteration F (F (F (ϕ))). While the output of
F (F (F (ϕ))) equals F (F (ϕ)), thus causing reaching the Fixed-Point status, and there is no use
in adding more iterations.

Control dependency is a relationship between a predicate and a statement, wherein the out-
come of the predicate at the run-time determines the possible execution of the statement. The
control dependency is calculated from the post-domination information. Node Z post-dominates
Node X when all the paths from X to the END include Z. The predicate p controls Node ℓ when

2

Overlapping Flows

ℓ post-dominates one of the successors of p and does not post-dominate the second. So, In Fig. 2,
Label 4 controls Label 7 because Label 7 post-dominates Label 5 but does not post-dominate
Label 8.

In order to obtain the predicates that control the execution of a particular Node in the CFG,
all the post-domination information in the program should be obtained and arranged in a post-
dominator tree. The control dependency is got from the tree by the following rule: Node W is
control dependent on node U if the CFG contains an edge U → V, wherein W post-dominates
V and W does not post-dominate U. For example, Fig. 2-C shows that Label 7 post-dominates
Label 5, while Fig. 2-B shows the edge 4 → 5, and Fig. 2-C illustrates that Label 7 does not
post-dominate Label 4. As a result, Label 4 controls Label 7.

Fig. 2

Both dataflow analysis and control dependency computation based on a post-dominator tree are
comprehensive-based analysis solutions under the following definition:

Definition 1 (Comprehensive-Based Analysis Solution). is an analysis solution that could
only find the correct property for one part if it finds the correct property for all other parts.

Most static program analyses are comprehensive. In computing control dependence relations
based on the post-dominator tree, all the post-domination facts in the entire CFG should be
calculated first, even if the requested relations are for only one node. In the dataflow analysis,
the computation of a node property might be affected if the output of another is not correct.
Hence, making correct outputs for one node requires correct outputs for all. The problem with
the comprehensive analyses is that they must do necessary and unnecessary computations. The

3

Husni Khanfar

contrary to this concept is the demand-driven analysis, which tries to confine its computations
to the part under analysis.

Our previous works [1,2] eliminate unnecessary computations in the state-of-art approach.
These works present an approach that can immediately capture the control dependencies in
structured programs. Thanks to our newly proposed program representation, the Predicated Code
Block graph (PCB-graph). The main feature of this graph is that it represents the conditional
statements and does not discard them among different nodes, as CFG does. It preserves the
syntactic structure (child-parent relationship) of conditional statements. Hence, there is no need
to compute control dependence relations for structured codes. Afterward, our works [3,4] showed
a new novel approach that computes control dependencies of unstructured programs. The new
approach builds on a new type of information called the Set of Overlapping Flows, abbreviated
by SOF and introduced in Definition 13.

f7
f9

f8

8 9 10 11 131 2 3 4 5 6 7 21 22 23 24 25 2614 15 16 17 18 19 20 27 28 29 30 3112

f1

f2

f3

f4

f5

f6
f10 f11

f12

f13

f14

f15

Jump flow

Structured flow

Semi-Structured flow

SOF(f1)= SOF(f2) = { f1 , ,f2 }

SOF(f3)= { f3 , f4 , f5 , f10 , f11 , f12 , f13 , f14 }

SOF(f6)= { f6 , f7 , f8 , f9 }

SOF(f15)= { f15 }

Flows(SPCB(2))={ f1 , ,f2 }

Flows(SPCB(5))={ f3 , f4 , f5 , f10 , f11 , f12 }

Flows(SPCB(9))=SPCB(10)={ f6 , f7 , f8 , f9 }

Flows(SPCB(27))= { f15 }

Flows(SPCB(24))= { f13 , f14 }

Fig. 3: The label-axis graph of the source code in Fig.4

The program flow ℓa → ℓb overlaps ℓc → ℓd if and only if ℓa exists between ℓc and ℓd, whereas
ℓb does not fall between ℓc and ℓd (Section 3.1). For example, Fig. 3 abstracts the program flows
of the source code in Fig. 4. It depicts them on the x-axis. It shows that f2 overlaps f1 and f5
overlaps f10. In addition, it shows that f1 and f2 constitute an SOF, while f6, f7, f8, and f9
constitute another SOF.

This paper introduces several vital contributions. The first is the Overlapping Theory, which
shows that the predicates that control a particular statement exist only in one or a few SOFs. The
second contribution is the Super Predicated Code Block (SPCB) unit. This unit is significant
as it logically connects the PCBs (conditional statements), which plays a crucial role in our
unique method of computing the Set of Overlapping Flows (SOFs) on the fly from the program
representation PCB-Graph. Lastly, the paper includes experimental evaluations demonstrating
the performance of computing the SOFs on the fly.

In addition to the contributions above, this work defines the Comprehensive Analysis. Fur-
thermore, as a leading work in using SOFs and PCB graphs in static program analysis, this work
provides a complete set of mathematical symbols and definitions expressing different parameters

4

Overlapping Flows

related to SOFs and PCB graphs. These symbols serve as concise and precise language to convey
complex concepts and relationships in SOFs and PCB graphs.

In this work, the sections are organized as follows: Section 2 provides the background. Sec-
tion 3 introduces the theory behind the Set of Overlapping Flows. Section 4 introduces the Super
Predicated Code Block (SPCB) unit. Section 5 shows an algorithm for forming on-demand SOFs
from the values of the edges in the CFG. Section 6 extracts the SOFs from the PCB graph with
few computations. Section 7 provides experimental evaluations. Section 8 encompasses discus-
sions regarding the performance of the algorithms. Section 9 discusses the related works. Finally,
Section 10 sums up some conclusions.

2 Background

This section briefly describes the While language, the Control Flow Graph (CFG), which is the
state-of-the-art program representation, the post-domination concept, and the control dependen-
cies.

2.1 Small C Language Module

The Small C language is a subset of the C language used in this work to develop and test a
new approach specialized in computing the control dependencies. This subset focuses on the
parts in the C language that are related directly to the computation of the control dependencies,
and it neglects all other parts, such as the pointers. The Small C language is a procedure p
having a statement s, which might be an elementary statement (es), conditional statement (cs),
or a composite statement (s1; s2). Each elementary statement and a predicate of a conditional
statement gets a unique integer label. The internal elementary statements in s are labeled in
ascending order according to their locations in the source code, from left to right and from top
to bottom.

Let n, c, f , and str denote integer, character, float, and string variables respectively. Let
proc denote a procedure name, a denote an arithmetic expression, and the predicate b denote a
boolean expression. The abstract syntax of the Small C language is:

v ::= n | c | f | str | b

type ::= int | char | string | bool | void

var list ::= v | var list′, var list′′

cs ::= if ([b]ℓ) {s′} | if ([b]ℓ) {s′} else {s′′} | while([b]ℓ) {s′} |
do {s′} while ([b]ℓ) |

for ([ds]ℓ | [a]ℓ ; [b]ℓ
′
; [a]ℓ

′′
) {s} |

switch ([a]ℓ) {case n′ : s ; break; case n′′ : s′; break; ...; default : s′′}
es ::= [x := a]ℓ | [goto ℓ′]ℓ | [break]ℓ | [continue]ℓ | [proc(var list)]ℓ | [type v]

s ::= es | s′; s′′ | cs

This syntax abuses the notation and writes “predicate p” or “statement s” instead of “the
label of predicate p” or “the label of statement s”.

5

Husni Khanfar

0) //a,rslt,cntr,chr, LIMIT, and CNST are global vars.

1) void Proc(int*arr,int f1,int f2,int f2,int p1,int p2,int p3) {

2) if(arr == null_ptr)

3) goto L2;

4) printf(“**Calculations Started”);

5) while(true) {

6) a=random(0,99);

7) rslt=a^pw1+f1*a^pw2+f2*a^pw3;

8) cntr=0;

9) while(rslt>LIMIT) {

10) if (++cntr > 3)

11) break;

12) rslt=rslt/2;

13) }

14) if(cntr>3 || arr[index]>0)

15) continue;

16) printf(“\ncontinue? (Y|N)”);

17) chr = getchar();

18) if(chr == ‘N’)

19) goto L1;

20) arr[a]=rslt;

21) }

22) printf(“\nShow the elements of arr? (Y|N)”);

23) chrctr = getchar();

24) if(chrctr == ‘N’)

25) goto L2;

26) cntr=0;

27) do {

28) printf(“%d) %d \t”,cntr,arr[cntr]);

29) } while (++cntr1<100);

30) L1: printf(“\nNo more elements will be added to arr”);

31) L2: printf(“\nProc End”);

32) }

Fig. 4: Running Example

6

Overlapping Flows

2.2 The Flows of the Conditional Statements

There is a control flow edge from each elementary statement to its immediate next statement
next stmnt1, and there are two control flow edges from each conditional statement to its immedi-
ate next statement. There is a set of program flows that form each type of conditional statement
as follows:

– Suppose cs is an if that comprises a predicate p and body b. Based on that, there are two
control flows from p, wherein the first is from p to the first statement in b, whereas the second
is to next stmnt. If the last statement in b is not a continue, break, or goto, then there is
a flow from the last statement in b to next stmnt.

– Suppose cs is an if-else conditional statement that comprises a predicate p and two bodies
b1 and b2. There are two flows from p; the first is to the first statement in b1, and the second
is to the first statement in b2. In both of the two bodies, if the last statement is not continue,
break, or goto, then there is a flow from the last statement of the body to next stmnt.

– Suppose cs is a while or a for conditional statement that comprises a predicate p and a
body b. There are two flows from p, the first is to the first statement in b, and the second is
to next stmnt. In addition, there is a flow from the last statement in b to p2

– Suppose cs is a do .. while conditional statement, then cs comprises a predicate p and a
body b. There are two flows from p; the first is to the first statement in b, while the second
is to next stmnt.

