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Abstract

Component-based software engineering is a technique
that has proven effective to increase reusability and ef-
ficiency in development of office and web applications.
Though being promising also for development of embedded
and dependable systems, the true potential in this domain
has not yet been realized.

In this paper we present a prototype component technol-
ogy, developed with safety-critical automotive applications
in mind. The technology is illustrated by a case-study, which
is also used as the basis for an evaluation and a discussion
of the appropriateness and applicability in the considered
domain. Our study provides initial positive evidence of the
suitability of our technology, but also shows that it needs to
be extended to be fully applicable in an industrial context.

1 Introduction
Software is central to enable functionality in mobile

phones, cars, airplanes, medical systems, and other prod-
ucts. At the same time, software is also a source of quality
problems and constitutes a major part of the development
cost. These problems are further accentuated by the increas-
ing complexity and product integration.

Improving quality of Embedded Computer Systems
(ECS) is a prerequisite to increase, or even maintain, prof-
itability. Similarly, there is a call for predictability in the
ECS engineering processes; keeping quality under control,
while at the same time meeting stringent cost and time-
to-market constraints. This calls for new systematic engi-
neering approaches to design, develop, and maintain ECS
software. Component-Based Software Engineering (CBSE)
is such a technique, currently used in office applications,
but which is unproven for embedded dependable software
systems. In CBSE, software is structured into components
and systems are constructed by composing and connecting

these components. CBSE can be seen as an extension of
the object-oriented approach, where components may have
additional interface types than the traditional method invo-
cation of objects. Similarly to objects, simpler components
can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devis-
ing a component technology for distributed, embedded,
safety critical, dependable, resource constrained real-time
systems. Systems with these characteristics are common in
the automotive, robotics, and automation industries. Hence,
we cooperate with leading product companies (e.g. ABB,
Bombardier and Volvo) and some of their suppliers (e.g.
Arcticus Systems and CC Systems) in order to establish this
novel component technology.

Outline: Section 2 provides background on CBSE for
embedded systems. In Section 3 we present the current
implementation of our component technology, and Sec-
tion 4 provides an example application that illustrates its
use. Based on experiences with the example application,
we provide an evaluation of our technology in Section 5.
Finally, in Section 6 we conclude and outline some future
work.

2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories,
processes, technologies, and tools, supporting and enhanc-
ing a component-based design strategy for software. A
component-based approach for software development dis-
tinguishes component development from system develop-
ment. Component development is the process of creating
components that can be used and reused in many applica-
tions. System development with components is concerned
with assembling components into applications that meet the
system requirements. The central technical concepts of
CBSE in an embedded setting are:



� Software components that have well specified interfaces,
and are easy to understand, adapt and deliver. Especially
for embedded systems, the components must have well
specified resource requirements, as well as specification
of other, for the application relevant properties, e.g., tim-
ing, memory consumptions, reliability, safety, and de-
pendability.

� Component models that define different component
types, their possible interaction schemes, and clarify
how different resources are bound to components. For
embedded systems the component models should im-
pose design restrictions so that systems built from com-
ponents are predictable with respect to important prop-
erties in the domain.

� Component frameworks, i.e., run-time systems that sup-
ports the components’ execution by handling compo-
nent interactions and invocation of the different ser-
vices provided by the components. For embedded sys-
tems, the component framework typically must be light
weighted, and use predictable mechanisms. To enhance
predictability, it is desirable to move as much as possi-
ble of the traditional framework functionality from the
run-time system to the pre-run-time compilation stages.

� Component technologies, i.e., concrete implementations
of component models and frameworks that can be used
for building component-based applications. Two of
the most well known component technologies are Mi-
crosoft’s Components Object Model1 (COM) for desk-
top applications, and Sun’s Enterprise Java Beans2 (EJB)
for distributed enterprise applications.

Efficient development of applications is supported by the
component-based strategy, which addresses the whole soft-
ware life-cycle. CBSE can shorten the development-time
by facilitating component reuse, and by simplifying parallel
development of components. Maintenance is also supported
since the component assembly is a model of the application,
which is by definition consistent with the actual system.
During maintenance, adding new, and upgrading existing
components are the most common activities. When using a
component-based approach, this is supported by extendable
interfaces of the components. Also testing and debugging is
enhanced by CBSE, since components are easily subjected
to unit testing and their interfaces can be monitored to en-
sure correct behaviour.

