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Abstract

Collaborative model-driven software engineering addresses the complexities
of developing software systems by prioritizing models as core artifacts and
leveraging the collective expertise of diverse stakeholders. To effectively realize
this approach, the employed modeling environments must be equipped with
features that support and enhance collaboration. These environments should,
among other capabilities, provide support for multiple notation types, enabling
stakeholders to engage with models using their preferred notation or the notation
most appropriate for their tasks. Additionally, they should offer multiple views
and perspectives that allow stakeholders to interact with pertinent information
only, and implement access control mechanisms to ensure information security.
However, the adoption of these features can be challenging, partly because of
their resource-intensive and tedious development nature, as well as the necessity
for continuous updates to keep up with the evolution of modeling languages.

This doctoral thesis proposes a model-driven approach to address this chal-
lenge by facilitating the development of blended modeling environments featur-
ing multiple views and ensuring modeled information security. The proposed
framework leverages automation to reduce the manual effort and expertise tradi-
tionally required for i) the provision of synchronization mechanisms between
graphical and textual notations for blended modeling, ii) the provision of syn-
chronization mechanisms between view models and base model in multi-view
modeling, and iii) the consistent definition and enforcement of access permis-
sions. This research, therefore, lowers the barriers to adopting these collaborative
features by facilitating their development and evolution in face of changes to
underlying modeling languages.
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Sammanfattning

Samarbetsbaserad modelldriven mjukvaruutveckling hanterar utmaningarna med
att skapa komplexa mjukvarusystem genom att prioritera modeller som cen-
trala artefakter och dra nytta av det samlade kunnandet hos utvecklingsteamet.
För att detta ska fungera effektivt krävs att modelleringsmiljöerna är utrustade
med funktioner som främjar och förbättrar samarbete. Dessa miljöer bör bland
annat stödja olika typer av notationer så att olika användare kan arbeta med
modeller på det sätt som passar dem bäst för den specifika uppgiften. Dessu-
tom bör de erbjuda flera vyer som tillåter användarna att fokusera på relevant
information och implementera åtkomstkontrollmekanismer för att säkerställa
informationssäkerhet. Att införa dessa funktioner kan dock vara utmanande.

Denna doktorsavhandling presenterar ett modelldrivet ramverk som under-
lättar utvecklingen av samarbetsbaserade modelleringsmiljöer med flera vyer
och mekanismer för att implementera och upprätthålla informationssäkerhet.
Det föreslagna ramverket använder automatisering för att minska det manuella
arbetet och den expertis som vanligtvis krävs för i) att synkronisera mellan
grafiska och textuella notationer, ii) att synkronisera mellan vyer och den över-
gripande basmodellen vid flervymodellering, och iii) att konsekvent definiera
och verkställa åtkomstbehörigheter. Genom denna forskning minskas hindren
för att integrera dessa samarbetsfunktioner genom att underlätta deras utveckling
och se till att de hålls uppdaterade med de senaste modelleringsspråken.
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Chapter 1

Introduction

Collaborative Model-Driven Software Engineering (MDSE) emerges from the
understanding that the development of complex software systems, centered
around models as fundamental development artifacts, transcends the capabilities
of individual contributors [1, 2]. It acknowledges that a single individual cannot
encompass the breadth of expertise needed; instead, it thrives on the combined
efforts of individual stakeholders, each providing specialized skills and perspec-
tives [3]. Modeling environments serve as shared workspaces that facilitate the
collaborative efforts of the involved stakeholders. As such, they need to inte-
grate a set of features that embrace and foster diversity – spanning stakeholders’
expertise, perspectives, roles, and preferences – and enhance collaboration [4].

This diversity is particularly evident in the various notations (e.g., graphical
and textual) employed by stakeholders to interact with the model, a reflection of
personal preferences, expertise, or the notation’s suitability for specific tasks.
To accommodate these differences, there is a need for blended modeling en-
vironments [5] that support multiple notations, allowing every stakeholder to
contribute effectively [6]. Moreover, stakeholders require tailored perspectives
and views on the model to focus on pertinent information while obscuring irrele-
vant details [7]. The decision to provide specific views is intertwined with the
stakeholders’ roles, expertise, responsibilities, and specific information needs.
This method of tailoring access to only the essential parts of the model not
only enhances efficiency and clarity for the stakeholders but also acts as an
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initial layer of information security by limiting information exposure. However,
this layer is simply the beginning, since the collaborative nature of working on
shared models demands fine-grained access control mechanisms. These can aid
in preventing unintentional or unauthorized changes that could jeopardize the
model’s confidentiality and the integrity carried by it [8].

While a recent study by David et al. [9] acknowledges the need for these
capabilities by industrial practitioners in collaborative settings, it also highlights
a gap between need and actual adoption by practitioners. This gap can partly
stem from the challenges associated with the development of these capabilities,
which is not only time- and resource-intensive, but also fraught with potential
errors and technical complexities. Unlike generic tool enhancements that apply
broadly to modeling environments, these features are intertwined with the
underlying modeling languages. This necessitates development efforts tailored to
each specific language and for any alterations to the language itself necessitates
subsequent modifications to these features, further exacerbating the challenge.

To address this gap, in this doctoral thesis, we propose a model-driven
approach that facilitates the development of blended modeling environments fea-
turing multiple views and enforcing modeled information security. The approach
is implemented as a framework that leverages automation to provide the core
building blocks of this kind of modeling environment. More specifically, this
includes i) support for the automatic provision of synchronization mechanisms
between graphical and textual notations in blended modeling, ii) support for the
automatic provision of synchronization mechanisms between view models and
base model in multi-view modeling, and iii) support for the consistent definition
and automatic enforcement of access permissions. By automating the provision
of these mechanisms, the framework streamlines the development process of
the aforementioned collaborative capabilities and their continuous evolution for
arbitrary modeling languages. As such, it lowers the barriers to their adoption,
encouraging their use in collaborative MDSE initiatives.

Thesis outline: This doctoral thesis is structured in two parts. Part I serves as
an overview to the thesis, structured in the following manner. Chapter 2 discusses
the background and related work. Chapter 3 describes the research problem and
motivation, introduces the research goals, and presents the research methodology
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employed. Chapter 4 presents the contributions and papers included in this thesis.
Chapter 5 reflects on the research goals and on the collective advantages and
limitations of the corresponding contributions, paving the way for a broader
understanding of their impact. Chapter 6 concludes Part I by summarizing the
key findings and drawing conclusions. Part II includes the collection of included
papers.





Chapter 2

Background and related work

In this chapter, we provide the background for the work presented in this thesis
together with a list of related works that aid in understanding the concepts used
throughout this thesis.

2.1 Model-driven software engineering

Model-Driven Software Engineering (MSDE) is a software engineering ap-
proach that addresses the complexity of software systems by shifting the fo-
cus of software development from code-driven approaches to model-driven
approaches [10]. The core principle of MDSE is to leverage abstraction for
constructing models that describe software systems and based on these models,
employ automation to derive the actual software. Models are considered first-
class entities and are the backbone of the entire MDSE process. They provide
an abstract representation of a software systems and enable individuals to focus
on essential aspects of complex problems by omitting those irrelevant to their
specific application. Other important artifacts, such as code and documentation,
can be produced automatically from these models, relieving developers from
issues such as underlying platform complexity or the inability of third-generation
languages to express domain concepts.

MDSE typically utilizes a four-layer hierarchical metamodeling architecture,
as illustrated in Figure 2.1, to delineate the relationship among four key levels:
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object, model, metamodel, and meta-metamodel. The M0 layer, also known
as the instance layer, represents the lowest level of abstraction and it contains
instances of the software system being modeled or broadly refered to as objects.
The M1 layer contains models that are abstractions of the artifacts at the M0 layer.
They serve to simplify and clarify the system by focusing on relevant aspects and
omitting unnecessary details. Multiple models can represent a single software
system, each emphasizing different characteristics or levels of detail. The M2

layer contains metamodels that define the syntax and semantics of the models at
the M1 layer. The M3 layer, the highest level of abstraction in the stack, contains
the meta-metamodel, which is a model that defines the structure and semantics
of metamodels at the M2 layer. The meta-metamodel is essentially the language
or framework used to define metamodels. It is self-descriptive, meaning the
meta-metamodel conforms to itself. Several metamodeling frameworks have
been proposed with two of the most widely used ones being the OMG Meta
Object Facility (MOF)1 with the UML metamodel that defines the structure
and semantics of the Unified Modeling Language 2, and the Eclipse Modeling
Framework (EMF) 3 with the Ecore metamodel.

Figure 2.1. The four-layer metamodel architecture

1https://www.omg.org/spec/MOF/2.5.1/PDF
2https://www.omg.org/spec/UML/2.5.1/PDF
3https://eclipse.dev/modeling/emf/

https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://eclipse.dev/modeling/emf/


2.1 Model-driven software engineering 9

2.1.1 Modeling languages

There are broadly two categories of modeling languages: general-purpose and
domain-specific [11]. General-purpose modeling languages, such as UML and
Java, are designed to address a broad range of problems. They offer versatile
constructs that facilitate modeling across a variety of domains. In contrast,
domain-specific modeling languages (DSMLs) are tailored for specific domains,
offering a more focused set of language constructs. The use of DSMLs has
the advantage of having a concise and tailored language that engineers can
more easily understand, thus providing expressive power limited to a particular
domain [12]. For instance, while state machines can be implemented in general-
purpose programming languages such as C, the process is often tedious and
error-prone since it involves lower-level abstractions and potentially even the
need for syntactic tricks. The alternative is to define state machines using
a DSML designed specifically for this purpose, containing concepts such as
states and transitions, which is more concise and less likely to result in errors.
As detailed in Figure 2.2, a DSML is composed of three main components:
abstract syntax, concrete syntax and semantics. The abstract syntax which
can be represented by a metamodel defines the underlying structure of the
language without considering its visual representation, essentially describing the
conceptual entities of the domain and their relationships. The concrete syntax
refers to the notation or representation of the language, which can for instance
be textual or graphical, allowing users to interact with and represent models
in a way that is understandable and intuitive within the domain. Semantics
give meaning to the constructs defined by the abstract syntax, dictating how
models in the DSML are to be interpreted or executed, and are categorized into
denotational, operational, translational, or pragmatic [13].

2.1.2 Model transformations

As defined by Kleppe et al. [14], a model transformation can be described as the
automated process of generating a target model from a source model based on a
predefined transformation definition. The transformation definition consists of a
set of rules that dictate how a model in the source language should be transformed
into a model in the target language. Each transformation rule describes how



Figure 2.2. Structure of domain-specific modeling languages

one or more constructs in the source language should be transformed into one
or more constructs in the target language. To illustrate these concepts, refer to
the transformation pattern depicted in Figure 2.3. The transformation definition
conforms to a specific transformation language and outlines a series of rules
governing the translation of constructs from metamodel A to metamodel B. A
transformation engine utilizes the transformation definition along with model A
as inputs. It then applies the specified rules from the transformation definition
to execute the transformation, resulting in the generation of model B. Model
transformations can be classified in various ways, depending on their distinct
characteristics [15].

Abstraction levels. When considering the abstraction levels of the source
and target models, these transformations are divided into two types: horizontal
model transformations, in which the source and target models are on the same
level of abstraction, and vertical model transformations, where the source and
target models are at different levels of abstraction.

Source and target language. When considering the language in which the
source and target models of a transformation are expressed, the transformations
can be categorized into endogenous transformations between models expressed
in the same language, and exogenous transformations between models expressed
in different languages.
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Figure 2.3. Transformation pattern

Target model. Based on where the transformation results are stored relative
to the source model, model transformations can be categorized into in-place and
out-place transformations. In in-place transformations, the changes are applied
directly to the source model. This approach is typically used when the model
needs to be updated or optimized without the necessity of keeping the original
version intact. On the other hand, out-place transformations create a new target
model separate from the source model, leaving the source model unchanged.

Type of source and target. Based on the type of source and target, model
transformations can also be classified into three main categories namely, model-
to-model (M2M), model-to-text (M2T) and text-to-model (T2M) transforma-
tions [16].



- Model-to-text. M2T transformations convert one or more models into
textual representations, including but not limited to source code in languages
such as C++ or Java, as well as various forms of configuration files.

- Text-to-model. Conversely, T2M transformations process textual inputs,
such as strings of characters, and convert them into structured models.

- Model-to-model. M2M transformations translate between source and
target models. They can follow either a declarative, imperative, or hybrid ap-
proach. Declarative approaches such as Query/Views/Transformation Relational
(QVT-R) 4 emphasize defining relationships between elements in the source and
target models without specifying an order of execution, whereas imperative ap-
proaches such as Query/Views/Transformation Operational (QVT-O 4 emphasize
specifying how the transformation should be executed by specifying the order of
the transformations. Alternatively, hybrid approaches such as Atlas Transforma-
tion Language (ATL) [17] combine both declarative and imperative constructs.
Additionally, depending on the direction of the propagation of changes, M2M
transformations can be categorized as unidirectional or bidirectional.
Bidirectionality can be achieved either by combining a pair of separate unidi-
rectional transformations, or by using languages and approaches that support
the definition of bidirectional transformations. For the latter, one approach is
using QVT-R, the declarative language of the comprehensive QVT specifica-
tion 4 introduced by the Object Management Group (OMG)5. QVT-R has been
applied to several case studies[18, 19], but while it provides many interesting
and promising features, the language has not been adopted widely [20]. Tools
like Medini 6, ModelMorf 7, and QVT Declarative 8 represent implementations
of QVT-R; however they support the standard only partially so far [20, 21].
A comparison between QVT-R and QVT-O [22] points out that while QVT-
R supports bidirectional transformations, there exists certain ambiguity about

4https://www.omg.org/spec/QVT/1.2/PDF/
5https://www.omg.org
6http://projects.ikv.de/qvt/wiki
7https://web.archive.org/web/20120323171429/http://www.

tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
8https://projects.eclipse.org/projects/modeling.mmt.qvtd

https://www.omg.org/spec/QVT/1.2/PDF/
https://www.omg.org
http://projects.ikv.de/qvt/wiki
https://web.archive.org/web/20120323171429/http:%20//www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://web.archive.org/web/20120323171429/http:%20//www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://projects.eclipse.org/projects/modeling.mmt.qvtd
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whether QVT-R is able to specify and support non-bijective transformations [23].
On the other hand, QVT-O, while supporting only unidirectional transforma-
tions provides better control over the transformation process. Since QVT-O
is similar to modern object oriented languages and imperative programming
is more common, developers find it easier to adopt and work with. Another
approach for defining bidirectional transformations is using Janus Transforma-
tion Language (JTL) [24]. JTL is a declarative model transformation language
specifically tailored to support bidirectionality and change propagation even
for non-bijective transformations. It employs a QVT-R like syntax language
and uses logic programing [25] – more specifically, Answer Set Programming
(ASP) – to generate a set of possible target models. The target models are gener-
ated from scratch, hence it does not provide incrementality. Due to supporting
non-bijective transformations, multiple target models may be generated, leaving
users to choose from the proposed solutions. However, the vast number of
potential target models, which could be infinite, poses a significant challenge.
Latest version of the JTL tool 9 dates back to 2019.
Triple Graph Grammars (TGGs) [26] are another formalism for defining bidirec-
tional transformations. The basic idea behind TGGs is to interpret source and
target models as graphs and have a correspondence graph whose nodes reference
corresponding elements from both source and target graphs, respectively. TGGs
describe model transformations in a highly declarative way. The rules them-
selves do not contain any information about a transformation direction. However,
while triple graph grammars are in theory a natural choice for the realization
of bidirectional model transformation, in practice the required correspondence
specification can be quite complex, especially for non-bijective transforma-
tions. Moflon 10 is a tool capable of generating Java programs starting from
diagrammatic specifications of graph transformations. The generated code real-
izes two separate unidirectional transformations which as in other bidirectional
languages should be consistent by construction. While the forward transfor-
mation implementation in Moflon can be considered complete with respect to
the transformation specification, the backward program restricts the change

9https://github.com/MDEGroup/jtl-eclipse/releases/tag/v0.3.0.
2019

10https://github.com/eMoflon

https://github.com/MDEGroup/jtl-eclipse/releases/tag/v0.3.0.2019
https://github.com/MDEGroup/jtl-eclipse/releases/tag/v0.3.0.2019
https://github.com/eMoflon


propagation to attribute updates and element deletions; hence, is restricted to
contexts where the transformation can exploit trace information [24]. Other
tools implementing TGGs are TGG-Interpreter 11, Henshin TGG 12, MoTE 13,
Atom3 14, and EMorf 15. A detailed comparison of Moflon to other TGG tools
can be found in the survey by Hildebrandt et al.[27]. A comparison between
QVT-R, JTL, and TGGs can be found in the comparative study by Samimi et
al.[28].
Lenses [29] are another approach for defining bidirectional transformations. In
asymmetric lenses, one of the structures is always a view of the other. Asym-
mentric lenses consist of two types of functions: i) get, which returns the view
when applied to a source, and ii) put which restores a modified view into existing
source. Since asymmetric lenses are restricted to scenarios where one of the two
models to be synchronized is an abstraction of the other, they do not seem to be
flexible enough for the general MDE setting. In symmetric lenses, each of the
two models may contain information that is not present in the other [30], a more
common scenario in MDE settings. Symmetric lenses consist of putr – which
transfers information from left to right — and putl – which transfers information
from right to left – functions.
In contexts where non-bijective mappings are present, employing bidirectional
transformations using the aforementioned techniques becomes particularly chal-
lenging. This complexity arises because these methods generally assume a
one-to-one correspondence between elements in the source and target models.
However, when mappings are non-bijective, it can be difficult to determine
unique counterparts for certain elements, complicating the reverse transforma-
tion process. This ambiguity can lead to issues in correctly restoring original
states or propagating changes effectively, thereby undermining the reliability
and predictability of the transformation system [23].

Besides the main three categories of the aforementioned model transforma-
tions, a distinct category of transformations known as Higher-Order Transfor-
mations (HOTs) [31], involves model transformations wherein the input and/or

11http://jgreen.de/tools/tgg-interpreter/
12https://projects.eclipse.org/projects/modeling.emft.henshin
13https://www.hpi.uni-potsdam.de/giese/update-site/
14http://atom3.cs.mcgill.ca/
15http://emorf.org/index.html

http://jgreen.de/tools/tgg-interpreter/
https://projects.eclipse.org/projects/modeling.emft.henshin
https://www.hpi.uni-potsdam.de/giese/update-site/
http://atom3.cs.mcgill.ca/
http://emorf.org/index.html
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output models are transformation models themselves. HOTs are used to harness
the power of transformations by utilizing them as objects. Consider, for instance,
the QVTo metamodel. A QVTo model transformation can be viewed as a model
adhering to the QVTo metamodel. HOTs can either utilize this QVTo model
transformation as input, generate it as output, or perform both operations.

2.1.3 Mapping modeling languages

A mapping modeling language (MML) refers to a structured and formalized
means for specifying mapping correspondences between model elements. A
mapping model is an instantiation of the MML, incorporating the mapping rules
that encapsulate the correspondences between elements of the mapped models.
These mapped models can range from terminal models to metamodels, and
even meta-metamodels. Here, we focus on metamodels as mapped models.
The term mapping model is sometimes used interchangeably with the term
weaving model [32], even though the links defined in weaving models typically
offer richer semantics. To readers unfamiliar with these concepts, mapping and
weaving models might appear akin to model transformations; however, they
fundamentally differ in their roles and applications within the model-driven
engineering process. Mapping models are essentially declarative specifications
that describe how elements from one model (the source) relate to elements in
another model (the target). These mappings are used to define correspondences
and relationships between different models, usually at a high level of abstraction.
They do not, by themselves, execute to generate the target model from the source
model. On the other hand, model transformations are the mechanisms through
which models are automatically converted from one form to another. They are
executable specifications that define how a source model is to be processed and
transformed into a target model. This involves a set of rules or algorithms that
specify how elements in the source model are to be matched, manipulated, and
generated in the target model. Model transformations are, therefore, executable
and can be directly applied to automate the generation of target models from
source models, based on the transformation definition.

Mapping and weaving models are frequently utilized to streamline the
generation of model transformations, as the established correspondences within
these models guide the transformation definition. The Atlas Model Weaver



(AMW) serves as a notable example of a tool that leverages this process [33,
34, 35, 36] within EMF. AMW supports the definition of relationships, or links,
between two metamodels, and the generation of model transformations that
adhere to the syntax and semantics of the ATL language. These links are
stored in a model known as a weaving model, which is created according to a
weaving metamodel. AMW uses element-to-element and structural methods to
support the automatic creation of weaving models. Element-to-element methods
calculate similarity values between elements of input models, pairwise, using
string similarity and dictionary of synonyms, while structural methods use
internal properties and element relationships. The defined weaving links can
be unidirectional or bidirectional. Bidirectional links can be used to generate
both the forward and backward transformations. While this can simplify the
initial design since it encapsulates the transformation logic for both directions in
one place and can be sufficient for simple and straightforward correspondences,
when the transformation logic is complex bidirectionality is a desirable feature
but can prove to be complex [33]. A dedicated weaving model for each direction
can provide more control and clarity, especially when dealing with non-bijective
correspondences. Although this might initially require more effort to set up
and maintain, it provides clearer separation. Changes in one direction do not
automatically affect the other, which can be relevant if different aspects evolve
at different rates or in different ways. Moreover, having a dedicated weaving
model can support reuse, as it can be reused in different contexts where only
one direction is needed.

Regardless of how they are defined – manually, automatically, or semi-
automatically – or their specific applications, mapping modeling languages offer
numerous advantages that streamline and improve the engineering process. By
offering high-level abstractions, these languages condense complex technical
specifics into simpler, more manageable concepts. Such simplification plays a
critical role in democratizing the engineering process, enabling participation
from non-technical stakeholders. This inclusivity not only fosters broader col-
laboration but also enriches decision-making by integrating diverse perspectives.
Furthermore, mapping modeling languages significantly contribute to knowl-
edge preservation within organizations. By documenting the information in a
clear, abstracted manner, they create a repository of knowledge that is easier
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to understand, update, and transfer between teams and workers. Moreover, the
inherent reusability of mapping models underpins their value; they can be repur-
posed across various contexts with minimal adjustments, emphasizing efficiency
and adaptability. This versatility is key to achieving sustainable engineering
practices.

2.2 Blended modeling

Ciccozzi et al. [5] formalize the use of multiple modeling notations as blended
modeling and define it as:

the activity of interacting seamlessly with a single model (i.e., ab-
stract syntax) through multiple notations (i.e., concrete syntaxes),
allowing a certain degree of temporary inconsistencies.

Blended modeling focuses on the provision of multiple concrete syntaxes,
or simply notations, for a non-empty set of abstract syntactical concepts. As
a result, it is designed to accommodate a variety of notations, each of which
is designed to meet specific modeling requirements; in this work, we focus on
graphical and textual notations, but the theories and tools presented could be
applied to virtually any combination of concrete syntaxes. The advantages of
blended modeling include the ability to switch seamlessly between graphical
and textual notations at any stage of the modeling process; thus, stakeholders can
choose the appropriate notation based on their experience and task at hand. Aside
from leveraging the individual benefits of both graphical and textual notations,
the ability to visualize and edit the same information simultaneously through
synchronized notations allows for flexible separations of concerns, improved
interdisciplinary communication, and faster modeling activities.

Several methods and tools appear to offer blended modeling capabilities
at first glance. However, many of these tools, including but not limited to
FXDiagram 16, MetaUML 17, and PlantUML 18 primarily utilize textual notation

16https://jankoehnlein.github.io/FXDiagram/
17https://github.com/ogheorghies/MetaUML
18https://plantuml.com
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for model interaction, using graphical notation merely for visual representation.
Some tools such as QuickDBD 19 and DBDiagrams 20 provide limited editing
features in their graphical editors. Others support interactions through both
textual and graphical notations; however, these are typically specific to certain
modeling languages, often designed exclusively for UML and its profiles [6, 37,
38]. In hybrid modeling, some parts of the model are expressed with a graphical
syntax, while others with a textual syntax, all atop a single abstract syntax [39].
Projectional approaches such as JetBrains MPS21 and Melanee 22 can also be
mistaken for blended modeling. However, since in projectional approaches
the abstract syntax tree (AST) is modified directly upon every editing action
and bypasses the stages of the parser-based approaches, in terms of textual
notations, projectional modeling tools only imitate the behavior of parser-based
textual editors. An in depth investigation of these tools and others can be found
in our systematic literature review for blended modeling in commercial and
open-source model-driven software engineering tools [40].

The main implication of the definition of blended modeling [5] is that it
assumes a single abstract syntax supported by multiple concrete syntaxes. While
this approach proves effective in specific contexts, it can lead to limitations in
others, where the adoption of multiple abstract syntaxes (one for each concrete
syntax) can offer significant advantages for the following reasons:

• Enhanced customization: When each concrete syntax is paired with its
own dedicated abstract syntax, the definition and management of the
concrete syntax becomes more straightforward and efficient. This pairing
allows for a higher level of syntax-specific customization, ensuring that
the concrete syntax can be finely tuned to meet specific user requirements.
This is crucial because notations are designed to be highly adaptable to
diverse users’ needs, serving different purposes and varying levels of
detail. Attempting to force a single abstract syntax to support different
notations can lead to compromises in customization and usability.

19https://www.quickdatabasediagrams.com/
20https://dbdiagram.io/d
21https://www.jetbrains.com/mps/concepts/
22https://melanee.org/about/

https://www.quickdatabasediagrams.com/
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• Avoidance of syntactical pollution: In practice, different users may require
different notations of the same type to highlight various aspects of the
same modeling concepts, tailored to their unique needs. By allocating
a dedicated abstract syntax for each notation, we avoid the syntactical
pollution that occurs when one abstract syntax is stretched to accommo-
date multiple notations, not considered during the initial definition of the
abstract syntax. This pollution can dilute the clarity and effectiveness
of the notations, making them less intuitive and harder to use for their
intended audiences.

• Existing modeling landscape: The landscape of modeling languages
reveals a proliferation of notation-specific DSMLs that formalize overlap-
ping aspects of the same underlying language. These DSMLs accommo-
date the diverse needs of various communities, stakeholders, and purposes.
Consequently, it becomes evident that prevailing modeling practices often
deviate from the conventional notion of blended modeling supporting
the definition of multiple concrete syntaxes atop a single abstract syntax.
Instead, specific instances arise where the definition of multiple abstract
syntaxes becomes imperative to effectively cater to the varied range of
notations and stakeholders. Therefore, when implementing blended mod-
eling approaches, it is crucial to acknowledge and address these nuanced
scenarios, given their prevalence in current modeling contexts.

Considering these arguments, it becomes evident that incorporating multi-
ple abstract syntaxes into blended modeling frameworks can yield significant
benefits. However, this adoption necessitates certain adjustments, foremost
among them being the synchronization infrastructure. In conventional blended
modeling practices, a prevalent strategy involves employing multiple editors
(e.g., graphical and textual) to interact with a single model. For example, Obeo
and Typefox have explored the integration of Xtext and Sirius 23, where users
can opt to edit the model either graphically or textually, based on the suitability
for editing specific model elements. Model editing is facilitated through two
distinct editors: the Sirius graphical editor and the Xtext textual editor. Notably,

23https://www.obeodesigner.com/resource/white-paper/
WhitePaper_XtextSirius_EN.pdf
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modifications made and saved in one editor are automatically synchronized with
the other editor, thanks to built-in synchronization mechanisms. In blended
modeling solutions integrating multiple abstract syntaxes, this synchronization
infrastructure proves inadequate, as synchronization must occur at the abstract
syntax level. Hence, blended modeling solutions integrating multiple abstract
syntaxes necessitate the establishment of synchronization mechanisms between
all the various abstract syntaxes, potentially through model transformations.
In other words, integrating multiple abstract syntaxes can lead to challenging
solutions, at least from a technical perspective.

2.3 Multi-view modeling

The necessity for multi-view modeling (MVM) in software engineering is fun-
damentally driven by the inherent complexity of large-scale software systems.
Such systems present challenges that cannot be effectively addressed through
a single model [41]. Such a model tends to be either overly simplified, miss-
ing essential details, or overly complex, becoming hard to manage and un-
derstand. Multi-view modeling provides tailored views that cater to varied
domain-specific concerns and offer perspectives that align with the expertise
and goals of individual stakeholders [42]. The core of multi-view modeling lies
in the viewpoint/view/model paradigm, as formalized by the ISO/IEC 42010
standard [43]. A viewpoint defines a particular abstraction framed by a specific
set of constructs and principles, aimed at addressing particular concerns within
a system. As such, it dictates the conventions, such as notations, languages, and
types of models, essential for developing views. In the context of MDSE, a
viewpoint is represented by a metamodel, as illustrated in Figure 2.4, which is a
subset of the base metamodel upon which the viewpoint is established. A view
materializes from applying a viewpoint to a specific system-of-interest and is
represented through one or more models, each an instantiation of the metamodel
that represents the viewpoint.