– The switch statement consists of many case predicates, each of which has a body end typi-
cally by the keyword break. There are two flows from each case; the first is to its immediate
next case and the second to the first statement in its body.

2.3 The Control Flow Graph

The Control Flow Graph (CFG) for a program s is a representation, using graph notation, to
model the entire possible program flows in s. The CFG consists of nodes and edges; each node
represents a predicate or an elementary statement, and each edge represents a possible program
flow. The node is a label. The control flow edge in the CFG is formed by a pair of labels (i, j),
which means that j might be executed immediately after i.

Definition 2. Control Flow Graph: The Control Flow Graph for an intra-procedural program
s is a 4-tuple (N,E,Entry,End).

1. N is a set of nodes, where each node represents an elementary program statement in s.

2. E is a set of program flows, where each program flow represents a possible program flow from
one node to another. E ⊂ (N ×N).

3. Entry: is a unique start node. Entry ∈ N .

4. End: is a unique exit node. End ∈ N .

5. There is a path from Entry to every n ∈ N .

6. There is a path from every n ∈ N to End.

1 The immediate next statement is the first statement executed after the execution of a particular
statement if no unstructured jump occurs.

2 As a side note, this does not work if the last statement in the body is one of the jump statements
(goto,break,continue), although this is a poor design.

7

Husni Khanfar

2.4 Basic Definitions

In this subsection, we introduce few definitions that are related to the control dependencies.

Definition 3. Post-domination: In a CFG G, any node n post-dominates node y if all the
paths from y to Exit contain n.

Definition 4. Standard Control Dependence: In accordance to [5], node n is standard con-
trol dependent on node m in program s if:

1. There exists a non-trivial3 path π from m to n such that every node n′ ∈ (π − m,n) is
post-dominated by n; and

2. m is not strictly post-dominated by n.

Definition 5. The Conditional Statement of a Label:
The conditional statement cs of a label ℓ refers to the innermost conditional statement where ℓ
exists.

2.5 Predicated Code Block Graph

Our previous works [1,2] introduced the notions of Predicated Code Blocks (PCBs) and PCB
graphs. A PCB refers to the encapsulation of a predicate and the set of elementary statements
in which the predicate controls its execution.

p ::= {[b, es1, . . . , esn], type} (1)

In addition to a predicate and a sequence of statements, PCBs carry types, type, signifying
whether the PCB is linear, L, or cyclic, C. Intuitively, linear PCBs correspond to conditional
statements, such as if, and cyclic PCBs correspond to iterative statements, such as while.

One of the most important features of PCB-graphs is that it converts the conditional state-
ments to elementary statements by replacing their locations in their parent PCBs by a place-
holder. All conditional statements are replaced by skip placeholders, except if .. else state-
ments which are replaced by in-child placeholders.

The PCB is connected with its original location in its parent PCB by a uni-directional inter-
face from its placeholder to the first statement in the PCB. In addition, the program flow that
connects one of the statement in the conditional statement with the immediate next statement
to this -as what is shown in Sec. 2.2- is converted to an interface.

The last point; the internal flow in the loop conditional statement which always occurs from
the last statement to the first statement is not modeled because the data field type, whose value
in this case is ’C’ takes its role. Fig 5 is an example of a PCB-graph.

2.6 Fields in Labels, and PCBs

This paper use fields in each instance of Labels, and PCBs. These fields are:

– Labels:
• Label Instance.pcb: refers to the PCB representing the conditional statements that in-

cludes Label Instance.
– PCBs:

• PCB Instance.parent: refers to the PCB representing the immediate outer conditional
statement of the PCB Instance conditional statement.

• PCB Instance.sof: refers to the SOF which includes the structured flows of PCB Instance.

3 Path π is non-trivial if it contains at least two nodes [6]
3 The differences between skip and in-child placeholders are related to the slicing approach shown in
our previous works [1,2].

8

Overlapping Flows

 P1

1 [true]1

2 [skip]

3 [printf]4

4 [skip]5

5 [printf]22

6 [chrctr=]23

7 [skip]

8 [cntr=]26

9 [skip]

10 [printf]30

11 [printf]31

 SPCB1: P2

 SPCB2: P5 , P14 , P18

 SPCB3: P9 , P10

 SPCB4: P28

 SPCB5: P24

P5

1 [true]5

2 [a=]6

3 [rslt=]7

4 [cntr=]8

5 [skip]9

6 [skip]

7 [printf]16

8 [chr=]17

9 [skip]

10 [arr[a]=]20

P1

P9

1 [rslt>]9

2 [skip]

3 [rslt=]12

P5

P10

1 [++cntr>]10

2 [break]11

P9

P14

1 [cntr>]14

2 [continu]15

P5

P18

1 [chr==]18

2 [goto L1]19

P5

P28

1 [printf]28

2 [while]29

P1

P24

1 [chr==]24

2 [goto]25

P1

P2

1 [arr==]2

2 [goto L2]3

P1

Fig. 5: The PCB graph of the source code in Fig.4

9

Husni Khanfar

3 Overlapping Flows Theory

The beginning of this section specifies basic definitions related to overlapping flows. Then, it
accurately determines the boundaries of the set of overlapping flow intervals, followed by a
theorem that clarifies that the control dependency between a statement ℓ and predicate p happens
only when p exists in a SOF bypassing ℓ. The last theorem deals with many SOFs bypassing a
statement ℓ. It determines which of those certainly do not have predicates controlling ℓ.

3.1 Basic Definitions

This paper shows how the interleaving between program flows could be a base for techniques
in static program analysis. This section demonstrates standard definitions that mathematically
formalize the fundamental concepts of overlapping flows.

Definition 6. The program flow notation (→) refers to a pair of labels defining a program
flow, such as: ℓ → ℓ′, where ℓ is the outgoing label and ℓ′ is the ingoing label.

Definition 7. Jump (Unstructured) Flow is a program flow whose outgoing label is a jump
statement (e.g. goto).

Definition 8. Semi-Structured Flow is a program flow whose outgoing label is a break or
continue statement.

Definition 9. Structured Flow is a program flow whose outgoing label is a predicate (e.g.
while, for, if).

The label-axis represents intra-procedural procedures on an X-axis. Rather than representing
the statements as nodes, the label-axis represents them as ticks on an X-axis. It represents jump,
structured, and semi-structured flows by unidirectional arcs from their outgoing labels (ticks) to
their ongoing labels (ticks). The statements goto, continue, and break cut the X-axis because
they do not have a flow to their immediate following statements on the program. Figure 3 shows
a label-axis for an unstructured source code.

entry exith f d c

(b)

entry exitc d f h

(a)

entry exitc d f h

(c)

Fig. 6: Overlapping flows [3]

10

Overlapping Flows

Definition 10. Bypassing:[3] the program flow j → v bypasses the label t if either j < t < v
or j > t ≥ v.

Definition 11. Jump(ℓ): is a function that returns the set of jump flows that bypass Label ℓ.

Definition 12. Overlapping Flows:[3] the program flow d → h overlaps c → f when c > d ≥ f
or c < d < f as well as h is either less than c and f or larger than c and f .

Fig. 6 depicts the concept of overlapping.

Definition 13. SOF is an abbreviation for a Set of Overlapping Flows. It consists of a finite
number of program flows, wherein at least each flow overlaps with another flow.

The flows in the SOF are collected inside two curly braces and separated by commas, for instance,
{fi, fi+1, ..., fn}.

Definition 14. SOF i(ℓ) is a SOF whose one of its flows bypasses the label ℓ.

The subscript here is added because many SOFs might bypass the statement under analysis
ℓ. So, the subscript here relates to the statement under analysis, not the SOFs.
In this context, sof denotes an SOF instance.

Definition 15. genSOF (ℓ) is a function generating all the SOFs that bypass ℓ.

Definition 16.
∑q

i=0SOF i(ℓ) is the set of SOFs that each bypasses the statement ℓ. The SOFs
in

∑q
i=0SOFi(ℓ) are sorted according to the length of their intervals. Based on that, SOF0(ℓ) has

the shortest interval.

The symbol SOF could be overloaded to express also the SOF that includes the structured flow
of a PCB4 as follows:

Definition 17. SOF (pcb) the SOF that includes the structured flows of the PCB pcb.

The expression
∑

SOF (ℓ)-SOF (ℓ.pcb) means all the SOFs that bypass ℓ unless the one that
includes the structured flows of the PCB ℓ.pcb.

Definition 18. Labels of SOF is the set of ingoing and outgoing labels of the flows belonging
to a SOF.

Definition 19. L(sof) is a function returns the Labels of sof sorted in ascending manner.

Definition 20. Len(sof) is a function calculating the length of the SOF instance sof in accor-
dance with the following equation: Max(L(sof))5-Min(sof)6

Definition 21. C(sof)7 is the set of the predicates whose structured flows in sof.

The SOF (ℓ) without subscript means genSOF (ℓ) returns only single SOF equals SOF 0(ℓ).

Definition 22. Interval of a SOF refers to the labels that are bypassed by the flows of a SOF.

4 Each PCB represents a conditional statement in the PCB graph. read Section 2.5
5 Max is a function that returns the largest value in a numerical set.
6 Min is a function that returns the smallest value in a numerical set.
7 C is an abbreviation from Condition

11

Husni Khanfar

0) void proc() {

1) v = input();

2) x = 7;

3) if(v > 100)

4) goto L1;

5) x = v;

6) if(x > 50)

7) goto L2;

8) x = v*v;

9) if(x > 10)

10) goto L3;

11) Proc1();

12) x = 3;

13) L3:

14) x = x + 2;

15) L2:

16) x = x + 140;

17) L1:

18) x = x + 3;

19) }

f1

f2

f3

f4

f5

f6

f6f5

8 9 10 11 132 3 4 5 6 7 14 15 16 17 1812

f1

f2
f4

f3

f4

Fig. 7: Example - Lemma 8

Definition 23. I(sof) is a function that returns a set of the labels in the interval of the SOF
instance sof. The labels in the set are sorted ascendingly.