CBSE has been successfully applied in development of
desktop and enterprise business applications, but for the
domain of embedded systems CBSE has not been widely
adopted. One reason is the inability of the existing com-
mercial technologies to support the requirements of the em-

1Microsoft Corporation, The Component Object Model, www.-
microsoft.com

2Sun Microsystems, Enterprise JavaBeans Specification, www.sun.-
com

bedded applications. Component technologies supporting
different types of embedded systems have recently been de-
veloped, e.g., from industry [11, 24], and from academia
[4, 25] . However, as Crnkovic points out [3], there are
much more issues to solve before a CBSE discipline for em-
bedded systems can be established, e.g., basic issues such as
light-weighted component frameworks and identification of
which system properties that can be predicted by compo-
nent properties.

Based on risks and requirements for applying CBSE for
our class of applications, we have collected a check-list with
evaluation points that we have used to evaluate our compo-
nent technology in an industrial environment. In Section 5
we provide a summary of the evaluation. For more details
we refer to [9].

3 Our Component Technology

Our component technology implements the SaveComp
Component Model (SaveCCM) [6] and provides compile-
time mappings to a set of operating systems, following the
technique described in [19]. The component technology is
intended to provide three main benefits for developers of
embedded systems: efficient development, predictable be-
haviour, and run-time efficiency.

Efficient development is provided by SaveCCM’s effi-
cient mechanisms for developing embedded control sys-
tems. This component model is intended to be sufficiently
expressive for the needs of embedded control designers,
while at the same time being restricted enough to facilitate
predictability, dependability, and analysis.
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Figure 1. An overview of our current compo-
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Predictable behaviour is essential for dependable sys-
tems. In our technology, predictability is achieved by sys-
tematic use of simple, predictable, and analysable run-time
mechanisms; combined with a restrictive component model
with limited flexibility.

Run-time efficiency is important in embedded systems,
since these systems usually are produced in high volumes
using inexpensive hardware. We employ compile-time
mappings of the component-based application to the used
operating systems, which eliminates the need for a run-time
component framework.

As shown in Figure 1, three different phases can be iden-
tified, where different pieces of the component technology
are used:

� Design-time – SaveCCM is used during design-time for
describing the application.

� Compile-time - during compile-time the high-level
model of the application is transformed into entities of
the run-time model, e.g., tasks, system calls, task at-
tributes, and real-time constrains.

� Run-time – during run-time the application uses the ex-
ecution model from an underlying operat-ing system.
Currently our component technology supports the RTXC
[18] operating system and the Microsoft Win32 [15] en-
vironment . The Win32 environment is intended for
functional test and debug activities, but it does not sup-
port real-time tests since executions are not timely accu-
rate with target system executions.

3.1 Design-Time – The Component Model

SaveCCM is a component model intended for develop-
ment of software for vehicular systems. The model is re-
strictive compared to commercial component models, e.g.,
COM and EJB. SaveCCM provides three main mechanisms
for designing applications:

Components which are encapsulated units of behaviour.
Component interconnections which may contain data,

triggering for invocation of components, or a combi-
nation of both data and triggering.

Switches which allow static and dynamic reconfiguration
of component interconnections.

These mechanisms have been designed to allow com-
mon functionality in embedded control systems to be imple-
mented. Specific examples of key functionality supported
are:

� Support for implementation of feedback control, with
a possibility to separate calculation of a control signal,
from the update of the controller state. Something which
is common in control applications to minimise latency
between sampling and control.

� Support for system mode changes, something which is
common in, e.g., vehicular systems.

� Support for static configuration of components to suit a
specific product in, e.g., a product line.

3.1.1 Architectural Elements

The main architectural elements in SaveCCM are compo-
nents, switches, and assemblies. The interface of an archi-
tectural element is defined by a set of ports, which are points
of interaction between the element and its external environ-
ment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that
can be transferred via the port, and the triggering of compo-
nent executions. SaveCCM distinguish between these two
aspects, and allow three types of ports:

� Data ports are one element buffers that can be read and
written. Each write operation to the port will overwrite
the previous value stored.