As the different viewpoints in multi-view modeling represent the same sys-
tem to be modeled, requirements for managing synchronization and consistency
amongst the views are inherent. The synchronization approaches are primar-
ily dependent on the construction approach of the viewpoints/views [7]. The



2.4 Access control 21

Figure 2.4. Relationship between viewpoint/view to metamodel/model

synthetic approach implements each view as a separate metamodel, with the
overall system being obtained as a synthesis of information carried by the vari-
ous views [44]. Here, it becomes imperative to carefully define the interactions
between viewpoints/views to ensure synchronization. Yet, as views increase,
maintaining synchronization becomes progressively challenging. Moreover,
the addition or modification of views necessitates a revision of synchronization
processes. In contrast, the projective approach offers users virtual views made up
of selected concepts from a single base metamodel [45]. This ensures automatic
synchronization, as manipulations are centralized to one single model. However,
it demands a well-defined base language semantics and limits customization
due to a static base language and predefined views. The hybrid approach [46]
merges the strengths of both synthetic and projective aproaches. It facilitates
view definitions on a base metamodel (resembling the projective approach), but
these views manifest as distinct metamodels (similar to the synthetic approach).
This ensures inherent synchronization during view definition, alongside the
flexibility of introducing views at any development stage.

2.4 Access control

Access control is a fundamental aspect of information security that governs how
access to information is granted or denied within an organization or a system. It
is designed to ensure that only authorized users, systems, or processes obtain



access to the resources they need while preventing unauthorized access. Access
control mechanisms are crucial for protecting sensitive information, maintaining
data integrity, and ensuring compliance with regulatory standards [47].

Access control operates fundamentally through two key processes being
authentication and authorization. Authentication involves the verification of a
user’s credentials to confirm their identity. This process requires users to present
valid credentials, which are then cross-referenced against a pre-existing database
to authenticate their identity. This ensures that only authenticated individuals
gain access to designated resources. Authorization involves determining the
scope of access and permissible actions for authenticated users. It is governed by
access control policies, which encompass rules that define the levels of access
granted to various resources [48].

Access control policies are typically categorized into discretionary access
control (DAC) policies and non-discretionary access control (NDAC) poli-
cies [49]. DAC policies grant the owner of the resource, the autonomy to
control other users’ accesses to the resource. For instance, services such as
Google Drive 24 enable file or folder owners to distribute access to others by
assigning specific permissions, like the ability to edit or view, which can be
adjusted or withdrawn when needed. NDAC policies are characterized by rules
that users cannot modify at their discretion. Instead, these policies enforce
controls that can only be altered through central administration. This model is
particularly apt for scenarios necessitating rigorous security and hierarchical
access controls, such as in Amazon Web Services (AWS) Identity and Access
Management (IAM) 25, where access is managed centrally using predefined
policies and roles [49, 50].

NDAC policies are essential in complex software systems owing to their
ability to enhance security by centralizing access control, allowing only ad-
ministrators to modify or restrict access. Examples of NDAC policies are
multi-level security (MLS), role-based access control (RBAC), attribute-based
access control (ABAC), and separation of duty (SoD) [49]. Even though RBAC
is technically a form of NDAC, many computer security texts, list it as one of
the three primary access control policies, with the other two being DAC and

24https://www.google.com/drive/
25https://aws.amazon.com/iam/
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NDAC. In RBAC, user access is determined by their organizational roles, with
privileges organized by role [51]. This approach simplifies security management
and policy enforcement by tying access rights to roles rather than individuals.
Roles, reflecting users’ skills and duties, dictate allowable actions and can be
adjusted or reassigned to accommodate changes in responsibilities or organiza-
tional needs. This method streamlines privilege management, allowing for easier
updates to access rights without modifying each user’s settings individually [50].

2.5 UML real-time profile

UML Real-Time (UML-RT) profile is a real-time profile that aims to simplify
complex software architecture specification for real-time embedded systems.
The UML-RT concepts are inherited from those defined in the Real-Time Object-
Oriented Modeling Language (ROOM) [52], and are represented using UML
extensibility mechanisms. UML-RT enables both structure modeling and behav-
ior modeling of real-time systems [53]. The structural part is represented using
composite structure diagrams, whereas the behavioral part is represented using
state machine diagrams. The fundamental concepts of UML-RT are capsules,
which are encapsulated active entities that can be run in parallel. UML-RT relies
on state machines for the modeling of capsules’ behavior. In the case of a miss-
ing state machine, the capsule only operates as a container for other sub-capsules.
A behavioral state machine in UML-RT is composed of states, pseudostates, and
transitions. States can be simple or composite, and the presence of composite
states results in a hierarchical state machine. Pseudostates consist of the initial
pseudo state that acts as the starting point of the state machine, and choice and
junction pseudostates where guards on outgoing transitions determine which
one to execute next. The remaining pseudostates (i.e., entry, exit, and history)
are only used in hierarchical state machines. The entry and exit pseudostates are
used to enter and exit composite states, while the history pseudostate is used to
invoke the last active state prior to the exit of the composite state. Transitions
indicate a change of state and can contain triggers that initiate transitions in
the form of events, guard conditions that must be evaluated to be true for the
initiation of the transition, and effects.





Chapter 3

Research overview

In this chapter, we introduce the research problem and motivation, the research
goals of the thesis, and the research methodology that guided our research
efforts.

3.1 Research problem and motivation

The motivation for this research work is rooted in the recognition of the chal-
lenges associated with the development of blended modeling environments
featuring multiple views and enforcing information security.

On the one hand, blended and multi-view modeling requires robust synchro-
nization mechanisms to ensure change propagation across different notations
or views. In blended modeling, any modification in one notation must be
seamlessly propagated to the others. Establishing the required synchroniza-
tion mechanisms can be a technically demanding and challenging process [6].
This makes the development and maintenance costly and labor-intensive, es-
pecially when modeling languages evolve. Similarly, multi-view modeling,
which provides multiple views for different concerns, faces synchronization
challenges [54]. Each new view necessitates a specific synchronization setup to
reflect changes consistently across the base model and the existing views. This
manual process is challenging and it discourages the addition of views.

On the other hand, given the heterogeneous pool of stakeholders and the

25



varying sensitivity of modeled information, the meticulous definition and imple-
mentation of fine-grained access permissions is indispensable. Yet, manually
defining and managing these permissions – ensuring they are non-conflicting
and enforced at all times – is a daunting task. It introduces risks of human
error, inconsistency, and scalability challenges. Maintaining security, ensuring
compliance, and managing access becomes increasingly difficult and prone to
errors [51]. Furthermore, each permission alteration may need to re-iterate the
entire process, exacerbating the challenge, particularly due to the frequent nature
of such changes.

Effective solutions to tackle these challenges are imperative for facilitating
the development and supporting the adoption of blended modeling environments
featuring multiple views and enforcing information security.

3.2 Research goals

In light of the outlined research problem and motivation, this research aims at
achieving the following overall research goal.

Overall Research Goal (RG): To facilitate the development of blended model-
ing environments featuring multiple views and enforcing information security.

The overall research goal is decomposed into the following three subgoals,
each focusing on specific aspects.

- Research Subgoal 1 (RSG1): To identify and investigate the current
state-of-the-art and -practice on blended modeling solutions in com-
mercial and open-source MDE tools.

This subgoal aims to systematically identify and analyze the current
state-of-the-art and practical implementations of blended modeling so-
lutions in commercial and open-source modeling tools. This involves
assessing existing tools closest to blended modeling, focusing on the user-
oriented characteristics relevant to a user of a blended modeling tool and
realization-oriented characteristics relevant to a developer of a blended
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modeling tool. This clarifies assumptions and limitations of existing tools,
their effectiveness in delivering blended modeling capabilities, and best
practices. With this assessment, we can identify gaps and direct the future
development of blended modeling tools.

- Research Subgoal 2 (RSG2): To provide support for the automatic
provision of synchronization mechanisms for blended and multi-view
modeling environments.

This subgoal aims to provide support for the automatic provision of
synchronization mechanisms for blended and multi-view modeling en-
vironments for arbitrary Ecore-based DSMLs. Our research focuses on
blended modeling environments, where each notation represents a specific
abstract syntax, requiring that synchronization is defined at the level of
the abstract syntax (i.e., between metamodels). This principle also applies
to multi-view modeling. Given the implications of the hybrid approach,
where each view is represented as a separate metamodel, synchronization
must similarly be defined at the abstract syntax level.

The solution should support two main scenarios. For blended model-
ing, it should support scenarios where metamodels might conceptually
completely overlap, partially overlap, or have no overlap. As long as
viable mappings between all concepts of the involved metamodels can be
established, the solution should generate the necessary synchronization
mechanisms. For multi-view modeling, the solution should support the
generation of synchronization mechanisms in scenarios where one meta-
model acts as a subset of a more extensive one.

- Research Subgoal 3 (RSG3): To provide support for the consistent
definition and automatic enforcement of access control permissions.

This subgoal aims to provide support for the consistent definition and
automatic enforcement of access control permissions for ensuring mod-



eled information security for arbitrary Ecore-based DSMLs. Given the
involvement of a heterogeneous pool of stakeholders contributing and
having access to various sensitive and proprietary information, access
permissions should be managed rigorously. The solution should support
the definition of consistent and non-contradictory access permissions
which customize the stakeholders’ ability to create, read, update, or delete
model information. Moreover, the solution should support the seamless
enforcement of access permissions, ensuring that stakeholders only can
interact with the model information as described in the defined permis-
sions. Given the dynamic nature of project teams, where stakeholders
may join, leave, or be reassigned to different tasks, the access control
solution must adeptly and flexibly handle these changes. Specifically, it
should reduce the overhead associated with managing individual user per-
missions, ensuring flexibility and security in a fast-changing collaborative
environment.

3.3 Research methodology

Our research process draws upon constructive research techniques [55, 56]
commonly used in the fields of computer science and engineering. Essentially,
constructive research emphasizes the construction of an artifact based on ex-
isting knowledge and its use in a new manner with the addition of missing
links. A fundamental aspect of constructive research is the close relationship
of the research to previous theoretical knowledge and the practical relevance
of the problem and solution. Essentially, the formulated problem is a topic
of practical importance that has not been adequately addressed in the existing
literature. Hence, the ideal solution is expected to integrate both theoretical and
practical contributions to develop a cohesive whole. Since such solutions require
insight from both theoretical and practical standpoints, collaboration between
researchers and practitioners is crucial. In our scope, practical insights were
predominantly acquired from the industrial partners of the BUMBLE 1 project;

1BUMBLE project aimed at providing an innovative system and software development
framework based on blended modeling notations/languages (e.g., textual and graphical). Refer to:
https://itea4.org/project/bumble.html

https://itea4.org/project/bumble.html
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we collaborated very tightly with HCL Technologies2. Their contributions have
been crucial in integrating practical and industrial viewpoints into our research
process, as illustrated in Figure 3.1, which was composed of four main steps.

1. Problem formulation. The first step involved formulating a research
problem with theoretical and practical relevance. We identified current
challenges by conducting a systematic review of the existing body of
knowledge and collaborating closely with our partners in the BUMBLE 1

project. This process led to identifying a set of research challenges as
well as defining our overall research goal and subgoals.

2. Solution proposal. The second step involved proposing a comprehensive
solution architecture. This process entailed identifying the relevant exist-
ing knowledge and resources pivotal for tackling the research challenge.
We carried out a thorough analysis of the collected knowledge and arti-
facts, followed by brainstorming sessions on viable solutions. Then, we
reviewed the proposed solutions, focusing on their strengths as well as
potential limitations and areas necessitating enhancement. This iterative
process continued until we identified the most suitable solution. If new
insights or findings arose or issues related to the feasibility or practicality
of the originally formulated problem became apparent, we revisited and re-
fined our problem formulation. This was done to ensure a comprehensive
understanding of the issue and to mitigate potential ambiguities.

3. Practical implementation. The third step involved the practical imple-
mentation of the proposed solution. A proof-of-concept prototype was
developed; the goal was to confirm the feasibility and practical applicabil-
ity of the solution. To ensure the prototype’s relevance and applicability
in industrial settings, we partially integrated it with commercial industrial
tools, aligning it with industrial demands and scenarios. Additionally, to
extend the solution’s reach and impact, we incorporated it in open-source
frameworks, thus facilitating accessibility, evaluation, and adoption. Dur-
ing this phase, inconsistencies arising from initial oversight, unforeseen

2https://www.hcltech.com

https://www.hcltech.com


Figure 3.1. Research methodology

practical challenges, or emerging technological barriers that could com-
promise the solution’s feasibility were addressed. We revisited and refined
our solution proposal when needed to ensure the outcomes were viable in
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practical settings.

4. Validation. The last step involved the validation of the implemented
solution. The core objective was to ensure that the solution, whether inte-
grated into industrial tools or established within open-source frameworks,
met the predefined goals and expectations. Validation was conducted
by applying the proposed solution in selected use cases, both artificial
and industrial. Multiple criteria were considered, such as the solution’s
ability to address the initially identified problems, its compatibility with
existing systems, and its overall usability. The findings derived from this
phase provided essential insights into the areas where the solution met
expectations, as well as aspects that might require further refinement or
improvement. If the validation process uncovered issues related to the
solution’s practical implementation, including technical limitations, us-
ability challenges, or unforeseen constraints, we returned to the practical
implementation phase to address these. Should the validation outcomes
be unsatisfactory due to reasons other than implementation issues, we
leveraged the insights gained to reevaluate our problem formulation. Con-
versely, if the validation confirmed our approach as correct, we concluded
our research by presenting our results.





Chapter 4

Research results

In this chapter, we discuss our research results. We first detail the thesis contri-
butions and then outline the papers that present each contribution.

4.1 Thesis research contributions

This thesis presents five research contributions (RCX ). RC1 delivers insights
on the current state-of-the-art and -practice on blended modeling solutions
(indicated by ⇧). RC2 to RC5 introduce proposed solutions and their respective
proofs-of-concept, which include contributions for specific industrial use cases
(indicated by •) and generic contributions that are applicable to a wide range of
use cases employing Ecore-based DSMLs (indicated by �).

⇧ Research Contribution 1 (RC1): Systematic literature review (SLR) on
state-of-the-art and -practice on blended modeling solutions in commercial
and open-source MDE tools.

• Research Contribution 2 (RC2): Design and implementation of a textual
grammar and related textual editor for UML-RT state machines.

• Research Contribution 3 (RC3): Design and implementation of the
synchronization mechanisms between graphical and textual notations for
a blended modeling environment for UML-RT state machines.
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� Research Contribution 4 (RC4): A language-agnostic solution for the
automatic provision of synchronization mechanisms for blended and
multi-view modeling environments.

� Research Contribution 5 (RC5): A language-agnostic solution for the
consistent definition and automatic enforcement of access control permis-
sions.

The mapping of research contributions ti research subgoals is shown in Table 4.1.

RSG1 RSG2 RSG3

RC1

RC2

RC3

RC4

RC5

Table 4.1. Mapping of research contributions (RCs) to research subgoals (RSGs)

Research Contribution 1 (RC1): Systematic literature review (SLR) on
state-of-the-art and -practice on blended modeling solutions in commercial
and open-source MDE tools.