In Fig. 7, genSOF (12)=
∑2

i=0SOF i(12) = {SOF 0(12)+SOF 1(12)+SOF 2(12)}={{f5, f6},{f3, f4},
{f1, f2}}. The SOF instances are sorted according to the length of their intervals. The subscript
i in SOF i(ℓ) refers to the order of the SOF among the others for a particular label. So, this
subscript is relative. In Fig. 7, provided sof={f1, f2}, then sof=SOF 0(4)=SOF 1(7)=SOF 2(12).
L(sof)={3,4,17}, C(sof)={3}, Min(sof)={3}, Max (sof)= {17}. Len(sof)=14.

Definition 24 (BackYard of SOF). refers to a subset of labels in the Interval of a SOF, which
includes each label before the smallest outgoing label of a forward flow in the SOF.

Definition 25 (B(sof)). This function returns the set of the BackYard of the SOF instance
sof.

In Fig. 8, provided sof={f1, f6}, B(sof) = [3,15].

Finally, it is important to mention that if I(sof)=[k,v[, and its statement is while or for, then
B(sof)=[k,k]. In other words, the predicates at the beginning of intervals are in the backyards
because their forwarded flows run after them and not before, causing other predicates to reach
and control them. For example, In Fig. 4, Label 5 controls the execution of Label 9. Thus, if
Label 9 is at the beginning of its SOF, then it belongs to its backyard.

12

Overlapping Flows

0) void proc() {

1) v = input();

2) x = input();

3) L3:

4) x = x + v;

5) if(x > 100)

6) goto L2;

7) cntr = 0;

8) L1:

9) cntr = cntr + 1;

10) x = x + v;

11) if(cntr < 10)

12) goto L1;

13) L2:

14) x = x + 5;

15) if(x < 1000)

16) goto L3;

17) proc();

18) }

f6
f5

8 9 10 11 132 3 4 5 6 7 14 15 16 17 1812

f1

f4
f2

f3

f6

8 9 10 11 132 3 4 5 6 7 14 15 16 17 1812

f1

BackYard(sof)

Fig. 8: Example - Lemma 9

3.2 The Boundaries of Intervals

So, if we say that I(sof)=[k,v[, that means the interval of sof is from k to v. The two boundaries
of the intervals might be included or excluded from the interval itself. As in mathematics, closed
square brackets, “[...” or “...]”, denote including, whereas open square brackets,“]...” or “...[”,
denote excluding. Selecting the closed or open bracket depends on satisfying Def. 22. Let us start
with an example:

In Fig. 7, if we denote to the SOF {f1, f2} sof, then I(sof)=]3,17[. The left and right open
squares indicate that neither f1 nor f2 bypass Label 3 or 17. In Fig. 8, If we denote to the SOF
{f1, f6} sof´, then I(sof´)=[3,17[. This interval starts with a closed square brace because f1
bypasses Label 3, while f6 does not bypass Label 17. If it is unimportant to know whether one
of the boundaries is open or closed, we could use the notation |. However, the following theorem
determines the boundaries of SOFs precisely.

Lemma 1 If sof is a SOF, then none of the program flows in sof bypasses Max(L(sof)).

Proof. If Max (L(sof)) is bypassed by a flow in sof, this means it is not the maximum label in
sof. This fact contradicts the assumption of the Lemma. ⊓⊔

Lemma 2 Suppose sof is a SOF, f ∈ sof, and Min(L(sof)) = f.out. No flow in sof bypasses
Min(L(sof)).

13

Husni Khanfar

Proof. There are two cases: the first is f.out < f.in. In this case, if f ′ ∈ sof and it bypasses
f.out, then Min(L(sof)) ̸= f.out, and Min(L(sof))=Min(f.out,f.in). This case contradicts the
assumption in the Lemma; therefore, it could not happen. The second case is when f.out > f.in.
This case could not occur because f.out = Min(L(sof)). Hence, the Lemma is right. ⊓⊔

Lemma 3 Suppose sof is a SOF, f ∈ sof, and Min(sof) = f.in. No flow in sof bypasses Min(sof)
except f .

Proof. If the execution flow uses f , the program runs f.out and then f.in. Based on that, f
bypasses f.in, and f.in, which equals Min(sof), is bypassed by one of the flows in sof. The proof
of Lemma 2 can also prove that all other flows except f can not bypass Min(sof). ⊓⊔

Theorem 1. Suppose sof is a SOF, f ∈ sof, and I(sof)=|k,v[, wherein k=Min(L(sof)) and
v=Max(L(sof)). Based on that, if k==f.out, k ̸∈I(sof). If k==f.in, k ∈I(sof), and always
v ̸∈I(sof).

Proof. Lemma 1 proves that v always does not belong to I(sof). So, I(sof)=|k,v[. Lemma 2
proves that if k == f.out, then k ̸∈I(sof), and I(sof)=]k,v[. While Lemma 3 proves that if
k == f.in, then k ∈I(sof), and I(sof)=[k,v[. ⊓⊔

3.3 The Locations of Predicates Controlling a Statement

Herein, we prove that all the predicates that control a statement under analysis belong only to
an SOF bypassing this statement.

Lemma 4 Suppose sof is a SOF, ℓ ∈sof and I(sof)=|k,v[. Then v post-dominates ℓ.

Proof. Since no program flow belongs to sof bypasses v (Lemma 1), no path can exist from ℓ
to End that does not include v. Since all the paths from ℓ to End include v, v post-dominates ℓ

⊓⊔

Lemma 5 Let p be a label of a predicate such that v post-dominates p, and there is a path from
p to w that includes v. Then w is not control dependent on p.

Proof. There are two cases:

1. w does not post-dominate v, so, the first condition in Def. 4 is negated, and it is not possible
to make a control dependent relationship between w and p.

2. w post-dominates v. This causes w to post-dominate p as well. This post-domination negates
the second condition in Def. 4.

Thus, in both cases, w cannot be control dependent on p ⊓⊔

scope(SOF(p))

pk vj wt m on q r s t u END

Fig. 9

14

Overlapping Flows

Lemma 6 Let sof is an SOF, p ∈ C(sof), I(sof)=|k,v[, and let j be any label smaller than k.
Then j cannot be control dependent on p.

Proof. Creating a forward path pth form p to j is mandatory to make j control dependent on
p. In accordance with Def. 4-1, j must post-dominate all the labels in pth except p.
Since j < p (the assumption of the lemma), pth is achieved by establishing a backward flow
ℓ → ℓ′ 8, where ℓ′ ≤ j. We can divide pth into pth1 and pth2, where the first is from p to ℓ, and
the second is from ℓ′ to i. pth1 requires to construct a chain of overlapping flows from p to ℓ.
This chain could be formed by placing ℓ in one of the two intervals, in I(sof) where k < ℓ < v
or in v ahead where v ≤ ℓ.

– If ℓ ≥ v: since v = Max (L(sof)) (Lemma assumption) and v post-dominates p (Lemma 4),
all the paths from p to ℓ include v. Accordingly, all the paths from p to j includes v and,
based on Lemma 5, j cannot be control dependent on p.

– If k < ℓ < v: ℓ → ℓ′ indeed overlaps one of the flows in sof, and ℓ′ ≤ j. As a result,
Min(L(sof)) = j and not k. This is contrast to the assumption of the Lemma:Min(L(sof))=k.
Therefore, Label j could not be control dependent on p if k < ℓ < v.

Since placing ℓ either in I(sof) or ahead of v will not allow p to control the execution of j. So,
the lemma is proved. ⊓⊔

In Fig. 9, to establish a path from p to j that does not include v, we should create a backward
flow fb, wherein k < fb.out < v and fb.in ≤ j. In this case, fb bypasses k and overlaps one of the
flows in SOF (p). As a result, fb is added to SOF (p). Since fb.in < k, I(SOF(p))=[fb.in,v [. This
enlargement in the interval proves creating a control dependency between p and j is impossible.

Lemma 7 Let sof is an SOF, p ∈ C(sof), I(sof)=|k,v[, and w > v. Then w can not be control
dependent on p.

Proof. By Lemma 4, v post-dominates p. Since v post-dominates p and w > v, all the paths
from p to w includes v. As a result, and in accordance to Lemma 5, w could not be control
dependent on p. ⊓⊔

In Fig. 9, if we need w to be control dependent on p, then we should add a flow f from
I(SOF(p)) to any label less than w. Since f.out ∈ I(SOF(p)) and f.in > v, f will certainly overlap
a flow in SOF (p). As a consequence, I(SOF(p)) will be enlarged, and v ̸= Max (L(SOF(p))).
Based on that, making any control dependence relationship between p and any label larger than
v is impossible.

Theorem 2. Let sof be an SOF, p ∈ C(sof), and I(sof)=|k,v[. Then no possible control depen-
dence relationship can be established between p and a label outside I(sof).

Proof. Lemma 6 states that it is not possible to establish a control dependence relationship
between p and label smaller than k. Lemma 7 states the same thing with labels larger than v.
The two lemmas prove that p can not control labels that exist outside I(sof). ⊓⊔
8 This flow might also be a sequence of overlapping flows with interval from ℓ′ to ℓ. For the sake of
simplicity, we consider it here as a one backward program flow.

15

Husni Khanfar

3.4 Many SOFs

Corollary 1. Let ℓ be a label of a statement. The set of predicates that control the execution of
ℓ exist in C(

∑k
i=0SOFi(ℓ)).

