
Mälardalen University Press Licentiate Theses
No. 355

MODEL-DRIVEN SECURITY TEST CASE GENERATION
USING THREAT MODELING AND AUTOMATA LEARNING

Stefan Marksteiner

2024

School of Innovation, Design and Engineering

Copyright © Stefan Marksteiner, 2024
ISBN 978-91-7485-638-5
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Abstract

Automotive systems are not only becoming more open through developments
like advanced driving assistance functions, autonomous driving, vehicle-to-
everything communication and software-defined vehicle functionality, but also
more complex. At the same time, technology from standard IT systems be-
come frequently adopted in these systems. This development has two negative
effects on correctness and security: the rising complexity adds potential flaws
and vulnerabilities while the increased openness expands attack surfaces and
entry points for adversaries.

To provide more secure systems, the amount of verification through testing
has to be significantly increased, which is also a requirement by international
regulation and standards. Due to long supply chains and non-disclosure poli-
cies, verification often have to use black-box methods. This thesis strives there-
fore towards finding more efficient methods of automating test case generation
in both white- and black-box scenarios. The thesis focuses on communication
protocols used in vehicular systems and we base our research on model-based
methods. Our contributions include:

• We provide a practical method to automatically obtain behavioral mod-
els in the form of state machines of communication protocol implemen-
tations in real-world settings using automata learning.

• We also provide a means to automatically check these implementation
models for their compliance with a specification (e.g., from a standard).

• We furthermore present a technique to automatically derive test-cases to
demonstrate found deviations on the actual system.

• We also present a method to create abstract cybersecurity test case spec-
ifications from semi-formal threat models using attack trees.

i

Sammanfattning

Fordonssystem blir idag mer och mer öppna och komplexa genom introduk-
tion av t.ex. avancerade körhjälpsfunktioner, autonom körning, kommunikation
mellan fordon och allt mer mjukvarudefinierad fordonsfunktionalitet. Sam-
tidigt används teknik från traditionella IT-system allt oftare i dessa system.
Denna utveckling har två negativa effekter på korrekthet och säkerhet: den
ökande komplexiteten lägger till potentiella brister och sårbarheter medan den
ökade öppenheten utökar attackytor och ingångspunkter för digitala inkräktare.

För att tillhandahålla säkrare system måste mängden verifiering av sys-
temsäkerhet genom testning ökas avsevärt, vilket också är ett krav enligt inter-
nationella regler och standarder. På grund av långa värdekedjor och sekretess-
principer måste verifieringsmetoder ofta använda s.k. black-box verifiering där
man verifierar funktionen av en komponent utan att kunna studera hur den
fungerar internt. Det är dock fördelaktigt om man kan använda s.k. while-box
metoder där man kan verifiera en komponent medan man samtidigt studerar
hur den fungerar internt.

Denna avhandling strävar därför mot att hitta mer effektiva metoder för
att automatisera testfallsgenerering i både white- och black box-scenarier och
vårt fokus ligger på kommunikationsprotokoll som används i fordonssystem.
Den huvudsakliga ansatsen är att använda modellbaserade metoder. Vi pre-
senterar en praktisk metod för att automatiskt erhålla beteendemodeller i form
av tillståndsmaskiner för implementeringar av kommunikationsprotokoll med
hjälp av automatinlärning. Vi presenterar också ett sätt att automatiskt kon-
trollera dessa implementeringsmodeller för att se om de överensstämmer med
en specifikation (t.ex. från en standard). Vi presenterar vidare en teknik för
att automatiskt härleda testfall för att demonstrera upptäckta avvikelser på det
faktiska systemet. Vi presenterar också en metod för att skapa abstrakta test-
fallsspecifikationer för cybersäkerhet från semiformella hotmodeller med hjälp
av attackträd.

iii

To my family

Acknowledgments

I like to use this space to thank this thesis’ advisors Marjan Sirjani and Mikael
Sjödin for spending their precious time and giving me guidance in research
directions and writing, which brought me forward in both professional and
scientific manners. Furthermore, I like to thank my employer at the AVL List
Gmbh, foremost my former and current supervisors Horst Pflügl and Kieran
McAleer for giving me the freedom to do the necessary research, without losing
the vision for the application and the practical use of it. I also want to thank
my son, Benjamin Marksteiner, just for being there and brining joy (and also
action) to my life. Most of all, I like to thank my wife Astrid Marksteiner for
going this journey with me, even if it is not easy alongside manyfold job duties
and a small kid. No acknowledgement could make it up with her support.

Stefan Marksteiner, February 2024, Graz, Austria

This research received funding from the program “ICT of the Future” of the
Austrian Research Promotion Agency (FFG) and the Austrian Ministry for
Transport, Innovation and Technology under grant agreements No. 867558
(project TRUSTED) and No. 880852 (project LEARNTWINS) and within the
ECSEL Joint Undertaking (JU) under grant agreements No. 876038 (project
InSecTT) and No. 101007350 (project AIDOaRt). The JU receives support
from the European Union’s Horizon 2020 research and innovation programme
and Austria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia,
Poland, Netherlands, Turkey. The document reflects only the author’s view and
the Commission is not responsible for any use that may be made of the infor-
mation it contains.

vii

List of Publications

Papers Included in the Licentiate Thesis1

Paper I: A Systematic Approach to Automotive Security, Masoud Ebrahimi,
Stefan Marksteiner, Dejan Ničković, Roderick Bloem, David Schögler, Philipp
Eisner, Samuel Sprung, Thomas Schober, Sebastian Chlup, Christoph Schmit-
tner, and Sandra König. In Lecture Notes in Computer Science, vol. 14000.
Cham: Springer International Publishing, 2023. [1]

Paper II: Approaches For Automating Cybersecurity Testing Of Connected
Vehicles, Stefan Marksteiner, Peter Priller and Markus Wolf. In Intelligent Se-
cure Trustable Things, M. Karner, J. Peltola, M. Jerne, L. Kulas, and P. Priller,
Eds., in Studies in Computational Intelligence. Springer Nature, 2023. [2]

Paper III: Using Automata Learning for Compliance Evaluation of Commu-
nication Protocols on an NFC Handshake Example, Stefan Marksteiner, Mar-
jan Sirjani and Mikael Sjödin. In Engineering of Computer-Based Systems
Conference 2023, J. Kofroň, T. Margaria, and C. Seceleanu, Eds., in Lecture
Notes in Computer Science, vol. 14390. Cham: Springer Nature Switzerland,
2023. [3]

Paper IV: From TARA to Test: Automated Automotive Cybersecurity Test Gen-
eration Out of Threat Modeling, Stefan Marksteiner, Christoph Schmittner,
Korbinian Christl, Dejan Ničković, Mikael Sjödin, and Marjan Sirjani. In Pro-
ceedings of the 7th ACM Computer Science in Cars Symposium, in CSCS ’23.
New York, NY, USA: Association for Computing Machinery, 2023. [4]

1The included papers have been reformatted to comply with the thesis layout.

ix

x

Additional Peer-reviewed Publications Related to
the Thesis2

Paper 1: Wireless Security in Vehicular Ad Hoc Networks: A Survey, Thomas
Blazek, Fjolla Ademaj, Stefan Marksteiner, Peter Priller, Hans-Peter Bernhard.
In SAE International Journal of Connected and Autonomous Vehicles, vol. 6,
no. 2, 2022. [5]

Paper 2: A Global Survey of Standardisation and Industry Practices of Au-
tomotive Cybersecurity Validation & Verification Testing Processes and Tools,
Andrew Roberts, Stefan Marksteiner, Mujdat Soyturk, Berkay Yaman, Yi Yang.
In SAE International Journal of Connected and Autonomous Vehicles, vol. 7,
no. 2, 2023. [6]

2These papers are not included in this thesis.

Contents

I Thesis 1

1 Introduction 3
1.1 Practical Motivation: Industrial Problems Leading to Scientific

Problems . 5
1.2 Thesis Outline . 7

2 Background and Preliminaries 9
2.1 Threat Modeling . 9
2.2 Attack Trees . 10
2.3 Labelled Transition Systems 10
2.4 Formalized Attack Languages 10
2.5 Mealy Machines . 11
2.6 Automata Learning . 11
2.7 Behavioral Equivalences . 12

3 Research Overview 13
3.1 Research Goals . 14

3.1.1 Threat Model-based Test Generation 16
3.1.2 Automated State Machine Derivation 16
3.1.3 Compliance Checking 17

3.2 Research Method . 18

4 Research Contributions 21
4.1 Threat Model-based Test Generation 23
4.2 Automated State Machine Derivation 23
4.3 Compliance Checking . 24
4.4 Publications . 25

xi

xii CONTENTS

4.4.1 Paper I . 25
4.4.2 Paper II . 26
4.4.3 Paper III . 26
4.4.4 Paper IV . 27
4.4.5 Related Papers Not Included in the Thesis 28

5 Related Work 31
5.1 Model-based Test Case Generation 31
5.2 Attack Trees-based Security Testing 32
5.3 Formalized Test Descriptions 32
5.4 Automated State Machine Derivation and Protocol Learning . 33
5.5 Conformance Checking using Equivalence of State Machines . 34

6 Conclusion and Future Work 35
6.1 Conclusions . 35
6.2 Future Directions . 36

Bibliography 39

II Included Papers 47

7 Paper I:
A Systematic Approach to Automotive Security 49
7.1 Introduction . 51
7.2 TRUSTED Methodology . 52
7.3 Automotive Security by Design 54

7.3.1 System Architecture Model 55
7.3.2 Threat Analysis . 55
7.3.3 V&V Planning . 57

7.4 Automotive Security Testing 58
7.4.1 Automata Learning for Correctness 58
7.4.2 Use-Case Scenarios 59

7.5 Conclusion . 62
Bibliography . 63

8 Paper II:
Approaches For Automating Cybersecurity Testing Of Connected
Vehicles 67
8.1 Introduction . 69

CONTENTS xiii

8.2 State of the Art and Related Work 70
8.3 Automotive Cybersecurtiy Lifecycle Management 72

8.3.1 Threat Modeling . 73
8.4 Cybersecurity Testing . 74

8.4.1 Learning-based Testing 76
8.4.2 Model-based Test Case Generation 78
8.4.3 Testing Platform . 79
8.4.4 Automated Test Execution 80
8.4.5 Fuzzing . 82

8.5 Conclusion . 83
Bibliography . 85

9 Paper III:
Using Automata Learning for Compliance Evaluation of Commu-
nication Protocols on an NFC Handshake Example 91
9.1 Introduction . 93

9.1.1 Motivation . 93
9.1.2 Contribution . 94

9.2 Preliminaries . 94
9.2.1 State Machines . 95
9.2.2 Transitions and Equivalence 95
9.2.3 Automata Learning 98
9.2.4 LearnLib . 99
9.2.5 Near Field Communication 100
9.2.6 The NFC Handshake Automaton 100

9.3 NFC Interface . 103
9.3.1 Learner Interface Device 103
9.3.2 Adapter Class . 103

9.4 Learning Setup . 104
9.4.1 Comparing Learning Algorithms and Calibrations . . . 105
9.4.2 Abstraction . 107
9.4.3 Labeling and Simplification 109
9.4.4 Compliance Evaluation 109

9.5 Evaluation . 111
9.5.1 Test Cards and Credit Cards 111
9.5.2 Passports . 111
9.5.3 Tesla Key Fob . 111

9.6 Related Work . 113
9.7 Conclusion . 113

xiv CONTENTS

9.7.1 Discussion . 113
9.7.2 Outlook . 114

Bibliography . 115

10 Paper IV:
From TARA to Test: Automated Automotive Cybersecurity Test
Generation Out of Threat Modeling 119
10.1 Introduction . 121

10.1.1 Motivation . 122
10.1.2 Contribution . 122

10.2 Automotive Security Communication 123
10.2.1 Cybersecurity Assurance Level (CAL) 123
10.2.2 Target Attack Feasibility (TAF) 124
10.2.3 Integrating CAL and TAF in security testing 124

10.3 Threat Modeling . 128
10.3.1 Threat-Interdependencies and Attack Trees 130

10.4 Automated Testing . 131
10.4.1 Security Tests and their relationship with the Security

Analysis . 132
10.4.2 Security Test Generation 132

10.5 Case Study . 135
10.6 Related Work . 136
10.7 Conclusion . 138
Bibliography . 139

I

Thesis

1

Chapter 1

Introduction

This thesis concentrates on using formal methods for assuring correctness and
security of systems with a focus on the automotive domain. To utilize these
methodologies in practice, some practical problems have to be solved, that in
turn lead to solving some scientific problems that lay the fundament for the
provided solutions. A special emphasis is given to verifying the correctness of
communication protocol implementations in system components and to verifi-
cation from an architectural threat modeling perspective. The upcoming UN-
ECE regulation R.155 [7] mandates not only the introduction of a cybersecurity
management system (CSMS) and according security measures for automotive
systems, but also evidence of their appropriateness and effectiveness, which is
to be demonstrated by testing. This requires an amount of testing of the cyber-
security of vehicle systems that is not to be covered with manual testing alone.
Therefore, automated methodologies for automotive cybersecurity testing are
needed. Furthermore, the testing should work in both white box and black box
settings. Methods for the former do not work on the latter (for the lack of in-
formation), however black box methods are not efficient in white box settings
(for not using present information). The former to cover the security of all
aspects of a system in the most thorough way. The latter to on the one hand
provide an attacker’s view but also because of the lack of access to source code
or other system component internals due to long supply chains, as well as the
unwillingness of manufacturers to disclose system details.

Formal methods, particularly formal modeling has been used in engineer-
ing complex systems, for example in the automotive and aerospace domains.
Despite the effort they normally come with, their founding on strong mathe-

3

4 Chapter 1. Introduction

matical principles has three main advantages: a very structured approach that
provides a good level of comprehensiveness, well-reasoned verdicts, and a high
degree of automation capability (once a model has been derived) due to com-
puter systems basing on the same logic. There are different approaches to
formal modeling practically in use in the industry: models based on state ma-
chines have a long tradition of analyzing systems’ correctness , on the other
hand architectural threat models [8] in the form of graphs with clear seman-
tics and first order logic-based threat rule sets are used in the software industry
for quite some time and have become very widely adopted as part of a Threat
Analysis and Risk Assessment (TARA) in the automotive industry [9]. Threat
models analyze a system design based on data flows between its architecture’s
components [8].

Regardless of these beneficial traits, these methods are not only ordinarily
very labor-intense, but also hard to apply on black-box components, as without
access to internal information it is not trivial to obtain a state machine model
(also called automaton) in an automated way. Even if such an automaton is
present, reliable methods and rules to check it for correctness in terms of secu-
rity have to be in place – none such is so far formulated in general, therefore
sets of these rules and methods have to be established for each use case indi-
vidually. Lastly, it is an open question how white box and black box modeling
methods could support each other. An architectural threat model from a TARA
is usually (manually) generated at design time and is based on assumptions that
are often tacitly made when using modeling components. We therefore strive
to investigate, if it is possible to check whether made assumptions actually hold
in the implementation. Concentrating on external interfaces of system compo-
nents, automatically derived state machine models of communication protocol
are investigated. One further question is also which algorithm and parame-
ter configuration is most suitable for inferring models of implementations of a
specific protocol.

This thesis therefore provides an approach to generate security test cases
from an architectural threat model in white box scenarios, concentrating on the
question how to provide a formal translation from threat modeling results to
actions in test cases utilizing attack trees [10, 11] and labelled transition sys-
tems (LTS) [12]. For black box scenarios, this thesis investigates inferring a
behavioral model in form of a state machine. To derive such a model, the L
algorithm by Angluin [13] and variations thereof [14], as well as more modern
algorithms (e.g. [15]) were examined. Automatic model derivation is benefi-
cial because not only manual modeling in general is very resource-intense, but
also hard to perform at all in black box settings. On an example case of the

1.1 Practical Motivation: Industrial Problems Leading to Scientific Problems5

Near-field Communication’s (NFC) handshake protocol (ISO 144443-3 [16]),
for which a learning interface working in real-world environments is provided,
the different algorithm and parameter sets were investigated, giving details (ef-
ficacy and performance) for automata learning in special cases. The thesis also
works out the necessary level of abstraction in order to investigate the possibil-
ities of implementing this concept in a practical (i.e., real-world) setup. Using
these learned models, a behavior-based black box compliance checking method
using bisimulation or trace equivalence was provided. The comparison object
for these equivalences is an automaton modeled after the respective specifica-
tion or standard, the learned implementation should comply to. The reason for
choosing bisimulation at this point, despite trace equivalence being the actual
property for black box compliance, is its superior efficiency over the latter. The
threat model-based test case generation is a novel approach, while the method
of combining automata learning and bisimulation checking is rarely used in
general, and not at all for behavior-based black box implementation compli-
ance checking. Nevertheless, it provides a more rigorous way of compliance
checking due to its more exhaustive way of model building. So far, little com-
prehensive work for automata learning in different settings has been performed,
for which this thesis also provides a contribution. Lastly, the thesis sketches
some notions of using feedback from the behavioral state machine checking to
the architectural threat models. The latter are ordinarily generated manually
during design phase and based on assumptions about the modeled components
(e.g., a modeled component complying to a certain standard or featuring a dis-
tinct property). These assumptions can be checked in later phases by checking
the state machines of the implemented systems if these assumptions hold (e.g.,
if the implemented component actually complies to the standard). This allows
for statements about the accuracy of the threat model from checking the behav-
ioral state machine models.

1.1 Practical Motivation: Industrial Problems Lead-
ing to Scientific Problems

This section contains an outline of what practical problems motivate the re-
search goals (Section 3.1) and solutions to scientific problems (Section 4) in
this thesis. It also serves the purpose of giving a context how the problem
fields for the research goals are related, targeting to give a better understand-
ing of the overall picture of the research. The practical overall motivation of
this thesis is facilitating automated cybersecurity testing of vehicular systems.

6 Chapter 1. Introduction

Analyzing contemporary state-of-the-art automotive cybersecurity engineering
processes (most prominently ISO/SAE 21434:2021 [17]), several gaps that hin-
der the efficiency of testing were identified. A standard cybersecurity engineer-
ing process is aligned with the general automotive engineering processes. One
proliferated example is Automotive Spice, which is roughly defined along four
major activities [18]:

• Threat Analysis and Risk Assessment (TARA – accompanying the sys-
tem design as part of a cybersecurity security requirements elicitation
process) to analyze potential weaknesses and threats in the design and
assess their severity during the design phase.

• Implement the system using security goals and claims drawn from the
TARA mitigating the found risks and therefore implementing a secure
design (in cybersecurity implementation process).

• Validate and verify the system security measurements’ effectiveness, pro-
viding evidence and arguments for the implemented system’s cybersecu-
rity (as risk treatment verification and validation processes).

• Repeat the actions above during the rest of the system’s life cycle after
the start of production (SOP) with both updates of the system (functional
and non-functional) and of the threat landscape (e.g., discovery of new
vulnerabilities).

To provide both more efficient and more rigorous testing of system correctness
from a cybersecurity perspective, structuring and automation is desirable to be
applied. One of potential fields identified is to combine threat modeling done
in the TARA with testing by automatically deriving test cases from the former.
This enhances efficiency by doing two necessary things at once (TARA and
test case definition) and enhances testing rigor by directing the testing to the
very security measures derived from the security goals drawn from the TARA.
To gain this ability, formalized test cases descriptions (done in previous work)
has to be connected to the results of a TARA, constituting a research problem
resulting in research goal 1 (RG1 – Section 3.1.1). Although the TARA is
conducted during design time (without an implementation available), it is still
possible to create the necessary test case descriptions, as those can be made
technology-agnostic and formed into practically executable test cases once an
implementation is available (see Section 5.3). Also, it is quite usual in the
automotive industry that an Original Equipment Manufacturer (OEM – in the
automotive context mostly a car maker) integrates components from suppliers

1.2 Thesis Outline 7

without getting access to its internals (i.e., not getting source code, internal
specifications, etc.), engineered after the OEM’s specifications. This creates
the needs to test the correctness and security of these systems in a black box
setting. One scientific problem this requirement opens up is a means to auto-
matically obtain a formalized description of the behavior of a (sub-)system’s
implementation to have an object to automatically analyze, which eventually
lead to research goal 2 (RG2 – Section 3.1.2) how to create a state machine
model from a black box system. The other side of the medal is to have a means
to actually check that model for its correctness and security. This relays to
the research problem of how to check the behavior of a model against a given
specification, yielding research goal 3 (RG3 – Section 3.1.3). Both the solu-
tion for RG1 and for RG3 have been created after industrial needs which is
underpinned by patents that have been filed (Austrian patent applications No.
A50667/2023 and A50660/2023, respectively). Future work after the licenti-
ate completion includes methods to use model checking for dedicated security
properties, use learnt models for fuzz testing and derive features to check from
threat modeling in order to check modeled assumptions more rigorously. As
this kind of test automation usually iterate over the complete life cycle the cor-
rectness of the implementation also feeds back to the threat modeling, by check
if the assumptions made in the design phase hold in the implementation, which
influences future iterations in the life cycle. Figure 1.1 gives an overview of
the automotive cybersecurity process group [18] and the practical implications
of its automation leading to the research goals of this thesis; the boxes rep-
resent the processes of the cybersecurity engineering process group, while the
arrows represent practical improvements as presented in this thesis (see above),
leading to the research goals.

1.2 Thesis Outline
This thesis consists of two parts: Part I provides a coat for the research, namely
the necessary preliminaries, the aim of the research, its contribution and com-
parison with existing work. Part II consists of the research papers constituting
this thesis. the remainder of Part I is organized as follows: Chapter 2 contains
the background, Chapter 3 gives and overview of the research goals and meth-
ods, Chapter 4 outlines the research contributions including a short description
of the included publications, Chapter 5 outlines related work and Chapter 6
concludes the thesis and gives an outlook to future work.

Figure 1.1: Research contributions in relation to the Security Engineering Pro-
cess after Automotive Spice [18]. The boxes represent the processes of the
cybersecurity engineering process group, while the arrows represent practical
improvements as presented in this thesis (see above), leading to the research
questions in Section 3.1

Chapter 2

Background and
Preliminaries

This section very briefly explains some basic concepts that are used in this
thesis. Other related work and alternative approaches towards reaching the
research goal are outlined in Section 5. The usage of this background research
this thesis builds on is as follows: Threat Modeling, Attack Trees, Labelled
Transition Systems (LTS’), and Formalized Attack Languages in RG1 (Section
3.1.1), Mealy Machines and Automata Learning in RG2 (Section 3.1.2), Mealy
Machines and Behavioral Equivalences in RG3 (Section 3.1.3).

2.1 Threat Modeling
Threat modeling is a systematic, semi-formal approach to scrutinize systems
for potential threats and pitfalls. Threat modeling ordinarily requires two com-
ponents [8]. One is a structured representation of the considered system (i.e.,
a system model), containing all information necessary to determine potential
threats, as well as assessing their impact and likelihood of occurrence. A com-
monly used form of representation in sophisticated tools for threat modeling
are data flow diagrams. The second component is the actual threat model. This
model consists of a set of rules that determine which potential threat would
occur if two components in the system model are connected in a certain way.
These rule sets can, dependent on the application domain, become very com-
plex, with the goal being to scrutinize the considered system very compre-

9

10 Chapter 2. Background and Preliminaries

hensively and structured. Sophisticated threat models contain a considerable
amount of domain knowledge and are usually created by groups of security
experts in the respective domain. This thesis uses threat models as a basis to
create test cases in a structured way (see Section 4.1).

2.2 Attack Trees
Attack trees display relations, interdependencies and hierarchies of threats and
vulnerabilities [10, 11]. The advantage of this form of representation is the
ability to display different paths towards a certain objective i.e., to show dif-
ferent opportunities to concatenate attacks in order to exploit a certain vulner-
ability from a distinct starting point (mostly an interface accessible from the
outside). This way, attack trees are a capable tool for assessing how combined
attacks that exploit a complete set of threats impact the overall attack surface
and success likelihood [19]. In this thesis, attack trees stemming from threat
models are the origin for a method to automatically derive technology-agnostic
security test scenarios to provide evidence for the correct functioning of imple-
mented security measures (see Section 4.1).

2.3 Labelled Transition Systems
A principal notation for formal representations of systems used in this the-
sis are Transition Systems (TS) and Labelled Transition System (LTS). A TS
is defined as a set of states (Q) and a transition relation (→∈ Q × Q, with
q, q′ ∈ Q; q → q′). A Labelled Transition System (LTS) additionally pos-
sesses a set of labels (Σ), such that each transition is named with a label σ in Σ
(q, q′ ∈ Q, σ ∈ Σ; q

σ−→ q′) [12]. LTS can describe the behavior of systems and
mechanisms at different levels. This thesis uses LTS for a translation mecha-
nism from attack trees to attack descriptions in a specifically designed attack
description language (see Section 4.1).

2.4 Formalized Attack Languages
Domain-specific languages (DSLs) are computer programming language of
limited expressiveness focused on a particular domain [20]. That means that
they should be just expressive enough to model any necessary features and
conditions of the respective domain and lean enough for domain experts to be

2.5 Mealy Machines 11

easily read and communicate about. Besides they ordinarily have formal syn-
tax and semantics in the sense that a state machine (particularly a deterministic
finite acceptor – DFA) built for one particular language should be able to de-
cide if a word or a statement is a well-formed statement in that language. A
DSL (see Section 5.3 is used as a means for describing attacks in a technology-
agnostic manner as part of test case generation (see Section 4.1).

2.5 Mealy Machines
Mealy machines are a specific form of state machines (or automata), which are
a fundamental concept in computer science. Similar to LTS, Mealy machines
provide a formal notation for systems’ behaviors. The main difference is, that
a Mealy machine provides an output for any input, which makes them an ad-
equate representation for real-world cyber-physical systems. The definition of
Mealy machines reads M = (Q,Σ,Ω, δ, λ, q0), with Q being the set of states,
Σ the input alphabet, Ω the output alphabet (that may or may not identical to
the input alphabet), δ the transition function (δ : Q × Σ → Q), λ the output
function (λ : Q × Σ → Ω), and q0 the initial state [21]. The transition and
output functions might be merged (Q× Σ → Q× Ω). This thesis uses Mealy
machines to represent learnt system behavior through observation of inputs and
outputs in automata learning (see Section 4.2).

2.6 Automata Learning
Active automata learning is a method of actively querying systems and noting
the output to a given respective input. This allows for inferring behavioral
models of black-box systems. The classic method of automata learning, called
the L* algorithm, uses the concept of the minimally adequate Teacher [22].
This teacher has (theoretically) perfect knowledge of system to learn and can
answer two kinds of questions:

• Membership queries and

• Equivalence queries.

The membership queries’ answers are denoted in an observation table, that
eventually allows for trying to infer an automaton. The equivalence queries
determine if the inferred automaton is correct. Lacking a teacher with perfect

12 Chapter 2. Background and Preliminaries

system knowledge in a black-box situation, the equivalence queries are ordi-
narily replaced by traditional conformance testing. More modern algorithms
(like TTT [23]) rely on discrimination trees instead of observation tables to
be more efficient [24]. This thesis uses both traditional and modern types of
automata learning to infer behavioral component models (see Section 4.2).

2.7 Behavioral Equivalences
LTS and automata (particularly of the Mealy type used in this thesis) can be
compared for their equivalence. In particular for the purpose of this thesis, an
equivalent behavior is important. That means that two automata do not neces-
sarily have to be identical (i.e. all states and transitions being identical), but
merely the same input has to yield the same output. This equivalence can be
evaluated by trace equivalence (i.e., assessing the same output from the same
input) or various degrees of bisimulation [2]. For Mealy machines, bisimula-
tion can be defined (with Q1 and Q2 being two compared Mealy machines as
defined in Section 2.5) as [2]:

A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.

B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)

2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈
R

3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈
R

This thesis uses behavioral equivalence for compliance checking (see Section
4.3).

Chapter 3

Research Overview

To increase the comprehensiveness and efficiency of both black box and white
box verifying the correctness and security of systems, formalized methods are
needed to improve structure and reproducibility. The overall objective is to
research more comprehensive and efficient methods for verification through
testing. This thesis therefore proposes a structured and automated way to
model-based testing in order to leverage this objective at a architectural and at a
component level. Although principally applicable to general correctness verifi-
cation, the thesis ultimately proposes methods for assuring the cybersecurity of
and enhancing the trust in systems with a special emphasis on communication
protocols used in vehicular systems.