This research contribution focuses on identifying and understanding the
potential of current commercial and open-source modeling tools to support
blended modeling. For that reason, we designed and carried out a systematic
multivocal study encompassing an academic review and a grey literature review.
We identified challenges and opportunities in the tooling aspect of blended
modeling. Specifically, we investigated the user-oriented – relevant for a user of
the blended modeling tool – and realization-oriented characteristics – relevant
for a developer of a blended modeling tool – of existing modeling tools that
already support multiple types of notations and map their support for other
blended aspects, such as inconsistency tolerance, and elevated user experience.
We presented the main takeaways and highlighted current challenges and future
opportunities related to the concept of blended modeling.
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Research Contribution 2 (RC2): Design and implementation of a textual
grammar and related textual editor for UML-RT state machines.

This research contribution is the result of a collaboration with HCL Tech-
nologies and focuses on the design and implementation of a textual grammar
and corresponding editor for UML-RT state machines. HCL’s RTist 1 tool ini-
tially employed a graphical notation for interacting with UML-RT state machine
models. The objective was to complement this with a textual notation, aiming
to establish a blended modeling environment for the tool’s users. To this end,
a specific grammar (i.e., metamodel) was developed for the textual notation as
the requirements necessitated different levels of detail compared to the existing
graphical notation. A dedicated grammar with a corresponding metamodel was
defined to meet the specific needs of the textual notation. The textual grammar
was implemented using Xtext, and the design was influenced by direct input
from HCL’s tool engineers and users, as well as foundational aspects of the
UML-RT metamodel. Additionally, the generated textual model editor was
customized to address the identified needs and preferences, ensuring that the
resulting environment was fully aligned with the user needs and the overall
goals of the blended modeling environment. This industrial scenario confirmed
our arguments for the need of a blended modeling approach with a dedicated
abstract syntax for each notation.

Research Contribution 3 (RC3): Design and implementation of the synchro-
nization mechanisms between graphical and textual notations for a blended
modeling environment for UML-RT state machines.

This research contribution is the result of a collaboration with HCL tech-
nologies and focuses on developing the synchronization mechanisms between
graphical and textual notations for achieving a blended modeling environment
for UML-RT state machines. Following the introduction of the textual nota-
tion and corresponding grammar for UML-RT state machines in RC2, ensuring
seamless synchronization between the existing graphical notation and newly in-
troduced textual notation is required. The solution is achieved by defining model

1https://www.hcl-software.com/rtist

https://www.hcl-software.com/rtist


transformations in QVT-O that propagate changes across notation-specific mod-
els to achieve consistency. The benefits of this effort are two. First, it provides an
effective, custom solution for the partner’s immediate needs, ensuring seamless
synchronization between graphical and textual notations, while simultaneously
allowing for the collection of valuable user insights on the resulting blended
modeling environment. Second, the insights and methodologies developed
during this process allow for a deep understanding of the involved challenges
and requirements and lay the groundwork for the subsequent, more ambitious
contribution; the automatic generation of synchronization mechanisms.

Research Contribution 4 (RC4): A language-agnostic solution for the auto-
matic provision of synchronization mechanisms for blended and multi-view
modeling environments.

This research contribution presents a language-agnostic solution for the
automatic provision of synchronization mechanisms for blended and multi-view
modeling environments for Ecore-based DSMLs. Synchronization mechanisms,
such as the one presented in RC3, demonstrate effectiveness, but their manual
realization is challenging. This contribution aims to facilitate the development
of blended and multi-view modeling environments by supporting the automatic
provision of synchronization mechanisms. Unlike RC3, where the focus was
on the realization of a synchronization mechanism tailored for UML-RT state
machines, this contribution is language-agnostic and allows for the generation of
synchronization mechanisms for arbitrary Ecore-based DSMLs. The solution is
achieved by i) designing and implementing a mapping modeling language that
enables the specification of mapping rules between metamodels on a higher-level
of abstraction, as well as providing the capability to automatically generate these
mapping models if possible, and by ii) designing and implementing higher-
order transformations (HOTs) that, leveraging the mapping models, generate
the sychronization mechanisms consisting of model transformations conforming
to QVTo. The solution has been crafted to accommodate diverse relationships
between metamodels.

Research Contribution 5 (RC5): A language-agnostic solution for the con-



4.2 Paper contributions 37

sistent definition and automatic enforcement of access control permissions.

This research contribution presents a language-agnostic solution for the
consistent definition of access control permissions for arbitrary Ecore-based
DSMLs, and the automatic enforcement of the permissions in tree-based model
editors. It employs the role-based access control policy that builds upon the
base security layer provided by multi-view modeling. Assigning permissions to
roles rather than individuals simplifies management and reduces administrative
overhead. The proposed approach supports the consistent definition of fine-
grained permissions based on create, read, update, and delete (CRUD) operations
for instances of individual meta elements, coupled with automated mechanisms
for the generation of customized tree-based model editors that enforce the
established permissions. This process ensures a seamless translation of specified
policies into functional access controls in tree-based model editors. The solution
is achieved by i) the development of a wizard that supports the definition of
access permissions for individual meta elements, ii) the definition and application
of a set of consistency rules that guarantee the establishment of coherent and
non-conflicting permissions, with real-time enforcement during the permission
definition process within the wizard, and iii) the customization of tree-based
model editor generation processes to incorporate and enforce the specified
permissions, thereby producing model editors that align with and uphold the
established access permissions.

4.2 Paper contributions

This section provides a summary of the five included publications which encap-
sulate our five research contributions. Table 4.2 shows the mapping of Papers
A-E to the respective contributions presented in each paper.

Paper A: Blended modeling in commercial and open-source model-driven soft-
ware engineering tools: A systematic study.
Authors: Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Fed-
erico Ciccozzi, Ivano Malavolta, Alexander Raschke, Jan-Philipp Steghöfer,
Regina Hebig.



RC1 RC2 RC3 RC4 RC5

PA

PB

PC

PD

PE

Table 4.2. Mapping of papers PA to PE to research contributions RC1 to RC5

Status: Published in the Software and Systems Modeling journal (SoSyM
2022).
Own contribution: I was the initiator and a key contributor of this work. The
detailed plan for the paper was developed through collaborative discussions with
the co-authors. I was actively involved in each phase of the systematic literature
review and authored a significant portion of the paper’s draft.
Abstract: Blended modeling aims to improve the user experience of modeling
activities by prioritizing the seamless interaction with models through multiple
notations over the consistency of the models. Inconsistency tolerance, thus,
becomes an important aspect in such settings. To understand the potential of cur-
rent commercial and open-source modeling tools to support blended modeling,
we have designed and carried out a systematic study. We identify challenges
and opportunities in the tooling aspect of blended modeling. Specifically, we
investigate the user-facing and implementation-related characteristics of existing
modeling tools that already support multiple types of notations and map their
support for other blended aspects, such as inconsistency tolerance, and elevated
user experience. For the sake of completeness, we have conducted a multivocal
study, encompassing an academic review, and grey literature review. We have
reviewed nearly 5000 academic papers and nearly 1500 entries of grey literature.
We have identified 133 candidate tools, and eventually selected 26 of them to
represent the current spectrum of modeling tools.

Paper B: Towards automated support for blended modeling of UML-RT em-
bedded software architectures.
Authors: Malvina Latifaj, Federico Ciccozzi, Mattias Mohlin, Ernesto Posse.
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Status: Published in the 15th European Conference on Software Architecture
(ECSA 2021).
Own contribution: I was the main driver and sole developer of the textual syn-
tax for UML-RT state machines. The plan for the paper was developed through
collaborative discussions with the co-authors. I also led the paper writing, with
co-authors providing feedback to refine and improve the paper.
Abstract: The Unified Modeling Language for Real Time (UML-RT) is a UML-
based domain-specific language for modeling real-time embedded systems. HCL
RTist, a model-based development environment for creating complex, event-
driven and real-time software with advanced automation features provided by
HCL Technologies, provides advanced support for UML-RT. Historically, as
for the majority of UML profiles, editing support for UML-RT has also mainly
exploited graphical notations (e.g., composite component and state-machine
diagrams). Nevertheless, our previous experiments with blended graphical and
textual modeling showed that the seamless use of different notations (i.e., graphi-
cal and textual) can significantly boost the work of architects and modellers. The
results of those experiments together with the exposed wish of RTist customers
of being able to design software architectures and applications via multiple
notations led us to initiate this work towards an automated support for blended
modeling of UML-RT. In this paper we describe the first step of the work – the
effort of designing, implementing and integrating a textual notation for UML-RT
state-machines in RTist.

Paper C: Blended graphical and textual modeling of UML-RT state-machines:
An industrial experience.
Authors: Malvina Latifaj, Federico Ciccozzi, Muhammad Waseem Anwar,
Mattias Mohlin.
Status: Published in the invitation-only post-proceedings of the 15th European
Conference on Software Architecture (ECSA 2021).
Own contribution: I was the main driver and sole developer of the advanced
textual editing features for UML-RT state machines’ textual editor and syn-
chronization transformations between notations. The plan for the paper was
developed through collaborative discussions with the co-authors. I also led the
paper writing, with co-authors providing feedback to refine and improve the
paper.



Abstract: The ever increasing complexity of modern software systems requires
engineers to constantly raise the level of abstraction at which they operate to
suppress the excessive complex details of real systems and develop efficient ar-
chitectures. Model Driven Engineering has emerged as a paradigm that enables
not only abstraction but also automation. UML, an industry de-facto standard
for modeling software systems, has established itself as a diagram-based mod-
eling language. However, focusing on only one specific notation limits human
communication and the pool of available engineering tools. The results of our
prior experiments support this claim and promote the seamless use of multi-
ple notations to develop and manipulate models. In this paper we detail our
efforts on the provision of a fully blended (i.e., graphical and textual) modeling
environment for UML-RT state-machines in an industrial context. We report
on the definition of a textual syntax and advanced textual editing for UML-RT
state-machines as well as the provision of synchronization mechanisms between
graphical and textual editors.

Paper D: Automatic generation of synchronization mechanisms for blended
modeling.
Authors: Malvina Latifaj, Federico Ciccozzi, Mattias Mohlin.
Status: Published in the Frontiers of Computer Science journal (Frontiers 2023).
Own contribution: I was the main driver and sole developer of the mapping
modeling language and higher-order transformations for the generation of syn-
chronization transformations. The plan for the paper was developed through
collaborative discussions with the co-authors. I also led the paper writing, with
co-authors providing feedback to refine and improve the paper.
Abstract: Blended modeling aims to boost the development of complex multi-
domain systems by enabling seamless textual and graphical modeling. The
synchronization mechanisms between notations are embodied in model transfor-
mations. Manually defining model transformations requires specific knowledge
of a transformation language and it is time consuming and error-prone task.
Moreover, whenever any of the synchronized languages or notations evolves,
transformations become obsolete. Thereby, we propose an automated solu-
tion for generating synchronization transformations between domain-specific
modeling languages in an industrial setting. Although our main goal was to
provide a solution for blended modeling of UML-RT state machines, the pro-
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posed approach is language-agnostic. The approach entails i) the specification of
mapping rules between two arbitrary domain-specific modeling languages using
a mapping modeling language, appositely defined for this, and ii) the automatic
generation of synchronization model transformations driven by the mapping
rules. We validated the proposed approach on two use cases.

Paper E: Role-based access control for collaborative modeling environments.
Authors: Malvina Latifaj, Federico Ciccozzi, Antonio Cicchetti.
Status: Conditionally accepted to the Journal of Object Technology (JOT) at
the time of writing.
Own contribution: I was the main driver and sole developer of the solution.
The plan for the paper was developed through collaborative discussions with the
co-authors. I also led the paper writing, with co-authors providing feedback to
refine and improve the paper.
Abstract: Collaborative model-driven software engineering fosters efficient
cooperation among stakeholders who collaborate on shared models. Yet, the
involvement of multiple parties brings forth valid concerns about the confidential-
ity and integrity of shared information. Unrestricted access to such information,
especially when not pertinent to individual responsibilities, poses significant
risks, including unauthorized information exposure and potential harm to infor-
mation integrity. This work proposes a dual-layered solution implemented as an
open-source Eclipse plugin that leverages the role-based access control policy
to ensure the confidentiality and integrity of model information in collabora-
tive modeling environments. The first layer limits stakeholders’ access to the
shared model based on their specific roles, while the second layer refines this
access by restricting manipulations to individual model elements. By ensuring
that stakeholders access only the information pertinent to their roles and are
authorized to manipulate such information in accordance with their expertise
and responsibilities, this approach ensures the confidentiality and integrity of
shared model information. Furthermore, it alleviates information overload for
stakeholders by enabling them to focus only on the model information relevant
to their specific roles, thereby enhancing the collaborative efforts.





Chapter 5

Discussion

In this chapter, we provide a discussion on the research subgoals in relation
to the corresponding proposed solutions. We further explore the collective
impact of the contributions towards fulfilling the overall research goal. Lastly,
we contextualize the findings in relation to current limitations and potential
enhancements.

5.1 Research subgoals and contributions

In this section, we discuss our research subgoals, contributions, and the papers
in which we present these contributions. The relation between these three
components is shown in Figure 5.1.

Research Subgoal 1 (RSG1). This subgoal aimed to identify and investigate
the current state-of-the-art and -practice on blended modeling solutions in
commercial and open-source MDE tools and has been addressed in research
contribution 1 (RC1) through the execution of a systematic literature review
(SLR) on the same topic. This contribution has been presented in paper A.

This contribution presents the outcomes of a comprehensive multi-vocal
study focusing on the potential, opportunities, and challenges associated with
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blended modeling solutions. Within the scope of our investigation for this con-
tribution, blended modeling is defined as the seamless integration of multiple
notations for a single abstract syntax. Our findings reveal that the majority of
examined tools integrate both graphical and textual notations; in most cases with
partial overlap. This overlap, rather than serving as a constraint, enhances the
utility of each notation by allowing them to complement each other effectively.
Among the platforms reviewed, Eclipse emerged as the predominant base for 38
% of the tools, with the remainder distributed across mainly custom platforms.
The majority of the examined tools are designed to facilitate collaboration, either
offline or in real-time. This is a sound conclusion as the nature of collaboration
inherently necessitates the use of diverse notations to accommodate various
perspectives and workflows. However, the tools we evaluated only offer lim-
ited support for the broader features of blended modeling. Aspects related to
modeling flexibility, such as instance-level and language flexibility, have not
been addressed in depth yet. Furthermore, our analysis could not uncover sub-
stantial information regarding change propagation and traceability, crucial for
integrating multiple notations seamlessly.