Proof. Theorem 2 states that the predicates could not control statements that do not belong to
the interval of its SOF. Consequently, to make Label ℓ control dependent on the predicate p,
both should exist in the same interval of SOF. ⊓⊔

Lemma 8 Suppose f ∈ Jump(ℓ) and f.out has the largest output label among the outgoing labels
in L(Jump(ℓ)). If sof is a SOF, and f ∈ sof, then the predicates that control ℓ exist only sof.

Proof. Since f is a forward flow, f.out < ℓ < f.in. If f ′ is another forward flow bypassing ℓ,
there are two cases: the first is f ′.out < f.out < ℓ < f ′.in < f.in, and in this case, there is an
overlapping between f and f ′, and accordingly, f ′ belongs to sof. Hence, the predicate controls
f ′ belongs to sof, which agrees well with the theorem.
The second case is f ′.out < f.out < ℓ < f.in < f ′.in. If p′ controls f ′.out, then it is impossible
to form a path from one of its successors to ℓ wherein ℓ post-dominates all the labels due to the
existence of f . Thus, the first condition of Def. 4 could not be satisfied, and p′ could not control
the execution of ℓ, and this proves the theorem. ⊓⊔

In Fig. 7, there are three SOFs, which are: sof 1={f1, f2}, sof 2={f3, f4}, sof 3={f5, f6}}.
C(sof1)={3}, C(sof2)={6}, and C(sof3)={9}. Jump(12)= {f2, f4,f6}. These three flows are for-
ward. It is worth noting that the existence of f6 prevents the predicates in sof 1 and sof 2 from
satisfying the first condition in Def. 4. So, no path pth could be formed from one of the immedi-
ate successors of Label 3 to Label 12, wherein Label 12 post-dominates each label in pth except
Label 3.

Lemma 9 Suppose many jump flows bypass Label ℓ; each belongs to a different SOF. The flow
f is the only forward jump flow, whereas the remaining are backward jump flows. In assum-
ing SOF(f) = SOFm(ℓ), the predicates that control ℓ exist in SOFm(ℓ) and each SOFx(ℓ) in∑q

i=0SOFi(ℓ), whose x < m. In other words, the predicates that control ℓ exist in SOF(f) and
the other SOFs in SOFm(ℓ) whose intervals are shorter than I(SOF(f)).

Proof. The ingoing label of the backward jump flow f ′, whose SOF sof ′ interval is less than
I(SOF(f)), falls between f .out and ℓ. Thereby, and contrary to the proof in Lemma 8, f does
not hinder forming a path pth from the predicates in sof ′ to ℓ, wherein ℓ post-dominates all the
labels in pth except the predicate. So, by this, the first condition of Def. 4 could be satisfied.

The predicates in SOFx(ℓ), where x > m, could not control ℓ. The ingoing labels of their
backward flows are less than f .out. So, by the proof of Lemma 8, it is not possible to create
a path pth from their predicates to ℓ wherein ℓ post-dominate all the labels in pth except the
predicate. ⊓⊔

The code of Fig. 8 exemplifies Lemma 9. It shows one forward jump flow: 6 → 13, and two
backward jump flows: 12 → 8 and 16 → 3. Here, we have three SOFs, which are: sof 1={5 →
7, 6 → 13}, sof 2={11 → 13, 12 → 8}, sof 3= {15 → 17, 16 → 3}. It is worth noting that the three
jump flows do not belong to one SOF. If Label 10 is the statement under analysis, which we need
to find the predicates controlling it, we can say that predicates in sof 2 might control Label 10
because one of its backward flow 12 → 8 falls into 8, which is larger than 6. On the other hand,
no predicate in sof 3 controls Label 10 because all its backward flows fall before Label 6.

Now, we can collect the results of these lemmas in one theorem, but before that, it is crucial
to understand what the expression ℓ ∈ B(sof) means. This expression means that all the flows
in sof bypassing ℓ are backward.

16

Overlapping Flows

Theorem 3. Suppose genSOF(ℓ) =
∑q

i=0SOFi(ℓ), ℓ ̸∈ B(SOFk(ℓ)), and ∀x : x = 1 to k −
1, ℓ ∈B(SOFx(ℓ)), where 1 ≤ k ≤ q, the predicates that might control ℓ are in the set:

C(
∑k

i=0SOFi(ℓ)).

Proof. Corollary 1 determines that the predicates that might control any statement ℓ exit ex-
clusively in genSOF (ℓ). Lemma 8 states that if ℓ is not in the backyard of many SOFs, then the
predicates that might control ℓ exist only in the shortest SOF9. Lemma 9 states that if ℓ belongs
to many backyard intervals in different SOFs, and sof is the shortest SOF in genSOF (ℓ), which
ℓ does not belong to its backyard, then the predicates that control ℓ exist only in sof and other
SOFs, whose intervals are shorter than sof. The theorem is proved. ⊓⊔

4 Super PCB (SPCB)

The majority of program flow overlapping occurs between structured and semi-structured flows
and between structured and jump flows. These overlapping could be obtained immediately from
the PCB graph itself, even though this requires enhancing the PCB graph to accept additional
annotations.

This section introduces the “Super PCB” (SPCB) concept, a powerful tool for logically con-
necting PCBs. The SPCB, a collection of PCBs linked through semi-unstructured and jump
flows, is more than just a concept. It’s a game-changer. It not only implies overlapping flows in
a single SOF but also eliminates the need for specific computations. This significant reduction
in unnecessary computations underscores the value and importance of the SPCB concept.

This section first presents some necessary definitions, followed by rules logically connecting
the PCBs in one SPCB.

4.1 Basic Definitions - Hierarchical Structure of the PCBs

Definition 26. P(pcbi) refers to the immediate parent of the PCB pcbi.

Definition 27. P(pcbi)=pcbj refers to the fact that the immediate parent of the PCB pcbi is the
PCB pcbj.

The fact P(pcbi)=0 refers to the fact that pcbi is located in the main track, which means that it
is not inside another conditional statement.

Definition 28. ⊤(pcbi,pcbj) refers to the common parent of the PCB pcbi and pcbj.

Definition 29. ⊤(pcbi,pcbj)= pcbb refers to the fact that the common parent of the PCB pcbi
and pcbj is pcbb.

Definition 30.
−→
P (pcbi) refers to the set of all the parents (outer conditional statements) of the

PCB pcbi.

Definition 31.
−→
P (pcbi,pcbj) refers to a set of PCBs organized in a hierarchical structure from

pcbi to pcbj, wherein pcbi is the most inner PCB, while pcbj is the most outer PCB. pcbj is
included in this set.

9 Shortest SOF means Shortest SOF Interval.

17

Husni Khanfar

Definition 32. P(pcbi,pcbj) refers to a set of PCBs organized in a hierarchical structure from
pcbi to pcbj, wherein pcbi is the most inner PCB, while pcbj is the most outer PCB. pcbj is not
included in this set.

In Fig. 4, P(pcb9)= pcb5. ⊤(pcb14,pcb18) = pcb5.
−→
P (pcb10)={pcb9, pcb5, pcb0}.

−→
P (pcb10,pcb5) =

{pcb10, pcb9, pcb5}. P(pcb10,pcb5) = {pcb10, pcb9}.

4.2 SPCB due to Semi-Structured Statement

The existence of a continue or break statement connects the PCBs as the following two rules:

Rule 1 Suppose there is a flow ℓ1 −→ ℓ2, wherein ℓ1 is a label of a break statement and ℓ1 ∈
pcb1 and ℓ2 ∈ pcb2, then ℓ1 −→ ℓ2 collects the set of PCBs P(pcb1,pcb2) in a single SPCB.

Fig. 10-a shows four conditional statements, each converted to a PCB. In naming each from
the label of its predicate, it is noted that P(pcb3)= pcb1, P(pcb5)= pcb3, P(pcb8)= pcb5, and
P(pcb8)= pcb5, and P(pcb9)= pcb8. The flow of the break is 10 → 15, wherein 10 ∈ pcb9, and
15 ∈ pcb1. In accordance to Rule 1, this break collects P(pcb9,pcb1)={pcb9,pcb8,pcb5,pcb3} in a
single SPCB.

Rule 2 Suppose there is a flow ℓ1 −→ ℓ2, wherein ℓ1 is a label of a continue statement. If ℓ1 ∈
pcb1, and ℓ2 ∈ pcb2, then ℓ1 −→ ℓ2 collects the PCBs

−→
P (pcb1,pcb2) in a single SPCB.

In Fig. 4 and in accordance to Rule 2, the continue statement at label 15, connects P14 with
its parent P5 in one SPCB.

4.3 SPCB due to Jump Flows

The rule here shows how jump flow connects the PCBs in one SPCB.

Rule 3 Suppose there are three PCBs; pcbi, pcbj and pcbk, wherein ⊤(pcbi,pcbj)= pcbk, ℓx ∈
pcbi, ℓy ∈ pcbj, and ℓx −→ ℓy is a jump flow. Based on this assumption, an SPCB is formed from
P(pcbi,pcbk) and P(pcbj,pcbk).

The source code in Fig. 10-B has six PCBs, which are pcb0, pcb1, pcb2, pcb4, pcb5, and
pcb13. The unstructured flow jumps from pcb5 to pcb13. ⊤(pcb5, pcb13)=pcb1. P(pcb5,pcb1) =
{pcb5, pcb4, pcb11}. P(pcb13,pcb1) = {pcb13}. Rule 3 forms a new SPCB from P(pcb5,pcb1) +
P(pcb13,pcb1)={pcb5, pcb4, pcb11, pcb13}.

4.4 Augmented PCB Graph

In the PCB graph, PCBs are obtained in advance, whereas SPCBs could be computed on demand
or in advance. Computing an SPCB requires the existence of some raw data or annotations in
each PCB and in each flow.