Generally, in the automotive domain, security engineering starts with defin-
ing security goals and requirements using a threat modeling process at an ar-
chitectural level during the design phase. Once the design is implemented,
the fulfillment of the derived security requirements has to be verified by test-
ing [17]. As these components are often delivered as black boxes, their ver-
ification should not rely on internal systems knowledge. Because of this, the
threat model provides context and prioritization of component tests. These
tests should check a correct behavior of the system with regard to the security
requirements. In other words, the components should comply to a certain spec-
ification – this specification is often based on a standard. On the other hand,
a threat model is based on certain assumptions about the modeled components
during design. If a component implementation later does not comply with the
given specification, these assumptions may not hold, which makes the threat
model and the resulting test prioritization inaccurate. The overall objective of

13

14 Chapter 3. Research Overview

this thesis is to provide a set of formal methods facilitates the automation of
test generation from threat models, as well as automatically checking imple-
mentations for specification compliance (which again requires an automatic
method to derive behavioral component models). As the component behavior
has to work black box, because of the reasons stated above, the model gener-
ation concentrates on outside interfaces of that component, which is generally
a specific implementation of a (standardized or proprietary) communication
protocol. Based on our literature survey of previous approaches in these ar-
eas, we decided to concentrate on Automata Learning [24] to infer Mealy-type
state machines of the behavior of implementations of communication proto-
cols. Then we used trace and bisimulation equivalence checking [25] for com-
pliance checks.

Overall Objective: Automatically generating formal attack descriptions from
architectural models and use automata learning to verify whether the imple-
mentation satisfies a standard specification.

3.1 Research Goals

The issues stated above lead to three research goals, namely create working
methods to perform:

RG1 Transforming a system’s threat model into formal descriptions of cyber-
attacks.

RG2 Automatically obtaining state machines of communication protocols from
black box scenarios that can be used for correctness and security analy-
sis.

RG3 Facilitating behavioral equivalence as a method for compliance checking
of a learned implementation to a given specification (e.g., a standard).

The attack descriptions (RG1) provide a test scenario in the form of an abstract
attack description for the overall system. This scenario is derived from threat
modeling the architectural design using a rule set, that scrutinizes potential
threats based on the architecture. The state models are inferred from imple-
mented components (RG2) and the compliance checking of these state mod-
els (RG3) provide a verdict that verifies compliance to a specification (e.g., a
standard). This compliance (RG3) is assumed beforehand in the design phase

3.1 Research Goals 15

Figure 3.1: Positioning of the research goals in a structured testing process.
Amber denotes artifacts, blue denotes activities, and cyan denotes specification
inputs. The arrows denote inputs and outputs, with the dashed input denotes a
process including output. The research goals are marked with the dashed red
boxes.

during the architectural threat modeling (RG1 - that lead to the attack descrip-
tions). A counterexample regarding the compliance provides (currently manu-
ally) input to the rule set for the threat modeling and therefore potentially leads
to a different outcome of the threat modeling process. RG3 therefore provides
an iterative feedback loop from the implementation back to the design phase
and the threat model-based test generation in RG1. This also indirectly brings
the standards specification into the threat modeling rule set. Figure 3.1 provides
an overview of the research goals in the context of an exemplary automotive cy-
bersecurity testing process. In this figure, amber denotes artifacts, blue denotes
activities, and cyan denotes specification inputs. The arrows denote inputs and

16 Chapter 3. Research Overview

outputs, with the dashed input denotes a process including output. The research
goals are marked with the dashed red boxes.

3.1.1 Threat Model-based Test Generation
A prominent example of model-based security analysis is the threat analysis
and risk assessment (TARA) process widely used in the automotive indus-
try [9]. It uses a threat modeling, based on an architectural design model,
to identify threats and prioritize them in order to derive security goals and re-
quirements, which ultimately results in security measures to be implemented
in the architecture and components. Some kind of assessment in the fash-
ion of a TARA (although not necessarily the exact same) is even prescribed
by the automotive admission process in the UNECE region and the only rec-
ognized international standard for implementing a cybersecurity management
system [7, 17]. Both admission and standard also mandate to verify cyberse-
curity measures by testing. In order to create these tests in an efficient manner,
another goal of this thesis is to automatically derive test cases from the models
made in the design phase to use it later after implementation to verify the effi-
cacy of the planned security measures. The TARA process also determines the
verification and validation planning and methods. In this process we included
learning-based component testing as presented in RG2 and RG3 [1]. On the
other hand, during threat modeling certain assumptions about the model ele-
ments are made (e.g., it is assumed that a component’s communication com-
plies with a certain standard) [26, 8]. If these assumptions do not hold, the
model becomes inaccurate. It is therefore beneficial for the model’s accuracy
that the component’s behavior is checked against the assumptions. When these
assumptions can be formulated into a specification, the respective component’s
behavior can be automatically checked to comply with that specification. This
behavioral compliance checking is formulated in RG3.
Contributing papers: Paper I, Paper II, Paper IV.

RG1: Create a method to derive formal descriptions of cyberattacks from a
system’s threat model.

3.1.2 Automated State Machine Derivation
Formal models have been used very broadly in both research and industrial ap-
plications. It is, however, very tedious and costly to create suitable models for
correctness and security analysis manually. Furthermore, in some industries

3.1 Research Goals 17

like the automotive, the necessary information to manually creating models
might not be present due to very long supply chains and/or non-disclosure. It
is therefore beneficial to possess a method to automatically infer formal behav-
ioral models (i.e., state machines) of systems under test in order to foster more
efficient analysis and verification processes. As these state machines have to
be derived from black box systems (due to the reasons stated above), the in-
terfaces to interact with these systems are their respective implementations of
communications protocols. These implementations are the first entry point for
adversaries through faults and vulnerabilities. Inferring state machines for cor-
rectness and security analysis (as well as test generation) is therefore a signif-
icant building block for security improvement. In the course of this, it should
also be examined how effective Automata Learning is to infer state machines
of industrial real-world communication systems. In an automated process, at-
tack descriptions derived from threat models (RG1) provide the V&V planning
for components that should be examined, while the actual checking refers to
RG3.
Contributing papers: Paper I, Paper II, Paper III.

RG2: Create a method to automatically obtain state machines of communica-
tion protocols from industrial black box scenarios to use these state machines
for correctness and security analysis.

3.1.3 Compliance Checking

In many contemporary industries one of the main means for collaborations
along the supply chain is written specifications and standards. These include
(semi-)formal specifications like development interface agreements (DIAs),
specifications in calls for tenders, as well as international and (de facto-) in-
dustry standards. To deliver a correct system it is crucial to comply with the
respective specification. Furthermore, deviations from standards are most of-
ten faults that might lead to security vulnerabilities. Therefore, one goal of this
thesis is to create a means for compliance-checking real-world systems in an
automated manner. The compliance checking is targeted to be based on state
machine models (as derived in RG2), as checking an accurate state machine
uncovers consistent and inconsistent behavior both more comprehensively and
efficiently, and, thus, more solid than using traditional conformance checking.
The specification is modeled into a state machine and its behavior compared
to that of learned state machine. Thereby, the behavioral aspect of the equiv-

18 Chapter 3. Research Overview

alence is crucial: it is not necessary that a system’s state machine is identical
to a specification state machine, only that both state machines behave exactly
the same. These checks also provide confirmation or rebuttal of assumptions
made in threat modeling (based on specifications tailored to these assumptions)
creating a link to RG1.
Contributing papers: Paper II, Paper III.

RG3: Demonstrate the applicability of behavioral equivalence as a method for
compliance checking of a learned implementation against a given specification
(e.g., based on a communication protocol standard)

3.2 Research Method
This thesis follows the Design Science Research Methodology (DSRM) [27].
First thoughts on Design Science were made by Simon in 1969 [28], where he
asked how to scientifically scrutinize artificial artifacts of a certain complexity.
Artificial in that sense means everything not being deducted strictly by (apod-
ictic) natural laws, i.e., everything human-made, including engineering. Based
on this fundament, Nunamaker et al. provided a framework for DSRM for In-
formation Systems (IS) [29]. The framework provides a multi-methodological
approach to IS research considering theory building, systems development, ex-
perimentation, observation, and their relations to each other. Their work also
provides a process to research IS consisting of the following activities and un-
derlying research issues. [29]:

1. Construct a conceptual framework

• State a meaningful research question

• Investigate the system functionalities and requirements

• Understand the system building processes/procedures

• Study relevant disciplines for new approaches and ideas

2. Develop a system architecture

• Develop a unique architecture design for extensibility, modularity,
etc.

• Define functionalities or system components and interrelationships
among them

3.2 Research Method 19

3. Analyze and design the system

• Design the database/knowledge base schema and processes to carry
out system functions

• Develop alternative solutions and choose one solution

4. Build the system

• Learn about the concepts, framework, and design through the sys-
tem building process

• Gain insight about the problems and the complexity or the system

5. Experiment, observe, and evaluate the system

• Observe the use or the system by case studies and field studies

• Evaluate the system by laboratory experiments or field experiments

• Develop new theories/models based on the observation and exper-
imentation of the system’s usage

• Consolidate experiences learned

The conceptual framework (1) was done prior to the actual research by defin-
ing the overall objective and the research goals (Section 3.1) out of the motiva-
tional identified practical problems (Section 1.1), along with studying related
work (Section 5). The system architecture (2) was defined in four ways: a) as a
structured overall architecture for implementing a testing process (in paper I),
b) a system architecture for model learning and model-based compliance test-
ing (papers II and III), c) a conceptual architecture for test case generation from
threat models and d) an meta-architecture concept for integrating the compo-
nents a-c (in this thesis). As system for RG1 was designed (paper IV). Various
approaches were considered and examined for RGs 2 and3 (mainly outlined in
papers I, II and III). Based on this evaluation, a system implementation was
built for learning and compliance checking, which was also used for extensive
system evaluation (paper II).

Chapter 4

Research Contributions

This chapter contains the research contributions that have been made towards
reaching the research goals stated in Section 3.1 and outlines the solutions,
their novelty and their distribution among the publications. Table 4.1 gives an
overview of the contributions of individual papers (outlined in Chapter 4.4)
towards reaching the research goals. For each research a different solution is

Table 4.1: Publication contributions to the research goals.

Paper/Goal 1 2 3

I X X
II X X X
III X X
IV X

presented, namely:

1 Threat Model-based Test Generation (achieving RG1)

2 Automated Model Derivation and Algorithm Evaluation (achieving RG2)

3 Compliance Checking (achieving RG3)

The threat model-based test generation (1) goes a little bit beyond RG1,
as it also partially provides a V&V method selection, although the latter also
is meant to contain model checking for test generation, which is reserved for
future work (see Section 6.2). The automated behavior model (state machine)

21

22 Chapter 4. Research Contributions

Figure 4.1: Relations of the main research contributions. Blue boxes mark the
contributions, surrounded by the research goals in red dashed lines. The cyan
boxes mark previous work the contributions build on, while the dashed black
boxes denote the respective papers including the contributions and previous
work. The arrows indicate dependencies; solid ones indicate sub-parts and
dashed ones indicate inputs.

derivation (2) and the compliance checking (3) achieve to RG2 and RG3, re-
spectively. The compliance checking yields a verdict that not only highlights
deviations from a specification but also a counterexample that (manually) feeds
back into threat model-based test generation by providing input for altering the
threat modeling rule set (see Section 3.1). Figure 4.1 provides an overview
of the contributions in relation to the research goals and to the thesis papers.
Blue boxes mark the contributions, surrounded by the research goals in red
dashed lines. The cyan boxes mark previous work the contributions build on,
while the dashed black boxes denote the respective papers including the con-
tributions and previous work. The arrows indicate dependencies; solid ones
indicate sub-parts and dashed ones indicate inputs.

4.1 Threat Model-based Test Generation 23

4.1 Threat Model-based Test Generation

To fulfill RG1, Paper IV presents a method for transferring threat models, via
attack trees and labelled transition systems (LTS), into attack descriptions con-
ceived in a domain-specific language (DSL). The method bases on an existing
threat modeling tool [30] and an existing DSL called Agnostic domain-specific
Language for the Implementation of Attacks (ALIA) [31] and concentrates on
the transition between those two. ALIA is a procedural text-based language
consisting of sequences of single actions (called test patterns) as a pseudo code
that stand for specific steps of a composed attack in a technology-agnostic man-
ner (not bound to a specific system-under-test). These steps will be translated
into concrete executable instructions for specific systems-under-test based on
Xtext and Xtend [32]. Alia also supports pre and post conditions and flow con-
trols like conditionals and loops. With the labelling function of an LTS, the
alphabet of ALIA will be attributed to paths within attack trees generated out
of the threat model. Subsequently traversing the resulting LTS along a tree’s
path will automatically sequence that input and generate an attack description
in ALIA. From the ALIA, it is possible to generate concrete test cases, once
an implementation of the architecture is ready. Paper I describes a structured
approach to derive a testing strategy from threat modeling RG1 and its con-
nection to learning-based component testing (RG2), and Paper II describes the
general embedding of threat modeling into a security testing process.

The approach of transferring a threat model into test descriptions using
attack trees and LTS is novel.

4.2 Automated State Machine Derivation

A solution to achieve RG2 was developed by using active automata learning to
infer behavioral communication protocol models (concretely state machines,
also called automata) on the example of the handshake protocol (ISO 14443-
3 [16]) of NFC systems. A similar system for a platooning protocol is in devel-
opment (see Section 6.2). The developed solution consists of an NFC adapter
interface library for the LearnLib library [33], containing the necessary adjust-
ments (including compiling a new firmware) to an NFC hardware adapter along
with an abstraction layer that transforms symbols from the learning algorithm
to NFC hardware signals and vice versa. The solution also delivers insights
on learning the ISO 14443-3 protocol, as it has some very characteristic fea-
tures in the handshake protocol (particularly, two intertwined combination lock

24 Chapter 4. Research Contributions

structures with almost identical states and the property that it does not send a
response in case of a non-expected signal). In this setting also, different propa-
gated learning algorithms were evaluated for their suitability and (surprisingly)
an older algorithm was found best performing to learn correct implementations
(namely the L* algorithm with the closing strategy by Rivest/Schapire), while
(less surprisingly) the modern TTT algorithm was best performing when it
comes to detecting flaws (see next chapter). The theory for the solution was
worked out in Paper I, while Paper II describes the solution concept. Paper III
contains the full solution implementation with a description of the complete
details for deriving a state machine of NFC handshake protocol implementa-
tions.

Specifically, there is quite some previous work on automata learning-based
approaches for learning communications systems (even one for NFC banking
cards - see Section 5), but for the ISO 14443-3 protocol, so far no automated
black box-learning solution has been presented.

4.3 Compliance Checking

RG3 was reached by comparing two automata using bisimulation and trace
equivalence: one inferred using automata learning (see 4.2) and a second one
based on a specification. While the basic concept was mentioned in Paper II,
this was implemented for the NFC handshake protocol in Paper III. This way
of checking the conformance is more comprehensive than traditional confor-
mance checking trough testing, because it compares the complete behavior of
a system with the complete behavior of a specification instead of merely test-
ing a small subset in form of specific traces. The reason for using bisimulation
and trace equivalence instead of a much simpler full (graph) identity is that
standards compliance does not require the state machines to be identical, but
merely to behave the same way. A system with a deviating automaton could
still behave equivalent to and therefore be compliant to a specification (or stan-
dard).

There is (though few) previous work using the concept of automata learning
paired with bisimulation for behavior comparison (see Section 5), however, no
solution for practically working protocol performance checking.

4.4 Publications 25

4.4 Publications

This section contains an outline of each publication in this thesis consisting
of an abstract, the work in this thesis’ context, its contribution to the research
goals and the author’s contribution to the respective paper.

4.4.1 Paper I

Title: A Systematic Approach to Automotive Security
Authors: Masoud Ebrahimi, Stefan Marksteiner, Dejan Ničković, Roderick
Bloem, David Schögler, Philipp Eisner, Samuel Sprung, Thomas Schober, Se-
bastian Chlup, Christoph Schmittner, and Sandra König
Abstract: We propose a holistic methodology for designing automotive sys-
tems that consider security a central concern at every design stage. During the
concept design, we model the system architecture and define the security at-
tributes of its components. We perform threat analysis on the system model to
identify structural security issues. From that analysis, we derive attack trees
that define recipes describing steps to successfully attack the system’s assets
and propose threat prevention measures. The attack tree allows us to derive a
verification and validation (V&V) plan, which prioritizes the testing effort. In
particular, we advocate using learning for testing approaches for the black-box
components. It consists of inferring a finite state model of the black-box com-
ponent from its execution traces. This model can then be used to generate new
relevant tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology with an
automotive infotainment system example. Using the advocated approach, we
could also document unexpected and potentially critical behavior in our exam-
ple systems.
Work in the thesis context: The paper outlines a structured process to verifi-
cation by testing, containing threat modeling an black box-inferring behavioral
models of systems using automata learning.
Contributes to research goals: RG1, RG2.
Thesis author’s contribution: One equally contributing main author. Main
responsible for section 4 (security testing), contributed parts of sections 1 and
2, complete section 4.1 and parts of 4.2. This corresponds to co-developing
the overall testing concept based on learning methods, describing the automata
learning theory and general parts of the use cases.

26 Chapter 4. Research Contributions

4.4.2 Paper II

Title: Approaches for Automating Cybersecurity Testing of Connected Vehi-
cles
Authors: Stefan Marksteiner, Peter Priller, and Markus Wolf
Abstract: Vehicles are on the verge building highly networked and intercon-
nected systems with each other. This requires open architectures with standard-
ized interfaces. These interfaces provide huge surfaces for potential threats
from cyber attacks. Regulators therefore demand to mitigate these risks us-
ing structured security engineering processes. Testing the effectiveness of this
measures, on the other hand, is less standardized. To fill this gap, this book
chapter contains an approach for structured and comprehensive cybersecurity
testing of contemporary vehicular systems. It gives an overview of how to
define secure systems and contains specific approaches for (semi-)automated
cybersecurity testing of vehicular systems, including model-based testing and
the description of an automated platform for executing tests.
Work in the thesis context: The paper outlines a concept to automate auto-
motive cybersecurity testing using automata learning, incorporating the results
of a threat model, an a platform for automated execution based on a domain-
specific language.
Contributes to research goals: RG1, RG2, RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed all content except the introductory sections 1 and 2, 3.1, 4.4 and
4.5 (delivered review for these sections). This corresponds with the main con-
cept, an automotive life cycle testing description, a testing process and a model-
based testing concept based on automata learning.

4.4.3 Paper III

Title: Using Automata Learning for Compliance Evaluation of Communica-
tion Protocols on an NFC Handshake Example
Authors: Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin
Abstract: Near-Field Communication (NFC) is a widely proliferated standard
for embedded low-power devices in very close proximity. In order to ensure
a correct system, it has to comply to the ISO/IEC 14443 standard. This pa-
per concentrates on the low-level part of the protocol (ISO/IEC 14443-3) and
presents a method and a practical implementation that complements traditional
conformance testing. We infer a Mealy state machine of the system-under-test

4.4 Publications 27

using active automata learning. This automaton is checked for bisimulation
with a specification automaton modelled after the standard, which provides a
strong verdict of conformance or non-conformance. As a by-product, we share
some observations of the performance of different learning algorithms and cal-
ibrations in the specific setting of ISO/IEC 14443- 3, which is the difficulty to
learn automata of system that a) consist of two very similar structures and b)
very frequently give no answer (i.e. a timeout as an output).
Work in the thesis context: This paper contains an examination how to effi-
ciently infer automata of black box NFC systems using automata learning and
automatically comparing the behavior (using bisimulation) to a specification
automaton, therefore comprehensively assessing the standards compliance of
the system-under-test.
Contributes to research goals: RG2, RG3.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed all of the content.

4.4.4 Paper IV

Title: From TARA to Test: Automated Automotive Cybersecurity Test Gener-
ation Out of Threat Modeling
Authors: Stefan Marksteiner, Christoph Schmittner, Korbinian Christl, Dejan
Ničković, Mikael Sjödin, and Marjan Sirjani
Abstract: The UNECE demands the management of cyber security risks in
vehicle design and that the effectiveness of these measures is verified by test-
ing. This mandates the introduction of industrial-grade cybersecurity testing in
automotive development processes. The regulation demands also to keep the
risk management current, which again creates the need of stretching the test-
ing over the full life cycle of an automotive system. Currently, the automotive
cybersecurity testing procedures are not specified or automated enough to be
able to deliver tests in the amount and thoroughness needed to keep up with that
regulation, let alone doing so in a cost-efficient manner. This paper introduces
an automotive security life cycle governance approach, that takes the currently
being developed concepts of Cybersecurity Assurance Levels and Targeted At-
tack Feasibility into account and provides a means to automatically generate
test cases at early development stages. These tests can also be used in later
phases to verify and validate the implementations of developed systems. These
formalized concepts increase the both the completeness and efficiency of auto-

28 Chapter 4. Research Contributions

motive cybersecurity testing over vehicles’ complete life cycles.
Work in the thesis context: The paper contains an approach to derive an at-
tack tree from a threat model and a concept to transform into an agnostic attack
script in a domain-specific language, with a labelled transition system (LTS) as
an intermediate step, allowing for automatically creating a test case once the
modeled system is implemented.
Contributes to research goals: RG1.
Thesis author’s contribution: Main driver and main author of this paper.
Contributed sections 1,2, 3.2, and 5. This corresponds to the paper’s motiva-
tion and a concept for transforming a threat model-based attack tree into attack
descriptions written in an (formal) domain-specific language.

4.4.5 Related Papers Not Included in the Thesis

This section outlines papers not directly attributed to the thesis, but demonstrat-
ing professional and scientific skills expected for obtaining a licentiate degree.
It contains two journal publications [5, 6].

Paper 1

Title: Wireless Security in Vehicular Ad Hoc Networks: A Survey
Authors: Thomas Blazek, Fjolla Ademaj, Stefan Marksteiner, Peter Priller,
Hans-Peter Bernhard
Abstract: Vehicular communications face unique security issues in wireless
communications. While new vehicles are equipped with a large set of commu-
nication technologies, product life cycles are long and software updates are not
widespread. The result is a host of outdated and unpatched technologies being
used on the street. This has especially severe security impacts because au-
tonomous vehicles are pushing into the market, which will rely, at least partly,
on the integrity of the provided information. We provide an overview of the
currently deployed communication systems and their security weaknesses and
features to collect and compare widely used security mechanisms. In this sur-
vey, we focus on technologies that work in an ad hoc manner. This includes
Long-Term Evolution mode 4 (LTE-PC5), Wireless Access in Vehicular En-
vironments (WAVE), Intelligent Transportation Systems at 5 Gigahertz (ITS-
G5), and Bluetooth. First, we detail the underlying protocols and their archi-
tectural components. Then, we list security designs and concepts, as well as
the currently known security flaws and exploits. Our overview shows the in-

4.4 Publications 29

dividual strengths and weaknesses of each protocol. This provides a path to
interfacing separate protocols while being mindful of their respective limita-
tions.
Work contribution in relation the licentiate study: Demonstrating the abil-
ity perform a systematization of knowledge survey of a specialized topic (the
security posture of wireless ad-hoc networks relevant to automotive systems).
Thesis author’s contribution: Main responsible for the security-related sec-
tions of the paper. Selecting relevant protocols in consensus with the co-
authors, working out security measures implemented, and security flaws found
in the respective protocols.

Paper 2

Title: A Global Survey of Standardisation and Industry Practices of Automo-
tive Cybersecurity Validation & Verification Testing Processes and Tools
Authors: Andrew Roberts, Stefan Marksteiner, Mujdat Soyturk, Berkay Ya-
man, Yi Yang
Abstract: The United Nation Economic Commission for Europe (UNECE)
Regulation 155 - Cybersecurity and Cybersecurity Management System (UN
R155), mandates the development of cybersecurity management systems (CSMS)
as part of a vehicle’s life cycle. An inherent component of the CSMS is cyber-
security risk management and assessment. Validation and verification testing
is a key activity for measuring the effectiveness of risk management and it
is mandated by UN R155 for type approval. Due to the focus of R155 and
its suggested implementation guideline, ISO/SAE 21434:2021 - Road Vehicle
Cybersecurity Engineering, mainly centering on the alignment of cybersecu-
rity risk management to the vehicle development life cycle, there is a gap in
knowledge of proscribed activities for validation and verification testing. This
research provides guidance on automotive cybersecurity testing and verifica-
tion by providing an overview of the state-of-the-art in relevant automotive
standards, outlining their transposition into national regulation and the cur-
rently used processes and tools in the automotive industry. Through engage-
ment with state-of-the-art literature and workshops and surveys with industry
groups, our study found that national regulatory authorities are moving to en-
shrine UN R155 as part of their vehicle regulations, with differences of im-
plementation based on regulatory culture and pre-existing approaches to ve-
hicle regulation. Validation and verification testing is developing aligned to
UN R155 and ISO21434:2021, however, the testing approaches currently used

30 Chapter 4. Research Contributions

within industry, utilise elements of traditional enterprise information technol-
ogy methods for penetration testing and tool sets. Electrical/electronic (E/E)
components such as embedded control units (ECUs) are considered the pri-
mary testing target, however, connected and autonomous vehicle technologies
are increasingly attracting more focus for testing.
Work contribution in relation the licentiate study: Demonstrating the ability
to systematically conducting a comprehensive literature research (the stance of
automotive standards towards cybersecurity testing) and conducting a survey-
based research (survey on automotive cybersecurity testing tools and processes
used in the industrial practice).
Thesis author’s contribution: Main driver and corresponding author of this
paper. Contributed sections on global standards and European regional (Ger-
many, France, partly UK) standards, as well as mainly conducting the included
industry survey on tools and processes.

Chapter 5

Related Work

This section considers other work in this field and adjacent fields. Given the
research goals and contributions it is divided into contributions made in dif-
ferent fields namely: model-based test generation, automated state machine
derivation and protocol learning, conformance checking, and applications of
automata learning to cybersecurity.

5.1 Model-based Test Case Generation

Model-based testing (MBT) uses a model representation (normally behavioral,
but also structural or other kinds) of a system-under-test. Model-based test
case generation is an automated test case generation based on model-based
testing. It is used in very diverse application domains like Information and
Communications Technology (ICT), Automotive, Consumer electronic, Rail-
way, Aerospace, Avionic, Tourism, Agriculture, Finance, Management, Con-
struction, Sport, Automation. The used models include broad variety of dif-
ferent types (like state machines, activity and sequence diagrams, Simulink
models, pre/post models, Simulink models, etc.) and the approaches to gener-
ate tests include structural coverage (based on control-flow, data-flow, transi-
tions or UML), data coverage (boundary values, statistical or pairwise testing),
fault and requirements-based criteria, and explicit and statistical test genera-
tion, state, search; model checking, requirements, event, random-based and
others [34, 35].

31

32 Chapter 5. Related Work

5.2 Attack Trees-based Security Testing

Attack trees are a formal (graphical) representation of the set of possibilities
to attack a certain system and have been described in the late 1990ies [10, 11].
They connect specific small attacks (i.e., exploiting threats) to a system in order
to attack a complete system or a specific target inside a system with a combined
or concatenated attack. The single attacks can be underlaid with different in-
formation like necessary skills or features or a success probability, allowing
for also calculating this information (i.e., a complete set of skills or features
or the combined attack success probability) for the complete attack. It further
allows for selecting different paths through that tree that are most efficient re-
garding defined criteria (e.g., maximized success probability). There is also an
approach that combines security-related attack trees with safety-related fault
trees and also provides a translation mechanism to transfer them into stochas-
tic timed automata. These can be analyzed using model checking [36]. This
can be used to generate test cases. More directly, attack trees have been used
to build fault injection-based attacks that can be used directly onto a system-
under-test [37]. There is also work to adopt attack trees for automotive sys-
tems [38]. There is also an automotive-related method to create attack trees
from threat models [26]. The thesis builds upon the later work by providing a
translation mechanism from attack trees into a formal attack description lan-
guage that provides blueprints for cyberattacks in RG1 (Section 3.1.1).