� Triggering ports are used for controlling the activation
of elements. An element may have several triggering
ports. The component is triggered when all input trigger-
ing ports are activated. Several output triggering ports
may be connected to a single input triggering port, pro-
viding "OR-semantics".

� Combined ports (data and triggering), combine data and
triggering ports. Semantically the data is written before
the trigger is activated.

An architectural element emits trigger signals and data
at its output ports, and receives trigger signals and data at
its input ports. Systems are built from the architectural ele-
ments by connecting input ports to output ports. Ports can
only be connected if their types match, i.e. identical data
types are transferred and the triggering coincides.

The basis of the execution model is a control-flow (pipes-
and-filters) paradigm [21]. On a high level, an element is
either waiting to be activated (triggered) or executing. In
the first phase of its execution an element read all its inputs,
secondly it performs all computations, and finally it gener-
ates outputs.

Components

Components are the basic units of encapsulated behaviour.
Components are defined by an entry function, input and out-
put ports, and, optionally, quality attributes. The entry func-
tion defines the behaviour of the component during execu-
tion. Quality attributes are used to describe particular char-
acteristics of components (e.g. worst-case execution-time
and reliability). A component is not allowed to have any de-
pendencies to other components, or other external software
(e.g. the operating system), except the visible dependencies
through its input- and output-ports.



Switches

A switch provides means for conditional transfer of data
and/or triggering between components. A switch specifies
a set of connection patterns, each defining a specific way of
connecting the input and output ports of the switch. Logical
expressions (guards; one for each pattern), based on the data
available at some of the input ports, are used to determine
which connection pattern that is to be used.

Switches can be used for specifying system modes, each
mode corresponding to a specific static configuration. By
changing the port values at run-time, a new mode can be
activated. By setting a port value to a fixed value at design
time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite objects to be de-
fined, and make it possible to form aggregate components
from groups of components, switches, and assemblies. In
SaveCCM, assemblies are encapsulation of components and
switches, having an external functional interface (just as
SaveCCM-components).

3.1.2 SaveCCM Syntax

The graphical syntax of SaveCCM is shown in Figure 2,
the syntax is derived from symbols in UML 2.0 [17] , with
additions to distinguish between the different types of ports.
The textual syntax is XML-based [26], and available in [9].
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Figure 2. Graphical syntax of SaveCCM

3.2 Compile-Time Activities

During compile-time, the XML-description of the ap-
plication is used as input. The XML description contains
no dependencies to the underlying system software or hard-
ware. All code that is dependent on the execution platform
is automatically generated in the compile-step. In the com-
piler, the modules (see Figure 1) that are independent of the
underlying execution platform are separated from modules
that are platform dependent. When changing platform, it is
possible to replace only the platform dependent modules of
the compiler.

The four modules of the compiler (task allocation, at-
tribute assignment, analysis, and code generation) represent
different activities during compile-time, as explained below.

3.2.1 Task Allocation
During the task-allocation step, components are assigned to
operating-system tasks. This part of the compile-time activ-
ities is independent of the execution platform, and the algo-
rithm used for allocation of components to tasks strives to
reduce the number of tasks. This is done by allocating com-
ponents to the same task whenever possible, i.e. (i) when
the components execute with the same period-time, or are
triggered by the same event, and, (ii) when all precedence
relations between interacting components are preserved. A
description of the algorithm is available in [9].

3.2.2 Attribute Assignment
Attribute assignment is dependent on the task-attributes of
the underlying platform, and possibly additional attributes
depending on the analysis goals. In the current implemen-
tation for the RTXC RTOS and Win32, the task attributes
are:

Period-time used during code generation for specifying
the period time for tasks.

Priority used by the underlying operating system for se-
lecting the task to execute among pending tasks.

Worst-case execution-time (WCET) used during analysis.

Deadline used during analysis.