– sflow is a set associated with the PCB. Suppose pcb is a PCB, then pcb.sflow includes each
semi-structured flow whose outgoing label is inside pcb, or one of its internal PCBs, and its
ingoing label is outside pcb or at pcb.predicate. Furthermore, this set includes each jump flow
whose outgoing label is inside pcb and its ingoing label is outside the pcb, or whose outgoing
label is outside pcb while its ingoing label is inside pcb.

– pcbs is a set associated with the program flow. Suppose f is a program flow, then f .pcb
includes each PCB that f launches from it or falls inside it.

18

Overlapping Flows

0) ...

1) for (int i=0;i<10;i++) {

2) ...

3) while(b) {

4) ...

5) if(b2) {

6) ...

7) ...

8) if(b3) {

9) if (b4)

10) break;

11) ...

12) }

13) } //end of if loop

14) } //end of while loop

15) ...

16) } //end of for loop

0) ...

1) for(i=0;i<10;i++){

2) do {

3) ...

4) if(b1) {

5) if(b1) {

6) ...

7) goto L1;

8) }

9) ...

10) }

11) } while (b2);

12) ...

13) while(b3) {

14) ...

15) L1:

16) ...

17) }

18) }

(a) (b)

Fig. 10: Creating SPCB due to a break and goto statements

5 Forming on-the-fly SOFs from the CFG

The CFG represents program flows, while the SOF is a location type of information. Nevertheless,
this section fills this gap by supposing that the label of the node in the CFG represents its location
in the source code. It then uses these labels to assemble the required SOFs. Afterward, this section
tries to push the performance to the highest possible point by improving the technique that finds
the overlapping between program flows.

5.1 Algorithm 2: Basic Algorithm

Suppose that F is a set of flows in a program, and its size is Nf . Finding the flows that bypass
ℓ requires checking every f in F whether it bypasses ℓ; if it is, then f is added to a particular
set (suppose BypassingFlows). Afterward, it forms the SOFs of these flows and adds them to∑

SOF (ℓ).
In Fig. 4, there are four SOFs which are: {f1, f2}, {f6, f7, f8, f9}, {f3, f4, f11, f12, f13, f14},

and finally {f15}. To generate
∑

SOF (7), the algorithm collects first the flows bypassing Label
7 in the set BypassingFlows. Fig. 3 depicts that this set is: {f2, f3, f4, f5}. Second, the algorithm
should fetch every flow f from BypassingFlows, create a new SOF (SOF (f)), and add f to it.
Finally, it fetches every flow f ′ from SOF (f), finds every flow f ′′ in F that overlaps with f ′,
adds f ′′ to SOF (f), and recursively repeats this step many times until the algorithm can not
add more flows to SOF (f). Algorithm 2 shows this implementation.

19

Husni Khanfar

Algorithm 1: Check the Overlapping Between Two Flows

1 Procedure CheckOverlapping(f,f´)
Input:
f : program flow ;
f´ : program flow ;

2 if f.out < f.in then
// f is a forward flow

3 if f´.out > f.out AND f´.out < f.in then
4 if f´.in > f.in then return true ;
5 if f´.in < f.out then return true;

6 else
// f is a backward flow

7 if f´.out > f .in AND f´.out < f.out then
8 if f´.in > f.out then return true ;
9 if f´.in < f.in then return true ;

10 if f´.out < f´.ingiong then
// f’ is a forward flow

11 if f.out > f´.out AND f.out < f´.in then
12 if f .in > f´.in then return true;
13 if f .in < f´.out then return true;

14 else
// f´ is a backward flow

15 if f .out > f´.in AND f .out < f´.out then
16 if f .in > f´.out then return true ;
17 if f .in < f´.in then return true ;

18 return false

Algorithm 1 checks the overlapping between two flows f and f ′. Algorithm 2 builds on the
fly the SOFs that bypass the statement ℓ. The loop at Line 2 collects all the flows that bypass ℓ
in one set (BypassingFlows). At Line 5, it fetches each flow f in BypassingFlow, and checks the
existence of f.sof. If it exists (was calculated before), then f.sof is added to

∑
SOF (ℓ) (Line 7).

Otherwise, the algorithm forms a new SOF sof (Line 9), and it adds f to it (Line 10). Finally, the
algorithm finds each flow overlaps with any flow in sof (Line 12), and adds it to sof (Line 15).

5.2 Rules for Improving the Performance of Algorithm 2

Algorithm 2 counts the values of edge labels in constructing
∑

SOF (ℓ). This section places the
flows (edges) into two arrays and uses four rules to accelerate the search operations in the array.
Afterward, it implements the rules in two algorithms.

Rule 4 Suppose an array arr contains forward flows sorted in ascending order in terms of their
outgoing labels, the size of arr is length, and the index of ℓd → ℓe in arr is i. If ℓ < ℓd, all the
flows in arr whose indexes are from i to length do not certainly bypass ℓ.

Rule 5 Suppose an array arr contains backward flows sorted in descending order in terms of
their outgoing labels, the size of arr is length, and the index of ℓd → ℓe in arr is i. If ℓ > ℓd,
all the flows in arr whose indexes are from i to length do not certainly bypass ℓ.

20

Overlapping Flows

Algorithm 2: Computing from CFG the SOFs that Bypass a Statement

1 Procedure BuildSOFsFromCFG(F,ℓ)
Input:
F : The set of program flows.
ℓ: The label of the statement under analysis.
Data:
BypassingFlows: The set saves the flows that bypass ℓ.
sof : a new SOF that will be added to SSOF
Output:∑

SOF (ℓ) : the set of SOFs that bypass ℓ.
2 foreach f ∈ F do
3 if (f.out < ℓ AND ℓ < f.in) OR (f.in ≤ ℓ AND ℓ < f.out) then
4 BypassingFlows += f ;

5 foreach f ∈ BypassingFlows do
6 if f.sof ̸= null then

// The SOF of f is already computed

7 if f.sof ̸∈
∑

SOF(ℓ) then
∑

SOF (ℓ) += f.sof ;
8 continue ;

9 SOF sof ;
10 sof += f ;
11 f .sof = sof ;
12 foreach f´ ∈ F do
13 if f´.sof ̸= null then continue;
14 if CheckOverlapping(f,f´) then
15 sof += f´ ;
16 f´.sof = sof ;

17
∑

SOF (ℓ) += sof ;

18 return
∑

SOF(ℓ)

Rule 6 Suppose an array, arr, contains forward flows sorted in ascending order regarding their
outgoing labels. The size of arr is length. The index of ℓd → ℓe in arr is i. There is a program
flow ℓa → ℓb. If max(ℓa,ℓb) < ℓd, then all the flows whose indexes are from i to length are
indeed not overlapped with ℓa → ℓb.

Rule 7 Suppose an array, arr, contains backward flows sorted in an descending order regarding
their outgoing labels. The size of arr is length. The index of ℓd → ℓe in arr is i. There is a
program flow ℓa → ℓb. If min(ℓa,ℓb) > ℓd, then all the flows whose indexes are from i to length

are certainly not overlapped with ℓa → ℓb.

,

For example, if the array arr contains all the forward flows in Fig. 3 and they are sorted
in ascending manner, then we get arr= [f1, f2, f3, f6, f8, f9, f10, f11, f12, f13, f14]. From Rule 4,
since f11.out > 17, we conclude that the flows {f11, f13, f14} do not bypass label 17. From Rule 6,
since f13.out is larger than f3.in and f3.out, we conclude that f13, and all the flows whose indexes
are larger than the index of f13 in arr, are not overlapped with f3. These flows are: {f13, f14}.

21

Husni Khanfar

Algorithm 3: Finding the Flows that Bypass ℓ

1 Procedure ComputeBypassingFlows(ℓ, FWFlows, BKFlows)
Input:
ℓ: a label under analysis.
fwFlows: array of forward flows sorted.
bkFlows: array of backward flows sorted.
Data:
f fwrd : a forward flow that bypasses ℓ.
Output:
BypassingFlows : the set of the flows that bypass ℓ.

2 f fwrd.out = -1 ;
3 foreach f in fwFlows do
4 if f.out < ℓ ∧ f.in > ℓ then
5 f fwrd = f ;
6 if f.out > ℓ then break;

7 if f fwrd.out> 0 then BypassingFlows += f fwrd ;
8 foreach f in bkFlows do
9 if f.out > ℓ ∧ f.in < ℓ then

10 if f.in ≤ f fwrd.out then continue;
11 BypassingFlows += f ;

12 if f.out < ℓ then break;
13 return BypassingFlows

5.3 Algorithm 3 (ComputeBypassingFlows)

Algorithm 3 precisely computes the flows that bypass the statement under analysis ℓ, and
stores them in BypassigFlows. Notably, Algorithm 3 distinguishes itself from Algorithm 2 by
storing the flows in two distinct sets, FWFlows and BKFlows, a strategic implementation of the
previously mentioned rules.

To implement Theorem 3, Algorithm 3 adds only one forward flow to BypassingFlows (Line 7).
This forward flow, denoted as f fwrd, is selected because it has the maximum outgoing label
among other forward flows bypassing ℓ. Additionally, all the backward flows bypass ℓ and have
ingoing labels greater than f fwrd.out are added to BypassingFlows (Line 11). Without a forward
flow bypassing ℓ, all the backward flows bypassing ℓ are added to BypassingFlows.

5.4 Algorithm 4 (BuildSOFFromCFG2)

Algorithm 4 enhances Algorithm 2 to improve its performance concerning the execution times.
The algorithm finds all the flows that bypass ℓ (Line 2) and collects them in BypassingFlows.
Afterward, it fetches every flow f from BypassingFlows to create its SOF sof to add it to∑

SOF (ℓ) (Line 18).
The algorithm creates SOF (f) (Line 7), and add f to it (Line 8). Then, it checks the overlap-

ping between each flow f in sof and every flow f ′ in the program (Lines 10, 14) unless SOF (f ′)
was calculated before (Lines 11,15). If there is an overlapping between f and f´, f´ is added to
sof (Lines 12,16). The algorithm repeats the same steps with each flow in sof.