5.3 Formalized Test Descriptions

There is quite extensive work on languages for describing attacks to computer
systems [39, 40, 41, 42, 43, 44]. However, this thesis builds upon a domain-
specific language (DSL) tailored for automating attacks on automotive systems
called Agnostic domain-specific Language for the Implementation of Attacks
(ALIA) co-authored by the thesis author [31]. The language concept stems from
the principle to abstract attacks on specific automotive systems from their (pro-
prietary) technology-specific traits, leaving a blueprint structure for an attack
that needs to be concretized again to be executed against a different system.
The ALIA DSL is therefore designed for describing attacks on automotive sys-
tems in a technology-agnostic way. Apart from the original intention of port-
ing attacks from one (proprietary) system to another, this allows for specifying
attacks at design time and concretizing them once an implementation is avail-
able. This thesis integrates this language as a formal description for attacks to

5.4 Automated State Machine Derivation and Protocol Learning 33

achieve RG1 (Section 3.1.1.

5.4 Automated State Machine Derivation and Pro-
tocol Learning

One of the key elements for fully automating model-based test case generation
is automatically obtaining a suitable model to analyze. Finite state machines
have been frequently used for correctness analyses [45, 46, 47, 48] possibil-
ities to analyze them for their correctness and security properties. There are
various approaches to automatically inferring (i.e., learning) state machines.
Recurrent networks have been used to learn state machines already in the early
1990ies [49]. Some algorithms work on steering learning from traces by using
a two-stage approach. They first analyze traces and mine a rule set and sec-
ondly using the rule set for learning automata from traces [50]. Others impose
constraints on learning using linear temporal logic [51]. Many of the trace-
based inferring methods base on the KTail algorithm [50]. This algorithm has
been defined already 1972 by Biermann and Feldman [52]. Trace-based mech-
anisms are also used to generate other models like sequence diagrams [53].
Since the aim of this thesis is to black box-learning behavioral models of real-
world systems, it concentrates on approaches actively querying a system. A
method for this that has made many advances in the recent years is automata
learning (for the basics see Section 2.6). There is quite some work of using
automata learning for security analysis and testing, specifically for learning
communication protocols [54, 55, 56, 57, 58, 59, 60]. This also includes NFC
but concentrates on the upper layer (ISO/IEC 14443-4) protocol, dodging the
specific challenges of the handshake protocol [61]. Aichernig et al. provided
a benchmark for different automata learning setups using existing benchmark
data [62]. This thesis also provides and automata learning performance evalu-
ation, which is however very specially tailored for the ISO/IEC 14443-3 proto-
col, with accordingly different results. Recent works also concentrated on mak-
ing use of these techniques for practical use, e.g., for security analyses [63, 60]
or model-based fuzz testing [58]. The thesis differentiates from these works by
combining learning with compliance checking and also using this to checking
assumptions in threat modeling.

34 Chapter 5. Related Work

5.5 Conformance Checking using Equivalence of
State Machines

There are, partly theoretic, approaches of learning a state machine and com-
paring it with other ones, targeting target DFAs [64] or probabilistic transition
systems (PTS) [65]. For Mealy type machines, which (through their input and
output behavior modeling) are better suited for describing reactive systems,
Neider et al. provided some fundamental work, using automata learning and
bisimulation [66]. Similar things were put into practice by viewing different
machines as Labelled Transition Systems (LTS) for model comparison [67, 68]
and to verify inferred embedded control software models [69]. However, there
is no known comprehensive approach for using bisimulation for protocol com-
pliance checking, which is the differentiation mark of this thesis compared to
the described approaches (RG3 - Section 3.1.3)

Chapter 6

Conclusion and Future Work

This chapter summarizes the work included in the Licentiate thesis and outlines
further directions to go from the current status of the research done in the thesis
and generally in the research field.

6.1 Conclusions

The research described in this thesis aims for facilitating the usage of formal
methods for generating tests to assure correctness and security with a focus on
the automotive domain and on communication protocols. Following the need
of the domain, we concentrated on generating test cases from the security anal-
ysis during the design phase, namely Threat Analysis and Risk Assessment
(TARA) process and from the implementation, namely by checking the im-
plementation’s compliance with a specification using automata learning. The
latter part provides feedback for the design phase: since TARA models sys-
tems components with given properties that are based on assumptions about a
later implementation (e.g., conforming to international communication proto-
col standards), the actual compliance to a specification can prove these assump-
tions to be correct or incorrect. The first part leads to RG1, which is creating
attack descriptions out of threat models, which can be used to generate con-
crete test cases for automotive systems once systems are implemented (Section
3.1.1). The second part is twofold, first we aim for mining a suitable model for
security and correctness analysis (RG2 - Section 3.1.2) and second, we aim
for a suitable methodology to use a behavioral equivalence with a specification

35

36 Chapter 6. Conclusion and Future Work

as means for compliance checking (RG3 - 3.1.3).
Each of these research goals is met with a respective contribution namely,

a method for test generation based on threat models (Section 4.1). This occurs
by generating technology-agnostic test specifications written in the Agnostic
domain-specific Language for the Implementation of Attacks (ALIA) out of at-
tack trees derived from an existing tool for TARA (ThreatGet) using Labelled
Transition Systems (LTS) as a means for the transformation. This approach
is, to the best of our knowledge, novel. The second goal is met by automated
state machine derivation based on active automata learning (Section 4.2). We
showed the practical use of this technique by deriving state machines of Near-
Field Communication (NFC) system for correctness and security analyses. We
also provide insights on setups, abstraction and performance evaluations of
different algorithms in special settings. The third goal was matched by a com-
pliance checking method (Section 4.3). This method compares the behavior
two state machines; one learnt from an implementation and one modeled after
a specification (e.g., the ISO 14443-3 standard). We therefore use bisimulation
and trace equivalence, which in combination with automata learning is novel
for protocol conformance checking.

6.2 Future Directions
Despite the efforts taken in the licentiate thesis so far, quite some closely re-
lated problems have been left open to fulfill the overall objective in its entirety.
Some of these directions are:

• Further implementations of adapters for specific protocols using the same,
general learning framework. E.g., dealing with the specifics of V2X pro-
tocols or the reader parts of NFC systems in order to create a comprehen-
sive multi-protocol learning framework. The research goal is to create a
generally applicable method for protocol model inference.

• Create a method for automated model checking of the learned models for
cybersecurity properties. The practical motivation is to automate cyber-
security analysis based on derived models, while the research goal is to
derive general rules to check for the security of diverse communications
protocols.

• Create a method to derive properties to check from threat models to rig-
orously check the underlying assumptions.

6.2 Future Directions 37

Figure 6.1: Positioning of the research goals and future directions in a a struc-
tured testing process. Amber denotes artifacts, blue denotes activities, and
cyan denotes specification inputs. The arrows denote inputs and outputs, with
the dashed input denotes a process including output. The research goals are
marked with the dashed red boxes.

• Utilize the learned models for fuzz test generation using different strate-
gies based on node and transition properties of the learned models. The
research goal is to create highly efficient approaches for fuzz testing in
order to create effective zero-input testing methods.

While the first item is basically applying the same principles this thesis uses
to new domains, the latter two provide new methods for test case generation.
Figure 6.1 shows an overview of the Licentiate research goals in relation with
the latter three items above (shapes and colors are the same as in Figure 3.1).

Bibliography

[1] M. Ebrahimi, S. Marksteiner, D. Ničković, R. Bloem, D. Schögler, P. Eis-
ner, S. Sprung, T. Schober, S. Chlup, C. Schmittner, and S. König,
“A Systematic Approach to Automotive Security,” in Formal Methods
(M. Chechik, J.-P. Katoen, and M. Leucker, eds.), vol. 14000 of Lecture
Notes in Computer Science, (Cham), pp. 598–609, Springer International
Publishing, 2023. Reproduced with permission from Springer Nature.

[2] S. Marksteiner, P. Priller, and M. Wolf, “Approaches For Automat-
ing Cybersecurity Testing Of Connected Vehicles,” in Intelligent Secure
Trustable Things (M. Karner, J. Peltola, M. Jerne, L. Kulas, and P. Priller,
eds.), Studies in Computational Intelligence, Springer Nature, 2023. Re-
produced with permission from Springer Nature.

[3] S. Marksteiner, M. Sirjani, and M. Sjödin, “Using Automata Learn-
ing for Compliance Evaluation of Communication Protocols on an NFC
Handshake Example,” in Engineering of Computer-Based Systems
(J. Kofroň, T. Margaria, and C. Seceleanu, eds.), vol. 14390 of Lec-
ture Notes in Computer Science, (Cham), pp. 170–190, Springer Nature
Switzerland, 2024. Reproduced with permission from Springer Nature.

[4] S. Marksteiner, C. Schmittner, K. Christl, D. Nickovic, M. Sjödin, and
M. Sirjani, “From TARA to Test: Automated Automotive Cybersecurity
Test Generation Out of Threat Modeling,” in Proceedings of the 7th ACM
Computer Science in Cars Symposium, CSCS ’23, (New York, NY, USA),
pp. 1–10, Association for Computing Machinery, Dec. 2023.

[5] T. Blazek, F. Ademaj, S. Marksteiner, P. Priller, and H.-P. Bernhard,
“Wireless Security in Vehicular Ad Hoc Networks: A Survey,” SAE In-
ternational Journal of Connected and Automated Vehicles, vol. 6, Aug.
2022.

39

40 BIBLIOGRAPHY

[6] A. Roberts, S. Marksteiner, M. Soyturk, B. Yaman, and Y. Yang, “A
Global Survey of Standardization and Industry Practices of Automotive
Cybersecurity Validation and Verification Testing Processes and Tools,”
SAE International Journal of Connected and Automated Vehicles, vol. 7,
Nov. 2023.

[7] United Nations Economic and Social Council - Economic Commission
for Europe, “Uniform provisions concerning the approval of vehicles with
regards to cyber security and cyber security management system,” Reg-
ulation ”155”, United Nations Economic and Social Council - Economic
Commission for Europe, Brussels, 2021.

[8] A. Shostack, Threat Modeling: Designing for Security. Indianaplois, IN:
John Wiley & Sons, 2014.

[9] D. Ward, I. Ibarra, and A. Ruddle, “Threat Analysis and Risk Assess-
ment in Automotive Cyber Security,” SAE International Journal of Pas-
senger Cars-Electronic and Electrical Systems, vol. 6, no. 2013-01-1415,
pp. 507–513, 2013.

[10] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 Workshop on New
Security Paradigms, (New York, NY, USA), pp. 71–79, ACM, 1998.

[11] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–
29, 1999.

[12] R. M. Keller, “Formal verification of parallel programs,” Communica-
tions of the ACM, vol. 19, pp. 371–384, July 1976.

[13] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, pp. 87–106, Nov. 1987.

[14] R. L. Rivest and R. E. Schapire, “Inference of finite automata using hom-
ing sequences,” in Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing, STOC ’89, (New York, NY, USA),
pp. 411–420, Association for Computing Machinery, Feb. 1989.

[15] M. Isberner, F. Howar, and B. Steffen, “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning,” in Runtime
Verification (B. Bonakdarpour and S. A. Smolka, eds.), Lecture Notes in
Computer Science, (Cham), pp. 307–322, Springer International Publish-
ing, 2014.

BIBLIOGRAPHY 41

[16] International Organization for Standardization, “Cards and security de-
vices for personal identification – Contactless proximity objects – Part
3: Initialization and anticollision,” ISO/IEC Standard ”14443-3”, Inter-
national Organization for Standardization, 2018.

[17] International Organization for Standardization and Society of Automo-
tive Engineers, “Road Vehicles – Cybersecurity Engineering,” ISO/SAE
Standard ”21434”, International Organization for Standardization, 2021.

[18] V. Q. P. G. 13, “Automotive SPICE - Process Reference and Assessment
Model for Cybersecurity Engineering,” Core Specification 1.0, Quality
Management Center of the German Association of the Automotive In-
dustry, 2021.

[19] T. R. Ingoldsby, “Attack tree-based threat risk analysis,” tech. rep., Ame-
naza Technologies Limited, 2021.

[20] M. Fowler and R. Parsons, Domain-Specific Languages. Pearson Educa-
tion, Sept. 2010.

[21] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell
System Technical Journal, vol. 34, pp. 1045–1079, Sept. 1955.

[22] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, pp. 87–106, Nov. 1987.

[23] M. Isberner, F. Howar, and B. Steffen, “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning,” in Runtime
Verification (B. Bonakdarpour and S. A. Smolka, eds.), Lecture Notes in
Computer Science, (Cham), pp. 307–322, Springer International Publish-
ing, 2014.

[24] F. Vaandrager, “Model learning,” Communications of the ACM, vol. 60,
pp. 86–95, Jan. 2017.

[25] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, Apr.
2008.

[26] S. Chlup, K. Christl, C. Schmittner, A. M. Shaaban, S. Schauer, and
M. Latzenhofer, “THREATGET: towards automated attack tree analysis
for automotive cybersecurity,” Inf., vol. 14, no. 1, p. 14, 2023.

42 BIBLIOGRAPHY

[27] A. Hevner and S. Chatterjee, “Design Science Research in Information
Systems,” in Design Research in Information Systems: Theory and Prac-
tice (A. Hevner and S. Chatterjee, eds.), Integrated Series in Information
Systems, pp. 9–22, Boston, MA: Springer US, 2010.

[28] H. A. Simon, The Sciences of the Artificial. Cambridge, MA, US: MIT
press, 1969.

[29] J. F. Nunamaker, M. Chen, and T. D. Purdin, “Systems Development
in Information Systems Research,” Journal of Management Information
Systems, vol. 7, pp. 89–106, Dec. 1990.

[30] C. Schmittner, B. Schrammel, and S. König, “Asset Driven ISO/SAE
21434 Compliant Automotive Cybersecurity Analysis with ThreatGet,”
in Systems, Software and Services Process Improvement (M. Yilmaz,
P. Clarke, R. Messnarz, and M. Reiner, eds.), Communications in Com-
puter and Information Science, (Cham), pp. 548–563, Springer Interna-
tional Publishing, 2021.

[31] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An Agnostic Do-
main Specific Language for Implementing Attacks in an Automotive Use
Case,” in The 16th International Conference on Availability, Reliability
and Security, ARES 2021, (New York, NY, USA), pp. 1–9, Association
for Computing Machinery, Aug. 2021.

[32] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd, Aug. 2016.

[33] M. Isberner, F. Howar, and B. Steffen, “The Open-Source LearnLib,” in
Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.),
Lecture Notes in Computer Science, (Cham), pp. 487–495, Springer In-
ternational Publishing, 2015.

[34] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini,
and M. A. Isa, “Model-based test case generation and prioritization: A
systematic literature review,” Software and Systems Modeling, vol. 21,
pp. 717–753, Apr. 2022.

[35] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Ap-
proach. Elsevier, July 2010.

BIBLIOGRAPHY 43

[36] R. Kumar and M. Stoelinga, “Quantitative security and safety analysis
with attack-fault trees,” in 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), (Singapore), pp. 25–32,
IEEE, 2017.

[37] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Security protocol
testing using attack trees,” in 2009 International Conference on Compu-
tational Science and Engineering, vol. 2, pp. 690–697, 2009.

[38] K. Karray, J.-L. Danger, S. Guilley, and M. Abdelaziz Elaabid, “Attack
tree construction and its application to the connected vehicle,” in Cyber-
Physical Systems Security, pp. 175–190, Cham: Springer International
Publishing, 2018.

[39] C. Michel and L. Mé, “Adele: An attack description language for
knowledge-based intrusion detection,” in Trusted Information (M. Dupuy
and P. Paradinas, eds.), (Boston, MA), pp. 353–368, Springer US, 2001.

[40] M. Yampolskiy, P. Horváth, X. D. Koutsoukos, Y. Xue, and J. Szti-
panovits, “A language for describing attacks on cyber-physical systems,”
International Journal of Critical Infrastructure Protection, vol. 8, pp. 40
– 52, 2015.

[41] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, “Chapter one - security testing: A survey,” in Advances
in Computers (A. Memon, ed.), vol. 101, pp. 1 – 51, Elsevier, 2016.

[42] P. X. Mai, F. Pastore, A. Goknil, and L. C. Briand, “A natural language
programming approach for requirements-based security testing,” in 2018
IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), pp. 58–69, 2018.

[43] P. Johnson, R. Lagerström, and M. Ekstedt, “A meta language for threat
modeling and attack simulations,” in Proceedings of the 13th Interna-
tional Conference on Availability, Reliability and Security, ARES 2018,
(New York, NY, USA), Association for Computing Machinery, 2018.

[44] S. Katsikeas., P. Johnson., S. Hacks., and R. Lagerström., “Probabilis-
tic modeling and simulation of vehicular cyber attacks: An application of
the meta attack language,” in Proceedings of the 5th International Confer-
ence on Information Systems Security and Privacy - Volume 1: ICISSP,,
pp. 175–182, INSTICC, SciTePress, 2019.

44 BIBLIOGRAPHY

[45] R. Alur and M. Yannakakis, “Model checking of hierarchical state ma-
chines,” ACM SIGSOFT Software Engineering Notes, vol. 23, pp. 175–
188, Nov. 1998.

[46] K. Winter, Model checking abstract state machines. PhD thesis, Technis-
che Universität Berlin, 2001.

[47] C. K. F. Tang and E. Ternovska, “Model Checking Abstract State Ma-
chines with Answer Set Programming,” in Logic for Programming, Ar-
tificial Intelligence, and Reasoning (G. Sutcliffe and A. Voronkov, eds.),
Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 443–458,
Springer, 2005.

[48] F. Tsarev and K. Egorov, “Finite state machine induction using genetic
algorithm based on testing and model checking,” in Proceedings of the
13th Annual Conference Companion on Genetic and Evolutionary Com-
putation, GECCO ’11, (New York, NY, USA), pp. 759–762, Association
for Computing Machinery, July 2011.

[49] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning Finite State Machines
With Self-Clustering Recurrent Networks,” Neural Computation, vol. 5,
pp. 976–990, Nov. 1993.

[50] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in Proceedings of the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on The Foundations of Software Engineering, ESEC/FSE ’09, (New
York, NY, USA), pp. 345–354, Association for Computing Machinery,
Aug. 2009.

[51] N. Walkinshaw and K. Bogdanov, “Inferring Finite-State Models with
Temporal Constraints,” in 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 248–257, Sept. 2008.

[52] A. W. Biermann and J. A. Feldman, “On the Synthesis of Finite-State
Machines from Samples of Their Behavior,” IEEE Transactions on Com-
puters, vol. C-21, pp. 592–597, June 1972.

[53] M. McGavin, T. Wright, and S. Marshall, “Visualisations of execution
traces (vet) an interactive plugin-based visualisation tool,” in Proceedings
of the 7th Australasian User interface conference-Volume 50, pp. 153–
160, 2006.

BIBLIOGRAPHY 45

[54] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song, “Inference and analy-
sis of formal models of botnet command and control protocols,” in Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, (New York, NY, USA), pp. 426–439, Association for
Computing Machinery, Oct. 2010.

[55] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias, “SFADiff:
Automated Evasion Attacks and Fingerprinting Using Black-box Differ-
ential Automata Learning,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, (New
York, NY, USA), pp. 1690–1701, Association for Computing Machinery,
Oct. 2016.

[56] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager, and
P. Verleg, “Model learning and model checking of SSH implementations,”
in Proceedings of the 24th ACM SIGSOFT International SPIN Sympo-
sium on Model Checking of Software, SPIN 2017, (New York, NY, USA),
pp. 142–151, Association for Computing Machinery, July 2017.

[57] P. Fiterău-Broştean and F. Howar, “Learning-Based Testing the Sliding
Window Behavior of TCP Implementations,” in Critical Systems: For-
mal Methods and Automated Verification (L. Petrucci, C. Seceleanu,
and A. Cavalcanti, eds.), Lecture Notes in Computer Science, (Cham),
pp. 185–200, Springer International Publishing, 2017.

[58] B. K. Aichernig, E. Muškardin, and A. Pferscher, “Learning-Based
Fuzzing of IoT Message Brokers,” in 2021 14th IEEE Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 47–58, Apr. 2021.

[59] A. Pferscher, B. Wunderling, B. K. Aichernig, and E. Muškardin, “Min-
ing Digital Twins of a VPN Server,” in Preproceedings of the Workshop
on Applications of Formal Methods and Digital Twins, Sept. 2022.

[60] I. Karim, A. A. Ishtiaq, S. R. Hussain, and E. Bertino, “BLEDiff: Scal-
able and Property-Agnostic Noncompliance Checking for BLE Imple-
mentations,” in 2023 IEEE Symposium on Security and Privacy (SP),
pp. 3209–3227, IEEE Computer Society, May 2023.

[61] F. Aarts, J. De Ruiter, and E. Poll, “Formal Models of Bank Cards for
Free,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pp. 461–468, Mar. 2013.

[62] B. K. Aichernig, M. Tappler, and F. Wallner, “Benchmarking Combina-
tions of Learning and Testing Algorithms for Automata Learning,” For-
mal Aspects of Computing, June 2023.

[63] A. Pferscher and B. K. Aichernig, “Fingerprinting and analysis of Blue-
tooth devices with automata learning,” Formal Methods in System Design,
May 2023.

[64] Y.-F. Chen, C.-D. Hong, A. W. Lin, and P. Rümmer, “Learning to prove
safety over parameterised concurrent systems,” in 2017 Formal Methods
in Computer Aided Design (FMCAD), pp. 76–83, Oct. 2017.

[65] C.-D. Hong, A. W. Lin, R. Majumdar, and P. Rümmer, “Probabilistic
Bisimulation for Parameterized Systems,” in Computer Aided Verifica-
tion (I. Dillig and S. Tasiran, eds.), Lecture Notes in Computer Science,
(Cham), pp. 455–474, Springer International Publishing, 2019.

[66] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, “Benchmarks
for Automata Learning and Conformance Testing,” in Models, Mindsets,
Meta: The What, the How, and the Why Not? Essays Dedicated to Bern-
hard Steffen on the Occasion of His 60th Birthday (T. Margaria, S. Graf,
and K. G. Larsen, eds.), Lecture Notes in Computer Science, pp. 390–
416, Cham: Springer International Publishing, 2019.

[67] F. Aarts, H. Kuppens, J. Tretmans, F. Vaandrager, and S. Verwer, “Im-
proving active Mealy machine learning for protocol conformance test-
ing,” Machine Learning, vol. 96, pp. 189–224, July 2014.

[68] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-Based Testing IoT
Communication via Active Automata Learning,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), pp. 276–287, Mar. 2017.

[69] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying
automata learning to embedded control software,” in Formal Methods
and Software Engineering (M. Butler, S. Conchon, and F. Zaı̈di, eds.),
(Cham), pp. 67–83, Springer International Publishing, 2015.

II

Included Papers

47

Chapter 7

Paper I:
A Systematic Approach to
Automotive Security

Masoud Ebrahimi, Stefan Marksteiner, Dejan Ničković, Roderick Bloem, David
Schögler, Philipp Eisner, Samuel Sprung, Thomas Schober, Sebastian Chlup,
Christoph Schmittner, Sandra König.

Proceedings of the Formal Methods 2023 conference, In Lecture Notes in
Computer Science, vol. 14000. Cham: Springer International Publishing,
2023. DOI: 10.1007/978-3-031-27481-7 34. Reproduced with permission
from Springer Nature.

49

Abstract

We propose a holistic methodology for designing automotive systems that con-
sider security a central concern at every design stage. During the concept de-
sign, we model the system architecture and define the security attributes of
its components. We perform threat analysis on the system model to identify
structural security issues. From that analysis, we derive attack trees that define
recipes describing steps to successfully attack the system’s assets and propose
threat prevention measures. The attack tree allows us to derive a verification
and validation (V&V) plan, which prioritizes the testing effort. In particular,
we advocate using learning for testing approaches for the black-box compo-
nents. It consists of inferring a finite state model of the black-box component
from its execution traces. This model can then be used to generate new rel-
evant tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology with an
automotive infotainment system example. Using the advocated approach, we
could also document unexpected and potentially critical behavior in our exam-
ple systems.

7.1 Introduction 51

7.1 Introduction

The advent of connected, cooperative automated mobility provides a huge op-
portunity to increase mobility efficiency and road safety. However, the result-
ing connectivity creates new attack surfaces that affect the vehicle’s safety,
security, and integrity. With an estimated 100 million lines of embedded code,
modern vehicles are highly complex systems that need to provide consistent
cyber-security assurances. Indeed, there are an alarming spike in cyber-attacks
targeting connected cars, their electronic control units (ECUs), and the original
equipment manufacturer (OEM) back-end servers.

Therefore, making the right security decisions from the early design stages
is crucial. The ad-hoc security measures done by domain experts are insuffi-
cient to meet the requirements in the automotive domain. The standard ISO/SAE
21434 and the mandatory regulation UN R155 advocate for more systematic
reasoning about system security. The United Nations Economic Commission
for Europe (UNECE) has adopted new security regulations, such as UNECE
R155 and R156, for the homologation of future vehicles that address the iden-
tified cyber-attack risks, for example, during software updates. Similarly, the
cyber security standard ISO/SAE 21434, introduced in 2021, defines precise
security requirements for vehicles during the entire product life cycle, from its
development to its operation and maintenance. Hence, there is an urgent need
for methods and tools that address multiple security-related aspects, from early
vehicle design to deployment and operation phases.

This paper proposes a top-down methodology for systematically assessing
automotive security at different stages of vehicle development. The proposed
methodology follows the product cycle in several steps. During the early de-
sign phase, we use threat modeling, analysis, and repair to provide more sys-
tematic support for the concept design of secure (automotive) systems. These
methods allow us to identify the system’s weaknesses in security threats and
develop structural measures to prevent and mitigate them. We then use the
threat analysis results to capture the system’s critical components concerning
security properties and derive a verification and validation (V&V) plan. We
apply established processes (fuzz testing, penetration testing, etc.) for testing
the implemented system components. However, the source code of the com-
ponent implementation is often unavailable to the V&V team, and they cannot
efficiently use the classical testing methods and tools. In that case, we advo-
cate using automata learning for testing that builds an explainable model of
a black-box implementation of a component from a set of executed test cases
that facilitates testing and other V&V activities. This methodology is a re-

52 Paper I

1 Concept Design 2 V&V Planning 5 V&V Methods

3 Model Validation 4 Model Learning

M
od

el
Ch

ec
ki
ng

Fu
zz
in
g

. . .

In
te
gr
at
io
n

Te
st
in
g

Architecture Model

Threat
DB

Analysis &
Repair

Black-Box
Component
Under Test

6 V&V Execution

Component
Tester

Au
to
m
at
a

Le
ar
ni
ng

Model-based Testing

Automata

Figure 7.1: Overview of the TRUSTED methodology

sult of a joint research effort amongst the industrial and academic partners in
TRUSTED1, a project focusing on trust and security in autonomous vehicles.
In implementing our proposed methodology, we were also supported by part-
ners from the related LearnTwins2 project, which focuses on learning-based
testing methods for digital twins.

7.2 TRUSTED Methodology

The TRUSTED methodology starts with the concept design with a threat model
of the vehicle; see Stage 1⃝ in Figure 7.1. The threat model consists of two
components: (i) a system model architecture and (ii) a threat database. The
system model architecture provides a structural view of the vehicle. This view
includes vehicle components and subsystems (e.g., sensors, actuators, ECUs)
and describes their (wireless or wired) interconnections. We can assign security

1https://TRUSTED.iaik.tugraz.at/
2https://learntwins.ist.tugraz.at/

7.2 TRUSTED Methodology 53

attributes (e.g., authentication, encryption) to system components and commu-
nication links. A system model can define security boundaries that enclose
trusted subsystems and assets we need to protect from potential attacks. The
threat database contains a set of known threats—these threats from public do-
main sources, relevant standards, and previous experience. The threat model is
an input to a threat analysis method allowing the detection of structural weak-
nesses in the system’s architecture. We then combine the threat analysis with
the repair activities to identify prevention and mitigation actions required to
protect the system from identified threats.