We further discussed the anticipated need for the applicability of the blended
modeling concept within complex engineering domains that might even employ
multi-view modeling (MVM) or multi-paradigm modeling (MPM) approaches.
The initial premise of blended modeling employing a single abstract syntax may
need to be extended to embrace multiple abstract syntaxes to better accommodate
complex modeling scenarios. The introduction of multiple abstract syntaxes calls
for further research, particularly in terms of coordinating models across different
languages. This suggests the emergence of a new generation of modeling tools
designed to support an extended version of blended modeling by incorporating
semantic-based techniques that support workflows based on multiple abstract
syntaxes.

Research Subgoal 2 (RSG2). This subgoal aimed to provide support for the
automatic provision of synchronization mechanisms for blended and multi-view
modeling environments and has been addressed in research contributions 2, 3,
and 4 (RC2, RC3, RC4). These contributions have been presented in paper B to
E and can be grouped in the following two categories.
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Initial exploration and industry collaboration: As described in the prior
paragraph discussing RSG1 and RC1, a key challenge we identified was that
with the application of blended modeling in more complex settings, there would
be a need to extend the blended modeling concept to multiple abstract syntaxes.
The need for blended modeling with multiple abstract syntaxes was similarly
observed among industrial partners in the BUMBLE project. Hence, our ini-
tial research contributions – RC2 and RC3 – focused on implementing this
extended version of blended modeling environments encompassing multiple
abstract syntaxes within an industrial setting. This phase, detailed in papers B
and C, was conducted in collaboration with HCL Technologies, using their RTist
tool for Eclipse – supporting a graphical notation for UML-RT – as a use case.
HCL’s requirements entailed the inclusion of an additional textual notation for
UML-RT state machines and its seamless integration with the existing graphical
notation. Hence, we explored extending RTist’s capabilities to support blended
modeling for UML-RT’s state machines, through the development of a textual
grammar and notation (RC2) and the development of synchronization mecha-
nisms for seamless integration of graphical and textual notations (RC3). This
effort aimed to demonstrate the potential benefits of blended modeling to RTist
users and explored the benefits of dedicated abstract syntaxes for each notation.
In addition, it helped identify the challenges related to the manual provision of
synchronization mechanisms and helped us leverage insights for developing an
automated solution for their provision.

Language-agnostic automatic synchronization: RC4 introduced a language-
agnostic solution for the automatic provision of synchronization mechanisms
across blended and multi-view modeling environments. This solution, applicable
to arbitrary Ecore-based DSMLs is presented in papers D and E. Paper D pro-
vides the building blocks of the overall approach. More specifically, it presents
a mapping modeling language used to define relationships between different
notations’ abstract syntaxes, and higher-order transformations employed to use
the established mapping models to generate model transformations. The solution
in paper D focuses on tackling blended modeling scenarios, where metamod-
els may conceptually completely overlap, partially overlap, or not overlap. In



these scenarios, the mapping models are defined manually, since an automatic
approach could prove to be inaccurate. Paper E introduces a solution aimed at
addressing multi-view modeling scenarios, where one metamodel, referred to
as a view metamodel is a subset of the other, referred to as a base metamodel.
This solution builds on the approach presented in Paper D, but with two key
distinctions. Firstly, it automates the generation of mapping models, leveraging
the fact that the view metamodel is an unaltered subset of the base metamodel.
Secondly, it introduces an additional higher-order transformation that generates
model transformations designed to ensure that upon execution of the model
transformation from the view model to the base model, additional information
present only in the base model is not lost.

Research Subgoal 3 (RSG3). This subgoal aimed to provide support for the
consistent definition and automatic enforcement of access control permissions
and has been addressed in research contribution 5 (RC5) through a language-
agnostic solution for the consistent definition and automatic enforcement of
access control permissions. This contribution has been presented in paper E.

This contribution supports the consistent and non-contradictory definition of
permissions, carried out through a wizard that employs a predefined set of con-
sistency rules. As users define permissions, the wizard applies the consistency
rules to dynamically adjust other permissions, ensuring they do not conflict with
each other. This feature lightens the cognitive burden on users and guarantees a
conflict-free permissions setup. An alternative method might involve the appli-
cation of conflict resolution rules that prioritize certain permissions over others.
However, such a method lacks transparency, as users could find their initial
permissions overridden in the model editor due to unseen background processes
aimed at resolving conflicts, potentially leading to outcomes not aligned with
the user’s original intentions. Our approach, in contrast, grants users immedi-
ate visibility into how their permission choices affect other permissions and
model elements, fostering a more user-centered and transparent interaction. The
enforcement of the defined permissions is done in terms of EMF tree-based
model editors. The latter are a standard component of the EMF ecosystem and
are readily available out-of-the-box for any Ecore-based modeling language.
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This availability ensures that any modeling language conforming to Ecore can
immediately benefit from these editors without additional setup or integration
efforts. The enforcement of permissions is done by tailoring the editors’ gen-
eration process to take into account the defined permissions and generating a
customized model editor for each role associated with a particular view.

Figure 5.1. Mapping of research subgoals to contributions to papers



5.2 Holistic overview of the proposed solution

In this section, we discuss the synergy of the contributions presented in Sec-
tion 4.1, detailing how their integration drives us toward fulfilling the overall
research goal. While the individual contributions span a systematic literature
review, industrial contributions, and generic solutions, our discourse here is
particularly focused on the latter. The preceding elements, namely the literature
review and industrial use cases, served as critical precursors, paving the way
for realizing our overall goal. Here, we detail the language-agnostic solution
that facilitates the development of blended modeling environments featuring
multiple views and enforcing information security. Figure 5.2 illustrates the
solution’s four-step process.

Figure 5.2. Solution workflow
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At level M3 we employ the Ecore meta-metamodel. At level M2, we intro-
duce Overall_MM_A and Overall_MM_B, two Ecore-based metamodels,
each designed to support a specific notation.

Step 1. The goal in step 1 is to establish synchronization mechanisms for
blended modeling. These mechanisms ensure that any modifications made to
Overall_M_A or Overall_M_B – notation-specific models that adhere to
Overall_MM_A and Overall_MM_B, respectively – are accurately reflected
and synchronized across both models. Their provision is achieved by employing
the solution proposed in RC4. This step is labeled SA (semi-automatic) since
it requires human intervention for the definition of mapping correspondences
between elements of both metamodels and then employs higher-order transfor-
mations for the generation of model transformations. Whenever changes are
made to either Overall_M_A or Overall_M_B at level M1, the execution of
the generated model transformations ensures that these changes are reciprocally
propagated, thereby supporting the seamless integration between notations in
blended modeling contexts.

Step 2. The goal in step 2 is to enable the construction of multiple views –
namely Sub_MM_A1, Sub_MM_AX , Sub_MM_B1, and Sub_MM_BY , which
are essentially subsets of Overall_MM_A and Overall_MM_B. The process
of selecting elements for each view is manual, whereas the creation of the
metamodel that materializes the view (e.g., Sub_MM_A1) occurs automatically.
As a result, the procedure in step 2 is classified as SA (semi-automatic). In
defining the view, it is also determined which roles should be granted access to
the view models. After the selection of elements corresponding to each view,
the goal in step 2 is the definition of access permissions allocated to each
role for the given view. This task, while executed by the user, is assisted by a
predetermined set of consistency rules, seamlessly integrated into the wizard
interface to enforce consistent permissions definition.

Step 3. The goal in step 3 is to establish synchronization mechanisms
between the views and the corresponding overall model. For instance, for
Overall_MM_A, synchronization mechanisms between Overall_MM_A -



Sub_MM_A1 and between Overall_MM_A - Sub_MM_AX must be defined.
Synchronization between views, therefore, is not peer-to-peer; instead, the over-
all model acts as a central mediator that all view models synchronize with. In
this context, since views represent subsets of the overall model, deterministic
mapping correspondences between elements are extracted without the need for
human intervention. The generated mappings are used as input to higher-order
transformations which subsequently generate model transformations; the process
is automatic and achieved by applying the solutions proposed in RC4.

Step 4. The goal in step 4 is to enforce the permissions defined in step 2 .
These permissions drive the automatic generation of tree-based model editors,
represented by arrows in Step 4 in Figure 5.2. The generated editors enforce
the defined access control permissions, ensuring that users interact with view
model information strictly according to the permissions associated with their
assigned roles. For each view, the amount of generated model editors that can
be used to interact with the corresponding view models is equal to the number
of roles with access to the view. For instance, the number of generated editors
for Sub_M_AX is 2 since both Role 2 and Role 3 are given access to the view.
A user assigned to both roles can interact with the view model using any of the
model editors. When a user is assigned an existing role, she automatically gains
access to both the view model and the editor associated with that specific role.

Overall Insights. Figure 5.2 illustrates our proposed approach for developing
blended modeling environments that feature multiple views and enforce modeled
information security. Our solution starts with two Ecore-based metamodels
and generates dedicated mechanisms for synchronizing notations. In addition,
the solution facilitates the creation of multiple view models. This allows for
diverse perspectives on the overall model while ensuring smooth integration
between the view and the overall models. The overall model is used as a
mediator in the synchronization process, significantly reducing the complexity
typically associated with adding new views in peer-to-peer synchronization
setups. View models can employ distinct notations, separate from the base
model, thus naturally supporting blended modeling. Employing view models
serves as a security layer by controlling the exposure of model information to
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users. For more stringent and fine-grained security, access control mechanisms
are implemented, where permissions for each user role are precisely defined and
enforced using tree-based model editors.

To exemplify the use of the final modeling environment, consider a scenario
in which a user assigned Role 1 makes modifications to Sub_MM_A1. These
modifications are initially propagated to Overall_MM_A. If these changes
impact Sub_MM_AX , they are also propagated accordingly. Furthermore, the
changes extend to Overall_MM_B and subsequently to any view built on
top of it that is affected by the change, such as Sub_MM_BY . Consequently,
changes initiated by Role 1 users in Sub_MM_A1 are systematically propagated
to Sub_MM_BY through a sequence of transformations. These changes are then
accessible and can be modified by users in Role N-1 or Role N.

If the underlying modeling languages evolve, for instance Overall_MM_A,
several actions become necessary: i) redefining the mappings between Overall
_MM_A and Overall_MM_B, ii) reassessing the defined view metamodels
– Sub_MM_A1 or Sub_MM_AX – should they be impacted by changes in
Overall_MM_A, and iii) reviewing the defined permissions for each view
if modifications are needed. Nevertheless, these steps are deemed relatively
straightforward if compared to the considerable effort required to achieve the
same outcome without our approach.

5.3 Reflections and prospects

In considering the outcomes of this study, it is essential to contextualize the
findings, discuss specific decisions, and outline potential prospects for future
research.

Tooling ecosystem dependency. The proposed solution is applied to Ecore-
based metamodels in the Eclipse Modeling Framework (EMF), capitalizing
on its established ecosystem and broad adoption. However, we recognize that
other modeling languages such as the Unified Modeling Language (UML) 1

and Systems Modeling Language (SysML) 2 are also widely used in industry.
1https://www.uml.org
2https://sysml.org

https://www.uml.org
https://sysml.org


One viable strategy involves utilizing their Ecore-based representation, which
is readily available for some languages and would need to be developed for
others. This approach requires translating models from various languages into
Ecore-based formats, thereby preparing them for integration with our proposed
solution. However, we recognize the potential challenges of this method and the
community’s reluctance to switch tools, often due to significant investments in
existing workflows and toolchains. This acknowledgment highlights potential
areas for future research to adapt and implement the conceptual framework de-
scribed in this thesis to other contexts, taking into account the specific challenges
associated with different modeling languages and ecosystems.

Definition of mapping models. For the generation of synchronization mech-
anisms for blended modeling, we focused on manually defined mappings to
ensure reliable synchronization between different languages with utmost ac-
curacy. For multi-view modeling, these are automatically derived. While our
primary focus was on achieving deterministic mappings, we acknowledge that
there can exist challenges involved in the manual definition of these mappings
as well, particularly for large languages with substantial differences. One sig-
nificant challenge arises from the fact that our mapping modeling language is a
new language for users, who need not only to learn its syntax and semantics but
also to master its usage effectively to ensure that mappings generate the desired
outcomes. This learning curve can be steep, especially for users unfamiliar with
the concepts underlying the mapping processes. In response to these complexi-
ties, our plan includes the development of comprehensive documentation and a
detailed set of tutorials. These resources aim to facilitate a deeper understanding
of the mapping language, providing step-by-step guidance on its practical use
and helping users overcome the initial barriers to effective implementation. To
further aid in the elicitation of mappings between languages, another approach
involves the use of (semi-)automated matching mechanisms. For instance, syn-
tactic approaches might include exact string matching, substring matching, or
using regular expressions. Structural approaches could examine hierarchical
structures and associations between elements. Semantic approaches could inter-
pret the meanings of concepts used in different modeling languages to propose
mappings that align with the underlying intent. In addition, Large Language
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Models (LLMs) have the potential to automate and enhance the mapping gener-
ation process by analyzing all these aspects. However, recognizing that LLMs
may not always deliver full accuracy, we suggest incorporating a user interface
that allows easy user intervention to refine mappings. This interface would
enable users to manually tune the mappings, combining automated processes
with user expertise to ensure accuracy while enhancing user experience.

Bidirectionality. The synchronization mechanisms in blended and multi-view
modeling require transformations that can be applied in both directions so that
changes across models can be propagated seamlessly. For doing so there are two
possible approaches: i) write two separate unidirectional transformations and
ensure by hand that they are consistent, or ii) use a bidirectional approach. While
we recognize the inherent consistency of bidirectional model transformations, in
this research we have opted for the unidirectional approach. More specifically,
we achieve synchronization in the two directions through the creation of two
mapping models, one for each direction, followed by the generation of two
unidirectional model transformations. This decision was driven by two primary
considerations. First, by establishing a separate mapping model for each direc-
tion, we enable our varied user base to address the specifics of each direction
separately. This provides them with more control over the mapping correspon-
dences and enables them to tackle complex cases such as non-bijection, which
could prove challenging and complex when defining a single correspondence
specification. Secondly, by establishing two separate mapping models, one
for each direction, we provide increased flexibility and the ability to tailor a
particular direction independently of the other, if the need arises. At the same
time, it increases reusability in other contexts where only one direction might be
required.

Execution of model transformations. While the current framework efficiently
handles the generation of model transformations, it employs a batch execution
approach. More specifically, in blended modeling environments, alterations
in any notation-specific model, or multi-view contexts, modifications in the
view or base models, necessitate manual intervention to execute model trans-
formations. Our initial focus was solely on the automated provision of the



model transformations, rather than on their live execution upon changes to the
models involved. However, to improve usability in practical, collaborative envi-
ronments, future developments should aim towards live execution approaches.
Nevertheless, it is important to proceed with caution when implementing such
enhancements. While they can significantly streamline collaboration, they also
introduce challenges related to inconsistency tolerance.