It is worth mentioning that the conditions at Lines 13, and 17 implement Rules 6 and 7
respectively.

22

Overlapping Flows

Algorithm 4: Computing on-the-fly the SOFs that Bypass a Statement

1 Procedure BuildSOFFromCFG2(ℓ, fwFlows, bkFlows)
Input:
fwFlows: array of forward flows.
bkFlows: array of backward flows.
ℓ: The label of the statement under analysis.
Data:
BypassingFlows: The set of the flows that bypass ℓ.
sof : a new SOF that will be added to

∑
SOF (ℓ)

Output:∑
SOF (ℓ): the set of SOFs, which each has at least a flow bypassing ℓ.

2 BypassingFlows = ComputeBypassingFlows(ℓ, fwFlows, bkFlows) ;
3 foreach f ∈ BypassingFlows do
4 if f.sof ̸= null then

// The SOF of f is already computed

5 if f.sof ̸∈
∑

SOF(ℓ) then
∑

SOF (ℓ) += f.sof ;
6 continue ;

7 SOF sof ;
8 sof += f ;
9 foreach f ∈ sof do

10 foreach f´ ∈ fwFlows do
11 if f´.sof ̸= null then continue ;
12 if CheckOverlapping(f,f´) then sof += f´ ;
13 if f ′.out > f.out AND f ′.out > f.in then break ;

14 foreach f´ ∈ bkFlows do
15 if f´.sof ̸= null then continue ;
16 if CheckOverlapping(f,f´) then sof += f´ ;
17 if f ′.out < f.out AND f ′.out < f.in then break ;

18
∑

SOF (ℓ) += sof ;

19 return
∑

SOF(ℓ)

6 Creating SOF on-the-fly from SPCBs

The main aim of this work is to present an approach that forms SOFs on the fly. The previous sec-
tion presents an approach built on the value of the labels, while this section presents an approach
built on the PCB graph. This approach uses two algorithms to implement genSOF (ℓ). Selecting
the most appropriate algorithm for each statement depends on the location of the statement. On
top of them, Algorithm 7 selects the most appropriate algorithm for each statement.

6.1 Algorithm 5 (Core)

This algorithm is the internal engine for the procedure BuildSOFfromPCB. It gets a flow or a
few flows constituting a subset of flows in an SOF; its role is to complete the new SOF. The subset
of the flows reaches this algorithm through the parameter stack. Each flow f is associated with a
set called pcbs, which contains all the PCBs that f overlap with their structured flows. In addition,
each PCB pcb is associated with a set called SFlows, and this includes the structured flows of pcb
as well as the semi-structured and jump flows that are overlapped with these structured flows.
In brief, This algorithm gets the PCBs from the flows (Line 8) and the flows from the PCBs
(Line 9), and after many iterations, it reaches most of the flows constituting the new SOF.

23

Husni Khanfar

Algorithm 5:

1 Procedure Core(stack)
Input:
stack : Stack of flows ;
fwFlows: (Global Variable) array of sorted forward unstructured flows
bkFlows: (Global Vairable) array of sorted backward unstructured flows

2 SOF sof ;
3 while stack.count > 0 do
4 f = stack.pop() ;
5 if f ∈ sof then continue;
6 sof += f ;
7 f .sof = sof ;
8 foreach p : f .pcbs do
9 foreach f ′ : p.SFlows do stack.push(f ′);

10 if f .type IS NOT goto then continue ;
11 overlappingFlows = CollectOverlappingFlows(f ,fwFlows,bkFlows) ;
12 foreach f ′ : overlappingFlows do stack.push(f ′) ;

13 return sof ;

The set SFlows of the PCBs and pcbs of the flows could not recognize the overlapping between
two jump flows. Thus, finding a jump flow f in a SFlows set requires checking the overlapping
between f and each jump flow in the program (Line 11). If it finds one, then it adds it to stack
(Line 12) to process it later as others.

In Fig. 3 and Fig. 4, pcb5.SFlows={f3, f4, f5}, pcb11.SFlows={f11, f12}, pcb14.SFlows={f5, f10}
pcb24.SFlows={f13, f14}, f5.pcbs={pcb5,pcb14}, f12.pcbs= {pcb5,pcb11}, and f14.pcbs={pcb13}.
Suppose BuildSOFCore is called and its stack = {f11}, then BuildSOFCore recgonizes from
pcb11.SFlows that f12 should be added to sof. Since f12.pcbs contains pcb5, then it adds all the
flows of pcb5.SFlows to sof. From f5.pcbs, the algorithm adds f10 to sof, and since f12 is a jump
flow, it checks the overlapping between it and each jump flow in the program, thus, the algorithm
adds Since f14 to sof, and from f14.pcbs, we get f13. At the end, sof={f3, f4, f5, f10, f11, f12, f13, f14}.

Algorithm 6:

1 Procedure BuildSOFfromPCB(pcb,ℓ)
Input:
ℓ: the label that we want to find its relevant SOFs.
pcb: it is PCB of ℓ.pcb or one of its parents.
Data:∑

SOF (ℓ): The set of SOFs that bypass the ℓ.
stack : a stack of flows.

2 foreach f : pcb.SFlows do
3 stack.push(f)
4

∑
SOF (ℓ) += Core(stack);

5 foreach f : pcb.InternalGOTOs do
6 if (f.out < ℓ AND ℓ < f.in) OR (f.in ≤ ℓ AND ℓ < f.out) then
7 stack.clear(); stack.push(f);
8

∑
SOF (ℓ) += Core(stack);

9 return
∑

SOF(ℓ);

24

Overlapping Flows

6.2 Algorithm 6 (BuildSOFfromPCB)

To build SOF (pcb), the algorithm should add at least one of the flows in pcb.SFlows to stack
variable, and then call Core(stack)(Line 4).

The jump flows that are inside pcb and are not overlapped with the structured flows of ℓ.pcb
are not stored pcb.SFlows. However, it is essential to recognize them because they form SOFs
beneath SOF (pcb), and most probably, their predicates control ℓ. To distinguish them from
the structured flows in pcb.SFlows, they are stored in another set called pcb.InternalGOTOs.
Algorithm 6 considers these flows by finding the flows in pcb.InternalGOTOs that bypass ℓ
(Line 6), and if there is any, it builds its SOF and adds it to

∑
SOF (ℓ) (Line 8).

6.3 Algorithm 7 (GenerateSOFs)

Algorithm 7: The Top Procedure

1 Procedure GenerateSOFs(ℓ, pcb)
Input:
sof : An SOF that byapsses ℓ ;
pcb: it is PCB of ℓ.pcb or one of its parents.
Data:∑

SOF (ℓ): The set of SOFs which bypass ℓ ;
// Case 1: generate the SOFs of pcb with respect to ℓ

2 if pcb ̸= pcb0 then
3

∑
SOF (ℓ) += BuildSOFfromPCB(ℓ,pcb)

// Case 2: pcb is the main track, so, generates the SOFs from Jump(ℓ)
4 if pcb == pcb0 then
5 bypassingFlows = ComputeBypassingFlows(ℓ,fwFlows,bkFlows) ;
6 foreach f : bypassingFlows do
7 ℓ′ = f.out;
8

∑
SOF (ℓ) += GenerateSOFs(ℓ′, ℓ′.pcb) ;

// Case 3: ℓ exists in the backyard of pcb or it does not belong pcb interval.

9 else if ℓ ∈ B(SOF(pcb)) OR ℓ ̸∈ I(SOF(pcb)) then
10

∑
SOF (ℓ) = GenerateSOFs(ℓ, pcb.parent)

11 return
∑

SOF(ℓ)

Algorithm GenerateSOFs implements genSOF (ℓ) and produces
∑

SOF (ℓ). As it is shown
in the details of Algorithm 7, there are three cases. In Case 1, the algorithm builds the SOF
of pcb, which means it builds the SOF including the structured flows of pcb with respect to ℓ.
For this purpose, it calls the procedure BuildSOFfromPCB at Line 3. In Case 2, pcb is the
main track and although the main track in the PCB graph is represented by a PCB but it does
not have structured flows. Thus, Algorithm GenerateSOFs builds the SOFs of the jump flows
bypassing ℓ. Finally, Case 3 handles the situations when ℓ exit in the backyard of pcb or it does
not belong to pcb interval. This means the predicate of the outer conditional statement might
control its execution. Thus, the analysis raises up by building the SOFs in the parent PCB of pcb.
It is worth noticing that Case 2 and 3 builds the new SOFs by calling recursively the procedure
GenerateSOFs. At the end, all the SOFs are collects in

∑
SOF (ℓ).

In Fig. 3, Labels 2, 9, 10, 26, and 28 belong respectively to the PCBs: pcb2, pcb9, pcb10 pcb0,
and pcb29, whose structured flows are: f1, f6, f8, null, f15. SOF (pcb2)=SOF (f1), SOF (pcb9)=SOF (f6),
SOF (pcb10)=SOF (f8), and SOF (pcb29)=SOF (f15).

25

Husni Khanfar

In Algorithm 7, the condition of Case 2 is true for Label 26 because Label 26 ∈ pcb0. The
condition of Case 3 is true for Labels 2,9,26, and 28 because Label 2 ̸∈ I(SOF(f1)), Label 9 ∈
B(SOF(f6)), and Label 28 ∈ B(f15).