The period time, deadline, and WCET are directly derived
from the components included in each task. Priority is as-
signed in deadline monotonic order, i.e., shorter deadline
gives higher priority.

3.2.3 Analysis
The analysis step is optional, and is in many cases depen-
dent on the underlying platform, e.g., for schedulability
analysis it is fundamental to have knowledge of the schedul-
ing algorithm of the used OS. But analysis is also dependent
on the assigned attributes (e.g., for schedulability analysis,
WCET of the different tasks are needed).



Examples of analysis include schedulability analysis [1],
memory consumption analysis [5], and reliability analysis
[20].

Attributes that are usage and environment dependent
cannot be analysed in this automated step, since it only re-
lies on information from the component model. There are
no usage profiles or physical environment descriptions in-
cluded in the component model. Additional information
is needed to allow such analysis, e.g., safety analysis [22].
Safety is an important attribute of vehicular systems, and
we plan to integrate safety aspects in future extensions.

In the current prototype implementation, schedulability
analysis according to FPS theory is performed [7].

3.2.4 Code Generation
The code generation module of the compile-time activities
generates all source code that is dependent on the underly-
ing operating system. The code generation module is de-
pendent on the Application Programming Interface (API)
of the component run-time framework. In the prototype im-
plementation for the RTXC operating system (see Figure
3 a) and the Win32 operating system (see Figure 3 b), the
code generation does not target any of the APIs directly. In-
stead, the automatic code generation generates source code
for target independent APIs: the SaveOS and SaveIO APIs
[9]. The APIs are later translated using C-style defines to
the desired target operating system.

3.3 The Run-Time System
The run-time system consists of the application software

and a component run-time framework. The application soft-
ware is automatically generated from the XML-description
using the SaveCCM Compiler. On the top-level, the run-
time framework has a transparent API, which always has the
same inter-face towards the application, but does only con-
tain the run-time components needed (e.g. the SaveCCM
API does not include a CAN interface [8], a CAN proto-
col stack or a device driver, if the application does not use
CAN).

Pre-compilation settings are used to change the
SaveCCM API behaviour depending on the target environ-
ment. If the application is to be simulated in a PC envi-
ronment, in our case using CCSimTech [13], the SaveCCM
API directs all calls to the SaveOS to the RTOS simulator
in the Windows environment. If the system is to be exe-
cuted on the target hardware using a RTOS (e.g. RTXC) the
SaveCCM API directs all system calls to the RTOS.

The framework also contains a variable set of run-time
framework components (e.g. CAN, IO, and Memory) used
to support the application during execution. These com-
ponents are hardware platform independent, but might,
to some degree, be RTOS dependent. To obtain hard-
ware independency, a hardware abstraction layer (HAL) is

used. All communication between the component run-time
framework and the hardware passes through the HAL.

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN SaveIO

PC

SaveMemory

Win 32
CCSimTech

T
arg

et
F

ram
ew

o
rk

S
im

u
latio

n
 F

ram
ew

o
rk

(a)

(b)
Figure 3. System architecture for target (a)
and simulation (b)

The layered component run-time framework is designed
to enhance portability, which is a strong industrial require-
ment [14].This approach also enhances the ability to up-
grade or update the hardware and change or upgrade the
operating system. The requirements on product service and
the short life-cycles of today’s CPUs also make portability
very important.

4 Application Example

To evaluate SaveCCM and the compile-time and run-
time parts of the component technology, we implemented
a typical vehicular application: an Adaptive Cruise Con-
troller (ACC). When designing the application, much focus
was put on using all different possibilities in the compo-
nent model (components, switches, assemblies, etc.) with
the purpose to verify the usefulness of these constructs,
the compile-time activities, and the automatically generated
source code. In the remaining part of this section, the basics
of an ACC system is introduced, and the resulting design
using SaveCCM is presented.



4.1 Introduction to ACC functionality

An ACC is an extension to a regular Cruise Controller
(CC). The purpose of an ACC system is to help the driver
keep a desired speed (traditional CC), and to help the driver
keep a safe distance to a preceding vehicle (ACC extension).
The ACC autonomously adapt the distance depending on
the speed of the vehicle in front, while keeping the gap large
enough to aviod rear-end collisions.