The high-level threat analysis performed in the early stages of the design
provides essential insights into the security-related weaknesses in the system
architecture. We can take structural defense actions to improve the system’s
security based on threat repair outcomes (e.g., implementing authentication in
a specific component). Yet, there is no guarantee that an attacker cannot break
the resulting measures. Hence, it is imperative to have a solid verification and
validation (V&V) plan. In the TRUSTED methodology, we use the insights
gained by threat analysis and repair to identify risks and prepare an effective
V&V plan corresponding to 2⃝ in Figure 7.1.

We use the system architecture model developed during the concept de-
sign phase to implement and integrate the components of the system. The
implementation step is outside the scope of the TRUSTED methodology, but
we assume the components are available as black boxes (see 3⃝ in Figure 7.1).
That is, we assume that we can execute components, but we cannot access their
implementations.

During the development and integration of different components from the
system architecture, verifying and testing safety and security functionalities
becomes another critical aspect that we must address. Model validation (3⃝
in Figure 7.1) tests the model for conformance against the component under
test. This step provides either affirmation for the correctness (or completeness,
respectively) of the model or counterexamples to refine the latter in a loop until
the model is considered good enough to be used for test case generation.

We propose a learning-for-testing approach using automata learning (4⃝ in
Figure 7.1) as the core method for generating tests during V&V. In automata
learning (see Section 7.4.1), we construct a Finite State Machine (FSM) of the
System Under Test (SUT). We use the inferred FSM to: (1) obtain potential at-
tack data, and (2) identify critical inputs that might show differences between
the FSM and the SUT. We must automatically perform the necessary tests dur-
ing the development and especially the maintenance phase to guarantee a quick
response in the event of a threat.

54 Paper I

We chose the learning-based testing approach due to its versatility and nu-
merous V&V activities that we can undertake with the inferred FSM (5⃝ in
Figure 7.1). We can use the inferred FSM to: (1) visualize and understand the
implementation, (2) model check it against its formalized requirements (pos-
sibly generating test cases on specification violations), (3) generate additional
test cases by fuzz testing, and (4) Test for equivalence between implementation
and a reference model or another implementation.

In the last phase (6⃝ in Figure 7.1), we use various V&V strategies to ver-
ify the specified properties against the actual component under test. The test
results are final verification outcomes; meanwhile, we can use them as coun-
terexamples for the learning algorithms in 4⃝ in Figure 7.1. This policy pro-
vides a feedback loop for refining the model in the learning-based testing ap-
proach. We execute and store tests using an automated test execution platform
that augments generic test cases with additional information. This additional
information comes from a test database or is provided in a grey box testing [1].

The threat model and the tests created during various design phases must
be continuously maintained and updated throughout the vehicle lifecycle. We
must incorporate new unknown threats and vulnerabilities into the model and
re-evaluate the model to find new security issues. We must also integrate the
changes to functions resulting from software updates into the system model
and their impact on the vehicle’s security analyzed and re-tested. This closely
corresponds with the notions on testing in ISO 21434 and UNECE R155.

7.3 Automotive Security by Design

In this section, we demonstrate the use of THREATGET [2], a tool for threat
modeling and analysis to improve the security of automotive applications dur-
ing their early stages of design (step 1⃝ in Figure 7.1) and generate an appro-
priate V&V plan (step 2⃝ in Figure 7.1). We illustrate the approach with an
automotive infotainment system developed by the industrial partner.

We first model the system using THREATGET (Section 7.3.1) and apply
analysis to identify potential structural weaknesses in the system architecture
(Section 7.3). We then use this analysis to derive a V&V plan (Section 7.3.3).
Finally, we can augment it with threat repair to propose additional security
measures [3].

7.3 Automotive Security by Design 55

7.3.1 System Architecture Model

We first create an accurate model of the automotive infotainment system (IS),
shown in Figure 7.2. The IS is part of a larger ADAS reference model. It has
several external interfaces that expose an attack surface of the vehicle. The
external interfaces in Figure 7.2 are Bluetooth, WiFi, Interior Camera, and On-
Board Diagnostics (OBD). The Multimedia Interface Hub (MIH) is an essential
component of the infotainment system that (co-)implements core functionali-
ties, including navigation, phone calls, and music playback. MIH also bridges
external and internal interfaces. The Telematics Communication Unit (TCU)
is the primary interface to the Internet. Many components in a modern vehicle
depend on the TCU. For example, navigation systems use TCUs to access and
update maps, and ECUs use them for over-the-air updates. Finally, all compo-
nents except for TCU and Head Unit communicate through a CAN interface.
We add two assets to the model – the confidentiality asset associated with the
Head Unit and the availability asset associated with the TCU. The assets need
to be protected, and their associated components are potential targets for at-
tackers.

The IS is a weak security link in modern vehicles because it is more prone
to successful cheap attacks than other components (e.g., Body Control Unit or
the Engine Control Unit). This is due to versatile attack scenarios provided
by the use of mainstream Unix-like operating systems, e.g., Uconnect and Au-
tomotive Grade Linux, the user requirements demanding functionalities like a
built-in internet browser and installing third-party apps enabling remote code
execution attacks, and the use of CAN bus that cannot guarantee communica-
tion integrity between the vehicle’s external and internal interfaces.

7.3.2 Threat Analysis

We analyze the system model with THREATGET against its threat database,
defining a set of possible threats formulated as rules. The threat descriptions
are collected from multiple sources: automotive security standards and regula-
tions (e.g., ISO/SAE 21434, ETSI, UNECE WP29 R155, and UNECE R156),
publicly documented threats identified in past incidents, and expert knowledge.

We illustrate threat rules with two examples used during the analysis of
the infotainment system model: the rule named “Gain Control of Wireless
Interface (e.g., WiFi, Bluetooth, or BLE)” and the rule named “Flood CAN
Communication with Messages”. Both threat rules originate from automotive
security analyses performed by domain experts. The first threat’s formaliza-

56 Paper I

TCU
Wired Interface
Eth HU-TCU

Head Unit CAN IF 1
Infotainment

CAN
CAN IF 2

M
u
ltim

ed
ia

IF
H
u
b

LTE/TCU

OEM Backend

TCU
Vehicle CAN

Body CAN CAN IF 4

Wired IF
CTD-HU

Control
Touch Display CAN IF 3

SOS

E-Call

Eth ADAS
Cam InfSys

Bluetooth WiFi

Interior Camera Speaker System
OBD

24/7

Availability
Asset

Confidentiality
Asset

Figure 7.2: Automotive infotainment system model.

tion is

ELEMENT : "Wireless Interface"{
"Authorization" NOT IN ["Yes", "Strong"] &
"Input Sanitization" != "Yes" &
"Authentication" NOT IN ["Yes", "Strong"] &
"Input Validation" != "Yes" &
PROVIDES CAPABILITY "Control" := "true". }

This rule specifies that a wireless interface (e.g., WiFi or Bluetooth) that neither
implements authorization and authentication nor sanitizes or validates its inputs
is susceptible to threats. The last line in the rule explicitly states that if this
threat is exploited, the malicious user can control the wireless interface. The
“Threat Flood CAN Communication with Messages” threat is formalized as

FLOW {
SOURCE ELEMENT : "ECU"

{ REQUIRES CAPABILITY "Control" >= "true" } &
TARGET ELEMENT : "ECU" {

HOLDS ASSET {
"Cybersecurity Attribute" = "Confidentiality" &
PROVIDES CAPABILITY "Read" := "true" } } &

INCLUDES ELEMENT : "BUS Communication" &
INCLUDES NO ELEMENT : "ECU" {"Anomaly Detection" = "Yes".} }

This rule states that the threat is present if there is a path starting from an ECU
that is under the control of a malicious user to another ECU that holds the
confidentiality asset and that there is a bus between them and no ECU on the
path has implemented anomaly detection.

7.3 Automotive Security by Design 57

When applied to the infotainment system model, THREATGET identifies
multiple threats. One threat is “Spoof messages in the vehicle network because
of the missing components”. It describes a pattern that starts at an Interface
with no Authentication and ends at an ECU with no Input Validation and holds
an asset. It includes a wired Shared Medium representing a vehicle’s CAN
BUS. Moreover, no element (of type Firewall, Server, ECU, or Gateway) on
the flow from the Interface to the ECU takes care of Anomaly Detection.

We can address the identified threats with appropriate security measures.
Threat repair [3] consists of preventing concrete threats by proposing secu-
rity measures that can be implemented during the system’s design. THREAT-
GET implements attribute repair, a method that proposes changes in the com-
ponents’ security attributes as locally deployed measures with a simple cost
model.

In the case of the automotive infotainment system model, e.g., the proposed
threat repair measures include enabling authorization and implementing au-
thentication in the WiFi and Bluetooth components. We note that threat repair
does not remove the need for the planned V&V activities. The fact that authen-
tication is integrated into the WiFi device, following the outcomes of threat
repair, does not guarantee that the authentication algorithm’s implementation
is weakness free. On the contrary, systematic testing of the WiFi’s authentica-
tion protocol is even more necessary to gain confidence that the WiFi device is
not a possible entry point for malicious users.

7.3.3 V&V Planning
In addition to threat analysis, there is support for identifying and modeling
more sophisticated threats using attack trees; c.f. [4]. This results in more
knowledge about potential attackers’ steps when intruding into a system. Sim-
ple rules can be assigned attributes called capabilities that are either required
for an intrusion or can be gained through the intrusion of a system compo-
nent. Moreover, we can define the different access levels to a component (e.g.,
Access < Read < Modify < Control). Depending on previously acquired
capabilities, different attack tree rules trigger, yielding distinct attack trees. An
example of such a generated attack tree is illustrated in Figure 7.3.

The attack tree depicted in Figure 7.3 shows how a malicious user can
access the confidentiality asset associated with the Head Unit via external in-
terfaces such as WiFi and Bluetooth. For instance, control of the Bluetooth
interface can be gained if its security attributes (input validation and saniti-
zation, authorization and authentication) are not implemented or have weak-

58 Paper I

nesses. From there, the user can gain control of the Multimedia Interface Hub,
which is not sufficiently secure, and then get control of the Head Unit and
hence the access to the asset. The attack tree exposes the most critical compo-
nents that need to be protected. We note that the attack tree from Figure 7.3
is not maximal nor unique – while THREATGET generates multiple trees for
each asset in the model, including the maximal attack trees, we use a simpler
tree for illustration purposes.

Confidentiality Asset
Read = true

Head Unit
Control = true Head Unit

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Multimedia IF Hub
Control = true Multimedia IF Hub

Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Bluetooth
Control = true Bluetooth

Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

WiFi
Control = true

WiFi
Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

Figure 7.3: Attack tree derived from THREATGET. Multiple children from the
same node are implicitly interpreted with an OR operation.

7.4 Automotive Security Testing

In this section, we advocate an approach based on learning to test critical com-
ponents identified by the threat analysis methods during concept design, when
these components are assumed to be black-box to the tester.

7.4.1 Automata Learning for Correctness

Many cyber-physical components in the automotive domain implement one or
multiple finite state machines (FSMs).

Implementing larger automotive FSMs becomes cumbersome mainly be-
cause: (1) ensuring FSM’s correctness w.r.t. its specification is expensive, (2)

7.4 Automotive Security Testing 59

correctly coding the structure of a large FSM is difficult, and (3) correct inte-
gration of FSMs in complex software is hard.

Unfortunately, many software-driven components in the automotive indus-
try are black boxes from different manufacturers, hence are hard to verify and
thus do not provide functional or non-functional guarantees.

Given an FSM of a black-box automotive component, we can test and ver-
ify it to increase our confidence in its correctness. Automata learning has
proven to be a successful method for learning-based testing of communication
protocols that are also used in the automotive domain, e.g., MQTT [5] or Blue-
tooth Low Energy [6]. We use automata learning [7] to infer an FSM model
(concretely a Mealy machine) of the the SUT. In the learning context we refer
to the SUT by system-under-learning (SUL). In automata learning, a learner
asks an oracle two types of queries. First, membership queries to determine
the SUL’s output for a given input word. Second, equivalence queries check
whether a learned model conforms to the SUL, to which the oracle returns pos-
itive answer or a counterexample. A counterexample is an input-output word
distinguishing SUL from hypothesis. In practice, oracles for black box systems
work with conformance testing.

Ordinarily, real-world systems’ alphabets are not manageable for learning
algorithms. Abstraction helps to both cope with this fact and to make inferred
models more human-readable. Too much abstraction, however, might induce
non-deterministic behavior and hide problems we intend to find. There are
also automatic abstraction refinement approaches for an optimum of abstrac-
tion in a mapper [8, 9]. An abstraction mapper consists of a mapping function
that converts a concrete input into an abstract symbol. It also observes the
SUL’s concrete outputs and sends an abstraction to the learner. To send a con-
crete input to the SUL, the mapper inverses the abstraction. There are multiple
methods to assess the behavioral correctness of the learned FSMs, including
(1) black-box checking [10], adaptive model checking [11], a combination of
learning-based testing and machine learning [12] and symbolic execution [13].

7.4.2 Use-Case Scenarios

The attack tree (see Figure 7.3) poses the critical components that need to be
tested for security. In this section, we illustrate our learning-based testing ap-
proach on the two components highlighted in gray color in Figure 7.3 - the
Bluetooth interface (as an entry vector) and the Head Unit ECU.

60 Paper I

s0start

s4s2

s3

s5

s6

s9

s1

s7

s8

s10 s11 s12

s13

s14s15

s16

s⊥

Figure 7.4: Inferred FSM structure for Bluetooth pairing.

Bluetooth and Bluetooth Low Energy

Bluetooth is a well-established standard for wireless audio used in most info-
tainment systems. Bluetooth Low Energy (BLE) grows in popularity for car
access and sensor data transmission. The protocols have a variety of known
vulnerabilities [14, 15, 16, 17, 18], some also specifically for automotive sys-
tems3.
Learning Setup we use Intel Wireless Controllers (AC 8265 and AX200) im-
plementing Bluetooth and BLE. The learning setups are similar, the difference
is in the radio hardware and the physical layer, requiring three entities: (1) Ra-
dio Device, (2) Learner, and (3) Interface between the two with a mapper. The
learner was implemented using the LearnLib framework [33].

Learned Model and Findings We inferred the pairing process models, which
are used for encryption and therefore security-critical in the SULs. As a tangi-
ble result, we discovered a BLE deadlock state (red state in Figure 7.4) in the
Linux BLE host software. With repeated out-of-order transmission of pairing
requests of different types, we force the respective BLE stack into a state that
limits the device to respond to basic link-layer control packets. After the state
is reached, each following connection will start in this state until the controller
is reset.

3https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-
passive-entry-vulnerable-to-relay-attacks/

7.4 Automotive Security Testing 61

Unified Diagnostic Services

Each ECU has a secure access mode reachable through its UDS implementa-
tion, available via vehicle’s OBD connector. An attacker able to exploit UDS
security features would be also able to manipulate data or even flash the ECU
with a malicious firmware.

Learning Setup To communicate with the ECU we used a CAN interface.
To learn a different ECU we only need to adapt the interface. We started by im-
plementing a reduced UDS interface, consisting of instructions to put an ECU
into secure access mode. Communications occures via a CAN bus interface.
The learner was implemented using the AALpy framework [19].

Learned Model and Findings The learning experiment resulted in a reduced
FSM of the UDS shown in Figure 7.5. An analysis of the results shows that
once being successfully authenticated (state s4), an incorrect authentication
key will still result in the same state. This is unexpected and allows for pro-
longing a session without authentication. When requesting a new seed for
re-authentication (s5) this behavior persists. Moreover, on re-entering a secure
session afterwards (from s6), the ECU accepts an old key as well; an unex-
pected behavior after re-initiating the key authentication. Figure 7.5 marks all
unexpected behaviors in red.

s0start s1

s2 s3

s4 s5

s6

ExtDiag

P
r
o
g

SecAcc()

S
e
c
A
c
c

(
K
e
y
)

SecAcc(
)

Prog

SecAcc()

{ SecAcc(Key),

SecAcc(Wrong) }

P
r
o
g

{ SecAcc(Key),

SecAcc(Wrong) }

Sec
Acc

(Pr
evK

ey)

{ SecAcc(NewKey), SecAcc(Wrong) }

SecAcc(Wrong)

Figure 7.5: Inferred UDS FSM.

62 Paper I

7.5 Conclusion
We introduced the TRUSTED methodology for designing and assessing trusted
and secure automotive systems. The main novelty of the proposed methodol-
ogy is its holistic and systematic approach to security, which starts at concept
design and is carried down to the implementation and assessment of individual
components. We instantiated the different parts of the methodology using the
state-of-the-art methods and tools for threat modelling and analysis, automata
learning and testing. We illustrated the use of the methodology by applying
it step-by-step an automotive infotainment system. Using the learning-based
testing approach we could document previously unpublished denial-of-service
conditions in the examined BLE setups, as well as unexpected behavior allow-
ing for extending secure UDS programming sessions on the scrutinized ECU.

Future Work We plan to further automate the transition from the concept
design and V&V planning on one side, to the actual testing activities done
on the level of components by devising a domain-specific test description lan-
guage that can define abstract V&V plans derived from the attack trees, and be
refined in a way so that eventually it can be executed on a platform (e.g., as in
[31]). Second, the TRUSTED methodology mainly focuses on the transition
from concept design to testing the implementation. We plan to also study the
opposite direction – how to use the component testing results to update the sys-
tem model and have a more refined threat analysis and a more realistic threat
assessment.

Acknowledgements
This research received funding from the program “ICT of the Future” of the
Austrian Research Promotion Agency (FFG) and the Austrian Ministry for
Transport, Innovation and Technology under grant agreement No. 867558
(project TRUSTED) and within the ECSEL Joint Undertaking (JU) under grant
agreement No. 876038 (project InSecTT). The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Aus-
tria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey. The document reflects only the author’s view and the
Commission is not responsible for any use that may be made of the informa-
tion it contains.

Bibliography

[1] S. Marksteiner, N. Marko, A. Smulders, S. Karagiannis, F. Stahl,
H. Hamazaryan, R. Schlick, S. Kraxberger, and A. Vasenev, “A Process to
Facilitate Automated Automotive Cybersecurity Testing,” in 2021 IEEE
93rd Vehicular Technology Conference (VTC Spring), (New York, NY,
USA), pp. 1–7, IEEE, 2021.

[2] C. Schmittner, S. Chlup, A. Fellner, G. Macher, and E. Brenner, “Threat-
get: Threat modeling based approach for automated and connected vehi-
cle systems,” in AmE 2020 - Automotive meets Electronics; 11th GMM-
Symposium, (Berlin), pp. 1–3, VDE Verlag, 2020.

[3] T. Tarrach, M. Ebrahimi, S. König, C. Schmittner, R. Bloem, and D. Nick-
ovic, “Threat repair with optimization modulo theories,” CoRR, 2022.

[4] M. Ebrahimi, C. Striessnig, J. C. Triginer, and C. Schmittner, “Identi-
fication and verification of attack-tree threat models in connected vehi-
cles,” in SAE Intelligent and Connected Vehicles Symposium, (Shanghai,
China), pp. 1–12, SAE International, 2022.

[5] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-Based Testing IoT
Communication via Active Automata Learning,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), pp. 276–287.

[6] A. Pferscher and B. K. Aichernig, “Fingerprinting Bluetooth Low Energy
Devices via Active Automata Learning,” in Formal Methods (M. Huis-
man, C. P˘ asăreanu, and N. Zhan, eds.), Lecture Notes in Computer Sci-
ence, pp. 524–542, Springer International Publishing.

[7] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, pp. 87–106, Nov. 1987.

63

64 BIBLIOGRAPHY

[8] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. W. Vaandrager, “Au-
tomata learning through counterexample guided abstraction refinement,”
in FM 2012, (Berlin), pp. 10–27, Springer, 2012.

[9] F. Howar, B. Steffen, and M. Merten, “Automata Learning with Auto-
mated Alphabet Abstraction Refinement,” in Verification, Model Check-
ing, and Abstract Interpretation (R. Jhala and D. Schmidt, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 263–277, Springer,
2011.

[10] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black Box Checking,” in For-
mal Methods for Protocol Engineering and Distributed Systems: FORTE
XII / PSTV XIX’99 IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and
Verification (PSTV XIX) October 5–8, 1999, Beijing, China (J. Wu, S. T.
Chanson, and Q. Gao, eds.), IFIP Advances in Information and Commu-
nication Technology, pp. 225–240, Boston, MA: Springer US, 1999.

[11] A. Groce, D. Peled, and M. Yannakakis, “Adaptive Model Checking,” in
Tools and Algorithms for the Construction and Analysis of Systems (J.-P.
Katoen and P. Stevens, eds.), Lecture Notes in Computer Science, (Berlin,
Heidelberg), pp. 357–370, Springer, 2002.

[12] K. Meinke, “Learning-Based Testing of Cyber-Physical Systems-of-
Systems: A Platooning Study,” in Computer Performance Engineering
(P. Reinecke and A. Di Marco, eds.), Lecture Notes in Computer Science,
(Cham), pp. 135–151, Springer International Publishing, 2017.

[13] B. K. Aichernig, R. Bloem, M. Ebrahimi, M. Tappler, and J. Winter, “Au-
tomata Learning for Symbolic Execution,” in 2018 Formal Methods in
Computer Aided Design (FMCAD), (Austin, Texas, USA), pp. 1–9, IEEE,
2018.

[14] D. Antonioli, N. O. Tippenhauer, and K. B. Rasmussen, “The KNOB
is broken: Exploiting low entropy in the encryption key negotiation of
bluetooth BR/EDR,” in 28th USENIX Security Symposium, USENIX Se-
curity 2019 (N. Heninger and P. Traynor, eds.), (Santa Clara, CA, USA),
pp. 1047–1061, USENIX Association, 2019.

[15] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “BIAS: Bluetooth
Impersonation AttackS,” in 2020 IEEE Symposium on Security and Pri-
vacy (SP), (San Francisco, CA, USA), pp. 549–562, IEEE, May 2020.

[16] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “BLUR-
tooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic
and Bluetooth Low Energy,” in Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’22,
(New York, NY, USA), pp. 196–207, Association for Computing Machin-
ery, May 2022.

[17] B. Seri and G. Vishnepolsky, “The dangers of Bluetooth implementations:
Unveiling zero day vulnerabilities and security flaws in modern Bluetooth
stacks.,” tech. rep., Armis Inc., 2017.

[18] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key Negotia-
tion Downgrade Attacks on Bluetooth and Bluetooth Low Energy,” ACM
Trans. Priv. Secur., vol. 23, pp. 14:1–14:28, June 2020.

[19] E. Muˇ skardin, B. K. Aichernig, I. Pill, A. Pferscher, and M. Tappler,
“AALpy: An active automata learning library,” vol. 18, no. 3, pp. 417–
426.

Chapter 8

Paper II:
Approaches For Automating
Cybersecurity Testing Of
Connected Vehicles

Stefan Marksteiner, Peter Priller and Markus Wolf.

In Intelligent Secure Trustable Things, M. Karner, J. Peltola, M. Jerne, L. Ku-
las, and P. Priller, Eds., in Studies in Computational Intelligence. Springer
Nature, 2023. DOI: 10.1007/978-3-031-54049-3 13. Reproduced with per-
mission from Springer Nature.

67

Abstract

Vehicles are on the verge building highly networked and interconnected sys-
tems with each other. This requires open architectures with standardized inter-
faces. These interfaces provide huge surfaces for potential threats from cyber
attacks. Regulators therefore demand to mitigate these risks using structured
security engineering processes. Testing the effectiveness of this measures, on
the other hand, is less standardized. To fill this gap, this book chapter con-
tains an approach for structured and comprehensive cybersecurity testing of
contemporary vehicular systems. It gives an overview of how to define secure
systems and contains specific approaches for (semi-)automated cybersecurity
testing of vehicular systems, including model-based testing and the description
of an automated platform for executing tests.

8.1 Introduction 69

8.1 Introduction
Mobility is a high priority in our society. Statistics report global annual car
sales between 60 and 75 million1 during recent years. According to the Eu-
ropean Automobile Manufacturers’ Association (ACEA), just in Europe ap-
proximately 350 million cars are currently in use [1], and the number grows
to beyond 1 billion for a worldwide estimation. Cars are ubiquitous, for many
families and businesses around the world, since decades. What has changed,
however, is the fact that today’s vehicles have become complex IT systems, of-
ten also called ”computers on wheels”. Modern cars run 100+ million lines of
source code (MLOSC), and host complex computer networks both internally
(in-vehicle networks) and externally. Many modern cars are now connected
via the Internet to (maybe even multiple) cloud services, as well as to cellular
networks (3G, LTE, 5G), and to specific vehicular networks (also known as car-
to-car (C2C) or vehicle-to-everything (V2X), like ITS-G5). And that’s not all:
most vehicles also provide local networking capabilities (also called personal
area networking, PAN). Typically based on WIFI and Bluetooth, it is used to
connect to users’ personal devices like smart phones and tablets, or to their
home WLAN. To complement that already impressive array of wireless com-
munication interfaces, some car manufacturers (or Original Equipment Manu-
facturers - OEMs) might add ultra-wide band (UWB) radios to communicate
with car access systems like owner’s keys or keycards. In addition, advanced
driver assistance systems (ADAS) and future fully automated driving (AD) ca-
pabilities add GNSS receivers (Global Navigation Satellite System), TMC re-
ceivers (Traffic Message Channel), and active radar systems. Modern vehicles
combine deeply complex software with exposure to a wide range of wireless
networking technologies to both public and closed networks). In cybersecu-
rity, this is called opening a large attack surface. This is worsened by the fact
that vehicles are exposed for a much longer time than, e.g., personal computers
(PC) or mobile devices like smart phones. Cars are in operation for some 15
years and more, which increases the threat that a vulnerability is found, shared,
and at some point in time exploited by an attack. With such significant high
exposure, let’s consider potential threats which could evolve from malign at-
tacks. Vehicles are highly dynamic (by nature), provide high levels of energy
(storing 100kWh and more), are valuable (sometimes beyond 100kC) and ex-
ist as worldwide accessible objects in public, thus unrestricted places. When
exploited by an attack taking over remote control, vehicles could become dan-
gerous weapons, for both passengers inside, and for other road participants.

1https://www.statista.com/statistics/200002/international-car-sales-since-1990/

70 Paper II

Worse, if groups of vehicles would come under attacker’s control, they could
be used to stage threats on city or even national level. State-sponsored attackers
could stage war or terror attacks of not-yet-seen scale. Other scenarios might
be less about harming humans, but could include denial-of service on single ve-
hicles (e.g., owners cannot use their vehicles unless a ransom is paid) or on fleet
level (e.g., blocking important road infrastructure, threatening whole commu-
nities, and some serious damage of a brand’s reputation). And of course, there
is simple car theft. Data privacy is also an important aspect. Modern cars might
”know” quite a lot about their users, including their past and present locations,
driving habits, additional passengers, anything spoken in the vehicle, attention
level while driving, contact information like phone numbers from connected
personal devices, etc. An attack could therefore retrieve quite a lot of personal
information and thus become considerable value to attackers. While not all of
these threats have been discussed widely in public, the automotive industry is
very much aware of it, and has stepped up efforts in designing more secure sys-
tems in cars, and establishing secure life cycle processes to provide necessary
updates to fix vulnerabilities. An important part of securing these vehicular
systems is the verification and validation of the effectiveness of taken security
measures through testing. This testing needs to be done continuously through
the life cycle (as new exploits might come up over time), and also as updating
a system (or just a part of it) might alter its behavior an a way relevant to its
security. In essence, (cyber)security testing must assure a system to display
a small attack surface, be resilient and (possibly) to fix vulnerabilities before
they are exploited in the wild.

The remainder of the chapter is structured the following way: Section 8.2
contains the current state of the art and related work. Section 8.3 contains
measures for securing automotive systems. Section 8.4 contains specific ap-
proaches for automated cybersecurity testing of vehicular systems, including
model-based testing and the description of an automated platform for execut-
ing tests. Section 8.5, eventually concludes this chapter.