Access control. While access control encompasses both authentication and
authorization, our research focuses solely on authorization. We focus on empow-
ering authorized entities, such as administrators, to define access permissions.
Additionally, we provide automated mechanisms to generate model editors that
seamlessly enforce these permissions. Our envisioned workflow operates on
the premise that users’ roles determine the view models they can access and the
permissions they receive upon logging in. Users are then confined to interacting
with the model through editors tailored to their designated roles. However, the
absence of authentication mechanisms poses a limitation to realizing this vision
comprehensively. For future work, it is imperative to integrate an authentication
mechanism into the existing framework. This enhancement should not only au-
thenticate user identities effectively but also ensure that users are strictly limited
to accessing and interacting solely with model editors specifically generated for
their roles, as opposed to any generic editor provided out-of-the-box in EMF.

Evaluation. Our proposed solution could benefit from further evaluation on
larger-scale models. This would provide important data on scalability and
robustness, showing that the solution can manage complex and diverse models
as well as maintain performance across varying computational loads. Moreover,
a systematic understanding of user experiences for both technical and non-
technical stakeholders would provide objective insights into how the solution
meets the practical requirements of its users. This aspect is particularly critical
for refining user interfaces and functionalities, making the system more intuitive
and efficient for all user groups. By integrating these evaluations, our solution
can be fine-tuned to better serve its intended purpose and user-base. This kind
of evaluation would also highlight potential areas for future enhancements,
ensuring that the solution continues to evolve and adapt to new challenges and
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user needs.

5.4 Beyond the initial scope

As previously discussed, our solution generates the synchronization mechanisms
for blended and multi-view modeling, which are defined at the level of the
abstract syntax utilizing model transformations. This design choice not only
serves the initial purposes but also extends the solution’s applicability to a
broader range of modeling scenarios beyond the initial focus being blended and
multi-view modeling. By defining synchronization at the metamodel level, this
approach is suitable for various other scenarios where similar conditions are
met. To recap, these conditions include: (i) the metamodels are Ecore-based;
(ii) regardless of whether the metamodels completely overlap, partially overlap,
or do not overlap at all, it is crucial that viable mappings can be established
between the involved metamodels; (iii) alternatively, one metamodel should be
an unaltered subset of the other. Below, we present a list of other scenarios
where our solution has been or is currently being applied.

Language evolution and model migration. Model migration is a necessary
consequence of language evolution. When a modeling language evolves, exist-
ing models need to be migrated to ensure compatibility with the new version of
the language. Without effective migration strategies, the benefits of language
evolution would not be realized as older models become obsolete. Our proposed
solution can automatically generate model transformations based on defined
mappings, thereby supporting the migration of models to newer language ver-
sions. This approach can be instrumental in legacy system modernization efforts.
By generating model transformations that facilitate the migration of legacy mod-
els to modern platforms, this approach preserves previous investments while
harnessing the benefits of new technologies. As a matter of fact, we have
demonstrated the applicability of our solution in such scenario by enabling the
migration of UML-RT models defined in Rtist on the Eclipse platform to Art
models used in RTist in Code within VSCode [57].



Interoperability. Interoperability is defined as “the degree to which two or
more systems, products, or components can exchange information and use the
information that has been exchanged”3. When considering interoperability in
modeling languages, we are dealing with the exchange of structured information
that conforms to specific syntactic and semantic rules defined by their respective
metamodels. For instance, a model developed in UML for software design
contains different types of information compared to a model created in BPMN
for business processes. Effective interoperability ensures that the information
from a UML model can be understood and utilized within a BPMN model and
vice versa. Interoperability can be achieved through the translation of models
between different languages, by employing model transformations. Our pro-
posed solution, on the other hand, can generate the required transformations. In
fact, our approach is currently being employed by Ferko et al. [58] in their work
on achieving interoperability for digital twins. Digital twins integrate various
modeling languages to depict distinct functional units, making interoperability
essential for their effective operation. By adopting our systematic approach
for generating model transformations, Ferko et al. [58] aim to eliminate the
cumbersome and resource-intensive task of manually creating transformations
for each distinct language. This strategic implementation not only simplifies
the current processes but also enhances scalability and adaptability to future
changes in modeling languages.

While the scenarios mentioned are specific instances where our solution has
been or is currently applied, the solution’s applicability extends beyond these
cases to any situation requiring synchronization transformations and meeting
the previously outlined conditions.

3https://iso25000.com/index.php/en/iso-25000-standards/
iso-25010

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010


Chapter 6

Conclusions

This doctoral thesis aimed to enhance the adoption of collaborative modeling
features, which are highly demanded in industrial practices, by tackling the
challenges associated with their development. Specifically, the research focused
on devising language-agnostic solutions for facilitating the development of
collaborative and blended modeling environments featuring multiple views and
enforcing information security.

Our research subgoals were successfully achieved through a structured
sequence of five contributions, each building upon the other to progressively
advance our understanding and eventually address our overall research goal.
Initially, we established a comprehensive understanding of the state-of-the-
art and -practice in blended modeling solutions (addressed in RC1). This
set the stage for subsequent advancements in developing blended modeling
capabilities tailored for industrial applications (addressed in RC2 and RC3).
Further, we extended our focus to devise language-agnostic automated solutions
that streamline traditionally labor-intensive processes (addressed in RC4 and
RC5). Specifically, RC4 and RC5 automate i) the provision of synchronization
mechanisms between graphical and textual notations in blended modeling, ii)
the provision of synchronization mechanisms in multi-view modeling, and
iii) the consistent definition and enforcement of access permissions. Such
processes typically require extensive manual labor and expertise, a challenge that
is further exacerbated if the underlying languages undergo changes. Leveraging

57



automation for these processes has brought forth several advantages. In the
following, we highlight the ones we consider to be the most significant and
impactful.

• Streamlining development processes: automation reduces the need for
manual intervention in the provision of synchronization mechanisms for
blended and multi-view modeling, and in the implementation of access
control. This not only reduces workload on developers but also signifi-
cantly lowers the likelihood of human error.

• Adapting to language evolution: collaborative features are intrinsically
linked to modeling languages that are subject to evolution over time. Our
framework addresses this challenge head-on, requiring only minimal user
input to adapt and evolve based on changes in modeling languages, thus
ensuring the continued applicability of these features.

• Facilitating rapid prototyping: automation allows developers to create and
modify prototypes of modeling environments featuring these capabilities
quickly, without the substantial resource investment typically required.
Teams can evaluate them, assess user interactions, and refine them with
minimal delay and overhead. This speeds up the development cycle and
enhances the overall agility of the development team.

• Democratizing development: automation democratizes development by
lowering the technical barriers that traditionally limit participation. By
automating complex tasks, a broader range of stakeholders – including
those with less technical expertise – can contribute to and influence the
development of modeling environments featuring these capabilities. This
inclusivity not only makes development more accessible but also enriches
the process with diverse perspectives.

Overall, this thesis proposes a comprehensive framework that facilitates
the development of blended modeling environments featuring multiple views
and enforcing information security. This framework can reduce the barriers to
the adoption of collaborative capabilities and enhance collaborative modeling
practices.
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Abstract

Blended modeling aims to improve the user experience of modeling activities
by prioritizing the seamless interaction with models through multiple notations
over the consistency of the models. Inconsistency tolerance, thus, becomes
an important aspect in such settings. To understand the potential of current
commercial and open-source modeling tools to support blended modeling, we
have designed and carried out a systematic study. We identify challenges
and opportunities in the tooling aspect of blended modeling. Specifically, we
investigate the user-facing and implementation-related characteristics of existing
modeling tools that already support multiple types of notations and map their
support for other blended aspects, such as inconsistency tolerance, and elevated
user experience. For the sake of completeness, we have conducted a multivocal
study, encompassing an academic review, and grey literature review. We have
reviewed nearly 5,000 academic papers and nearly 1,500 entries of grey literature.
We have identified 133 candidate tools, and eventually selected 26 of them to
represent the current spectrum of modeling tools.
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7.1 Introduction

Model-driven engineering (MDE) advocates modeling the engineered system
at high levels of abstraction before it gets realized. The resulting models serve
crucial roles in ensuring the appropriateness (e.g., correctness, safety, optimality)
of the system. To keep the cognitive flow of modeling effective and efficient,
stakeholders shall be equipped with proper formalisms, notations, and supporting
computer-aided mechanisms. This is especially important in the design of
modern systems, as their complexity has been increasing exponentially over
the past years [1]. Modeling does not remove complexity from the engineering
process, but rather, it replaces the accidental complexity of complex systems with
essential complexity that is easier to manage [2]. Nonetheless, as a consequence
of the increasing complexity of modern systems, modeling itself is becoming
more complex. In this paper, we focus on a specific manifestation of this added
complexity stemming from the need for an orchestrated ensemble of modeling
notations, aiming to enable seamless interaction with models through any of the
notations. Such a need has been reported in multiple academic [3] and industrial
domains, e.g., automotive [4], avionics [5], cyber-physical systems [6], and
product lines [7]. In such an approach, user experience may also be (temporarily)
prioritized over the correctness of the described system, in an effort to enable a
smooth process of expressing the stakeholder’s cognitive models in terms of the
modeling language. This approach is referred to as blended modeling [8].

7.1.1 What is blended modeling?

Blended modeling was first introduced by Ciccozzi et al. [9] as follows:

Blended modeling is the activity of interacting seamlessly with a single
model (i.e., abstract syntax) through multiple notations (i.e., concrete
syntaxes), allowing a certain degree of temporary inconsistencies.

That is, blended modeling is characterized by the following three features.

Multiple notations. This is not to be confused with multiple languages. In our
terminology, a language is composed of (i) a metamodel (abstract syntax),
and (ii) a set of notations (concrete syntax). Blended modeling does not
impose different metamodels.



Seamless interaction. Different notations have to be carefully integrated and
orchestrated to allow for using the most appropriate notation for specific
modeling tasks. This requires intuitive navigation between notations,
proper change propagation between them, and in many cases, traceability.

Flexible consistency management. This aspect entails both vertical inconsis-
tencies [10] (e.g., inconsistencies between the instance model and its
metamodel); and horizontal inconsistencies (e.g., inconsistencies between
two notations used to manipulate instances of the same metamodel).

7.1.2 What is not blended modeling?

Multi-view modeling is not blended modeling. As shown in Fig. 7.1, Multi-
View Modeling (MVM) [11] and blended modeling share the trait of multi-
notation. The main differences are, that (i) MVM further assumes multiple
languages, while (ii) blended modeling assumes relaxed consistency rules in-
stead. These differences stem from the different aims of the two approaches.
MVM is concerned with constructing the appropriate views for stakeholders
with varying backgrounds. Blended modeling focuses on the elevated UX with
respect to an ensemble of notations, assuming a single underlying model. Prior
work has reported challenges in relaxed consistency in multi-language settings
such as MVM [12]. Blended modeling enables relaxed consistency by restricting
the number of languages to one. For example, the SCADE1 tool suite provides
the user with different languages for different purposes within the same model
development environment. These languages facilitate multi-view modeling
of the overall system and necessitate different abstract syntaxes. Therefore,
working with SCADE cannot be considered blended modeling.

Multi-paradigm modeling is not blended modeling. In addition to assuming
multiple languages, Multi-Paradigm Modeling (MPM) [13] further assumes po-
tentially different semantics behind the languages, giving rise to multi-formalism
(Fig. 7.1). This added complexity positions MPM even further from blended

1https://www.ansys.com/products/embedded-software/
ansys-scade-suite

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
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modeling, and vastly exacerbates consistency management, as reported in prior
work [14]. For example, Matlab/Simulink is a typical combination of for-
malisms for system design, in which the overall system is graphically designed
in Simulink2, which follows causal block diagrams (CBD) semantics; and the
low-level functions in the system are textually described in Matlab3, which relies
on matrix semantics for complex computations. While some level of navigation
is provided between the two formalisms within the Matlab modeling and de-
velopment environment, relaxed consistency is completely missing. Therefore,
working with Matlab/Simulink cannot be considered blended modeling.

Blended modeling

MVM

Strict Relaxed Consistency

MPM

Multi-

Notation
(Concrete syntax)

Language
(Abstract syntax)

Formalism
(Semantics)

Figure 7.1. Blended modeling in the context of MVM and MPM.

7.1.3 Motivation and aim

Blended modeling is an emerging new concept, thus, a map of current commer-
cial and open-source tools is needed to properly position it in the research-and-
development landscape.

2https://se.mathworks.com/products/simulink.html
3https://www.mathworks.com/products/matlab.html

https://se.mathworks.com/products/simulink.html
https://www.mathworks.com/products/matlab.html


In this article, we report the design, execution, and results of our mapping
study on tools that are prime candidates to support blended modeling. Our study
shows that these are typically tools with multiple notations for a single underly-
ing abstract syntax, but they lack proper inconsistency tolerance mechanisms
or fail to leverage such features for an improved user experience. The aim of
our study was to identify, classify, and analyze (i) the user-oriented, and (ii)
the realization-oriented characteristics of these tools. To infer this information
while ensuring external validity, we surveyed both the academic (peer-reviewed)
literature and the grey literature [15], consisting of websites, blogs, and user
manuals of engineering tools, following the guidelines for multi-vocal reviews in
software engineering [16]. To be able to treat both types of literature uniformly,
we made tools the primary units of our study, instead of papers. This is motivated
by the inherent limitations of grey literature in terms of providing high-fidelity
research data. Websites and end-user documentation do not aim to provide such
information. We formulated a surveying protocol based on well-established
guidelines and we have meticulously followed this protocol in the execution
of our study. Eventually, we screened 4,975 academic papers and included 77
of them. Additionally, 1,494 grey literature entries were processed. Out of the
academic papers, 68 distinct tools were extracted and complemented by 68 tools
extracted from the grey literature. After removing duplicates, the set of 133
tools was reviewed according to the tool selection criteria (see Section 7.3) and
we eventually identified 26 tools to be analyzed in detail. Although this list of
tools is not exhaustive, we are reasonably confident about its representativeness
of the domain of interest.

The results of this study provide a clear overview of the state of the art and
practice of the domain of modeling tools closest to blended modeling. The tool
characteristics reported in this paper can be particularly useful for tool providers
in identifying the limitations of their tools in supporting blended modeling.
Researchers of the three main dimensions of blended modeling (multi-notation,
seamless integration of languages, inconsistency tolerance) could use this work
to better contextualize their research, and position their work better in terms of
applicability.
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7.1.4 Structure

The rest of this paper is structured as follows. First, in Section 7.2, we give an
overview of the background concepts of blended modeling and review the related
work. In Section 7.3, we define the methodological framework for carrying out
this study. In Section 7.4, we elaborate on the findings of this study, in particular
on the results pertaining to the research questions of this study: the user-oriented
and realization-oriented characteristics of the tools of interest. In Section 7.5,
we provide orthogonal insights on the aggregated data. We discuss the results
in Section 11.7, and the threats to validity in Section 7.7. Finally, we summarize
this paper by drawing the conclusions in Section 11.8.