To increase the complexity of a basic ACC system, and
thereby exercise the component model more, our ACC sys-
tem has two non-standard functional extensions; (1) the
possibility for autonomous changes of the maximum speed
of the vehicle depending on the speedlimit regulations, and
(2) a brake-assist function, helping the driver with the brak-
ing procedure in extreme situations, e.g., when the vehicle
in front suddenly brakes or if an obstacle suddenly appears
on the road. Achieving (1) would require actual speed-limit
regulations to be known to the ACC system by, e.g., by us-
ing transmitters on the road signs or road map information
in cooperation with a Global Positioning System (GPS).

4.2 Implementation using SaveCCM

On the top-level, we distinguish between three different
sources of input to the ACC application: (i) the Human Ma-
chine Interface (HMI) (providing e.g. desired speed and
on/off status of the ACC system), (ii) the vehicular internal
sensors (e.g. actual speed and throttle level), and, (iii) the
vehicular external sensors (providing e.g. distance to the
vehicle in front). The different outputs can be divided in
two categories, the HMI outputs (returning driver informa-
tion about the system state), and the vehicular actuators for
controlling the speed of the vehicle.

The application has two different trigger frequencies, 10
Hz and 50 Hz. Logging and HMI outputs activities execute
with the lower rate, and control related functionality at the
higher rate.

Furthermore, there is a number of operational system
modes identified, in which different components are active.
The different modes are: Off, ACC Enabled and Brake As-
sist. Off is the initial system mode. In the Off mode, none
of the control related functionality is activated, but system-
logging, functionality related to determining distance to ve-
hicles in front, and speed measuring are active. During the
ACC enabled mode the control related functionality is ac-
tive. The controllers control the speed of the vehicle based
on the parameters: desired speed, distance to vehicles in
front, and speed-regulations. In the Brake Assist mode,
braking support for extreme situations is enabled.

The ACC system is implemented as an assembly ("ACC
Application" in Figure 4 a) built-up from four basic compo-
nents, one switch, and one sub-assembly. The sub-assembly
("ACC Controller") is in turn implemented as shown in Fig-
ure 4 b.

4.2.1 The ACC Application Assembly
The Speed Limit component calculates the maximum speed,
based on input from the vehicle sensors (i.e. current vehicle
speed) and the maximum speed of the vehicle depending on
the speed-limit regulations. The component runs with 50 Hz
and is used to trigger the Object Recognition component.

The Object Recognition component is used to decide
whether or not there is a car or another obstacle in front
of the vehicle, and, in case there is, it calculates the relative
speed to this car or obstacle. The component is also used
to trigger Mode Switch and to provide Mode Switch with in-
formation indicating if there is a need to use the brake assist
functionality or not.

Mode Switch is used to trigger the execution of the ACC
Controller assembly and the Brake Assist component, based
on the current system mode (ACC Enabled, Brake Pedal
Used) and information from Object Recognition.

The Brake Assist component is used to assist the driver,
by slamming on the brakes, if there is an obstacle in front
of the vehicle that might cause a collision.

The Logger HMI Outputs component is used to com-
municate the ACC status to the driver via the HMI, and to
log the internal settings of the ACC. The log-memory can
be used for aftermarket purposes (black-box functionality),
e.g., checking the vehicle-speed before a collision.

The ACC Controller assembly is built up of two cascaded
controllers (see Figure 4, right), managing the throttle lever
of the vehicle. This assembly has two sub-level assemblies,
the Distance Controller assembly and the Speed Controller
assembly.

A control feedback solution is used between the two con-
trollers to deliver the response for the time-critical computa-
tion (throttle lever level) as fast as possible. Hence, the con-
trollers firstly calculate their output values and after these
values have been sent to the actuators, the internal state is
updated (detailed presentation can be found in [9]).

4.3 Application Test-Bed Environment

In the evaluation, the RTXC operating system is used to-
gether with a Cross FIRE ECU3. RTXC is a pre-emptive
multitasking operating system which permits a system to
make efficient use of both time and system resources.
RTXC is packaged as a set of C language source code files
that needs to be compiled and linked with the object files of
the application program.