8.2 State of the Art and Related Work

The automotive industry can draw from experience in other domains regard-
ing security testing. General IT (managing e.g., corporate networks and IT
systems) has established a history of penetration testing (abbreviated: pen test-
ing), as simulated, authorized cyber-attacks. Typically executed by cybersecu-
rity experts (acting as “white-hat hackers”), the goal is to identify weaknesses

8.2 State of the Art and Related Work 71

by letting these experts try to hack into the system under test (SUT) under pre-
defined constraints (e.g., no physical access, no permanent harm), typically
within a defined time window. If successful, these tests can thereby discover
and document weaknesses. Translated to automotive industry, several com-
panies offer similar pen-testing as a service on different levels (component,
system, vehicle). While pen-testing might provide highly valuable insights
into what level of security has been achieved for the vehicle, and might even
uncover previously unknown vulnerabilities, it suffers from limited scalability
and repeatability, as it is driven by and dependent on human experts. Security
experts have toolboxes with highly effective tools (like the open source Metas-
ploit framework2), but often need to supervise and configure these tools, and to
adapt existing or write new scripts for complete attack chains to match a spe-
cific SUT. This requires skills and labor, and often involves considerable costs,
which clearly limits scalability. Due to the sheer complexity of automotive
software code (100+ MLOSC), it is also quite challenging for the experts to
correctly hypothesize vulnerabilities, and to select (and execute) the most ef-
fective attacks, given the limited time available. This might heavily depend on
expertise of the human testers, further limiting repeatability and comparability
between pen tests campaigns. The threat of cyber attacks by adversaries has,
however, also been recognized by standards and regulatory bodies. The United
Nations Economic Council for Europe (UNECE) has issued a regulation (R
155 [2]) that prescribes the installation of a cybersecurity management system
(CSMS). A CSMS is a process framework that accompanies the automotive
development process over the complete life cycle and assures cybersecurity in
every phase. Consequently, the International Organization for Standardization
(ISO) and the Society of Automotive Engineers (SAE) have issued a joint stan-
dard (ISO/SAE 21434 [3]) that defines such a CSMS. As testing guidelines
in these standards are somewhat underrepresented in contrast to security engi-
neering, a structured approach is needed, e.g., as defined in [4, 5]. It further
became clear that in order to establish dependable security covering all vari-
ants of vehicle lines in their full life cycle, supporting the upcoming acceler-
ated software development cycles (automotive DevOps), an advanced process
based on smart automation was required, as suggested in [6].

2https://github.com/rapid7/metasploit-framework

72 Paper II

8.3 Automotive Cybersecurtiy Lifecycle Manage-
ment

In order to maintain secure (and through, security-related impacts, also safe)
vehicular systems, the respective system needs a security concept. The cyber-
security testing (see Section 8.4) will eventually validate and verify the effec-
tivness of that concept. To establish a security concept for the complete life
cycle of a vehicle for testing, we mainly rely on five pillars:

1. Threat Modeling (see Section 8.3.1)

2. Variant Management

3. Vulnerability Assessment

4. Automated Test Generation (see Section 8.4.2)

5. Process Governance

Threat modeling (see Section 8.3.1) is a widely proliferated technique in
the automotive industry, mainly as part of a threat analysis and risk assessment
(TARA) process [7].

As an OEM’s fleet contains various vehicle model configurations, all of
which contain tens of ECUs all of which again may display different hardware
and software versions, keeping track of this potentially vast number of vari-
ants is crucial to determine the security posture of each member of the fleet.
Our approach to tackle this problem is to use calibration data management that
links technical attributes with software calibrations, to keep track of all ECU
variations over the system’s life cycle [8, 9]. This system, CRETA, contains
exhaustive information about the variants, including their ECU firmware bina-
ries.

This allows for the stored firmwares to be subsequently analyzed, generat-
ing a digital model of the software. To do so, firstly the firmware is extracted
by iterating through the file tree, using an extraction algorithm and validat-
ing the extraction’s correctness. The extracted software undergoes a compo-
sition analysis that pre-processes executables and normalizes the software in
order to compare to a large database of mapped components, identified e.g.
by file paths, file names, and characteristic strings in the software or configu-
ration data, yielding a Software Bill-of-Materials (SBOM). Subsequently, the
model is analyzed for security properties using pattern recognition. Patterns
of known attacks from Common Vulnerabilities and Exposures (CVEs) are

8.3 Automotive Cybersecurtiy Lifecycle Management 73

compared with each identified software library in the SBOM. Furthermore, the
model undergoes a binary code analysis to find vulnerabilities not found in
public databases: the binary is mapped in data and code sections, the code is
then disassembled and later mapped into an intermediate language (for nor-
malizing purposes) that allows for reconstructing the functions, analyzing the
parameters and stack behavior and building control and data flows [10]. This
matching, for instance, is able to identify common flaws like buffer overflows
and, hence, is able to uncover zero-day vulnerabilities in software in a black
box setting. Thirdly, patterns for proliferated code guidelines and relevant se-
curity standards are implemented, allowing for compliance checking against a
given set of standards. This analysis, paired with full life cycle-coverage of the
variants, allows for dealing with the parts lists and vulnerability management
requirements mentioned above, as well as for verifying security requirements.

Vulnerabilities found in the code through pattern matching, however, are
not necessarily exploitable for a variety of reasons. For instance, the location
in the code could not be reachable, the impact of the vulnerability could be
nullified through write protection of the memory or file system, or the interface
might be protected by access controls. Therefore, the generated model also
allows for model-based cybersecurity test case generation by using either the
generated behavior model for model checking or by directly using the found
patterns as basis for vulnerability exploitation [11]. We also aim for deriv-
ing test cases from threat modeling with a certain degree of automation (see
Section 8.4.2).

To govern the process we developed our tool, FUSE, that guides activities
of a given standard and provides standards-compliant documentation given the
necessary input. We implemented ISO/SAE 21434 [3] and UNECE R155 [2]
(as well as ISO 26262 [12], ISO 25119 [13]). The modeled objectives from the
standards allow for providing all necessary artifacts for performing a review or
audit, as well as keeping track of the conformance to relevant standards inside
the development project.

8.3.1 Threat Modeling

One key element of cybersecurity analysis in all life cycle phases is threat mod-
eling. This technique for security analysis is around for many years and well
proliferated. It basically consists of modeling the information flows in an SUT
and consequently examining them in a comprehensive way, e.g., via STRIDE
or a similarly structured method [14].
Numerous software capable of performing a thread modeling process exists,

74 Paper II

but prior to ThreatGet none was specifically developed for embedded or IoT
systems. ThreatGet is a software tool developed by Austrian Institute of Tech-
nology (AIT) and based on Microsoft Enterprise Architect, a commonly used
platform for systems model engineering [15].
It is used to examine models, objects, connections and charts in a system to
enable iterative threat and risk analysis, covering the following categories:

• Actor,

• Sensor,

• Vehicle Unit,

• Data Store,

• Communication Interface,

• Communication Flow

Objects and connections in ThreatGet have so called tagged values at cre-
ation time. These describe analysis or security relevant properties of elements.
It is recommended for users to extend the properties in addition to already pro-
posed tagged values. Additionally, a database is used in the background that
contains objects, which can also be extended by a user [15].

As an application example, Figure 8.1 shows the threat diagram of a com-
munication flow inside ThreatGet. In this case, the environment data from the
camera is directed to the ”Sensor Data Fusion and Decision Making” unit. Af-
ter all diagrams are completed, a threat-overview is derived. An automatic risk
evaluation consists of suggested values and can be adapted in a manual risk
evaluation. In this step it is possible to rate the impact and occurrence of a
threat at different levels and afterwards results can be exported in a report [15].

8.4 Cybersecurity Testing
In order to assure the cybersecurity of automotive systems and provide evi-
dence for the appropriateness and effectiveness of security measures (accord-
ing to a cybersecurity management system) , rigorous, structured and com-
prehensible testing is necessary [2]. Therefore a structured process, aligned
with ISO/SAE 21434 [3] is recommendable. Such a process for testing could
contain the following activities [5]:

8.4 Cybersecurity Testing 75

Figure 8.1: A list of found threats between the camera and the sensor data
fusion and decision making [15].

1. Item Definition

2. Threat Analysis and Risk Assessment

3. Security Concept Definition (mainly including the test targets)

4. Test Planning and Scenario Development

(a) Penetration Test Scenario Development

(b) Functional and Interface Test Development

(c) Fuzz Testing Scenario Development

(d) Vulnerability Scanning Scenario Development

5. Test Script Development

(a) Test Script Validation

6. Test Case Generation

76 Paper II

(a) Test Environment Preparation

7. Test Case Execution

8. Test Reporting

While items 1-3 correspond to a threat modeling process (see Section 8.3.1),
the rest of them are the core testing process. To increase testing efficiency,
these steps could be partially automated using model and learning-based ap-
proaches that can execute test planning and execution steps [6]. Here, the steps
can be summarized into concept design. Item 4 forms V &V planning, while
items 5 and 6 can be subsumed under V & V Methods. Finally, items 7 and 8
forms V & V execution. In between the planning and the methods, steps for
automation can take effect: models from the concept design can be validated
in an automated way and single components can be modeled using automated
learning techniques and verified using methods from the V & V methods. An
example of this used in the InSecTT project is described in Section 8.4.1. The
full approach as described above consists of the following steps [6]:

1. Concept Design

2. V&V Planning

3. Model Validation

4. Model Learning

5. V&V Methods

6. V&V Execution

8.4.1 Learning-based Testing
Following the approach described above, we use learning, more concretely ac-
tive automata learning to derive a model of a system [16]. The methodology
uses a learner-teacher system where an all-knowing teacher answers the learn-
ing system queries about the SUT, in the context of cyber-physical systems or-
dinarily by providing the output to a series of inputs. The learner tries to infer
a state machine from the given information. Once it has a hypothesis of a state
machine that describes the observed behavior, it presents it to the teacher who
then acknowledges the hypothesis as correct or gives a counterexample. This
again, in real-world situations of black-box learning will mostly be simulated

8.4 Cybersecurity Testing 77

Learnlib (JAVA) API (C/C++) ProxmarkSocket
USB NFC

SuL

Figure 8.2: NFC Automata Learning Setup [23]

by conformance testing algorithms: if conformance is shown, the hypothesis
is assumed as correct, otherwise a failing test sequence serves as a counterex-
ample. The counterexample is taken as new input to refine the hypothesis and
the learning continues until no more counterexamples are found. The this algo-
rithm has been first formulated by Angluin [17] and has experienced significant
improvements since (e.g., [18, 19]).

In accordance with the process outlined in Section 8.4, we use this tech-
nique to infer a model of a component. As a proof-of-concept we test a car
access system based on Near-Field Communications (NFC). The testing setup
consists on a learner (as described above) based on the Learnlib Java library
[20] and a Proxmark NFC device [21] with an respective API that enables us
to learn a model of the ISO 14443-3 NFC handshake protocol [22]. Figure
8.2 shows an overview of this setup. The used learning setup allows for infer-
ring a state machine of the protocol and compare it to the specification in the
standard to check its conformance. Figure 8.3 shows the learned model of the
actual SUT (and NXP test card of a car access system prototype). Further use
of the model is to do actual model checking or to use the model as an input for
guided fuzz testing.

78 Paper II

Figure 8.3: Learned Model of an NXP NFC Test Card

8.4.2 Model-based Test Case Generation

On a macroscopic level, a model of a complete vehicle as defined in the threat
model (see Section 8.3.1) has to be explored in order to identify single com-

8.4 Cybersecurity Testing 79

ponents and generate test cases based on an attack tree [24, 25], a petri net
[26, 27], or similar. If the SUT is modeled manually and, therefore, the com-
ponents are known, this is trivial. If the setting is a black or grey box situation,
we follow the approach to assume a generic model as starting point and test
various components of the model by, e.g., send certain CAN messages for enu-
meration or try out an exploit that is known to affect a very broad variety of
systems. Based on a comparison of the expected and actual output of the test,
one can narrow down the set of likely components and system architectures (as
described in [28]), e.g., based on SAT solving [29].

In order to generate test cases on a component level, a model must be trans-
formed into a form that can be examined using a model checker (e.g. the Re-
beca model checker [30] or SLAM [31]). Violations of the specification found
by a model checker point towards an interesting position for a test case that
could be extrapolated out of the traces leading to the respective states. There is
also work regarding a toolchain using the UPPAAL framework [32].

Subsequently properties defining the security of a system shall be defined
and used in the model checking. For c) where the model checking fails, a
security problem might be present. The trace of the counter example can help
in building a test case. Moreover, the input sequences used for the automata
learning of the model shall be used to make test cases for the actual system-
under-test. Using the traces as test vectors eliminate false positives from the
model checking, as the exploitability of specification violations is test on the
actual system. To concrete the abstract input, fuzzing techniques may be used
[33].

8.4.3 Testing Platform

To realize the testing in the faction outlined in Section 8.4, a testing framework
was developed and implemented. The high-level architecture was derived from
the approach outlined in [4]. It has been adapted to suit the need of performing
test in any phase of the product life cycle by adding co-simulation techniques
into the testing framework architecture (see Figure 8.4 for an overview). The
core component is a Security Testing Framework (see Section 8.4.4). It gains
test cases from a generation engine that is fed by two sources: security func-
tional tests from security requirements and penetration test attack vectors that
have been tried out before (see description in Section 8.4.4) from a library.
The core framework executes the attacks directly onto the SUT or into a co-
simulation platform (indicated as framework interfaces in the figure) that inter-
connects various simulation parts: environment (i.e. other vehicles’ and infras-

80 Paper II

Figure 8.4: Overview of the Automotive Cybersecurity Testing Framework’s
high-level architecture

tructure’s interference), network (generating mainly ITS-G5 traffic), channel
(capable of simulating various physical layer signals as well as emitting them
physically) and application (Section 8.4.4 contains an example with a platoon-
ing application). This way, each component can be stimulated the same way
regardless if it is a physical or simulated component.

8.4.4 Automated Test Execution
For test execution, the test cases that were derived as described in previous
chapters are fed into the automated test execution environment. Test cases are
either manually written or generated in the ALIA DSL [34] format, which aims
to provide an abstract and system agnostic representation of logical steps in a
test case. Out of the main test-script and its included sub-scripts (containing
frequently occurring blocks that handle a specific task such as opening a lis-
tener) a JSON Object is generated. These test case descriptions in DSL and
JSON format are stored into a Database and can be accessed through the Or-
chestration Application; a platform independent web application that allows a
user to manage information about the current SUT, schedule test execution and
review results. This Orchestration Application then sends the test cases that
the user wants to execute to the Execution Engine (AXE) and afterwards gen-
erates a report out of the received output from the AXE and the Test Oracle.

8.4 Cybersecurity Testing 81

Figure 8.5: AACT Test Execution Framework

The AXE is a Python based software that runs on an instance of Kali Linux
and utilizes a variety of different interfaces, libraries and other software tools
to perform a test case execution. It takes either a single test case or a structured
collection of tests as input in JSON format and starts to subsequently execute
contained steps. Figure 8.5 shows an overview of this architecture. This modu-
lar approach allows not only to target a specific SUT but also to control and pa-
rameterize whole (semi-) virtual SUT environments to manage SUT-behavior
during a test scenario. Furthermore, it is possible to define and address differ-
ent processes for tool execution which enables for example to host a malicious
server, start a netcat listener and execute exploit code sequentially in a single
test and afterwards perform code execution in an obtained reverse shell in the
listener process.

One proof-of-concept use case implemented in the framework was security
testing of the Ensemble platooning protocol [35] in a simulated environment.
The concrete setup consisted of two truck simulations running on low-cost
hardware connected via physical ITS-G5 [36] connection via Cohda modems.
Another modem is used as an adversary to eavesdrop and interfere with the
connection. The testing framework is able to start the simulation, so that the
simulated trucks form a platoon. The actual test consists of a) listening to the
communications b) distilling the session key out of a package c) cracking the
key (for testing purposes, the key was reduced to eight bits) d) injecting a ma-
licious message to disband the platoon. Figure 8.6 shows an overview of this
setup. The result was that the injection failed for timing reasons, because the
platoon keep-alive messages were sent in such a high frequency that they in-

82 Paper II

Attack-
database

NXP Platoon Simulator (SUT)

AVL Testing Framework

Test Case

Attack Injection

Simulation

Control

Figure 8.6: Platooning Use Case Overview

terfered with the break-up sequence. Even with reduced key (from AES-256
down to 8 bits) the protocol was secure against the tested attack. Furthermore,
ITS-G5 built-in signatures, that were disabled for the test, would have pre-
vented a successful injection. The test could therefore show the security of the
protocol in an automated way as described above.

8.4.5 Fuzzing
The goal of fuzzing is to reach a non-intended state of a SUT by using com-
pletely or partially random input. The latter technique may use a structured
frame structure that is compliant with communication standards used by the
SUT and randomized payload data. [37] In case of a CAN-Bus, a fuzzing tool
can create packets that consist of the standard ID Range (0 to 2047) and a pre-
viously learned or sniffed payload [38]. A fuzzer should include the following
components [39]:

• A fuzz generator that assembles input from non-random components and
random components with a sufficient amount of randomness

• A deliver mechanism that sends the generated inputs to the SUT

• A monitoring system (test oracle), which interprets the results such as

8.5 Conclusion 83

SUT responses, monitored network communication, debug interface out-
put, system signals or other physical responses and performs decisions
based on it e.g. if a test passes or fails.

By using this approach, no in-depth knowledge about the SUT is needed
and every component that provides external interfaces can be targeted for test-
ing, including ECU software, ECU hardware, protocols and busses (e.g. CAN).
Fuzzing may be utilized in the automotive environment to [40]:

• Reverse engineer messages on busses

• Disrupt an in-vehicle communication network

• perform a cyber-attack

• lead to vehicle component damage.

Depending on the used interface and protocol it may not be possible to
fuzz-test every possible combination of input in its entirety in a feasible time
frame. Therefore, it makes sense to pre-select meaningful value and posi-
tion ranges for randomized content. Because of this potentially large test case
space, fuzzing may be applied in parallel to other test methods as long as the
complete run-time is still in a defined range and produces positive results.

In case of the AVL AXE, fuzzing CAN bus signals is a very common use
case. A fuzzing software e.g. booFuzz, American Fuzzy Lop or caring caribou
is armed with valid CAN Messages or a template with a specification which
parts of messages should be randomized and then handles the tasks of sub-
sequently sending the (generated) data to the SUT as well as receiving and
interpreting the feedback (such as Vector Tools CANoe).

8.5 Conclusion
This chapter showed a holistic approach of cybersecurity testing of modern
vehicles over the complete life cycle. It showed how, proceeding from threat
modeling and variant management, test cases can (semi-)automatically be de-
rived using structured processes and learning techniques. The generated tests
are subsequently executed on an automated platform that is capable of control-
ling the test and/or simulation setup and applying the respective attack vector.
The described methodology provides an end-to-end means to test vehicular
systems over the complete life cycle.

84 Paper II

Acknowledgements
This research received funding within the ECSEL Joint Undertaking (JU) un-
der grant agreement No. 876038 (project InSecTT). The JU receives support
from the European Union’s Horizon 2020 research and innovation programme
and Austria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia,
Poland, Netherlands, Turkey. The document reflects only the author’s view and
the Commission is not responsible for any use that may be made of the infor-
mation it contains.

Bibliography

[1] European Automobile Manufacturers’ Association (ACEA), “Vehicles in
use europe 2022,” tech. rep., European Automobile Manufacturers’ As-
sociation (ACEA), 2021.

[2] United Nations Economic and Social Council - Economic Commission
for Europe, “Uniform provisions concerning the approval of vehicles with
regards to cyber security and cyber security management system,” Reg-
ulation ”155”, United Nations Economic and Social Council - Economic
Commission for Europe, Brussels, 2021.

[3] International Organization for Standardization and Society of Automo-
tive Engineers, “Road Vehicles – Cybersecurity Engineering,” ISO/SAE
Standard ”21434”, International Organization for Standardization, 2022.

[4] S. Marksteiner and Z. Ma, “Approaching the Automation of Cyber Se-
curity Testing of Connected Vehicles,” in Proceedings of the Central Eu-
ropean Cybersecurity Conference 2019, CECC 2019, (New York, NY,
USA), ACM, 2019.

[5] S. Marksteiner, N. Marko, A. Smulders, S. Karagiannis, F. Stahl,
H. Hamazaryan, R. Schlick, S. Kraxberger, and A. Vasenev, “A Process to
Facilitate Automated Automotive Cybersecurity Testing,” in 2021 IEEE
93rd Vehicular Technology Conference (VTC Spring), (New York, NY,
USA), IEEE, 2021.

[6] M. Ebrahimi, S. Marksteiner, D. Ničković, R. Bloem, D. Schögler, P. Eis-
ner, S. Sprung, T. Schober, S. Chlup, C. Schmittner, and S. König,
“A systematic approach to automotive security,” in Formal Methods
(M. Chechik, J.-P. Katoen, and M. Leucker, eds.), (Cham), pp. 598–609,
Springer International Publishing, 2023.

85

86 BIBLIOGRAPHY

[7] D. Ward, I. Ibarra, and A. Ruddle, “Threat Analysis and Risk Assess-
ment in Automotive Cyber Security,” SAE International Journal of Pas-
senger Cars-Electronic and Electrical Systems, vol. 6, no. 2013-01-1415,
pp. 507–513, 2013.

[8] T. Dobes, T. Kaserer, N. Schuch, and G. Storfer, “Smart Variant Calibra-
tion with Data Analytics,” ATZ - Automobiltechnische Zeitschrift, no. Ex-
tra August 2018, 2018.

[9] M. Rathfelder, H. Hsu, T. Brandau, and G. Storfer, “Calibration Data
Management for Porsche Chassis Systems,” ATZ worldwide, vol. 118,
pp. 16–21, June 2016.

[10] A. C. Franco da Silva, S. Wagner, E. Lazebnik, and E. Traitel, “Using
a Cyber Digital Twin for Continuous Automotive Security Requirements
Verification,” IEEE Software, pp. 0–0, 2022.

[11] S. Marksteiner, S. Bronfman, M. Wolf, and E. Lazebnik, “Using Cyber
Digital Twins for Automated Automotive Cybersecurity Testing,” in 2021
IEEE European Symposium on Security and Privacy Workshops (EuroS
PW), pp. 123–128, Sept. 2021.

[12] International Organization for Standardization and Society of Automo-
tive Engineers, “Road vehicles – Functional safety,” ISOStandard 26262,
International Organization for Standardization, 2018.

[13] International Organization for Standardization, “Tractors and machin-
ery for agriculture and forestry – Safety-related parts of control sys-
tems,” ISOStandard 25119, International Organization for Standardiza-
tion, 2018.

[14] A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Sons, 2014.

[15] M. El Sadany, C. Schmittner, and W. Kastner, “Assuring compliance with
protection profiles with ThreatGet,” in Computer Safety, Reliability, and
Security (A. Romanovsky, E. Troubitsyna, I. Gashi, E. Schoitsch, and
F. Bitsch, eds.), (Cham), pp. 62–73, Springer International Publishing,
2019.

[16] F. Vaandrager, “Model learning,” Communications of the ACM, vol. 60,
pp. 86–95, Jan. 2017.

BIBLIOGRAPHY 87

[17] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, pp. 87–106, Nov. 1987.

[18] M. Isberner, F. Howar, and B. Steffen, “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning,” in Runtime
Verification (B. Bonakdarpour and S. A. Smolka, eds.), Lecture Notes in
Computer Science, (Cham), pp. 307–322, Springer International Publish-
ing, 2014.

[19] R. L. Rivest and R. E. Schapire, “Inference of finite automata using hom-
ing sequences,” in Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing, STOC ’89, (New York, NY, USA),
pp. 411–420, Association for Computing Machinery, Feb. 1989.

[20] M. Isberner, F. Howar, and B. Steffen, “The Open-Source LearnLib,” in
Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.),
Lecture Notes in Computer Science, (Cham), pp. 487–495, Springer In-
ternational Publishing, 2015.

[21] F. D. Garcia, G. de Koning Gans, and R. Verdult, “Tutorial: Proxmark,
the swiss army knife for rfid security research: Tutorial at 8th workshop
on rfid security and privacy (rfidsec 2012),” 2012.

[22] International Organization for Standardization, “Cards and security de-
vices for personal identification – Contactless proximity objects – Part
3: Initialization and anticollision,” ISO/IEC Standard ”14443-3”, Inter-
national Organization for Standardization, 2018.

[23] S. Marksteiner, M. Sirjani, and M. Sjödin, “Using Automata Learn-
ing for Compliance Evaluation of Communication Protocols on an NFC
Handshake Example,” in Engineering of Computer-Based Systems
(J. Kofroň, T. Margaria, and C. Seceleanu, eds.), vol. 14390 of Lec-
ture Notes in Computer Science, (Cham), pp. 170–190, Springer Nature
Switzerland, 2024.

[24] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 Workshop on New
Security Paradigms, pp. 71–79, ACM, 1998.

[25] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–
29, 1999.

88 BIBLIOGRAPHY

[26] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Technische Uni-
versität Darmstadt, 1962.

[27] V. Varadharajan, “Petri net based modelling of information flow security
requirements,” in [1990] Proceedings. The Computer Security Founda-
tions Workshop III, pp. 51–61, 1990.

[28] S. Marksteiner and P. Priller, “A Model-Driven Methodology for Auto-
motive Cybersecurity Test Case Generation,” in 2021 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), pp. 129–
135, Sept. 2021.

[29] S. Otten, T. Glock, C. P. Hohl, and E. Sax, “Model-based Variant Manage-
ment in Automotive Systems Engineering,” in 2019 International Sympo-
sium on Systems Engineering (ISSE), pp. 1–7, 2019.

[30] M. Sirjani, “Rebeca: Theory, applications, and tools,” in Formal Methods
for Components and Objects, 5th International Symposium, FMCO 2006,
Amsterdam, The Netherlands, November 7-10, 2006, Revised Lectures
(F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, eds.),
vol. 4709 of Lecture Notes in Computer Science, pp. 102–126, Springer,
2006.

[31] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver
verifier: Technology transfer of formal methods inside microsoft,” in In-
ternational Conference on Integrated Formal Methods, (Berlin, Heidel-
berg), pp. 1–20, Springer, 2004.

[32] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. W. Vaandrager, “Au-
tomata learning through counterexample guided abstraction refinement,”
in FM 2012, (Berlin), pp. 10–27, Springer, 2012.

[33] B. K. Aichernig, E. Muškardin, and A. Pferscher, “Learning-Based
Fuzzing of IoT Message Brokers,” in 2021 14th IEEE Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 47–58, Apr. 2021.

[34] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An Agnostic Do-
main Specific Language for Implementing Attacks in an Automotive Use
Case,” in The 16th International Conference on Availability, Reliability
and Security, ARES 2021, (New York, NY, USA), pp. 1–9, Association
for Computing Machinery, Aug. 2021.

[35] A. Ladino, L. Xiao, K. Adjenugwhure, N. Deschle, and G. Klunder,
“Cross-platform simulation architecture with application to truck pla-
tooning impact assessment,” in ITS World Congress, 2021.

[36] European Telecommunications Standards Institute, “Intelligent transport
systems (its); vehicular communications; basic set of applications; defi-
nitions,” ETSI ”TS 102 638”, European Telecommunications Standards
Institute, 2009.

[37] R. McNally, K. K.-H. Yiu, D. A. Grove, and D. Gerhardy, “Fuzzing: The
state of the art,” 2012.

[38] P. Lapczynski, H. Heinemann, T. Schöneberger, and E. Metzker,
“Automatically generating fuzz tests from automotive communication
databases,” 5th escar USA, Detroit, isits AG, June 2017.

[39] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing can packets
into automobiles,” in 2015 IEEE 29th International Conference on Ad-
vanced Information Networking and Applications, pp. 817–821, 2015.

[40] D. S. Fowler, J. Bryans, S. A. Shaikh, and P. Wooderson, “Fuzz testing for
automotive cyber-security,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W),
pp. 239–246, 2018.

Chapter 9

Paper III:
Using Automata Learning for
Compliance Evaluation of
Communication Protocols on
an NFC Handshake Example

Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin.

In Proceedings of the Engineering of Computer-Based Systems Conference
(ECBS) 2023, J. Kofroň, T. Margaria, and C. Seceleanu, Eds., in Lecture
Notes in Computer Science, vol. 14390. Cham: Springer Nature Switzer-
land, 2023. DOI: 10.1007/978-3-031-49252-5 13. Reproduced with permis-
sion from Springer Nature.