7.2 Background

In this section, we provide the foundational background concepts to contextual-
ize our study. More specifically, we describe the core ingredients of blended mod-
eling: multiple notations (Section 7.2.1), seamless interaction (Section 7.2.2),
and flexibility in managing inconsistencies (Section 7.2.3). Additionally, we
discuss the secondary literature related to our study (Section 7.2.4).

7.2.1 Multiple notations

Interacting with the (abstract) model through multiple notations (concrete syn-
taxes) is one of the three distinguishing features of blended modeling. A vast
body of knowledge on the topic has been produced, especially in relation to
multi-view modeling, and multi-paradigm modeling.

Multi-view modeling

Multi-view modeling (MVM) tackles the complexity of modeling heteroge-
neous systems by decomposing the models into multiple views, that are con-
cerned with specific aspects of the system [11]. The ISO/IEC/IEEE 42010:2011
standard [17] defines a view as a set of concerns of specific stakeholders and
viewpoints as the specification of conventions utilized to construct a view. The
five mutually non-exclusive enabling mechanisms of multi-view modeling are



(i) synthetic, where views are specified by means of different domain specific
modeling languages and synthesized together; (ii) separate, a stricter version of
synthetic, where synthesis does not take place; (iii) projective, where a single
metamodel allows for the definition of multiple virtual views; (iv) orthographic,
where views are orthographic projections of a single underlying model; or (v)
hybrid, where views represent only a portion of the common metamodel [18].
MVM has been shown to be an effective approach in several complex domains,
such as cyber-physical systems [1], and cloud-based software-intensive sys-
tems [19]. The principles of MVM are similar to those of blended modeling.
However, its goal is different. While MVM is oriented towards the identification
of multiple views and the management of consistency between them, blended
modeling focuses on enabling an elevated user experience while working with
multiple notations at the same time.

Multi-paradigm modeling

Multi-paradigm modeling (MPM) advocates modeling every aspect of the system
explicitly, at the most appropriate level of abstraction, and using the most
appropriate formalism [13, 20]. As such, MPM facilitates the modeling of
complex systems that could not be described through a single formalism and at a
common level of abstraction due to the heterogeneity of the different components.
It combines three research areas: (i) meta-modeling used for the specification
of formalisms, (ii) multi-formalism used for the coupling of models specified
in different formalisms and their transformations, and (iii) model abstraction
used for the relationships among models described in different formalisms
[21]. The principles of MPM are similar to those of blended modeling, as both
approaches promote employing a variety of notations to model the problem
at hand. However, MPM achieves this by employing a variety of separate
formalisms, i.e., multiple notations with possibly different semantics. Blended
modeling assumes a single abstract syntax, and therefore, single semantics. This
simplification allows for greater flexibility in terms of temporarily inconsistent
designs.
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7.2.2 Seamless interaction

Usability in terms of the ability to seamlessly interact with models through
multiple different notations is one of the three distinguishing features of blended
modeling. In this section, we review how state-of-the-art approaches typically
support seamless interaction. We focus on UML tools here since they have
received significant attention from research and tool providers of the software
engineering domain in the past. We also mention examples for other modeling
languages where appropriate.

Text-based modeling with graphical visualizations

Umple [22] is a modeling tool that supports the creation of UML models using
both textual and graphical notations, where the synchronization between the
two notations is automated and on the fly. However, the graphical editor does
not offer full editing capabilities, and the existing editing capabilities are only
available on class diagrams but not on state machines, composite structures,
or feature diagrams. FXDiagram4 is a JavaFX-based framework that can be
integrated into Eclipse as well as intelliJ IDEA. It supports the creation of graph
diagrams (nodes and edges) and it is typically used for graphical visualization of
textual DSLs but does not provide editing functions. MetaUML5 is a GNU GPL
library for typesetting UML diagrams, using a textual notation. This notation
is used for rendering read-only graphical UML diagrams. PlantUML6 is very
similar but supports also non-UML diagrams. ZenUML7 supports sequence
diagrams and flowcharts, again defined using a textual notation that is translated
into read-only graphical views. The generation of the sequence diagrams is
automatic, as the conversion happens on the browser. Excalibur [23] is a tool
that relies on Xtext for textual specification and Sirius for graphical views of
the textual specification. The model elements are defined using Messir textual
DSL and the generated graphical visualization is read-only. Chart Mage8 is a

4https://jankoehnlein.github.io/FXDiagram
5https://github.com/ogheorghies/MetaUML
6https://plantuml.com
7https://www.zenuml.com
8http://chartmage.com/index.html

https://jankoehnlein.github.io/FXDiagram
https://github.com/ogheorghies/MetaUML
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https://www.zenuml.com
http://chartmage.com/index.html


web-based tool that supports automatic and on-the-fly generation of sequence
diagrams and flowcharts using a textual notation. DotUML9 is a javascript
application that supports the generation of a subset of UML diagrams (i.e., use-
case, sequence, class, state, and deployment) from a textual notation. For all of
the aforementioned tools, concrete syntaxes are predefined and not customizable,
and the graphical notation is read-only, generated using the textual notation.

Mixed textual and graphical modeling

Addazi and Ciccozzi [8] present a proof-of-concept implementation for UML
and UML profiles modeling using blended textual and graphical notations. The
stack of technologies used includes Eclipse Modeling Framework (EMF)10,
Xtext11, and Papyrus [24]. Their solution includes a single underlying abstract
syntax, two notations (i.e., graphical and textual), and one single persistent
resource that is the UML resource. This architecture enables synchronization
by means of serialization/deserialization operations across Xtext and UML
models. In addition, the authors conduct an experiment to demonstrate that
their solution on blended modeling increases user performance compared to
single notation modeling. Maro et al. [25] introduce a solution that integrates
graphical and textual editors for a specific UML profile-based DSL. Being
that the graphical editor is already provided, this work focuses on obtaining
the textual editor and switching between views (i.e., graphical and textual).
To obtain the textual editor, the UML profile-based DSL is first transformed
into an Ecore model using an ATL transformation, and then this Ecore model
is consumed by the Xtext plugin to generate the textual editor. Switching
between views is achieved by employing ATL transformations. Scheidgen [26]
provides embedded textual editors for graphical editors as an add-on feature.
For each selected model element that needs to be edited, the embedded textual
editor creates an initial representation that can be changed by the user and
using parsing operations, new edited model elements are created. However,
the synchronization is on-demand as the changes in the underlying model are

9https://dotuml.com
10https://www.eclipse.org/modeling/emf
11https://www.eclipse.org/Xtext

https://dotuml.com
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/Xtext
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not carried out until they are committed by the user and the textual editor is
closed. Lazăr [27] makes use of the Eclipse modeling environment to integrate
the existing UML tree-based editor with the textual editor for Alf language12

and to create fUML13 models. However, the synchronization is on-demand as
the changes are carried out upon the occurrence of a save action by the user.
Charfi et al. [28] define a hybrid language that integrates textual and graphical
notations in one concrete syntax. The contribution consists of a visual notation
for the most used UML actions and an editor that supports the proposed notation.
The hypothesis that the hybrid notation can perform better than the textual
notation is backed by an experiment that takes into consideration the learnability
of the hybrid notation, the prevented errors, and the circumstances in which the
hybrid notation is a better fit than the textual notation. However, this approach
is restricted to UML actions only. Van Rest et al. [29] implement an approach
for the robust synchronization of graphical editors generated with the Graphical
Modeling Framework (GMF)14 and textual editors generated with Spoofax15.
This approach allows error recovery during synchronization and preserves the
textual and graphical layout in case of errors. However, layout preservation is
not supported at all times, as during cut-paste operations, the elements and their
associated layouts are deleted and then recreated, therefore losing the original
layout.

Projectional editing

Projectional editing is an approach where the abstract syntax tree (AST) is
modified directly upon every editing action and bypasses the stages of the parser-
based approach, where the parser must first check the correctness of the syntactic
aspects, and then construct the AST based on the changes in the notation [30].
This course of action allows the definition of multiple notations (e.g., tables,
diagrams, formulas) that cannot be supported by parser-based approaches, and
supports multiple views of the same program, simultaneously. Moreover, a
considerable amount of the ambiguities caused during the parsing process are

12https://www.omg.org/spec/ALF
13https://www.omg.org/spec/FUML
14https://www.eclipse.org/modeling/gmp
15http://strategoxt.org/Spoofax
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tackled. Projectional editing is a realization of the intentional programming
paradigm [31], and as such, it encourages the combination of a variety of
different notations. Some of the state-of-the-art language workbenches that
adopted this principle for providing domain-specific tool engineers with efficient
tools [32] are JetBrains MPS16 and MelanEE17. However, even though they
provide a greater amount of notations, their support for textual notations is
limited compared to parser-based approaches, as it is only a projection that
resembles text. In particular, no possibly inconsistent intermediate states are
allowed, which consequently restricts the user accustomed to classical text
editors and their corresponding free editing features.

7.2.3 Inconsistency management

Approaches, such as multi-view modeling (MVM) and multi-paradigm modeling
(MPM) advocate modeling the engineered system using the most appropriate
notations, formalisms, and abstractions. This allows multiple users to be in-
volved in the modeling of the system, and thus, introduces parallelism, which
is beneficial for the overall efficiency of the engineering endeavor. Parallelism,
however, gives rise to inconsistencies between the design artifacts, compromis-
ing the ultimate correctness of the system. Inconsistency has been shown to be
an effective heuristic for managing the ultimate correctness of the system [14].
Techniques, such as blended modeling, make use of this assertion by focusing on
the early detection of inconsistencies [33] and establishing the proper tolerance
mechanisms. The notion of consistency models and their various alternatives
have been well-researched already in early distributed systems. Lamport [34] is
the first to describe how multi-processor systems should be constructed to en-
sure proper execution of programs. His notion of sequential consistency allows
a relaxation of the locking model by assuming a total order of modifications
that distributed nodes are guaranteed to observe. Adve and Gharachorloo [35]
describe various relaxations of the sequential consistency model, based on ar-
chitectural choices on the hardware and software level. Eventual consistency
has been suggested by Vogel et al. [36] to enable a weaker notion of consis-

16https://www.jetbrains.com/mps
17http://www.melanee.org

https://www.jetbrains.com/mps
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tency between distributed participants, by embracing that real consistency can
never be achieved. In such settings, distributed participants are characterized
by the BASE properties: basic availability, soft state, and eventual consistency.
Lately, strong eventual consistency (SEC) has been suggested [37] to combine
the liveliness guarantees of eventual consistency with the safety guarantees
of strong consistency. Conflict-free replicated data types [38] are the prime
examples of their applications. Inconsistencies are a well-researched area in
software engineering [39], too. Consistency between models can be categorized
into two orthogonal dimensions [40]: horizontal and vertical consistency; and
syntactic and semantic consistency. Horizontal consistency is concerned with
models on the same level of abstraction, whereas vertical consistency is defined
between models on different levels of abstraction (typically in model-metamodel
contexts) [41]. The majority of inconsistency management techniques rely on
syntactic concepts, e.g. synchronization by bi-directional model transforma-
tions [42], triple-graph grammars [43], and by version control systems and
related mechanisms [44, 45]. However, semantic techniques have been shown
to be beneficial in heterogeneous engineering settings [10]. View consistency
has been researched in the context of MVM, e.g., in the Vitruvius approach [46],
which provides languages for consistency preservation, and defines a model-
driven development process for enacting consistency rules. Finkelstein et al. [47]
suggest that inconsistencies are organic elements of any engineering process,
and instead of simply removing them from the system, one should apply proper
inconsistency management techniques [48]. Such inconsistency management
techniques typically entail the activities of detecting, resolving, preventing, and
tolerating inconsistencies [49]. Blended modeling heavily relies on the tolerance
of inconsistencies. Balzer et al. [50] suggest augmenting inconsistency instances
with a state. Inconsistency rules are first deconstructed into appearance and
disappearance rules spanning a temporal interval; then, tolerance rules are put
in place to trigger repair actions based on temporal constructs. Easterbrook
et al. [51] propose a similar technique for temporal inconsistency tolerance in
the context of MVM. Inconsistency tolerance is achieved via pairs of pre- and
post-conditions relying on a user-defined consistency metric. David et al. [52]
introduce various patterns of inconsistency tolerance for implementing such
systems.



7.2.4 Related secondary literature

This paper reports on the first systematic study on blended modeling. There are,
however, secondary studies close to our work that are similar in topic, but differ
in terms of motivation and objectives, and are generally limited to a narrower
scope. Torres et al. [53] conduct a systematic literature review with the aim to
identify a list of available tools to support model management and provide a
categorization of these tools into (i) tools that can provide consistency checking
on models of different domains, (ii) tools that can provide consistency checking
on models of the same domain, and (iii) tools that do not provide any consistency
checking. Furthermore, the authors identify the inconsistency types, strategies
to keep the consistency between models of different domains, and the challenges
to manage models of different domains. The information retrieved from the
primary studies is also complemented with additional data sources (e.g., the
official website of the tool). Our study focuses on a broader scope, especially
multi-notation and seamless interaction. Torres et al. observe that 35% of their
analyzed tools do not provide any consistency checking features, whereas in
our study we observe that 64% of the analyzed tools do not support models
inconsistencies. Moreover, Torres et al. identify different strategies that have
been used to keep models consistent, e.g., by using standard file formats for
the models, explicitly modeling dependencies among model elements, mapping
model elements to a shared ontology, etc. Our study complements such results
by highlighting which inconsistency management strategies involve a manual
effort (like keeping a dependency matrix always up to date), a semi-automated
procedure (e.g., by specifying a priori consistency constraints and checking them
during development), or a completely automated one (e.g., via the automated
application of inconsistency resolution procedures). Iung et al. [54] conduct a
systematic mapping study with the aim to identify tools, language workbenches,
or frameworks for DSL development. The authors identify 59 tools and they
use the feature model proposed by Erdweg et al. [55] for their comparison. The
study focuses on the technologies/tools used for DSL development, their license
types, the application domains, and the features of the DSL creation process that
these tools support. 48 tools support only one notation (graphical or textual),
seven tools support two notations (graphical and textual), two tools support three
notations, and two tools support four notations. Our study focuses on a broader