The Cross FIRE is a C167-based4 IO-distributing ECU
designed for CAN-based real-time systems. The ECU is
developed and produced by CC Systems, and intended for
use by mobile applications in rough environments.

3CC Systems, Cross FIRE Electronic Control Unit, http://www.cc-
systems.com.

4Infineon, C-167 processor, http://www.infineon.com/.
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During functional testing and debugging, CC Systems
use a simulation environment called CCSimTech [13],
which also was incorporated in this work. Developing and
testing of distributed embedded systems is very challenging
in their target environments, due to poor observability of
application state and internal behaviour. With CCSimTech,
a complete system with several nodes and different types
of interconnection media, can be developed and tested on a
single PC without access to target hardware. This makes it
possible to use standard PC tools, e.g., for debugging, auto-
mated testing, fault injection, etc.

5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software prod-
ucts. Thus, to fully evaluate the suitability of a component
technology requires experiences from using the technology
in real projects (or at least in a pilot/evaluation project) by
representatives from the intended organisation, using exist-
ing tools, processes and techniques.

Our experiment was conducted using CC Systems’ tools
and techniques. However, we have not used the company’s
development processes. Hence, we can only give partial
answers (indications) concerning the suitability our compo-
nent technology.

Our evaluation focus on the following three types of
properties:

Structural properties concerning the suitability of the im-
posed application structure and architecture, and the
ease to define and create the desired behaviour using
the supported design patterns.

Behavioural properties concerning the application per-
formance, in terms of functional and non-functional
behaviour.

Process properties concerning the ease and possibility to
integrate the technology with existing processes in the
organisation.

The adaptive cruise controller application represents an ad-
vanced domain specific function, which could have been
used as a pilot study at the company. The hardware, oper-
ating system, compilers, and the simulation technique, have
been selected among the company’s repertoire, and are thus
highly realistic.

The implementation of the application has not been done
according to the process at the company, rather as an exper-
iment by the authors. Thus, it is mainly the structural and
behavioural properties that can be addressed. However, to
evaluate the process related issues, senior process managers
at the company have helped to relate the component tech-
nology to the development processes normally used.

The evaluation is conducted using a check-list assembled
from requirements for automotive component technologies
by Möller et al. [14], risks with using CBSE for embedded
systems by Larn and Vickers [12], and from needs identified
by Crnkovic [3].

5.1 Structural Properties
Based on the experiment performed we conclude that the

component model is sufficiently expressive for the studied
application, and that it allows the software developer to fo-
cus on the core functionality when designing applications.
The similarities with UML 2.0 provide important benefits



by allowing us to use a slightly modified UML 2.0 editor
for modelling applications. Also, issues related to task map-
ping, scheduling, and memory allocation are taken care of
by the compilations provided by the component technology,
something which gives developers possibilities to concen-
trate more on application functionality.

Modifications of components are straightforward, since
the components have visible source code, and since all
bindings between components are automatically generated.
However, there is not yet any specific support for mainte-
nance in the component technology.

The ACC system is directrly compilable for both Win32
on a regular PC and RTXC on a Cross FIRE ECU. This is an
indication of the portability of our technology across hard-
ware platforms and operating systems. As a consequence,
components can be reused in different applications regard-
less of which RTOS or hardware is used.

Configurability is essential for component reuse, e.g.,
within a Product Line Architecture (PLA) [2]. In
SaveCCM, components can be configured by static binding
of values to ports. However, there is currently no explicit
architectural element to specify this. In our experiment, we
could however achieve the same effect by directly editing
the textual representation. For instance, a switch condition
can be set statically during design-time, and partially eval-
uated during compile-time, to represent a configuration in a
PLA. A future extension of SaveCCM is to add a new ar-
chitectural element that makes it possible to visualise and
directly express static configurations of input ports. This
will additionally facilitate version and variant management.

5.2 Behavioural Properties

With respect to behavioural properties, our component
technology is quite efficient. The run-time framework pro-
vides a mapping to the used OS without adding functional-
ity, and the compile-time mechanisms strive to achieve an
efficient application by allocating several components to the
same task. Some data about our case-study:

� The compilation resulted in four tasks: one task in-
cluding components speed-limit, object recognition, and
mode-switch; one task including logger HMI outputs;
one task including brake assist; and one task including
the four components in the ACC controller.