91

Abstract

Near-Field Communication (NFC) is a widely adopted standard for embedded
low-power devices in very close proximity. In order to ensure a correct system,
it has to comply to the ISO/IEC 14443 standard. This paper concentrates on
the low-level part of the protocol (ISO/IEC 14443-3) and presents a method
and a practical implementation that complements traditional conformance test-
ing. We infer a Mealy state machine of the system-under-test using active
automata learning. This automaton is checked for bisimulation with a specifi-
cation automaton modelled after the standard, which provides a strong verdict
of conformance or non-conformance. As a by-product, we share some obser-
vations of the performance of different learning algorithms and calibrations in
the specific setting of ISO/IEC 14443-3, which is the difficulty to learn models
of system that a) consist of two very similar structures and b) very frequently
give no answer (i.e. a timeout as an output).

9.1 Introduction 93

9.1 Introduction

In this paper we describe an approach of very thoroughly evaluating the com-
pliance of Near-Field Communications (NFC)-based chip systems with the
ISO/IEC 14443-3 NFC handshake protocol [1] using formal methods, con-
cretely automata learning and equivalence checking. We present a tool chain
that is easy to use - both the learning and the equivalence checking can run
fully automatic. A complete automaton of the system-under-test (SUT) com-
pared with a specification automaton modeled after the standard, provides a
strong complement to conformance testing. The remainder of this paper struc-
tures as follows. First we provide its motivation and contribution. Section 9.2
gives an overview of basic concepts in this paper, including a formal definition
of bisimulation for Mealy Machines as used in this paper. Section 9.3 describes
the developed interface for automata learning of NFC systems, while Section
9.4 describes the learning setup including a comparison of different algorithms
and calibrations to be most suitable for the specifics of the NFC handshake pro-
tocol. Section 9.5 shows real-world results, while Section 9.6 compare them to
the works of others. Section 9.7, eventually, concludes the paper and gives and
outlook on future work.

9.1.1 Motivation

As the NFC protocol is widely adopted in a broad variety of different, often
security-critical, chip systems like banking cards, passports, access systems,
etc., that use relatively weak hardware, a correct implementation is utterly
important. While there are many works about security weaknesses in NFC
(e.g., [2, 3]), also specifically regarding the ISO/IEC 14443-3 handshake (e.g.,
[4, 5]), there is few works on comprehensive testing (see Section 9.6). As-
suring the correctness of the system is a principal step in the quest to trust-
worthy systems. As there is, to the best of our knowledge, no comprehensive
works regarding assessment of the handshake protocols, as the fundament of
secure protocols build atop, we aim for a strong verdict of ISO compliance for
NFC systems. To make this verdict more scalable than manual modeling, yet
strongly verified, we choose automata learning to automatically infer a formal
model of the implementations under scrutiny. For the actual compliance check-
ing, we use bisimulation and trace equivalence checks against a specification
automaton from the ISO/IEC 14443-3 standard (a rationale is given in Section
9.2.2).

94 Paper III

9.1.2 Contribution
Overall, this paper is on the interface between communications protocols, em-
bedded systems and formal methods. This work provides the following contri-
butions for people with scholarly or applied interest in this approach of strong
compliance checking:

• Insights regarding the specifics of learning NFC using active automata
learning

• An evaluation on the performance of different learning algorithms in
systems with very similar structures

• Developing an NFC interface for a learning system

• An approach for automated compliance checking using bisimulation and
trace equivalence

We saw the NFC handshake to be specific in two aspects: a) it consists of
two parts that are very similar and hard to distinguish for Learners and b) the
vast majority of outputs from a system-under-learning are timeouts. This has
severe impact on the learning where we examined different algorithms and
configurations. The maximum word length has an impact on correctly infer-
ring an automaton: too short yields incomplete automata, too long seemed
to have a negative performance impact. Surprisingly the L* algorithm [6]
with Rivest/Schapire (LSR) closure [7] surpassed more modern ones in learn-
ing performance. For discovering deviations from the standard, the minimum
word length was found to have an impact. Here, the TTT algorithm [8] per-
formed best, also followed by LSR. We further created a concrete hardware/-
software interface using a Proxmark device and an abstraction layer for NFC
systems. Lastly, we integrated bisimulation and trace equivalence checking
into the learning tool chain, which enables completely automated compliance
checking with counterexamples in the case of deviations from the standard.

9.2 Preliminaries
This section outlines the theoretical fundamentals of state machines and au-
tomata learning including a definition of equivalence and bisimilarity in the
context of this paper. It further briefly describes the used framework and the
basics and characteristics of the scrutinized protocol.

9.2 Preliminaries 95

9.2.1 State Machines

A state machine (or automaton) is a fundamental concept in computer sci-
ence. One of the most widely used flavors of state machines are Mealy ma-
chines, which describe a system as a set of states and functions of resulting
state changes (transitions) and outputs for a given input in a certain state [9].
More formally, a Mealy machine can be defined as M = (Q,Σ,Ω, δ, λ, q0),
with Q being the set of states, Σ the input alphabet, Ω the output alpha-
bet (that may or may not identical to the input alphabet), δ the transition
function (δ : Q × Σ → Q), λ the output function (λ : Q × Σ → Ω),
and q0 the initial state. The transition and output functions might be merged
(Q×Σ → Q×Ω). An even simpler type of automaton is a deterministic finite
acceptor (DFA) [10]. It lacks of an output (i.e. no Ω and no λ), but instead it
has a set of accepted finishing states F , which are deemed as valid final states
for an input word (i.e. sequence of input symbols), resulting in a definition of
D = (Q,Σ, δ, q0, F). The purpose is to define an automaton that is capable
of deciding if an input word is a valid part of a language. A special subset of
DFAs are combination lock automata (with the same properties) but the addi-
tional constraint that an invalid symbol in an input sequence would set the state
machine immediately back into the initial state [11].

9.2.2 Transitions and Equivalence

An element of the combined transition/output function can be defined as 4-
tuple (⟨p, q, σ, ω⟩) with p ∈ Q as origin state of the transition, q ∈ Q as desti-
nation state, σ ∈ Σ as input symbol and ω ∈ Ω as output symbol. Generally, to
conform to a standard, a system must display the behavior defined in that stan-
dard. The ISO 14443-3 standard [1] describe the states of the NFC handshake
with their respective expected input and result. . That means one can derive an
automaton from this specification. The problem of determining NFC standard
compliance can therefore be seen as comparing two (finite) automata. There is
a spectrum of equivalences between Labeled Transition Systems (LTS) includ-
ing automata. For being compliant with a standard, not necessarily every state
and transition must be identical as long as the behavior of the system is the
same. There might be learned automata that deviate from the standard automa-
ton and still be compliant, e.g., if they are not minimal (the smallest automaton
to implement a desired behavior). Figure 9.1 shows a very simple example of
a three-state automaton and its behavior-equivalent (minimal) two-state coun-
terpart.

96 Paper III

Figure 9.1: Example for a partial automaton and its minimal counterpart.

To compare this type of equivalence between two LTS LTS1 and LTS2,
commonly used are (various degrees of) simulation, bisimulation (noted as
LTS1 ∼ LTS2) and trace equivalence. Simulation means that one automa-
ton can completely reproduce the behavior of the other, for the bisimulation,
this relation becomes bidirectional (i.e. functional). Trace equivalence com-
pares the respective output of automata. Just (uni-directional) simulation alone
is not sufficient as this would only the presence or absence of a certain behav-
ior with respect to the specification, while the standard compliance mandates
both. Bisimilarity of two transition systems is originally defined for labeled
transition systems (LTS), defined as LTS = (S,Act,→, I, AP,L), with S be-
ing the set of states, Act a set of actions, → a transition function, I the set of
initial states, AP a set of atomic propositions and L a labelling function.

Definition 1 (Bisimilarity). Bisimlarity of two LTS LTS1 LTS2 is defined as
exhibiting a binary relation R ⊆ QxQ, such that [12]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈
R

3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈
R

9.2 Preliminaries 97

Condition A of Definition 1 means that all initial states must be related,
while Condition B means that for all related states the labels must be equal
(1) and their successor states must be related (2-3). Formally the succes-
sion (Post) is defined as Post(s, α) = {s′ ∈ S|s α−→ s′} and Post(s) =⋃

α∈Act Post(s, α), meaning the union of all action successions, which again
are again the result the transition function with a defined action and state as in-
put. As this is recursive, a relation of the initial states implies that all successor
states are related. Since all reachable states are (direct or indirect) successor
states of the initial states, this definition encompasses the complete LTS. We
interpret Mealy machines as LTS using the output functions as labeling func-
tions for transitions and the input symbols as actions, similar to [13]. Based on
this, we define Mealy bisimilarity (M1 M2) for our purpose follows:

Definition 2 (Mealy Bisimilarity). A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.

B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)

2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈
R

3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈
R

As the transition function is dependent on the input, we define Post(q, σ) =
δ(q, σ) and Post(σ) =

⋃
σ∈Σ Post(q, σ), which is essentially the same as for

LTS brought into the notation of Section 9.2.1. There are a couple of dif-
ferent bisimulation types that differentiate by the handling of non-observable
(internal) transitions (ordinarily labeled as τ transitions), e.g. strong and weak
bisimulation, and branching bisimulation to give a few examples. This dis-
tinction is, however, theoretical in the context of this paper. The reason is
that we intend to compare a specification, which consists of an automaton
that does not contain any τ transitions, with an implementation that is ex-
ternally (black box) learned, rendering τs unobservable. Therefore, two au-
tomata without any τs are compared directly, which makes this distinction not
applicable. More precisely, from a device perspective, the type of bisimula-
tion equivalence cannot be determined, as the SUTs are black boxes. This
means that internal state changes (commonly denoted as τ) are not visible,
which determines the kind of bisimulation. From a model perspective, the
chosen comparison implies strong bisimulation (i.e the initial state is related

98 Paper III

(formally, q0Ml
= q0Ms

) and all subsequent states are related as well (formally
Q = QMl

= QMs ;n = |Q|;∀n ∈ Q|qnMl
= qnMs

).
Trace equivalence, on the other hand, means that two transitions systems

produce the same traces for each same input.

Definition 3 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

Although both bisimulation and trace equivalence might be principally ca-
pable of comparing a specification with an implementation automaton for de-
termining the standard compliance, determining bisimulation is a problem to
be solved in efficiently, whereas trace equivalence is PSPACE complete [14].
However, this might be negligible with a relatively low number of states and
transitions. In any case, bisimulation implies trace equivalence (LTS1 ∼
LTS2 implies Traces(LTS1) = Traces(LTS2), but is finer than the lat-
ter [12]. For the purpose of this paper, we consider two automata equivalent
if they are trace or bisimulation equivalent. In practice, we have obtained pos-
itive results with both bisimulation and trace equivalence (see Section 9.4.4).
Therefore, trace equivalence is preferred as it is sufficient for standard com-
pliance, but bisimilarity might be used in cases where more efficient checking
algorithms are necessary.

9.2.3 Automata Learning

The classical method of actively learning automata of systems, was outlined
in Angluin’s pivotal work known as the L* algorithm [6]. This work uses a
minimally adequate Teacher that has (theoretically) perfect knowledge of the
SUT (in this case called System-under-learning – SUL) behind a Teacher and
is allowed to answer to kinds of questions:

• Membership queries and

• Equivalence queries.

The membership queries are used to determine if a certain word is part of the
accepted language of the automaton, or, in the case of Mealy machines, which
output word will result of a specific input word. These words are noted in an
observation table that will be made closed and consistent. The observation ta-
ble consists of suffix-closed columns (E) and prefix-closed rows. The rows
are intersected in short prefixes (S) and long prefixes (S.Σ). The short prefixes
initially only contain the empty prefix (λ), while the long ones and the columns

9.2 Preliminaries 99

contain the members of the input alphabet. The table is filled with the respec-
tive outputs of prefixes concatenated with suffixes (S.E or S.Σ.E). The table
closed if for every long prefix row, there is a short prefix row with the same
content (∀s.σ ∈ S.Σ∃s ∈ S : s.σ = s). The table is consistent if for any two
equal short prefix rows, the long prefix rows beginning with these short prefixes
are also equal (∀s, s′ ∈ S∀a ∈ Σ : s = s′ → s.a = s′.a. A complete, closed
and consistent table can be used to infer a state machine (set of states Q con-
sists of all distinct short prefixes, the transition function is derived by following
the suffixes). Even though this algorithm was initially defined for DFAs, it has
been adapted to other types of state machines (e.g., Mealy or Moore machines)
[15]. Alternatively, some algorithms use a discrimination tree that uses inputs
as intermediate nodes, states as leaf nodes, and outputs as branch labels, with a
similar method of inferring an automaton. One of these algorithms, TTT[8], is
deemed currently the most efficient [16]. Other widely used algorithms include
a modified version of the original L* with a counterexample handling strategy
by Rivest and Schapire [7], or the tree-based Direct Hypothesis Construction
(DHC) [17] and Kearns-Vazirani (KV) [18] algorithms.

Once this is performed, the resulting automaton is presented to the Teacher,
which is called equivalence query. The Teacher either acknowledges the cor-
rectness of the automaton or provides a counterexample. The latter is incor-
porated into the observation table or discrimination tree and the learning steps
described above are repeated until the model is correct. To allow for learning
black box systems, the equivalence queries in practice often consist of a suf-
ficient set of conformance tests instead of a Teacher with perfect knowledge
[19]. Originally for Deterministic Finite Automata, this learning method could
be used to learn Mealy Machines [20]. This preferred for learning black box
reactive systems (e.g. cyber-physical systems), as modeling these as Mealy is
comparatively simple.

9.2.4 LearnLib

To utilize automata learning we use a widely adopted Java library called Learn-
Lib [21]. This library provides a variety of learning algorithms (L* and vari-
ants thereof, KV, DHC and TTT), as well as various strategies for membership
and equivalence testing (e.g., conformance testing like random words, random
walk, etc.). The library provides Java classes for instantiating these algorithms
and interfaces systems under test. The interface classes further allow for defin-
ing the input alphabets that the algorithm routines uses to factor queries used
to fill an observation table or tree. Depending on the used algorithms, the li-

100 Paper III

brary is capable of inferring DFAs, NFAs (Non-deterministic finite acceptors),
Mealy machines or VPDAs (Visibly Pushdown Automata).

9.2.5 Near Field Communication
Near Field Communication (NFC) is a standard for simple wireless communi-
cation between close coupled devices with relatively low data rates (106, 212,
and 424 kbit/s). One distinctive characteristic of this standard (operating at
13.56 Mhz center frequency) is that it, based on Radio-Frequency Identifica-
tion (RFID), uses passive devices (proximity cards - PICCs) that receive power
from an induction field from an active device (reader or proximity coupling
device PCD) that also serves as field for data transmission. There are a couple
of defined procedures that allow for operating proximity cards in presence of
other wireless objects in order to exchange data [22]. One standard particularly
defines two handshake procedures based on cascade-based anti-collision and
card selection (called type A and type B), one of which NFC proximity cards
must be compliant with [1]. This handshake is the particular target system-
under-learning (SUL) of this paper, with the purpose of providing very strong
evidence for compliance. Due to the proliferation and the nature of the given
system-under-learning, this paper concentrates on type A devices. Therefore,
all statements on NFC and its handshake apply for type A only.

9.2.6 The NFC Handshake Automaton

ISO 14443-3 contains a state diagram that outlines the Type A handshake
procedure for an NFC connection (see Figure 9.2). This diagram is not a state
machine of the types described in Section 9.2.1, for it lacks both output and fi-
nal states. As we learn Mealy machines, we augmented it with abstract outputs
(see Sections 9.4.2 and 9.4.4) to get a machine of the same type. The goal of
the handshake is to reach a defined state in which a higher layer protocol (e.g.
as defined in ISO 14443-4 [22]) can be executed (the PROTOCOL state). The
intended way described in the standard to reach this state is: when coming into
an induction field and powering up, the passive NFC device enters the IDLE
state. After receiving a wake-up (WUPA) or request (REQA) message it enters
the READY state. In this state, anti-collision (AC, remaining in that state) or
card selection (SELECT going to the ACTIVE state) occur. In the latter state,
the card waits for a request to answer-to-select (RATS), which brings it into

9.2 Preliminaries 101

Figure 9.2: NFC handshake automaton after ISO 14443-3 [1] augmented with
abstract outputs. Note: star (*) as input means any symbol that is not explicitly
stated in another outbound transition of the respective state.

102 Paper III

Learnlib (JAVA) API (C/C++) ProxmarkSocket
USB NFC

SuL

Figure 9.3: NFC interface setup.

said PROTOCOL state. In all of these states, an unexpected input would return
the system to the IDLE state, no giving an answers (denoted as NAK). Based
solely on ISO 14443-3 commands, the card should only leave this state after
a DESELECT command, after which it enters the HALT state. Apart from a
complete reset, it only leaves the HALT state after a wake-up (WUPA) signal
(in contrast to the initial IDLE state, which also allows a REQA message). This
brings it into the READY* state, which again gets via a SELECT into the AC-
TIVE* state that can be used to get to the PROTOCOL state again. The only
difference between READY and READY*, as well as ACTIVE and ACTIVE*
state is that it comes from the HALT instead of IDLE state. Similar to the first
part of the automaton, an unexpected answer brings the state back to HALT
without an answer (NAK).

Apart from the commands stated above that are expected by a card in the
respective state, every other (i.e. unexpected) command would reset the hand-
shake if its not complete (i.e. wrong commands from IDLE, READY, and AC-
TIVE states would lead back to the IDLE state, while HALT, READY*, and
ACTIVE* lead back to the HALT state and unexpected commands in the PRO-
TOCOL state let it remain in that state. Even though this behavior of falling
back into a base state resembles a combination-lock automaton or generally
an accepting automaton, we model the handshake as a Mealy Machine for the
following reasons:

a) As we observe a black box, input/output relations are easier to observe
than not intrinsically defined accepting states

b) The states are easier distinguishable: a variety of input symbols with the
corresponding output may represent a broader signature than just if a
state is accepting (apart from the transition to other states)

9.3 NFC Interface 103

c) The output may processed at different level of abstraction (see Section
9.4.2)

There is also one specific feature to the NFC handshake protocol: unlike most
communication protocols, an unexpected or wrong input yield to no output.
This has an implication to learning, as a timeout will be interpreted as a general
error message.

9.3 NFC Interface
As Learner, we use the algorithm implementations in the Learnlib Java library
(see Section 9.2.4), configured as outlined in Section 9.4. To interact with
the NFC SUL, a Proxmark RFID/NFC device (see Section 9.3.1) is used that
works with an adapter written in C++ (see Section 9.3.2). Figure 9.3 provides
an overview of the setup.

9.3.1 Learner Interface Device

The interface with an NFC SUL is established via Proxmark3. Proxmark3 is
a pocket-size NFC device capable of acting as an NFC reader (PCD) or tag
(PICC), as well as sniffing device [23]. Proxmark3 can be controlled from a
PC, as well as, allowing firmware updates. Thus it allows us to construct the
NFC frames needed for learning and establishing a connection to the learning
library via a software adapter (see Section 9.3.2).

9.3.2 Adapter Class

The actual access to the NFC interface runs over a C++ program, running on a
PC, based on a provided application that comes with the Proxmark device. As
this application is open source, it was possible to modify it in order to adapt
it for learning. The main interface to the Java-based Learner is a Socket con-
nection that take symbols from the Learner (see Section 9.4.2) and concretizes
them by translating the symbols into valid NFC frames utilizing functions from
the SendCommand and WaitForResponse families. These functions send and
receive, respectively, command data (i.e. concrete inputs, symbol for sym-
bol) to the Proxmark device where the firmware translates it into frames and
sends them to the SUL and proceeds vice versa for the response. This, how-
ever, turned out to create an error prone bottleneck at the connection between

104 Paper III

the PC application and the Proxmark device running over USB. Due to round-
trip times and timeouts, the learning was slowed down and occasional non-
deterministic behavior was introduced, which jeopardized the learning process
and made it necessary to repeat the latter (depending on the scrutinized sys-
tem, multiple times, which hindered the overall learning greatly). Therefore,
the Learner was re-implemented to send bulk inputs (i.e. send complete input
words instead of single symbols), which improved the throughput significantly
and solved non-determinism.

Firmware Modifications

In order to be able to transfer traces word-wise instead of symbol-wise, sig-
nificant modifications of the device’s firmware were necessary. The standard
interface of the device is designed for sending a single packet at one time (via a
provided application on a PC) and delivering the answer back to the application
via a USB interface. This introduces latency, which through the sheer amount
of symbols sent in the learning process, has a significant performance impact.
To reach the device’s firmware with multiple symbols at once, we modulate the
desired inputs into one sent message in Type-Length-Value (TLV) format (im-
plemented types are with or without CRC and a specialized type for SELECT
sequences) and modify the main routine of the running firmware to execute a
custom function if a certain flag is set. This custom function deserializes the
sent commands and sends them to the NFC SUT. Answers are modulated into
an answer packet in length-value format, followed by subsequent answer mes-
sages containing precise logging and timestamps, if used. As NFC is a protocol
that works with relatively low round-trip times and time outs these modifica-
tions, eliminating a great portion of the latency times of frequently used USB
connections, boost the performance of the learning using different learning al-
gorithms significantly (for a performance evaluation see Section 9.4.1).

9.4 Learning Setup

One distinctive attribute of ISO14443-3 with respect to learning is that it spec-
ifies to not give an answer on unexpected (i.e. not according to the standards
specification) input. Ordinarily, the result of such a undefined input is to drop
back to a defined (specifically the IDLE or HALT) state. In this sense, the NFC
handshake resembles a combination lock. A positive output on the other hand,
ordinarily consists of a standardized status code or information that is needed

9.4 Learning Setup 105

Max. Word
Length

Algorithm
L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

Table 9.1: Runtime (minutes) per algorithm and maximum word length.

for the next phase of the handshake, e.g., parts of a card’s unique identifier
(UID). The non-answer to undefined is a characteristic feature of the NFC stan-
dard. This directly affects the learning because it yields many identical answers
and efficient time-out handling is essential. It is therefore necessary to evaluate
different state-of-the-art learning algorithms for their specific fitness (see Sec-
tion 9.4.1) well as determining the optimal parameter set (Section 9.4.1). We
scrutinize the main algorithms supported by Learnlib: classical L*, L* with
Rivest/Schapire counterexample handling, DHC, KV and TTT - the latter two
with linear search (L) and binary search (B) counterexample analysis.

9.4.1 Comparing Learning Algorithms and Calibrations

All of the algorithms can be parameterized regarding the membership and
equivalence queries. The former are mainly defined via the minimum and max-
imum word length, while the equivalence queries (lack of a perfect Teacher), is
determined by the method and number of conformance tests. Generally speak-
ing, a too short (maximum) word length results in an incompletely learned
(which, if the implementation is correct, should contain seven states). The
maximum length, however, has a different impact on the performance for ob-
servation and tree-based algorithms: table-based are quicker with a short max-
imum word length, whereas for tree-based ones there seems to be a break-even
point between many sent words and many sent symbols in our specific set-
ting. Table 9.1 shows a comparison of the runtime of different algorithms with
different maximum word lengths (in red the respective algorithm’s shortest
runtime that learned the correct 7-state model). Some of the non-steadiness
in the results can be explained by the fact that some calibrations with shorter
word lengths required more equivalence queries and, thus, refinement proce-

106 Paper III

Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B
(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7
Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49

Words 1137 282 539 496 451 468 382
Symbols 10192 2588 5124 7932 7607 6628 6213

EQs 2 3 2 5 5 4 4

Table 9.2: Performance evaluation of different algorithms for a compliant sys-
tem with their respective fastest calibration in the given setting.

dures. Table 9.2 shows the results with the best performing (correct) run of
the respective algorithm. This, however, only covers the performance of learn-
ing a correct implementation. The opposite side, discovering a bug, shows a
different picture. We therefore used a SUT with a slightly deviating behavior
(see Section 9.5.3). This system is much more error-prone, needing signif-
icantly higher timeout values, resulting in higher overall runtimes. One key
property in this case seems to be the minimum word length. Some of the algo-
rithms by their require a lower minimum word length to discover than others.
This has a significant impact with the special setting of getting relatively many
timeouts, which is greatly aggravated by the necessary long timeout periods.
With a minimum word length of 10 symbols, again the original L* with the
Rivest/Schapire closing strategy was performing quickest, but discovered only
7 out of 10 states of the deviating implementation. DHC yielded a similar re-
sult. Both needed a word length of 20 to discover the actual non-compliant
model, which was significantly less efficient in terms of runtime. The TTT
and KV algorithms needed a minimum length of 10, however with quite some
deviation in efficiency. While TTT was the best performing algorithm to learn
the SUT’s actual behavior model, KV was performing worst. The runtimes
roughly correspond with the amount of sent symbols, in this case the a very
long timeout has to be set to avoid non-determinism. The classical L* is not
in the list, as the algorithm crashed after more than 24 hours of runtime. Table
9.3 provides an overview of minimum word lengths, run time, words, symbols
and equivalence queries. Lower minimum word lengths yielded false negatives
(i.e. the result showed a correct model with the deviation not uncovered).

9.4 Learning Setup 107

9.4.2 Abstraction
Ordinarily, when applying automata learning to real-world systems, the input
and output spaces are very large. To reduce the alphabets’ cardinalities to a
manageable amount, an abstraction function (∇), that transforms the concrete
inputs (I) and outputs (O) to symbolic alphabets (Σ and Ω) using equivalence
classes. Of all possible combinations of data to be send, we therefore concen-
trate on relevant input for the purpose of compliance verification. In the fol-
lowing we present some rationales for the chosen degree of abstraction through
the input and output alphabets. These alphabets’ symbols are abstracted and
concretized via an according adapter class that translates symbols to data to be
send (see section 9.3.2).

Input Alphabet

For the input alphabet we use the one needed for successfully establishing a
handshake (cf. Figure 9.2), according to the state diagram for Type-A cards in
the ISO 14443-3 standard [1]:

• Wake-UP command Type A (WUPA)

• Request command, Type A (REQA)

• Anticollision (AC)

• Select command, Type A (SELECT)

• Halt command, Type A (HLTA)

• Request for answer to select (RATS)

• Deselect (DESEL)

The last two commands are actually defined in the ISO 14443-4 standard [22].
However, as the handshake’s purpose is to enter and leave the protocol state,
they are included in the 14443-3 state diagram and, consequentially, in our
compliance verification.

Output Alphabets

In general, the output alphabet does not need to be defined beforehand. It
simply consists of all output symbols observed by the Learner in a learning
run. The Learner can derive the output alphabet implicitly. This means that

108 Paper III

Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B
Min Length 20 20 10 10 10 10

Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43
Words 575 855 952 679 688 616

Symbols 14637 15262 23867 19241 13353 11769
Eqs 5 3 6 6 5 5

Table 9.3: Performance evaluation of different algorithms for a non-compliant
system with their respective fastest calibration in the given setting.

if a system behaved non-deterministicly, the output alphabet could vary – al-
though when learning Mealy machines, which are deterministic by definition,
nondeterminism would jeopardize the Learner. The output alphabet has ob-
viously to be defined (in the abstraction layer) when abstracting the output.
Therefore, using raw output has the benefit of not having to define the alpha-
bet beforehand. The raw method has one drawback: there are cards that use
a random UID (specifically, this behavior was observed in passports). Every
anti-collision (AC) and SELECT yields a different output, which introduces
non-deterministic behavior. This is not a problem with abstract output, as the
concrete answer is abstracted away. We therefore tried a heavily abstracted out-
put consisting of only two symbols, namely ACK for a (positive) answer and
NAK for a timeout, which in this case means a negative answer (see Section
9.2.5). This solves the problem, but degrades the performance of the Learner,
since states are harder to distinguish if the possible outputs are limited to two
(aggravated by the similar behavior of certain states - see Section 9.2.6). This
idea was therefore forfeit in favor of raw output for the learning. We still
maintained this higher abstraction for the equivalence checking (see Section
9.4.4 for the reasoning). Raw output, however, retains this problematic non-
determinism. We therefore introduce a caching strategy to cope with this issue.
Whenever a valid (partial) UID is received as an answer to an anti-collision or
select input symbol, we put it on one of two caches (one for partial UIDs from
AC and one for full ones from SELECT sequences). The Learner will subse-
quently only be confronted with the respective top entries of these caches. We
therefore abstract away the randomness of the UID by replacing it with an ac-
tual but fixed one. This keeps the learning deterministic while saving the other
learned UIDs for analysis, if needed.