Algorithm 8: Building SOF from a set of bypassingFlows

1 Procedure CollectOverlappingFlows(f ,fwFlows,bkFlows)
Input:
f : the flows that we want to find its SOF.
fwFlows: array of sorted ascendingly forward goto flows w.r.t outgoing labels.
bkFlows: array of sorted descendingly backward goto flows w.r.t. outgoing labels.
Data:
overlappingFlows: set of overlapping flows constitue SOF
stack : Stack of flows

2 stack.push(f) ;
3 while stack.NotEmpty() do
4 f = stack.pop() ;
5 if f is forward then
6 foreach f´ in fwFlows do
7 if f´.out > f.in then break ;
8 if f´.in f.out then continue;
9 if f´.out f.out ∧ f.out < f´.in ∧ f´.in > f.in ∨

10 f´.in > f.out ∧ f´.in < f.in ∧ f´.out < f.out then
11 if f´ ∈ overlappingFlows then continue ;
12 overlappingFlows.push(f´); stack.push(f´); continue ;

13 foreach f´ in bkFlows do
14 if f´.out < f.out then break;
15 if f´.in > f.in then continue;
16 if f´.out > f.out ∧ f´.out < f.in ∧ f´.in < f.out ∨
17 f´.in > f.out ∧ f´.in < f.in ∧ f´.out < f.out then
18 if f´ ∈ overlappingFlows then continue;
19 overlappingFlows.push(f´); stack.push(f´); continue ;

20 else
21 foreach f´ in fwFlows do
22 if f´.out > f.out then break;
23 if f´.in < f.in then continue;
24 if f´.out > f.in ∧ f´.out < f.out ∧ f´.in > f.out ∨
25 f´.out < f.in ∧ f´.in > f.in ∧ f´.in < f.out then
26 if f´ ∈ overlappingFlows then continue;
27 overlappingFlows.push(f´); stack.push(f´); continue ;

28 foreach f´ in bkFlows do
29 if f´.in < f.in then break;
30 if f.in > f.out then continue;
31 if f´.out > f.in ∧ f´.out < f.out ∧ f´.in ≤ f.in ∨
32 f´.in ≥ f.in ∧ f´.in < f.out ∧ f´.out > f.out then
33 if f´ ∈ overlappingFlows then continue;
34 overlappingFlows.push(f´); stack.push(f´); continue ;

35 return overlappingFlows ;

26

Overlapping Flows

6.4 Algorithm 8 (CollectOverlapping)

The flow f is one of the input parameters to Algorithm 8 whose role is in computing SOF (f).
In addition to f , this algorithm has two input parameters. The first is fwFlows, which includes
jump flows sorted in ascending manner concerning their outgoing labels. The second is bkFlows,
which provides for jump flows sorted in ascending manner concerning their outgoing labels.

Algorithm 8 starts its logic by pushing f into stack. Then, each flow in stack is popped as f
(Line 4), and all the flows that are overlapped with f are stored temporarily in stack to find the
flows that are overlapped with them.

The predicates at Lines 5, and 20 figures out the direction of f . This helps us in speeding
the time required in testing the overlapping at Lines 10, 17, 25, and 32. The conditions at these
lines consider the direction of f and f ′.

The algorithm impelments Theorem 3 by checking the overlapping between jump flows only.
Further, it implements Rule 6 at Lines 7 and 14, wheres it implements Rule 7 at Lines 22,
and 29.

7 Experimental Evaluations

This work implements the CFG-Based Approach (Algorithm 4) and PCB-Based Approach (Al-
gorithm 7) that were developed by Microsoft Visual C++ 2022 (MVC). Programs are parsed
using the “Regular Expression” built-in library in MVC, and the experiments have been per-
formed on an Intel Core i7 13th Gen Intel(R) with a 2.1 GHz processor, 32 GB RAM, and 64-bit
operating system. Both implementations run many times, and in each, the performance of both
implementations is analyzed using a C file to measure mainly the time and space. The application
gets the highest priority (Real-Time) and runs with an affinity processor.

7.1 Varying the number of the Flows

N
o
.F
lo
w
s

N
o
.P
re
d
ic
a
te
s

N
o
.
b
re
a
k
&

co
n
ti
n
u
e

state-
ments

N
o
.J
u
m
p
s

S
P
C
B

T
im

e
(m

s)

C
F
G

T
im

e
(m

s)

S
p
ee
d
-U

p

S
P
C
B

S
p
a
ce

C
F
G

S
p
a
ce

S
p
a
ce

C
o
n
su
m
p
ti
o
n

N
o
.
S
O
F
s

2K 1,165 616 279 2 0.6 1.9 3.2 944 820 -1.15 299

10K 5,799 3,103 1,389 10 3.5 40 11 3,040 2,100 -1.45 1,481

25K 14,411 7,647 3,370 24 6.1 176 30 6,612 4,460 -1.48 3,688

50K 28,971 15,404 6,827 50 14.2 669 47 12,792 8,808 -1.45 7,396

75K 42,990 22,835 10,057 74 21 1,457 69 18,664 12,240 -1.52 11,126

100K 56,805 30,196 13,242 100 23 2,565 111 24,448 16,036 -1.52 14,675

150K 84,879 45,140 19,842 150 38.6 5,830 151 36,048 23,640 -1.52 21,979

200K 112,237 59,665 25,940 200 53 10,237 193 47,768 31,184 -1.53 29,372

Table 1: Results from Experimental Evaluations

27

Husni Khanfar

The performance of any approach computing the SOFs on demand depends on the number
of flows. To study this factor, a code generator created eight C source code programs. The files
vary their number of statements and, consequently, their number of program flows. Afterward,
a comparison is held to understand the difference in their performances.

Table 1 summarizes the results of our measurements. The first column shows the synthetic
files, which vary from 2K to 200K. The second column shows the number of the total program
flows in each file. The third and fourth columns show the number of predicates and the number
of semi-structured flows in each file, respectively. The columns SPCB time and CFG Time show
the execution time needed to create all the SOFs of each file using the two approaches. Then,
the Speedup column shows the speedups obtained using the ”SPCB method” over the ”CFG
method.” We also compare the memory consumption of the two approaches methods in this
table. The Save-up shows how much we save from using the PCB-graph-based approach over the
CFG-based approach.

7.2 Number of goto statements

Algorithm 5 at Line 11 might degrade the performance of the PCB-based approach because
it checks the overlapping between every jump flow added recently to a new SOF with each
jump flow in the program. Thus, studying the effect of the number of jump flows is crucial. For
measurement purposes, we generated C program files with the same sizes and whose number
of goto statements varies from 120 to 5400. Then, both implementations, the PCB-based and
CFG-based graphs, run on each of these files, and the measurements are recorded in Table 2.

N
o
.P
re
d
ic
a
te
s

N
o
.b
re
a
k
s&

co
n
ti
n
u
e

N
o
.J
u
m
p
s

S
P
C
B

T
im

e
(m

s)

C
F
G

T
im

e
(m

s)

S
p
ee
d
-U

p

S
P
C
B

S
p
a
ce

(K
.B

.)

C
F
G

S
p
a
ce

(K
.B

.)

S
p
a
ce

S
av
e
U
p

N
o
.
S
O
F
s

120K120goto 34,923 14,625 120 24.02 2,786 116.0 28,208 19,000 -1.48 17,764

120K1800goto 34,698 12,764 1,800 35.33 2,755 78.0 29,608 18,714 -1.58 16,961

120K3600goto 34,818 11,063 3,600 73.21 3,405 46.5 31,280 18,884 -1.66 15,919

120K5400goto 34,712 9,293 5,396 99.70 2,755 27.6 32,224 28,280 -1.14 14,790

Table 2: Studying the effect of varying the number of goto statements

The experiments in Table 2 evaluate four automatic-generated files. The observations show
that the execution time with the CFG-based approach has not been affected, but it has increased
four times with the PCB-based approach.

8 Discussions

The experimental evaluations compare two approaches; each can form the SOFs of a particular
statement on the fly. The first approach builds its algorithms on the CFG, while the second
builds its algorithms on the PCB graph. The goal of presenting the first approach is to use it as

28

Overlapping Flows

a baseline in the evaluations. It is worth noting that each experiment produces all the SOFs in
each C file, although both are designed for on-demand computations.

The observations in Table 1 show that the first approach (Algorithm 4) is sensitive to the
increase in program flows. Table 1 depicts that increasing the number of program flows 100 times
(from 1,165 to 112,237) increases the execution times 5,000 times (from 1.9 m.s. to 10,237 m.s.).
The cause of this unscalability is the quadratic time complexity in forming the SOFs. If Nf is
the number of program flows, and adding a new program flow f to a SOF needs checking the
overlap between f and each program flow, then the time complexity is O(N2

f).
Table 1 shows that increasing the number of program flows 100 times (from 1,165 to 112,237)

increases the execution times of the PCB-based approach 100 times. The execution times do
not exceed 53 m.s., which is fast. These results demonstrate a high-performance, consistent, and
scalable approach. The favor for this is the PCB graph’s structure, which enables immediate
capturing of the structured flows that bypass a particular statement with their relevant semi-
structured flows.

The question is, why does using PCB graphs and its enhanced SPCB version give this supe-
riority? The answer is simple because they have information types that do not correspond with
CFGs. Suppose the statement under analysis is ℓ; the PCB graph can immediately figure out
whether ℓ is inside a conditional statement, what is the structured flow(s) bypassing ℓ, and what
are the semi-structured and jump flows that are related to these structured flows. The immediate
capturing of such information from the program representation eliminates the need to make an
expensive search between the program flows.

Another question comes to mind: What is the price of adding annotations to the PCB graph
to make it able to build the SPCBs immediately on demand, thereby getting these scalable
and fast manipulations? The answer is in the memory save-up column in Table 1. The trade-off
between space and speed requires adding a memory space of 1.5. This price is cheap.