� The CPU utilisation in the different application modes
are 7%, 12%, 15%, respectively for the Off, Brake As-
sist, and ACC modes, respectively.

� The total application size is 114 kb, of which 104 kb
belongs to the operating system, and 10 kb to the appli-
cation. The application part consists of 2 kb of compo-
nents code, and 8 kb run-time framework and compiler
generated operating system dependent code.

To allow analysis it is essential to derive task level qual-
ity attributes from the corresponding component level at-
tributes. In our case-study this was straight-forward, since
the only quality attribute considered is worst-case execution
time, which can be straightforwardly composed by addition
of the values associated to the components included in the
task.

Furthermore, the CCSimTech simulation technique
proved very useful for verification and debugging of the ap-
plication functionality.

5.3 Process Related

The process related evaluation concerns the suitability to
use the component technology in conjunction with existing
processes and organisation, when developing component-
based applications. Though process related issues are not
directly addressable by our experiment, based on a set of
interviews company engineers have expressed the follow-
ing:

� The RTOS and platform independence is a major advan-
tage of the approach.

� The integration with the simulation technique, CC-
SimTech, used in practically all development projects at
CC Systems, will substantially facilitate the integration
of SaveCCM in the development process.

� The maintainability aspects of CBD are attractive, since
changes are simplified by the tight relation between the
applications description and the source code.

� The tools included in the component technology, as well
as the user-documentation, have not reached an accept-
able level of quality for use in real industry projects.

6 Conclusions and Future Work

We have described the initial implementation of our
component technology for vehicular systems, and evaluated
it in an industrial environment, based on requirements iden-
tified in related research.

The evaluation shows that the existing parts of the com-
ponent technology meet the requirements related to them.
However, to meet overall requirements, extensions to the
technology are needed.

Plans for future work include extending the component
technology with support for multiple nodes, integration of
legacy-code with the components [10], run-time monitor-
ing support [23], and a real-time database for of shared data
[16]. Implementation of more types of automated analysis
to determine system attributes from component attributes
is also a target for future work. Furthermore, to make the
prototype useful in practice, our technology needs to be in-
tegrated with supporting tools, e.g., automatic generation of
XML descriptions from UML 2.0 drawings, and integration
with configuration management tools.



A final indication of the potential of our component tech-
nology, and CBSE for embedded systems development in
general, is that the company involved in the case-study finds
our technology promising and has expressed a keen interest
to continue the cooperation.

Acknowledgements

We would like to thank CC Systems for inviting and
helping us to realise this pilot project. Special thanks to J.
Hansson and K. Lindfors for invitation and to J. Strandberg
and F. Löwenhielm for their support with all kinds of techni-
cal issues. We would also like to thank Sasikumar Punnekat
for valuable feedback on early versions of this article.

References

[1] G. Butazzo. Hard Real-Time. Kluwer Academic Publishers,
1997. ISBN: 0-7923-9994-3.

[2] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2001. ISBN 0-201-
70332-7.

[3] I. Crnkovic. Componet-Based Approach for Embedded Sys-
tems. In Proceedings of 9�� International Workshop on
Component-Oriented Programming, June 2004. Oslo, Nor-
way.

[4] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-
Based Prediction of Run-Time Resource Consupmption in
Component-Based Software Systems. In Proceedings of the
6�� International Workshop on Component-Based Software
Engineering, May 2003. Portland, Oregon, USA.

[5] A. Fioukov, E. Eskenazi, D. Hammer, and M. Chaudron.
Evaluation of Static Properties for Component-Based Ar-
chitetures. In Proceedings of 28�� Euromicro Conference,
September 2002. Dortmund, Germany.

[6] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. In Proceedings of 30�� Euromicro Confer-
ence, Special Session Component Models for Dependable
Systems, September 2004.