9.4 Learning Setup 109

9.4.3 Labeling and Simplification
An implementation that conforms to the standard will automatically labeled
correctly, as the labelling function follows a standards-conform handshake
trace:

a) label the initial state with IDLE,

b) from that point, find the state, where the transition with REQA as an
input and a positive acknowledgement as an output ends and label it as
READY,

c) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE,

d) from that point, find the endpoint of a positively acknowledged RATS
transition and label it as PROTOCOL,

e) from that point, find the endpoint of a positively acknowledged DESE-
LECT transition and label it as HALT

f) from that point, find the endpoint of a positively acknowledged WUPA
transition and label it as READY*

g) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE*

If the labeling algorithm fails or there are additional states (which are out of
the labeling algorithm’s scope), this is an indicator for the learned implemen-
tation’s non-compliance with the ISO 14443-3 standard (given that only the
messages defined in that standard are used as an input alphabet - see Section
9.4.2).

To simplify the state diagram for better readability and analysis, we cluster
the transitions of each states for output/target tuples and label the input for that
mostly traveled tuple with a star (∗). Normally that is the group of transitions
that mark an unexpected input and transitions back to the IDLE or HALT state.
This reduces the diagram significantly. Therefore, in those simplified diagrams,
all inputs not marked explicitly in a state can be subsumed under the respective
star (∗) transition.

9.4.4 Compliance Evaluation
Proving or disproving compliance needs a verdict if a potential deviation from
the standard violates the (weak) bisimulation relation. We use mCRL2 with

110 Paper III

the Aldebaran (.aut) format for bisimilarity and trace equivalence checking (as
described in Section 9.2.2) [24]. As the Learnlib toolset provides to possibil-
ity to store the learned automata in a couple of formats, including Aldebaran,
setting up the tool chain is easy, even though some re-engineering was neces-
sary. Learnlib’s standard function for exporting in the Aldebaran format does
not include outputs. This accepts transitions as equal that are in fact not (as
they distinguish only through the output). We therefore rewrote this function
to use the transition’s in the label of an LTS as well. mCRL2 comes with a
model comparison tool that uses, amongst others, the algorithm of Jansen et
al. [25] for bisimilarity checking. We therefore simply model the specification
in form of the handshake diagram (see Figure 9.2) as an LTS with the cor-
responding Mealy’s input and output as a label in the Aldebaran format and
use the mCRL2 tool to compare it to automata of learnt implementations. The
models of SUTs, although, could differ greatly event if the behavior is similar .
Due to different UIDs the outputs to legit AC and SELECT commands would
ordinarily differ between any two NFC cards. Also most other outputs might
differ slightly. E.g., we observed some cards to respond to select with 4800,
others with 4400. We therefore use the higher abstraction level as described
above and use only NAK and ACK as output, circumventing this problem.
This way, inequalities as detected by the tool indicate non-compliance to the
ISO 14443-3 standard of the scrutinized implementation. If a non-compliance
(i.e. a missing or additional state or transition actually countering the bisimula-
tion relation) is found, all we need is to do a simple conformance test. A trace
of the non-compliant state/transition is trivial to extract from the automaton
(see the example in Section 9.5.3). If that trace is executed on the system-
under-test and actually behaves like predicted in the model, we have found the
actual specification violation in the real system, disproving the compliance.

Alternatively, an actual positive verdict of compliance of a learned model is
simple. A full compliance proof can be made when doing identity equivalence,
that is comparing the learned model state by state and transition by transition
with the model manually derived from the ISO 14443-3 standard. If every state
and transition is equal, we consider the system as compliant. More formally,
the learned machine Ml must be fully equal the specification machine Ms, i.e.
Ml = Ms∧(Ml = Ms |= QMl

= QMs ∧ΣMl
= ΣMs ∧ΩMl

= ΩMs ∧δMl
=

δMs
∧ λMl

= λMs
∧ q0Ml

= q0Ms
). This, obviously, is a simpler but stronger

relation that is not coersive for ISO protocol compliance. The probability of
learning (with a sufficient amount of conformance testing) an incorrect model
that is still compliant with the standard is negligible.

9.5 Evaluation 111

9.5 Evaluation

In this section we briefly outline the achieved results with the described tool
chain. We used serveral different NFC card systems for testing, which are de-
scribed below. All of these systems have shown to be conform to the ISO14443-
3 standard, except for the Tesla key fob.

9.5.1 Test Cards and Credit Cards

We used five different NFC test test cards by NXP (part of an experimental car
access system) to develop and configure the Learner. Furthermore, we used
two different banking cards, a Visa and a Mastercard debit. All of these cards
are conform to the standard, with only minor differences. One of these deffen-
rences is replying with diffent ATQA to REQA/WUPA messages with 4400
and 4800 respectively. Overall, the results with these cards are very similar.
Figure 9.4 shows an example of a learnt automaton (left side).

9.5.2 Passports

We also examined two different passports from European Union countries: one
German and one Austrian. The main noticeable difference (at ISO 14443-3 lev-
lel) between the other systems is that these systems answer to AC and SELECT
inputs with randomly generated (parts of) UIDs. This implements a privacy
feature to make passports less traceable. Without accessing the personal data
stored on the device the passport should not be attributable. This, however,
requires authentication.

9.5.3 Tesla Key Fob

Apart from significantly slower answers than the other devices, which required
to adapt the timeouts to avoid nondeterministic behavior, the learned automa-
ton slightly differs when learnt with the TTT algorithm. Figure 9.4 (right side)
shows a model of a Tesla car key fob learnt with TTT. The (unnamed) states
3,4 and 6 are very similiar to the HALT, READY* and ACTIVE* states, re-
spectively. Apart from the entry points (HALTA from the ACTIVE state for
the first and DESEL from the PROTOCOL state, respectively) these two struc-
tures are identical and in the reference model, those two transitions lead to the
same state. However, the ACTIVE* transition allows for issuing a DESELECT

112 Paper III

Figure 9.4: Automaton of an NXP test card (left) and a Tesla car key fob (right)
learnt with TTT.

command that actually returns a value (i.e. an ACK in the higher abstraction),
which does not correspond to the standard.

The mCRL2 comparison tool rightfully identifies this model not to be bisim-
ilar and trace equivalent with the specification. Using the according option, the
tool also provided a counterexample in the form of the trace (⟨REQA/ACK⟩,
⟨SELECT/ACK⟩, ⟨RATS/ACK⟩, ⟨DESEL/ACK⟩, ⟨WUPA/ACK⟩, ⟨SELECT/
ACK⟩, ⟨DESEL/ACK⟩). According to the specification, the last label should

9.6 Related Work 113

be ⟨DESEL/NAK⟩.

9.6 Related Work
There are other, partly theoretic, approaches of inferring a model using au-
tomata learning and comparing it with other automata using bisimulation al-
gorithms. However, they target DFAs [26] or probabilistic transition systems
(PTS) [27]. Neider et al. [28] contains some significant theoretic fundamen-
tals of using automata learning and bisimulation for different types of state
machines, including Mealys. It also contains the important observation that
(generalized) Mealy Machines are bisimilar if their underlying LTS are bisim-
ilar. Tappler et al. [13] used a similar approach of viewing Mealy Machines
as LTS to compare automata regarding their bisimilarity. Similarly, bisimu-
lation checking was also used to verify a model inferred from an embedded
control software [29]. There is also previous work on using automata learning
for inferring models of NFC cards [30], which concentrates on the upper layer
(ISO/IEC 14443-4) protocol, dodging the specific challenges of the handshake
protocol. Also there is no mentioning of automatic compliance checking in this
approach. To the best of our knowledge, there is no comprehensive approach
for compliance verification of the ISO/IEC 14443-3 protocol.

9.7 Conclusion
In this paper, we demonstrated the usage of automata learning to infer models
of systems under test and evaluate their compliance with the ISO 14443-3 pro-
tocol by checking their bisimilarity with a specification. We described a learn-
ing interface setup, showed practical results and made interesting observations
on the impact of the protocol specifics on learning algorithms’ performances.

9.7.1 Discussion

Using our learning setup on real-world devices, we found little differences be-
tween the SUTs – all examined systems were compliant to ISO/IEC 14443-3.
Observed differences were mainly in the privacy-related random UIDs sent by
passports and the slow answers and a slightly different automaton of the Tesla
key fob. However, the scrutinized NFC handshake protocol has two charac-
teristics that are distinct from other communications protocols: a) it does not

114 Paper III

send an answer on unexpected input and b) the automaton has two almost iden-
tical parts (IDLE/READY/ACTIVE and HALT/READY*/ACTIVE*) that pose
challenges in learning. Supposedly these characteristics are responsible for the
somewhat surprising finding that the L* algorithm with the Rivest/Schapire im-
provement surpasses more modern tree-based algorithms for correct systems.
However, TTT performed best in finding a non-compliant system, which is the
actual purpose of the testing and that the minimum word length has an impact
on the ability to find incompliances. This might give some hints for optimiza-
tion of learning strategies for similar structures.

9.7.2 Outlook
The compliance checking is but a first step towards assuring correctness and,
subsequently, cybersecurity for NFC systems. Concretely, further research di-
rections include test case generation using model checking and using the model
to guide an intelligent fuzzer to leverage cybersecurity validation and verifica-
tion (V&V). The target of these V&V activities are on the one hand upper
layer protocols and on the other hand NFC reader devices to search for faults
that might lead to exploitable security vulnerabilities. To talk to readers, be-
cause of the low latency of NFC communications, it is crucial to already know
what to send before a conversation, which is satisfied by the predefined input
words in the automata learning process.

Acknowledgements
This research received funding within the ECSEL Joint Undertaking (JU) un-
der grant agreement No. 876038 (project InSecTT) and from the program “ICT
of the Future” of the Austrian Research Promotion Agency (FFG) and the Aus-
trian Ministry for Transport, Innovation and Technology under grant agreement
No. 880852 (project LEARNTWINS). The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation programme and Austria,
Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey. The document reflects only the author’s view and the
Commission is not responsible for any use that may be made of the informa-
tion it contains.

Bibliography

[1] International Organization for Standardization, “Cards and security de-
vices for personal identification – Contactless proximity objects – Part
3: Initialization and anticollision,” ISO/IEC Standard ”14443-3”, Inter-
national Organization for Standardization, 2018.

[2] W. Issovits and M. Hutter, “Weaknesses of the ISO/IEC 14443 proto-
col regarding relay attacks,” in 2011 IEEE International Conference on
RFID-Technologies and Applications, pp. 335–342, Sept. 2011.

[3] J. Vila and R. J. Rodrı́guez, “Practical Experiences on NFC Relay At-
tacks with Android,” in Radio Frequency Identification (S. Mangard
and P. Schaumont, eds.), Lecture Notes in Computer Science, (Cham),
pp. 87–103, Springer International Publishing, 2015.

[4] G. Hancke, “Practical attacks on proximity identification systems,” in
2006 IEEE Symposium on Security and Privacy (S&P’06), pp. 6 pp.–333,
May 2006.

[5] M. Maass, U. Müller, T. Schons, D. Wegemer, and M. Schulz, “NFCGate:
An NFC relay application for Android,” in Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’15, (New York, NY, USA), pp. 1–2, Association for Computing
Machinery, June 2015.

[6] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, pp. 87–106, Nov. 1987.

[7] R. L. Rivest and R. E. Schapire, “Inference of Finite Automata Using
Homing Sequences,” Information and Computation, vol. 103, pp. 299–
347, Apr. 1993.

115

116 BIBLIOGRAPHY

[8] M. Isberner, F. Howar, and B. Steffen, “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning,” in Runtime
Verification (B. Bonakdarpour and S. A. Smolka, eds.), Lecture Notes in
Computer Science, (Cham), pp. 307–322, Springer International Publish-
ing, 2014.

[9] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell
System Technical Journal, vol. 34, pp. 1045–1079, Sept. 1955.

[10] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
pp. 115–133, Dec. 1943.

[11] E. F. Moore, “Gedanken-Experiments on Sequential Machines,” in Au-
tomata Studies, vol. 34 of AM-34, pp. 129–154, Princeton University
Press, 1956.

[12] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, Apr.
2008.

[13] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-Based Testing IoT
Communication via Active Automata Learning,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST), pp. 276–287, Mar. 2017.

[14] L. Aceto, A. Ingolfsdottir, and J. Srba, “The algorithmics of bisimilar-
ity,” in Advanced Topics in Bisimulation and Coinduction, pp. 100–172,
Cambridge University Press, 2011.

[15] B. Jacobs and A. Silva, “Automata Learning: A Categorical Perspec-
tive,” in Horizons of the Mind. A Tribute to Prakash Panangaden: Essays
Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday
(F. van Breugel, E. Kashefi, C. Palamidessi, and J. Rutten, eds.), Lecture
Notes in Computer Science, pp. 384–406, Cham: Springer International
Publishing, 2014.

[16] F. Vaandrager, “Model learning,” Communications of the ACM, vol. 60,
pp. 86–95, Jan. 2017.

[17] M. Merten, F. Howar, B. Steffen, and T. Margaria, “Automata Learn-
ing with On-the-Fly Direct Hypothesis Construction,” in Leveraging Ap-
plications of Formal Methods, Verification, and Validation (R. Hähnle,

BIBLIOGRAPHY 117

J. Knoop, T. Margaria, D. Schreiner, and B. Steffen, eds.), vol. 336,
pp. 248–260, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[18] M. J. Kearns and U. Vazirani, An Introduction to Computational Learning
Theory. MIT Press, Aug. 1994.

[19] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black Box Checking,” in For-
mal Methods for Protocol Engineering and Distributed Systems: FORTE
XII / PSTV XIX’99 IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and
Verification (PSTV XIX) October 5–8, 1999, Beijing, China (J. Wu, S. T.
Chanson, and Q. Gao, eds.), IFIP Advances in Information and Commu-
nication Technology, pp. 225–240, Boston, MA: Springer US, 1999.

[20] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in FM 2009: For-
mal Methods (A. Cavalcanti and D. R. Dams, eds.), Lecture Notes in
Computer Science, (Berlin, Heidelberg), pp. 207–222, Springer, 2009.

[21] M. Isberner, F. Howar, and B. Steffen, “The Open-Source LearnLib,” in
Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.),
Lecture Notes in Computer Science, (Cham), pp. 487–495, Springer In-
ternational Publishing, 2015.

[22] International Organization for Standardization, “Cards and security de-
vices for personal identification – Contactless proximity objects – Part
4: Transmission protocol,” ISO/IEC Standard ”14443-4”, International
Organization for Standardization, 2018.

[23] F. D. Garcia, G. de Koning Gans, and R. Verdult, “Tutorial: Proxmark, the
swiss army knife for rfid security research: Tutorial at 8th workshop on
rfid security and privacy (rfidsec 2012),” tech. rep., Radboud University
Nijmegen, ICIS, Nijmegen, 2012.

[24] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P.
de Vink, W. Wesselink, A. Wijs, and T. A. C. Willemse, “The mCRL2
Toolset for Analysing Concurrent Systems,” in Tools and Algorithms for
the Construction and Analysis of Systems (T. Vojnar and L. Zhang, eds.),
Lecture Notes in Computer Science, (Cham), pp. 21–39, Springer Inter-
national Publishing, 2019.

[25] D. N. Jansen, J. F. Groote, J. J. A. Keiren, and A. Wijs, “An O(m log n)
algorithm for branching bisimilarity on labelled transition systems,” in
Tools and Algorithms for the Construction and Analysis of Systems
(A. Biere and D. Parker, eds.), Lecture Notes in Computer Science,
(Cham), pp. 3–20, Springer International Publishing, 2020.

[26] Y.-F. Chen, C.-D. Hong, A. W. Lin, and P. Rümmer, “Learning to prove
safety over parameterised concurrent systems,” in 2017 Formal Methods
in Computer Aided Design (FMCAD), pp. 76–83, Oct. 2017.

[27] C.-D. Hong, A. W. Lin, R. Majumdar, and P. Rümmer, “Probabilistic
Bisimulation for Parameterized Systems,” in Computer Aided Verifica-
tion (I. Dillig and S. Tasiran, eds.), Lecture Notes in Computer Science,
(Cham), pp. 455–474, Springer International Publishing, 2019.

[28] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, “Benchmarks
for Automata Learning and Conformance Testing,” in Models, Mindsets,
Meta: The What, the How, and the Why Not? Essays Dedicated to Bern-
hard Steffen on the Occasion of His 60th Birthday (T. Margaria, S. Graf,
and K. G. Larsen, eds.), Lecture Notes in Computer Science, pp. 390–
416, Cham: Springer International Publishing, 2019.

[29] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying
automata learning to embedded control software,” in Formal Methods
and Software Engineering (M. Butler, S. Conchon, and F. Zaı̈di, eds.),
(Cham), pp. 67–83, Springer International Publishing, 2015.

[30] F. Aarts, J. De Ruiter, and E. Poll, “Formal Models of Bank Cards for
Free,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pp. 461–468, Mar. 2013.

Chapter 10

Paper IV:
From TARA to Test:
Automated Automotive
Cybersecurity Test
Generation Out of Threat
Modeling

Stefan Marksteiner, Christoph Schmittner, Korbinian Christl, Dejan Ničković,
Mikael Sjödin, and Marjan Sirjani. in Proceedings of the 7th ACM Computer
Science in Cars Symposium, CSCS’23. New York: Association for Computing
Machinery, 2023. DOI: 10.1145/3631204.3631864.

119

Abstract

The United Nations Economic Commission for Europe (UNECE) demands the
management of cyber security risks in vehicle design and that the effectiveness
of these measures is verified by testing. Generally, with rising complexity
and openness of systems via software-defined vehicles, verification through
testing becomes a very important for security assurance. This mandates the
introduction of industrial-grade cybersecurity testing in automotive develop-
ment processes. Currently, the automotive cybersecurity testing procedures are
not specified or automated enough to be able to deliver tests in the amount
and thoroughness needed to keep up with that regulation, let alone doing so in
a cost-efficient manner. This paper presents a methodology to automatically
generate technology-agnostic test scenarios from the results of threat analysis
and risk assessment (TARA) process. Our approach is to transfer the result-
ing threat models into attack trees and label their edges using actions from a
domain-specific language (DSL) for attack descriptions. This results in a la-
belled transitions system (LTS), in which every labelled path intrinsically forms
a test scenario. In addition, we include the concept of Cybersecurity Assurance
Levels (CALs) and Targeted Attack Feasibility (TAF) into testing by assigning
them as costs to the attack path. This abstract test scenario can be compiled into
a concrete test case by augmenting it with implementation details. Therefore,
the efficacy of the measures taken because of the TARA can be verified and
documented. As TARA is a de-facto mandatory step in the UNECE regulation
and the relevant ISO standard, automatic test generation (also mandatory) out
of it could mean a significant improvement in efficiency, as two steps could be
done at once.

10.1 Introduction 121

Figure 10.1: Relationship for risk mitigation.

10.1 Introduction

The market introduction of vehicle-to-x (V2X) functions and advanced driv-
ing assistance systems (ADAS) to automotive systems make them increasingly
complex. At the same time, cybersecurity incidents (increasingly induced by
criminals) display an exponential growth [1]. This is being recognized by stan-
dards and regulation bodies. For example, the United Nations Economic Com-
mission for Europe (UNECE) issued a regulation (R155) that demands cy-
bersecurity concerns to be addressed over the complete life cycle and verify
the measures through testing [2]. Therefore, a holistic approach for cyberse-
curity engineering and testing over the complete life cycle is needed. This
paper presents the confluence of a life cycle governance and a structured semi-
automated testing approach to provide fast, comprehensive and cost-efficient
cybersecurity testing over the complete automotive life cycle in conjunction
with the concepts of Cybersecurity Assurance Levels (CALs) and Targeted At-
tack Feasibility (TAF). Section 10.2 describes the latter concepts and their in-
tegration in a security testing process. Section 10.3 elaborates automating the
process of generating suitable threat models and attack trees. Section 10.4 de-
scribes the transfer mechanism from attack trees to agnostic test cases and their
application to an actual implementation. Section 10.5 describes the application
of the process in a small case study. Section 10.6 gives an overview of different
work in this direction and Section 10.7, eventually, concludes the paper.

122 Paper IV

10.1.1 Motivation
As current standards (most prominently ISO/SAE 21434 and UNECE R155)
lack the details of how to test, there are two initiatives ongoing in ISO’s stan-
dardization: ISO/SAE PAS 8475 (WIP)1 [3] that copes with Cybersecurity
Assurance Levels (CALs) and Targeted Attack Feasibility (TAF) and ISO/SAE
PAS 8477 (WIP) [4] that deals with verification and validation (V&V) meth-
ods. In order to include these concepts-in-development into security processes,
giving clarity to Original Equipment Manufacturers (OEMs) and suppliers, this
paper aims for giving suggestions how to align security testing on CALs and
TAFs originating from the earliest stages of the (security) engineering process.
Furthermore, the aim is to turn the overhead necessary for formalizing the com-
bined engineering and testing process into an advantage by automatizing them.
More specifically, these formalized processes can be used to automate test case
generation from threat models. As a result, test case blueprints can be gen-
erated during the modeling process, that can be later on (semi-)automatically
compiled into executable test cases. This allows for structured and efficient
testing of the fulfillment of the requirements stemming from the threat analy-
sis.

10.1.2 Contribution
This paper contributes mainly four things to the body of knowledge:

1. A structural concept how to incorporate CALs and TAFs into the cyber-
security engineering process.

2. A process to align testing on CALs and TAFs.

3. A method to generate attack trees from TARA.

4. A concept to transform attack trees into technology-agnostic test scenar-
ios automatically as a blueprint to verify and validate security claims and
requirements.

Item 1 explains the upcoming developments of ISO/SAE 8475 and describes
the usage of CALs and TAFs (Section 10.2.1). Item 2 discusses the merit of the
CAL/TAF usage in security testing (Section 10.2.1). Item 3 shows an approach
how the formalization necessary to include the first two items can be used
to increase the efficiency of testing by generating attack trees from a Threat

1Work-in-Progress

10.2 Automotive Security Communication 123

Analysis and Risk Assessment (TARA) (Section 10.3.1). Item 4 provides a
method to transform attack trees into abstract test scenarios by labelling the
edges with actions from the alphabet of a domain-specific language (DSL) for
attack descriptions (see Section 10.4.2).

10.2 Automotive Security Communication
Effective communication plays a pivotal role in the automotive industry, par-
ticularly within the complex network of Original Equipment Manufacturers
(OEMs) and Tier 1 and 2 suppliers. Especially in the cybersecurity domain,
with interlocking layers of defense [5] the criticality of clearly communicating
expected requirements, is required for achieving optimal outcomes. By foster-
ing a shared understanding of risk mitigation strategies, OEMs and suppliers
can collaboratively address cybersecurity challenges, enhance product security,
and streamline operations. ISO/SAE 21434 defines here a framework in which
during the Threat Assessment and Risk Analysis cybersecurity goals are de-
fined. A cybersecurity goal is aimed at reducing the risk of threat scenarios
and realized by cybersecurity requirements (see Figure 10.1). This process can
be applied during all phases of the development, at item (see Section 10.2.3),
system, or component level. Cybersecurity goals can be defined by the OEM
and by the supplier. Cybersecurity requirements are assigned to components
and implemented.

10.2.1 Cybersecurity Assurance Level (CAL)

An important aspect is here on the interplay between customer requirements
and regulatory needs. As mentioned in the introduction, UNECE requires in the
new UN R155 [2] that cybersecurity in a vehicle has to be tested and demon-
strated during the type approval. With the complexity of modern vehicles, this
testing effort needs to be distributed through the supply chain. ISO/SAE 21434
already establishes as an informative part the concept of the Cybersecurity As-
surance Level (CAL). Inspired from assurance level schemes like the Common
Critiera Evaluation Assurance Levels (EALs) [6], the goal of CAL is to de-
scribe the expected level of assurance and rigor for a defined cybersecurity
goal. ISO/SAE 21434 defines an informative framework regarding the map-
ping of CAL to the impact and the attack vector. In addition, for concept and
product development potential aspects that can be adjusted by CAL like test-
ing effort or independence are given. CAL is assigned per cybersecurity goal

124 Paper IV

and derived requirements inherit the CAL. If a requirement addresses multiple
cybersecurity goals, the highest CAL is inherited.

10.2.2 Target Attack Feasibility (TAF)
In practical applications of CAL and ISO/SAE 21434, there has been a no-
ticeable lack of clarity regarding the expected strength of security controls.
This ambiguity becomes particularly evident when suppliers attempt to trans-
late high-level security goals and requirements into technical specifications and
implementations. While CAL provides insights into the engineering rigor, it
falls short in communicating their actual strength. To address this gap, the con-
cept of Target Attack Feasibility (TAF) has been introduced. TAF is designed
to be associated with specific security controls, offering a measure of their ex-
pected strength. For instance, a security goal such as ”protect the integrity of
the message” could be interpreted through various security controls based on
their TAF levels:

• TAF1: cryptographic hash

• TAF2: symmetric encryption

• TAF3: asymmetric encryption

However, the temporal relevance of TAF is still a topic of debate. As more
TAF levels are designated to specific security control technologies, there’s an
increasing risk that these assignments might become obsolete over time. One
potential solution is to map TAF levels to Attack Feasibility, where, for exam-
ple, TAF1 would necessitate a specific level of expertise, equipment, and time
to breach. This approach, in contrast to a fixed technological assignment, offers
a more flexible interpretation, though it also introduces a degree of subjectivity.

10.2.3 Integrating CAL and TAF in security testing
Due to the impact of CAL and TAF on the overall process and especially on
the cybersecurity testing, a well-structured process is necessary. We adapt here
a testing process, presented in [7] and adapted to include CAL and TAF. The
process is aligned with ISO/SAE 21434 [8]. The activities are basically se-
quential, although some activities provide input for more than one subsequent
activity. Figure 10.2 provides an overview.

I Item Definition

10.2 Automotive Security Communication 125

Figure 10.2: Layout of the security testing process from [7].

II Risk and Threat Assessment

III Security Concept Definition (including the test targets)

IV Test Planning and Scenario Development

(a) Penetration Test Scenario Development

(b) Functional and Interface Test Development

(c) Fuzz Testing Scenario Development

126 Paper IV

(d) Vulnerability Scanning Scenario Development

V Test Script Development

VI Test Script Validation

VII Test Case Generation

(a) Test Environment Preparation

VIII Test Case Execution

IX Test Reporting

In the item definition (i), the scope of the development is defined. This can
range from a complete car model to specific systems or combination of sys-
tems. Risk and threat assessment (ii) (e.g., TARA [9, 10]) identifies potential
vulnerabilities to be addressed and prioritizes them, focusing on certain threats
that are deemed graver, while neglecting others. Here CAL and TAF are as-
signed for each Cybersecurity goal. The security concept definition (iii) mainly
aims at anticipating measures to counter the threats from the previous activity.
Measures that should be present and effective to counter specific threats that
should be validated in the course of this process. TAF plays a major role in
the selection of suitable security measures, that achieve a sufficient level of
risk reduction. The test planning and scenario development (iv) derives an ab-
stract test plan, consisting of scenarios, based on the security targets from the
previous activity. The test plan should contain an overall test strategy. Tests
are based on threats and focus on risky areas, denoted by an increased CAL.
Test data inputs are selected based on threats from the risk analysis [11] and
match test patterns which represent abstract (symbolic) actions in a distinct se-
quence. The scenarios are categorized into four classes [8]: penetration testing,
functional and interface test, fuzz testing and vulnerability scanning. Although
derived from the analysis of a test item, the scenario description is used to be
generic: no specific information of an item on a lower technical level should be
incorporated for portability reasons. Sensibly, descriptions could be composed
in a domain specific language (DSL) for attack descriptions [12, 13, 14, 15].
Selection of scenarios and also independence of persons who test the SUT are
based on CAL. The test script development (v) turns the test patterns from the
scenarios into executable scripts. It should develop a script to match a test pat-
tern by either using an existing exploit from an available database or develop
an own attack on the system. This means that the pattern must be equipped

10.2 Automotive Security Communication 127

Figure 10.3: Example Threat Model.

with specific information and brought in a form that it is executable on a test-
ing system, e.g., on a Linux shell. The test case generation (vi) assembles the
test scripts to a consistent test case (a full attack on an SUT) by processing
a DSL-based description (the generic test scenario) and using additional in-
formation from an SUT database, as well as using combinatorial methods to
economically increase the test coverage [16]. Lastly, the tests have to be exe-
cuted (vii) and their result reported (viii). These activities also include proper
feedback from the test. If the process is to be automated, proper information
for an autonomous test oracle has to be provided in the form of pre and post
conditions that have to be fulfilled in order to assess a positive or negative (or
even inconclusive) test result. Here the achievement of the intended TAF has
to be included.