The PCB-based approach’s main challenge is the number of goto statements. If pcb0 (main
track) is very long and there are many goto statements, then finding the flows that bypass the
statement under analysis ℓ, which belongs to pcb0, requires individually checking the jump flows
in the main track. Further, the time complexity for forming the overlapping flows is O(n2

j), where
nj is the number of jump flows in pcb0. This case also occurs with any conditional statement
having many jump flows, although this is rare.

Table 2 studies the effect of increasing the number of jump flows. The data shows that varying
the number of jump flows from 120 to 5400 increases the execution time from 24 m.s. to 99.7
m.s. In other words, increasing the number of goto statements 45 times leads to increasing
the execution time four times. Nevertheless, the PCB-based approach is still scalable with the
number of jump flows.

The percentage of goto statements in the files of Table 2 reaches 4.5%. This percentage is
very rare. The empirical study of Meiyappan Nagappan et el [7]. found that 88.5% of files among
2,150,387 files do not have any goto statement, 14.45% of the files containing goto statements
have only one goto statements, and the percentage of the files that has more than 100 goto
statements is 0.55%. Based on that, most of the flows are either structured or semi-structured. As
a result, checking the overlapping between unstructured flows does not cause a bad performance.
However, the experiments show that the performance of the PCB-based approach is good with
a large number of goto statements.

9 Related Work & History

For more than four decades, researchers in static program analysis have been working on the
control dependence research question as one of the requirements for program slicing. In 1981,

29

Husni Khanfar

Weiser [8] introduced the program slicing concept. He used dataflow equations for this purpose,
but his method needed to be more appropriate. It does not work with unstructured programs.
Ottenstein and Ottenstein [5] invented the Program Dependence Graph (PDG) for finding slices
in structured programs, but PDG-based slicing cannot handle such dependencies in unstructured
programs.

In the PDG-based slicing, the control dependencies are obtained from the post-dominator
tree [5]. Many algorithms arose [9,10,11,12,13,14,15,16] to collect the post-domination facts in
the program and then arrange them in dominator or post-dominator trees. All these algorithms
are comprehensive, meaning for computing the post-domination for Node ni, the algorithm should
adequately calculate the post-domination for either the predecessors or successors of ni. The most
famous dominator algorithm is the one provided by Lengauer-Tarjan’s [15].

Finding the control dependencies of unstructured programs was one of the main challenges
in program slicing for about two decades. Many works [17,18,19] tried to find a solution. Ball
and Horwitz [19] as well as Choi and Ferrentai [18] proposed Augmented CFG (ACFG) and
Augmented PDG (APDG). They treated the goto statements as predicates. Harman and Danicic
extended Agrawal’s algorithm and performed better using a refined criterion for slicing the goto
statements. Sinha et al. [20] mentioned that the Harman and Danicic algorithm needs to be
more precise with switch statements, and she proposed a solution for inter-procedural control
dependencies.

Demand-driven slicing aims to avoid making comprehensive analyses to get the facts for one
or two statements that might be among tens or hundreds of thousands of source code lines. These
approaches were presented by Kraft [21], Sandberg et al. [22], Lisper et al. [23], Atkinson and
Griswold [24,25,26,27], and Hajnal and Forgács [28]. It is worth noting that none of these works
proposed a way to obtain the control dependencies in unstructured programs on the fly.

Our previous work in 2015 [1] proposed the new program representation Predicated Code
Block (PCB) graph as an alternative to the Control Flow Graph (CFG). Upon this new repre-
sentation, the work [1] builds a demand-driven slicing approach for intra-procedural structured
programs. The following work in 2016 [2] enhanced the PCB graph to handle inter-procedural
cases. Afterward, our work in 2019 [3] invented a new method that computes the control de-
pendencies in unstructured programs on the fly. This novel work operates in two distinct steps.
The first gets the predicates that control the statement under analysis from an SOF. This step
is over-approximated but fast. The second stage performs a deep analysis to pick the minimum
predicates. The challenge of this approach is the complexity of the time spent building the SOFs.
This paper fixes this problem.

10 Conclusions

The Predicated Control Block (PCB) is a novel program representation that encapsulates the rep-
resentations of conditional statements, the syntactic structure of conditional statements (child-
parent relations), the location information of statements, the type of conditional statements
(Linear or Cycle), and the program flows. This paper introduces a new dimension to the PCB
graph by representing the logical connections between the PCBs. These logical connections can
be understood as the relationships between different conditional statements within the program.
Furthermore, it added the power of classifying the program flows into structured, semi-structured,
and jump flows.

Contrary to the PCB graph, the Control Flow Graph, the state-of-the-art representation,
represents only control flows and neglects other types of information. Focusing on the repre-
sentation of one type of information and neglecting others causes the emergence of approaches
that sometimes try to retrieve the information that is distracted from the available information

30

Overlapping Flows

indirectly. The best example for this is the control dependence. Each statement is controlled and
dependent on the predicate of its conditional statement unless some other circumstances occur.
This simple concept illustrates how the eye reflects when it looks at the code. Neglecting this
simple fact yields to make every predicate suspected to control the statement under analysis.

This work and its predecessors [1,2,3,4] show one rule; more types of information represented,
more effortless analysis. This way of working enables us to develop high-performance, on-demand,
scalable, and accurate analysis. More importantly, it prevents the need to develop comprehensive
analysis.

References

1. Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program slicing for safety-
critical systems. In Ada-Europe International Conference on Reliable Software Technologies, pages
50–65. Springer, 2015.

2. Husni Khanfar and Björn Lisper. Enhanced PCB-based slicing. In Fifth International Valentin
Turchin Workshop on Metacomputation, page 71, 2016.

3. Husni Khanfar, Björn Lisper, and Saad Mubeen. Demand-driven static backward slicing for un-
structured programs. Technical Report MDH-MRTC-324/2019-1-SE, School of Innovation, Design
and Engineering. Malardalen University, May 2019.

4. Husni Khanfar. Computing on-the-fly the relevant program flows to a control dependency. Techni-
cal Report MDH-MRTC-334/2021-1-SE, School of Innovation, Design and Engineering. Malardalen
University, April 2021.

5. Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in a software develop-
ment environment. In ACM Sigplan Notices, volume 19, pages 177–184. ACM, 1984.

6. Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and Matthew B
Dwyer. A new foundation for control dependence and slicing for modern program structures. ACM
Transactions on Programming Languages and Systems (TOPLAS), 29(5):27, 2007.

7. Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Éric Tanter, Shane McIntosh, Audris
Mockus, and Ahmed E Hassan. An empirical study of goto in c code from github repositories.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 404–
414, 2015.

8. Mark Weiser. Program slicing. In Proceedings of the 5th international conference on Software
engineering, pages 439–449. IEEE Press, 1981.

9. Alfred V Aho and Jeffrey D Ullman. Principles of Compiler Design (Addison-Wesley series in
computer science and information processing). Addison-Wesley Longman Publishing Co., Inc., 1977.

10. Alfred V Aho and Jeffery D Ullman. Lr (k) grammars. In The theory of parsing, translation, and
compiling, volume 1, pages 371–379. Prentice-Hall Englewood Cliffs, NJ, 1972.

11. Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117–2132, 1999.

12. Adam L Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R Westbrook. Linear-time pointer-
machine algorithms for least common ancestors, mst verification, and dominators. In Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pages 279–288. ACM, 1998.

13. Matthew S Hecht. Flow analysis of computer programs. Elsevier Science Inc., 1977.
14. Matthew S Hecht and Jeffrey D Ullman. A simple algorithm for global data flow analysis problems.

SIAM Journal on Computing, 4(4):519–532, 1975.
15. Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM Transactions on Programming Languages and Systems (TOPLAS), 1(1):121–141, 1979.
16. Paul W Purdom Jr and Edward F Moore. Immediate predominators in a directed graph [h]. Com-

munications of the ACM, 15(8):777–778, 1972.
17. Hiralal Agrawal. On slicing programs with jump statements. In ACM Sigplan Notices, volume 29,

pages 302–312. ACM, 1994.
18. Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto statements. ACM

Transactions on Programming Languages and Systems (TOPLAS), 16(4):1097–1113, 1994.

31

Husni Khanfar

19. Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow. In International
Workshop on Automated and Algorithmic Debugging, pages 206–222. Springer, 1993.

20. Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-graph-based slicing
of programs with arbitrary interprocedural control flow. In Software Engineering, 1999. Proceedings
of the 1999 International Conference on, pages 432–441. IEEE, 1999.

21. Johan Kraft. Enabling timing analysis of complex embedded software systems. PhD thesis, Mälardalen
University, 2010.

22. Christer Sandberg, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Faster wcet flow analysis
by program slicing. In ACM SIGPLAN Notices, volume 41, pages 103–112. ACM, 2006.

23. Björn Lisper, Abu Naser Masud, and Husni Khanfar. Static backward demand-driven slicing. In
Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation, pages 115–126.
ACM, 2015.

24. Darren C Atkinson and William G Griswold. Implementation techniques for efficient data-flow analy-
sis of large programs. In Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), page 52. IEEE Computer Society, 2001.

25. Leeann Bent, D Atkinson, and W Griswold. A qualitative study of two whole-program slicers for c.
Technical Report, 2000.

26. Darren C Atkinson and William G Griswold. Effective whole-program analysis in the presence of
pointers. ACM SIGSOFT Software Engineering Notes, 23(6):46–55, 1998.

27. Darren C Atkinson and William G Griswold. The design of whole-program analysis tools. In Pro-
ceedings of the 18th international conference on Software engineering, pages 16–27. IEEE Computer
Society, 1996.

28. Ákos Hajnal and István Forgács. A demand-driven approach to slicing legacy cobol systems. Journal
of software: evolution and process, 24(1):67–82, 2012.

32