[7] M. Harbour, M. Klein, and J. Lehoczky. Timing analysis
for Fixed-Priority Scheduling of Hard Real-Time Systsems.
IEEE Transactions, 20(1), January 1994.

[8] International Standards Organisation (ISO). Road Vehicles –
Interchange of Digital Information – Controller Area Net-
work (CAN) for High-Speed Communication, November
1993. vol. ISO Standard 11898.

[9] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. SAVE-
Comp - a Dependable Component Technology for Embed-
ded Systems Software. Technical report, MRTC report ISSN
1404-3041 ISRN MDH-MRTC-165/2004-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen University, Decem-
ber 2004.

[10] M. Åkerholm, K. Sandström, and J. Fredriksson. Interfer-
ence Control for Integration of Vehicular Software Compo-
nents. Technical report, MRTC Report ISSN 1404-3041
ISRN MDH-MRTC-162/2004-1-SE, MRTC, Mälardalen
University, May 2004.

[11] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-
Based Development of Dependable Real-Time Applications.
In Real-Time in Sweden – Presentation of Component-Based
Software Development Based on the Rubus concept, Arcticus
Systems: http://www.arcticus.se. Västerås, Sweden.

[12] W. Lam and A. Vickers. Managing the Risks of Component-
Based Software Engineering. In Proceedings of the 5��

International Symposium on Assessment of Software Tools,
June 1997. Pittsburgh, USA.

[13] A. Möller and P. Åberg. A Simulation Technology for CAN-
based Systems. CAN Newsletter, 4, December 2004.

[14] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements
on Component Technologies for Embedded Systems. In Pro-
ceedings of the 7�� International Symposium on Component-
Based Software Engineering. 2004 Proceedings Series: Lec-
ture Notes in Computer Science, Vol. 3054, May 2004. Ed-
inburgh, Scotland.

[15] M. MSDN. Win32 Application Programmer’s Interface.
http://msdn.microsoft.com/.

[16] D. Nyström. COMET: A Component-Based Real-Time
Database for Vehicle Control Systems. Technical re-
port, Technology Licentiate Thesis No.26, ISSN 1651-9256,
ISBN 91-88834-41-7, Mälardalen Real-Time Reseach Cen-
tre, Mälardalen University, May 2003. Mälardalen Univer-
sity Press.

[17] Object Management Group. UML 2.0 Superstructure Spec-
ification, The OMG Final Adopted Specification, 2003.
http://www.omg.com/uml/.

[18] Quadros Systems Inc. RTXC Kernel User’s Guide.
http://www.quadros.com/.

[19] K. Sandström, J. Fredriksson, and M. Åkerholm. Introduc-
ing a Component Technology for Safety Critical Embed-
ded Real-Time Systems. In Proceedings of th 7�� Interna-
tional Symposium on Component-Based Softwrae Engineer-
ing, May 2004. Edinburgh, Scotland.

[20] H. Schmidt and R. Reussner. Parameterized Contracts
and Adapter Synthesis. In Proceedings of the 5�� Inter-
national Conference on Software Engineering, Workshop
on Component-Based Software Engineering, May 2001.
Toronto, Canada.

[21] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall; 1 edition, 1996.
ISBN 0-131-82957-2.

[22] D. Stamatis. Failure Mode and Effect Analysis: FMEA from
Theory to Execution. ASQ Quality Press, 2nd Edition, 2003.
ISBN 0-87389598-3.

[23] D. Sundmark, A. Möller, and M. Nolin. Monitored Software
Components – A Novel Software Engineering Approach –.
In Proceedings of the 11�� Asia-Pasific Software Engineer-
ing Conference, Workshop on Software Architectures and
Component Technologies, November 2004. Pusan, Korea.

[24] R. van Ommering et al. The Koala Component Model for
Consumer Electronics Software. IEEE Computer, 33(3):78–
85, March 2000.

[25] K. C. Wallnau. Volume III: A Component Technology for
Predictable Assembly from Certifiable Components. Techni-
cal report, Software Engineering Institute, Carnegie Mellon
University, April 2003. Pittsburg, USA.

[26] World Wide Web Consortium (W3C). XML - the Extensible
Markup Language. http://www.w3.org/XML/.