128 Paper IV

10.3 Threat Modeling

In this Section, we present an approach that generates test scenarios in a tech-
nology-agnostic manner out of a threat model. In the context of this paper,
we conceptualize threat modeling as an iterative process used to identify and
analyze potential threats in information technology (IT) systems. This iterative
process basically requires two major components as inputs [17]. The first com-
ponent is a threat model that summarizes the accumulated knowledge of known
and documented threats, vulnerabilities, and weaknesses for the domain under
study, such as automotive and IoT . It serves as a comprehensive repository of
potential threats that could compromise the system. The second component is a
systematic and abstract representation of the system under consideration. This
representation contains all the key information required for a thorough threat
analysis. Our approach uses an adapted version of the internal SysML block
diagram that facilitates the representation of the relationships and properties of
the system components, providing the basis for a comprehensive analysis.

The modeling process itself is the comparative analysis between the threat
model and the system model. This critical comparison helps derive a list of
existing threats, which is the completion of one cycle of the process. This
list is expanded by recognizing the intrinsic interdependencies of the identified
threats, which overcomes the limitation of looking at threats in isolation [18].
By leveraging the data revealed by the identified threats, we can explore the in-
tricacies of their interdependencies. It is worth noting that threats rarely occur
in a vacuum; they primarily build on previous steps and can trigger subsequent
events.

To map these interdependencies, we use the concept of pre- and post-
conditions. With this strategy, we can not only detect these dependencies, but
also visually represent this additional information using attack graphs and at-
tack trees to improve the understanding and analysis of potential threat inter-
actions. In Section 3, we elaborate on the intricacies of this enhanced process,
detailing the concept of threat interdependencies and the resulting strengthened
approach to threat modeling.

Figure 10.3 shows an example of a threat model based on [19]. In this
example, the electrical/electronic (E/E) architecture of an autonomous low-
speed shuttle is presented. This architecture was modelled in ThreatGet, a tool
for threat modelling and analysis, to facilitate automated security analysis and
demonstrate the process from TARA to CAL and TAF.

We denote here one of many potential assets, with is the integrity of the
Master Controller. If an attacker would be able to modify the firmware, he

10.3 Threat Modeling 129

Figure 10.4: Example attack tree.

could send any command and cause potential safety and operational issues
(due to the low speed of the vehicle)

• Asset: Firmware of the Master Controller (Integrity)

• Damage Scenario: Unintended steering causing collision with an obsta-
cle ASIL C

An analysis shows a potential attack starting from an unencrypted wireless
connection between external services and the AI & Drive Algorithm (see Fig-
ure 10.4). This allows an attacker to reach the dashboard and manipulate data
on this element (=¿ violating the integrity of the displayed information).

In order to address this a security goal is defined, which states that the mas-
ter controller has to be protected and this security goal gets a CAL assigned,
based on the potential impact (CAL 3). This security goal is then mapped to a
security requirement, that encryption with at least TAF 3 is added to external
connections. TAF 3 could be mapped to asymmetric encryption.

130 Paper IV

Figure 10.5: Example for a test scenario in the used attack description lan-
guage.

10.3.1 Threat-Interdependencies and Attack Trees

The Threat Analysis and Risk Assessment (TARA) process aims to identify
potential threats and assess the associated risks to ensure effective risk miti-
gation [9, 19]. It involves systematically investigating threats, assessing their
likelihood and impact, and developing strategies to address the identified risks
[20]. The first step of the TARA process is to analyse for potential threats.
This step is essential because only what has been identified can be assessed
later. It involves identifying vulnerabilities, weaknesses or potential attack
vectors [19, 21]. It is not advisable to look at threats solely in isolation as
part of the TARA process, as this approach ignores the interactions between
different threats. Threats often interact with or reinforce each other, resulting
in attack chains or paths. Failure to consider these interactions can result in
missing relevant risks and inadequate prioritization of resources for effective
risk mitigation [22]. The concept of pre- and post-conditions for threats can
be used to represent the interdependencies of threats within the TARA pro-
cess. Preconditions represent the necessary circumstances or events that must
be met for a threat to occur, while postconditions represent the possible con-
sequences or outcomes that result from the occurrence of a particular threat.
It should also be emphasized that the postconditions of some threats may be
the preconditions of others. By identifying and analysing these preconditions
and postconditions, we can better understand how threats are connected and
how they propagate or influence each other [18]. In an attack tree [23, 24], the
hierarchical structure illustrates the connections between threats, their relation-
ships, and the different attack scenarios. The root of an attack tree is usually

10.4 Automated Testing 131

connected to the attack target, which is the overall goal of an attacker. From
this attack target, a security objective can be derived, which represents the de-
sired outcome of the attack defence. By visualizing threats in an attack tree, we
can analyse the preconditions and postconditions associated with each threat.
Considering the interdependencies of threats within the attack tree not only
simplifies, but also improves, the assessment of target attack feasibility [25].
By visualizing the connections and dependencies between different threats, it
becomes easier to analyse the feasibility of attacking a particular target. Un-
derstanding how multiple threats contribute to a given postcondition provides
a more comprehensive view of the potential attack surface and the likelihood
of a successful attack [21]. Considering the inter-dependencies within the at-
tack tree improves understanding of the overall risk landscape and facilitates
more informed decision-making regarding resource allocation, security control
implementation, and mitigation prioritization. This approach improves the ac-
curacy and effectiveness of target attack feasibility assessments and results in
more robust and proactive security measures. In addition, consideration of de-
pendencies enables organizations to effectively prioritize remediation efforts.
By identifying critical paths and dependencies within the attack tree, resources
can be strategically allocated to protect the most vulnerable areas. While the
CAL can be easily derived based on the impact, the TAF can focus on elements
in the tree which have the highest contribution to the Attack Feasibility. In
summary, considering interdependencies in the TARA process and attack tree
not only simplifies but also improves threat assessment and increases overall
cybersecurity. By understanding the interrelationships and dependencies, or-
ganizations can effectively identify, prioritize, and mitigate risks, resulting in
higher CAL and greater confidence in the security of their systems.

10.4 Automated Testing

This section is concerned with the automated generation of security test cases
stemming from a TARA using attack trees (see Section 10.3.1). The princi-
pal idea is to use the resulting attack tree and create blueprints for testing in
the form of implementation-agnostic test scenarios, through mapping rule sets.
These agnostic test scenarios can later be concretized and executed on a spe-
cific system implementation.

132 Paper IV

10.4.1 Security Tests and their relationship with the Security
Analysis

Following the method in Section 10.2.3, we store blueprints for test cases in
a system-agnostic manner in the ALIA DSL [12] as test scenarios (see Figure
10.5 for an example). These test scenarios are an abstract representation of
actions to be taken to execute a test case. The actions are accompanied by
preconditions that determine if an action is to be carried out (i.e., is the step
sensible in the current situation). Postconditions determine the expected result
and contain therefore information for a test oracle. The respective steps in
the scenarios (test patterns) use symbolic instructions. Concrete test cases are
compiled by augmenting the scenarios with concrete information about the
system-under-test (e.g., exploit code, or specific messages on the CAN bus that
would yield an expected result). This scenario can be seen as a recipe for an
attack with the concrete information as ingredients. The result is a concretely
executable set of instructions (in JSON format) to be ran on a Linux-based
attack system. To generate tests that would subsequently provide evidence
for the successful satisfaction of the requirements derived from the TARA,
taking CAL and TAF into account, we propose a flow that uses the attack tree
analysis’ results and transforms it into attack scenarios that can be augmented
with concrete implementation details in later phases of the development.

10.4.2 Security Test Generation

Using an attack graph (such as a tree, but also other structures like petri nets
[26] are thinkable) allows for closing the loop from TARA to testing through
an automated process. The missing link to achieve this pervasive chain is a
transform mechanism from paths in the generated attack graph structure to test
scenarios in the DSL. We therefore propose a mechanism that transforms a
specific path in an attack tree (see Section 10.3.1) into a test scenario. This is
achieved by mapping the edges of that path with actions in a DSL-based test
scenario. The basic idea is that an action is required to realize a threat. There-
fore, traversing trough a path in an attack tree requires a set of actions, each
action responsible getting from one node in the tree to another. As the test pat-
terns in the DSL principally consist of such (abstract) actions (accompanied by
optional sets of pre- and postconditions), the resolution is a rule-based transla-
tion function to simply map the tree edges to test patterns. Figure 10.6 gives
an overview of this process. Formally, the attack tree can be seen as a directed
graph with rules (sequencing and parallelization). This resembles a Transition

10.4 Automated Testing 133

Figure 10.6: Attack tree to Test Scenario transformation example.

System (TS), defined as a set of states (Q) and a transition relation (→∈ Q×Q,
with q, q′ ∈ Q; q → q′). In this case, Q is the set of nodes in the attack graph,
while → is determined by the edges and rules in the tree. A Labelled Transition
System (LTS) additionally possesses a set of labels (Σ), such that each transi-
tion is named with a label σ in Σ (q, q′ ∈ Q, σ ∈ Σ; q

σ−→ q′) [27]. The set of
labels is taken from the set of test patterns (i.e., possible actions) in the DSL. A
labeling function attributes a label σ to a transition using an associative array.
Once this LTS has been established, generating the abstract test case is trivially
conducted by traversing along the respective path in the LTS an collecting the
labels. The sequential set of collected labels (i.e., test patterns) automatically
constitutes a test scenario. In simple words, we use an attack tree to select ac-
tions needed for an test scenario out of the set of all available test patterns and

134 Paper IV

brings them into sequence. The way the DSL is currently structured, an action
can be identified by the tuple keyword (currently one of scan, exploit, and exe-
cute - the first two are to detect and attack devices, while the latter is a generic
keyword for auxiliary tasks) and type (which defines the action closer). There
are other attributes like interface, target, and shell, that depend on the action
type. More than one action can be necessary to change the state in an attack
tree (i.e. to traverse from one node to another). In this case the label attributed
to the transition contains both actions. As an abstract example, the transition
from access to a system to control of a system could require execute, escalate
privilege as an action from the DSL. Therefore the resulting transition in the
LTS would be As

xcep−−−→ Cs with As is the system access, Cs system control
and xcpe the execute (xc) privilege escalation (pe). A more concrete example
follows in the case study in Section 10.5.

The course of action to use the TARA results for test cases also allows for
prioritizing test cases, as attack paths can have calculated path costs (based on
CALs and TAFs). As perfect security is infeasible, a sufficiently secure system
can be defined as a system that does not exhibit an attack path with a cost
below a certain threshold. Through the test case generation, it can be verified
that relevant attack paths discovered through the threat modeling are mitigated
through the measures in the security concept and effectively blocked in the
implementation later.

The reason for using an LTS as a transition model is that it can be regarded
as a more powerful structure than a tree (a tree can be viewed as a subset of
an LTS in this regard) and can be easily converted into other structures like
Directed Acyclic Graphs or even a general directed graph (in case of allowed
loops needed), which makes it suitable as an internal structure. It can also
be practically used in a three-layered process in this application. First, the
attribution between tree edges and DSL actions (i.e., the labelling function)
must be established only once initially and if the base set of node types in the
TARA process or the possible actions in the DSL change (this happens rarely).
Second, the LTS generation (low effort if the labelling function is present)
must be done once, when an attack tree is generated or updated. Thirdly, the
test cases have to be generated based on selection of paths, defining an origin
(i.e. an entry point into the system) and a target is trivial, just collecting labels.

10.5 Case Study 135

10.5 Case Study

To practically demonstrate the approach, we give an example of a realistic use
case scenario. This use case has been practically tested using our test system.
It consists of a standard car model that possesses a single can bus with an after-
market infotainment system, running on Android, built in. The conducted test
was to manipulate the speed gauge using a wireless access an entry point. We
first created an architecture model using ThreatGet. The critical components
for the attack are the infotainment system, the CAN bus the attacked dash board
(including a screen) and a smart phone that is under the attacker’s control (i.e.,
it is the attacker’s smartphone) – see Figure 10.3. The threat analysis using the
tool yielded a list of 103 threats (using the STRIDE methodology [28]). Us-
ing the methodology in Section 10.4.2, we generate attack trees and respective
paths using different origin and destination points in the architecture diagrams
and the threat attributions along the way. One specific result of this process
is the attack tree in Figure 10.4. In this sequence, access to infotainment is
followed by control of the infotainment, which is succeed by control (imply-
ing access) to the dashboard. This enables to corrupt the integrity of displayed
information. This in practice means e.g., fake readings on the speed and RPM
gauges or similar things - including potential safety implications – Table 10.1
provides an overview of threats applicable to the display. Please note that those
apply directly to the display, while the attack tree allows for applying threats in-
directly not requiring direct access to the system. The key element is the CAN
bus, any device (also the cabin master control unit) connected to the (right)
CAN bus (cf. Figure 10.3) that is taken control of could be used to gain access
to the dashboard and manipulate the display under certain circumstances mod-
eled in the threat model and attack tree. The transitions between these items
have been matched with fitting action items from the DSL. To reach access to
the Infotainment from an initial state in the LTS, a wireless scan and already
an exploit (labels sBlueBorne and xpBlueBorne for scanning and executing a
BlueBorne attack, with s for a scan and xp for an exploit) has to be take as
actions. Please note that this is one of more possibilities to gain access, there
could be others. To gain control, we use the actions of opening a connection to
a remote hotspot using the access (xpOpenAndroidHotspot) and opening an An-
droid Debug (ADB) shell (xpOpenADB). The rest of the tree is a special case,
as the access to the Dashboard, its control and the data manipulation can occur
in one step by sending fake CAN messages. These messages are represented
by the different step can attack in the DSL (xpCanAttack). Figure 10.5 shows
the resulting attack description in the DSL. The steps immediately preceding

136 Paper IV

the CAN attack (install python env, install python lib, and attackScript) are
intrinsic, as these are just necessary steps to fulfill the last one. In that sense,
they can also be seen as part of gaining control over the infotainment, as it is
only after these three steps capable of carrying out the rest of the attack. The
concretization for a specific system eventually works by generating a JSON
code that contains executed environments and exploit code, as well as infor-
mation as CAN packet structures from a database or directly given information
from the tester as form of a grey-box test. This is out-of-scope of this paper and
already published elsewhere [12] in detail, but for the sake of the functioning
of the approach it should be briefly mentioned that the DSL items (i.e. Test
Patterns) are augmented with information from a systems database containing
information about the systems-under-test (partially pre-filled and completed by
a client in a grey box setting or penetration testers in a black box setting) with
the necessary information (e.g., pieces of code to exploit a certain software or
version, specific data of CAN messages to send, etc.). This is translated into
a JSON format containing an environment (e.g., BASH, Python, a framework
like Metasploit, etc.) and sent to an execution engine that is instrumented with
the SUT and calls the respective software tools tools to execute the concrete
attack.

10.6 Related Work

Threat modeling is an approach that responds to the increasing need to ad-
dress security concerns from the early phases of product development. The
popularity of threat modelling is reflected by a variety of available methods
and tools, ranging from open-source academic prototypes to full-fledged com-
mercial solutions. There are roughly speaking three categories of threat mod-
eling approaches. The first class of tools only allow manual modeling based
on Excel sheets and questionnaires [29]. Threat identification and mitigation
is identified without and automated reasoning support. The second class of
tools improves the modelling experience by providing a graphical modelling
environment but without a rigorous formal model [30, 31, 32, 33]. Finally,
the third class of tools are model-based system engineering solutions with an
underlying formal threat model and provide full support for automated threat
analysis [30, 31, 32, 33].

Attack trees [34] describe sophisticated attack patterns that capture se-
quences of basic attack steps and describe how these can be combined to reach
a target. Graphical modelling and analysis of attack trees is supported by sev-

10.6 Related Work 137

Table 10.1: Threats related to the display in the case study example
(MED=medium; MOD=moderate; SEV=severe)

Target Affected
Asset

Damage
Sce-
nario

Threat
Title

Category Impact
Cat.

Likel. Impact Risk

Touch-
screen

n/a n/a Tamper
through
ex-
ternal
ports

TAMPER-
ING

MED MOD 3

Touch-
screen

n/a n/a Physical
Tam-
per-
ing

TAMPER-
ING

MED MOD 3

Touch-
screen

Infor-
mation
Avail-
abil-
ity

Oper-
ational
im-
pact

Physical
Tam-
per-
ing

TAMP-
ERING

Oper-
ational

MED SEV 1

Touch-
screen

Infor-
mation
In-
tegrity

Oper-
ational
im-
pact,

Physical
Tam-
per-
ing

TAMP-
ERING

Oper-
ational

MED SEV 1

Touch-
screen

Infor-
mation
In-
tegrity

Safety
im-
pact

Physical
Tam-
per-
ing

TAMP-
ERING

Safety MED SEV 1

eral tools [35, 36]. Attack trees can be extended with additional attributes such
as possibility, cost, resources [34] or time [37]. Attack trees can be combined
with fault trees for a more integrated safety and security analysis or with de-
fender’s mitigation measures resulting in the attack-defence tree model [38].
Attack trees are complementary to the more static threat model and the rela-
tion between the two has been only seldomly investigated. Isograph Attack-
Tree [35] supports threat analysis and risk assessment from the attack tree,
following the relevant ISO standards. On the other hand, THREATGET allows
automatic generation of attack trees from threat analysis results [39].

The integration of the threat and attack tree modeling and analysis and test-
ing has not been sufficiently investigated in the literature. The only work that

138 Paper IV

we are aware of on this topic is about test generation from attack trees has been
studied in the context of the vehicle security in the automotive domain [40]. In
this paper, we propose a methodology that goes from threat modelling to the
generation of test cases, where attack trees are used as an intermediate step in
this process.

10.7 Conclusion
We described a method to automatically generate abstract test scenarios out of
a TARA using attack trees and LTSs. The main improvement of this method
is that these test scenarios can be derived from a process that is mandated by
a CSMS in a simple, automated, and resource-efficient way, which surpasses
manual test case generation while still maintaining targeted tests as a result.
The resulting scenarios can be further compiled into executable test cases with
very low effort once the details of the implemenation are known. We also
showed incorporation of CALs and TAF into a security analysis and testing
pipeline. These concepts define the level of thoroughness of testing as well as
providing a metric for the effectiveness of included safeguards. The required
formalization in this manifestation of a testing process is used to increase com-
pleteness and efficiency in security testing by using the products of formalized
steps in an automated process. Overall, this paper demonstrates a workflow
originating from CALs and a TARA, which results are used to generate test
cases in an automated manner (via attack tree generation). These tests can be
used at various stages of the life cycle and also determine TAFs in the practi-
cal implementation stages. Future work includes to utilize machine learning to
attribute the test patterns to attack tree edges (instead of a fixed function). This
allows for more flexible and experience-based test case generation.

Acknowledgements
This research has received funding within the ECSEL Joint Undertaking (JU)
under grant agreements No.101007326 (project AI4CSM) and No. 101007350
(project AIDOaRt). The JU receives support from the European Union’s Hori-
zon 2020 research and innovation program and Austria, Sweden, Spain, Italy,
France, Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey. The
document reflects only the author’s view, and the Commission is not responsi-
ble for any use that may be made of the information it contains.

Bibliography

[1] Upstream Security, “Upstream Security Global Automotive Cybersecu-
rity Report,” tech. rep., Upstream Security, 2020.

[2] United Nations Economic and Social Council - Economic Commission
for Europe, “UN Regulation on Uniform Provisions Concerning the Ap-
proval of Vehicles with Regard to Cyber Security and of Their Cyberse-
curity Management Systems,” Tech. Rep. ECE/TRANS/WP.29/2020/79,
United Nations Economic and Social Council - Economic Commission
for Europe / United Nations Economic and Social Council - Economic
Commission for Europe, Brussels, 2020.

[3] International Organization for Standardization and Society of Automotive
Engineers, “ISO/SAE PAS8475 (WIP) Road Vehicles – Cybersecurity
Assurance Levels and Targeted Attack Feasibility - SAE International.”
https://www.sae.org/standards/content/iso/sae%20pas8475/, 2022.

[4] International Organization for Standardization and Society of Au-
tomotive Engineers, “ISO/SAE PAS8477 (WIP) Road vehicles
- cybersecurity verification and validation - SAE International.”
https://www.sae.org/standards/content/iso/sae%20pas8477/, 2023.

[5] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner, “SA-
HARA: A security-aware hazard and risk analysis method,” in 2015 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
(Grenoble, France), pp. 621–624, IEEE, Mar. 2015.

[6] International Organization for Standardization, “Information security, cy-
bersecurity and privacy protection – Evaluation criteria for IT security
– Part 2: Security functional components,” ISO/IEC Standard 15408-
2:2022, International Organization for Standardization, 2022.

139

140 BIBLIOGRAPHY

[7] S. Marksteiner, N. Marko, A. Smulders, S. Karagiannis, F. Stahl,
H. Hamazaryan, R. Schlick, S. Kraxberger, and A. Vasenev, “A Process to
Facilitate Automated Automotive Cybersecurity Testing,” in 2021 IEEE
93rd Vehicular Technology Conference (VTC Spring), (New York, NY,
USA), pp. 1–7, IEEE, 2021.

[8] International Organization for Standardization and Society of Automo-
tive Engineers, “Road Vehicles – Cybersecurity Engineering,” ISO/SAE
Standard ”21434”, International Organization for Standardization, 2021.

[9] D. Ward, I. Ibarra, and A. Ruddle, “Threat Analysis and Risk Assess-
ment in Automotive Cyber Security,” SAE International Journal of Pas-
senger Cars-Electronic and Electrical Systems, vol. 6, no. 2013-01-1415,
pp. 507–513, 2013.

[10] C. Schmittner, B. Schrammel, and S. König, “Asset Driven ISO/SAE
21434 Compliant Automotive Cybersecurity Analysis with ThreatGet,”
in Systems, Software and Services Process Improvement (M. Yilmaz,
P. Clarke, R. Messnarz, and M. Reiner, eds.), Communications in Com-
puter and Information Science, (Cham), pp. 548–563, Springer Interna-
tional Publishing, 2021.

[11] C. C. Michael, K. van Wyk, and W. Radosevich, “Risk-Based and Func-
tional Security Testing,” tech. rep., U.S. Deparmtent of Homeland Secu-
rity, 2005.

[12] C. Wolschke, S. Marksteiner, T. Braun, and M. Wolf, “An Agnostic Do-
main Specific Language for Implementing Attacks in an Automotive Use
Case,” in The 16th International Conference on Availability, Reliability
and Security, ARES 2021, (New York, NY, USA), pp. 1–9, Association
for Computing Machinery, Aug. 2021.

[13] F. Cuppens and R. Ortalo, “Lambda: A language to model a database for
detection of attacks,” in International Workshop on Recent Advances in
Intrusion Detection, (Berlin, Heidelberg), pp. 197–216, Springer, 2000.

[14] C. Michel and L. Mé, “ADeLe: An Attack Description Language
for Knowledge-Based Intrusion Detection,” in Trusted Information
(M. Dupuy and P. Paradinas, eds.), IFIP International Federation for In-
formation Processing, (Boston, MA), pp. 353–368, Springer US, 2001.

BIBLIOGRAPHY 141

[15] M. Yampolskiy, P. Horváth, X. D. Koutsoukos, Y. Xue, and J. Szti-
panovits, “A language for describing attacks on cyber-physical systems,”
International Journal of Critical Infrastructure Protection, vol. 8, pp. 40–
52, Jan. 2015.

[16] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical combinatorial testing,”
SP 800-142, National Institute of Standards and Technology, 2010.

[17] A. Shostack, Threat Modeling: Designing for Security. Indianaplois, IN:
John Wiley & Sons, 2014.

[18] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and
attack tree visual syntax in cyber security,” Computer Science Review,
vol. 35, p. 100219, Feb. 2020.

[19] R. Sell, M. Leier, A. Rassõlkin, and J.-P. Ernits, “Autonomous Last Mile
Shuttle ISEAUTO for Education and Research,” International Journal of
Artificial Intelligence and Machine Learning, vol. 10, pp. 18–30, Jan.
2020.

[20] D. Eng, “Integrated Threat Modelling,” Master’s thesis, University of
Olso, 2017.

[21] T. R. Ingoldsby, “Attack tree-based threat risk analysis,” tech. rep., Ame-
naza Technologies Limited, 2021.

[22] M. S. Haque and T. Atkison, “An Evolutionary Approach of Attack Graph
to Attack Tree Conversion,” International Journal of Computer Network
and Information Security, vol. 9, pp. 1–16, Nov. 2017.

[23] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 Workshop on New
Security Paradigms, (New York, NY, USA), pp. 71–79, ACM, 1998.

[24] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–
29, 1999.

[25] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, (New York, NY, USA),
pp. 217–224, ACM, 2002.

142 BIBLIOGRAPHY

[26] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Technische Uni-
versität Darmstadt, 1962.

[27] R. M. Keller, “Formal verification of parallel programs,” Communica-
tions of the ACM, vol. 19, pp. 371–384, July 1976.

[28] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), (New York,
NY), pp. 1–6, IEEE, 2017.

[29] Tutamantic Ltd., “Tutamen threat model automator.” Online, 2020. Ac-
cessed: 2020-11-29.

[30] Foreseeti AB, “Foreseeti.” Online, 2020. Accessed: 2020-11-29.

[31] J. Was, P. Avhad, M. Coles, N. Ozmore, R. Shambhuni, and I. Tarandach,
“Owasp pytm.” Online, 2020. Accessed: 2020-11-29.

[32] M. E. Sadany, C. Schmittner, and W. Kastner, “Assuring compliance with
protection profiles with threatget,” in SAFECOMP 2019 Workshops, Lec-
ture Notes in Computer Science, (Berlin), pp. 62–73, Springer, 2019.

[33] K. Christl and T. Tarrach, “The analysis approach of threatget,” CoRR,
vol. abs/2107.09986, 2021.

[34] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Information
Security and Cryptology - ICISC 2005 (D. H. Won and S. Kim, eds.),
vol. 3935, pp. 186–198, Berlin, Heidelberg: Springer Berlin Heidelberg,
2005.

[35] Isograph, “Isograph attacktree.” Online, 2023. Accessed: 2023-10-03.

[36] Amenaza Technologies Limited, “Securitree.” Online, 2023. Accessed:
2023-10-03.

[37] J. Bryans, H. N. Nguyen, and S. A. Shaikh, “Attack defense trees with
sequential conjunction,” in 2019 IEEE 19th International Symposium
on High Assurance Systems Engineering (HASE), (Hangzhou, China),
pp. 247–252, IEEE, 2019-01.

[38] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Foundations of
attack–defense trees,” in Formal Aspects of Security and Trust (P. Degano,

BIBLIOGRAPHY 143

S. Etalle, and J. Guttman, eds.), vol. 6561, pp. 80–95, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. Series Title: Lecture Notes in Com-
puter Science.

[39] S. Chlup, K. Christl, C. Schmittner, A. M. Shaaban, S. Schauer, and
M. Latzenhofer, “THREATGET: towards automated attack tree analysis
for automotive cybersecurity,” Inf., vol. 14, no. 1, p. 14, 2023.

[40] M. Cheah, H. N. Nguyen, J. Bryans, and S. A. Shaikh, “Formalising
systematic security evaluations using attack trees for automotive appli-
cations,” in Information Security Theory and Practice (G. P. Hancke and
E. Damiani, eds.), vol. 10741, pp. 113–129, Cham: Springer International
Publishing, 2018. Series Title: Lecture Notes in Computer Science.

	mdu_titelsidor_L355
	240318_Licentiate_Thesis_Camera_Ready