7.2 Background 83

scope, by extending the set of features on which the comparison is based with
features such as synchronization mechanisms, collaborative features, or confor-
mance relaxation. We also contextualize our work on a broader timeline, while
the authors focus on the period between 2012–2019. In line with the results of
our study, Iung et al. observed that the notations that were more frequently used
in combination are textual and graphical, with the tabular one complementing
them. In [54] two language workbenches are identified as particularly relevant
for blended modeling: (i) GEMOC Studio, which provides real-time bidirec-
tional synchronization in their generated editors, and (ii) the Whole Platform,
which allows language engineers to choose among four different types of nota-
tion (i.e., textual, graphical, tabular, and symbolic), and to visualize the different
translations among them at the model level. Franzago et al. [56] and David
et al. [57] map the state-of-the-practice of collaborative model-based software
engineering. The authors identify and classify collaborative MDSE approaches
based on the different categories such as characteristics of the collaborative
model editing environments, model versioning mechanisms, model repositories,
support for communication and decision making, and more. Additionally, the
authors identify limitations and challenges with respect to the state of the art in
collaborative MDSE approaches. Regarding model management, they provide
a taxonomy for the management support of collaborative MDSE approaches,
collaboration support, and communication support. This study covers some
of the aspects that we cover in our systematic mapping study (e.g., conflict
detection). However, while this study is mostly focused on the characteristics of
the collaborative approaches, we aim toward a classification of tools based on a
broader set of features such as synchronization mechanisms and their generation,
or conformance relaxation. The results of Franzago et al. and David et al. for
collaborative modeling that are confirmed in this study are about: (i) the types
of notations, with graphical as the most supported one, followed by textual, (ii)
the prevalence of custom/other modeling platforms with respect to Eclipse EMF,
(iii) the growth of web-based approaches, (iv) the growth of preventive conflict
management, and (v) the prevalence of mechanisms for (semi-)automatically
resolving conflicts. We anticipate that 15 out of the 26 tools analyzed in this
study support collaborative modeling, with the majority of tools providing off-
line collaboration (i.e., a la Git), rather than real-time collaboration (i.e., a la



Google Docs); this result is different for academia where, according to Franzago
et al. and David et al., researchers focus primarily on real-time collaboration.
Another difference with respect to the state of the art in collaborative modeling
is that blended modeling tools are primarily parser-based, whereas collaborative
modeling approaches tend to be equally distributed between parser-based and
projectional approaches. Interestingly, while researchers are recently investigat-
ing more on eventual consistency for collaborative modeling [57], in our study
we observe that blended modeling tools provide limited support for consistency
tolerance that would allow deviations between different notations describing
the same model. Granada et al. [58] map model-based language workbenches
that can be used to generate editors for visual DSLs and point out their features
and functionalities. The authors identify eight language workbenches for the
generation of editors for visual DSL. The features taken into consideration for
their analysis are the following: scope, framework, the distinction between
abstract and concrete syntax, abstract syntax, concrete syntax, editing capa-
bilities, use of models, automation, usability, and methodological basis. The
conclusions point out that the most complete commercial language workbenches
are MetaEdit+18 and ObeoDesigner19, while the most complete open-source
ones are Eugenia20, GMF21, Graphiti22, and Sirius23. Our study differs in scope,
as we focus on tools that provide multiple notations, not only on tools that can
be used to develop editors for a single visual DSL. Indeed, none of the tools
identified by Granada et al. support the definition of more than one (visual)
concrete syntax for the same abstract syntax; this means that language engineers
willing to develop blended modeling environments should either use a dedicated
language workbench for blended modeling or suitably combine the languages
produced by two or more of the language workbenches mentioned above. Do
Nascimento et al. [59] perform a large-scale systematic mapping study on DSLs
and their related tools. The tools are categorized into (i) tools for using DSLs,
(ii) tools for creating DSLs, and (iii) language workbenches. Our study differs

18https://www.metacase.com/products.html
19https://www.obeodesigner.com/en
20https://www.eclipse.org/epsilon/doc/eugenia
21https://www.eclipse.org/modeling/gmp
22https://www.eclipse.org/graphiti
23https://www.eclipse.org/sirius
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from this work, as we focus on DSLs tool comparison, while the authors provide
a brief categorization of DSL tools, and do not go into the details of conducting a
comparison of the technical features. It is interesting to note that Do Nascimento
et al. observed that tool support for a single DSL is well-studied in the literature,
but at that time (2012) there was little knowledge about how to support multiple
DSLs and notations in a single modeling environment. They claim that sup-
porting multiple DSLs and multiple notations is fundamental when describing
large-scale industrial systems and that methods and tool support are needed for
the success of multi-DSL development. Based on the results of our study and
the ones on multi-notation modeling (see Section 7.2.1, we can confirm that in
the last years, the MDE scientific community actively worked and contributed
to filling this research gap.

There are additional studies related to our research that are not systematic
in nature, but their takeaways are still relevant. Negm et al. [60] compare 14
language workbenches based on (i) structure (grammar-driven or model-driven),
(ii) editor (parser-based or projectional), (iii) language notations (textual, tabular,
symbols, or graphical), (iv) semantics (translational or interpretive), and (v)
composability language aspects. However, this study is limited to language
workbenches and does not cover aspects such as synchronization mechanisms
and their generation, or collaborative features. Some of the results obtained by
Negm et al. are relevant for blended modeling as well. Firstly, out of nine ana-
lyzed parser-based language workbenches, only one (i.e., Ensõ) supports both
textual and graphical concrete syntaxes; this capability is achieved by having a
bidirectional mapping between tokens in the textual representation of the model
and elements in the object graph. Moreover, all four considered projection-based
language workbenches support multiple concrete syntaxes, with the Whole plat-
form and MPS supporting four different syntaxes: textual, graphical, tabular,
and symbolic. The main advantage of projection-based workbenches is that they
can rely on a shared common representation of all modeling elements (e.g., the
AST in MPS), whereas parser-based workbenches have a dedicated parser for
each concrete syntax. One of the claimed advantages of parser-based language
workbenches (especially the textual ones) is the flexibility with respect to the
models’ conformance; the textual representation of parser-based models can
still be opened and inspected, whereas projectional editors work directly on the



abstract representation of the model. Similarly, according to Negm et al., textual
parser-based workbenches avoid tool lock-in since the modeler is not limited to
using any specific editor and can be easily integrated with other tools. Erdweg et
al. [55] conduct a comparison study of 10 language workbenches participating
in the 2013 edition of the Language Workbench Challenge (LWC). The com-
parison of the language workbenches is based on a feature model that includes:
notation, semantics, editor support, validation, testing, and composability, where
some of them support multiple notations (fully or partially). The conclusions
state that no language workbench realizes all features. However, this study is
limited to the language workbenches presented in LWC’13. For what concerns
blended modeling, the results obtained by Erdweg et al. are in line with the
ones reported by Negm et al. [60], where projectional language workbenches
are better supporting the combination of different concrete syntaxes, with Enzõ
and MPS again as the ones supporting all types of concrete syntaxes. Erdweg et
al. also highlight the need for integrating “different notational styles”, which
is at the core of blended modeling. Merkle [61] conduct a comparison study
of textual language workbenches categorizing them into pure text-based and
projectional-based with a textual projection. The language workbenches com-
pared in this study are Xtext24, TEF25, EMFText26, and MPS27. The language
workbenches are compared based on workflow, abstract/concrete syntax, and
editor. However, this study is limited to textual language workbenches, while
our focus is on tools that provide multiple notations. In the study by Merkle,
the only language workbench supporting a combination of concrete syntaxes
is TEF (Textual Editing Framework28), an Eclipse-based language workbench
focusing primarily on textual editors, but with the possibility of embedding
them into other editors supporting other concrete syntaxes [26]. Internally, TEF
follows the background parsing strategy for the textual concrete syntax, where
textual models are always represented and edited as plain text, and their parsing

24https://www.eclipse.org/Xtext
25https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/

tool.html
26https://github.com/DevBoost/EMFText
27https://www.jetbrains.com/mps
28http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.

html

https://www.eclipse.org/Xtext
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
https://github.com/DevBoost/EMFText
https://www.jetbrains.com/mps
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
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is demanded by a background process. TEF also provides some basic form of
blending, where modelers can bring up a textual editor from either a graphi-
cal or a tree-based editor (e.g., by opening a small overlay window); however,
TEF-based modeling tools cannot be considered as blended since model updates
the embedded textual editor is not seamlessly integrated into its host editor,
and model updates are propagated on-demand to the host editor only when the
modeler closes the textual editor.

7.3 Study design

The goal of this study is to characterize the state of the art and the state of
the practice of modeling tools in relation to blended modeling. More specif-
ically, we formulate such high-level goal by using the Goal-Question-Metric
perspectives [62], shown in Table 7.1.

Purpose Identify, classify, and analyze
Issue the user-oriented and implementation-oriented characteristics of
Object existing modeling tools
Context in relation to the principles of blended modeling,
Viewpoint from a researcher’s and practitioner’s point of view.

Table 7.1. Goal of this study.

7.3.1 Process

This research was carried out by following the process shown in Figure 7.2. Our
process can be divided into three main phases, all well-established in systematic
secondary studies [63, 64, 65, 66]: planning, conducting and documenting. In
the following, we present the three phases of the process.

Planning

This phase aims at defining the plan for carrying out all the activities of this
study. More specifically, we first identified related secondary studies, i.e.,



Figure 7.2. Overview of the whole review process

surveys and literature reviews with a scope similar to the current review’s
scope (Section 7.2.4). Subsequently, we formulated the research questions
(Section 7.3.2), and compiled the research protocol.

The research protocol is a document reporting the methodological details of
this study. Specifically, the research protocol contains a detailed description of
all the steps we followed in the subsequent Conducting and Documenting phases.
To mitigate potential threats to validity and any bias, the research protocol was
defined prior to conducting the study, and it was reviewed by two experts. The
experts were asked to provide feedback on the protocol, particularly on possible
unidentified threats to validity, problems in the overall construction of the review,
and the appropriateness of the proposed research protocol and final reports for
the aim of this study. Both experts are well-established professors of Computer
Science, with substantial experience in empirical research.
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Conducting

In this phase, the mapping study is carried out according to the research protocol.
More specifically, we carry out the following activities.

Reference set definition. The goal of this activity is to identify the modeling
tools that could be part of the final set of modeling tools. This set will
serve as a guideline for the subsequent steps of the study design, especially
formulating the inclusion and exclusion criteria. The inclusion and exclu-
sion criteria will be tested against this set, and thus, the reference set is
subject to change until the criteria are not final. We identify the initial ref-
erence set based on (i) the modeling tools mentioned in related secondary
studies (Section 7.2.4); (ii) the authors’ experiences with tools partially
supporting blended modeling (e.g., [9, 8]); (iii) searches in generic web
search engines; and (iv) knowledge garnered from existing networks of
experts, e.g., by accessing forums and mailing lists (e.g., the Eclipse EMF
community forum29). The results of the subsequent Search and selec-
tion activity are eventually compared to the reference set for validation
purposes. The eventual reference set is composed of the following tools:
MagicDraw [67], Eclipse Papyrus [24], MetaEdit+30, Umple [22], and
the Open Source AADL Tool Environment (OSATE) [68].

Search and selection. (Section 7.3.3) The goal of this activity is to identify
as many (possibly blended) modeling tools as possible. Two parallel
activities are carried out: the Academic literature review, and the Grey
literature review. In both search activities, we perform a combination
of automated search, manual search, and backward-forward snowballing
[69]. These activities yield two types of artifacts: (i) Academic studies
(e.g., articles published in scientific journals, and proceedings of scientific
conferences) and (ii) Non-academic entries (e.g., blog posts, technical
reports). Because the subject of this study are the tools these artifacts
describe, both types of artifacts are screened for a specific Tool in the Tools
identification activity. Here, we manually analyze all academic studies

29https://www.eclipse.org/forums/index.php?t=thread&frm_id=108
30https://www.metacase.com/products.html

https://www.eclipse.org/forums/index.php?t=thread&frm_id=108
https://www.metacase.com/products.html


and non-academic entries and identify every modeling tool mentioned
in their contents. Moreover, in this activity, we keep track of pointers
and links referring to the relevant documentation about each tool (e.g., its
official documentation, its wiki-based knowledge base, etc.).

Classification framework definition. (Section 7.3.4) The goal of this activity
is to define the set of categories and their possible values to classify the
identified modeling tools.

Data extraction. (Section 7.3.5) The goal of this activity is to collect relevant
information about each modeling tool. In this activity, multiple researchers
collaboratively (i) read the full text of the relevant documentation of each
modeling tool, and (ii) populate the data extraction form with the collected
data. Upon the emergence of a new category or new possible value in
the domain of previously defined categories, the classification framework
can be dynamically adapted. In such cases, the previously extracted data
entries are updated in accordance with the new framework.

Data validation. (Section 11.5) To ensure the validity of the extracted data, the
tool vendors and knowledgeable experts are contacted to review the data
extracted in the previous step.

Data analysis. (Section 7.3.7) The goal of this activity is to analyze the ex-
tracted data in accordance with the research questions. The activity
involves both quantitative and qualitative analyses.

Documenting

The main activities performed in this phase are: (i) a thorough elaboration on
the data analyzed in the previous phase with the aim of discovering the main
findings of the study; (ii) reporting the possible threats to validity, especially the
ones identified during the definition of the review protocol; and (iii) producing
the final report. The final report is evaluated by external reviewers and forms the
basis of this article. The complete replication package is available online31 to
allow independent researchers to replicate and verify our study, and to reuse our

31https://zenodo.org/record/6402743

https://zenodo.org/record/6402743
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data for other purposes. The replication package includes the research protocol,
the list of all academic and non-academic entries considered in the search and
selection phase, the complete list of all identified tools, raw data, the scripts for
data analysis, and the details on technical requirements.

7.3.2 Research questions

The research questions of this study are reported below.

RQ1. What are the user-oriented characteristics of modeling tools most suitable
for supporting blended modeling?

Modeling tools are designed and developed to be adopted by specific
users, application domains, and usage scenarios.

By answering this research question, we aim to identify the external
characteristics of modeling tools, pertaining to their adoption and us-
age [9]. Typical examples include: supported (types of) notations, human-
computer interfaces, application domains, and addressed user groups.

Practitioners can benefit from the answer to this research question by
understanding how specific state-of-the-art tools address their problems,
what are their limitations in terms of blended modeling, and how they can
be improved.

RQ2. What are the realization-oriented characteristics of modeling tools most
suitable for supporting blended modeling?

With the advent of model-based approaches and domain-specific model-
ing, in particular, several modeling tools are being developed to support
certain levels of blending, formalisms, and semantics. Moreover, until
the recent spread of mainstream language workbenches (e.g., Xtext32,
Sirius33, MPS34, etc.), the development of such modeling tools had been
relatively ad-hoc.

32https://www.eclipse.org/Xtext
33https://www.eclipse.org/sirius
34https://www.jetbrains.com/mps

https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius
https://www.jetbrains.com/mps


By answering this research question, we aim to identify the internal
characteristics of modeling tools, and that, in terms of (i) their features
and (ii) the techniques employed to implement those features. Typical
examples include: implementation platforms, consistency mechanisms,
change propagation, traceability, and the linguistic level of model-to-
model correspondence are investigated.

Researchers can benefit from the answer to this research question by un-
derstanding the state of the practice on the techniques of blended modeling
tools, including the gaps to fill.

The identified research questions drive the whole study, with a special
influence on (i) the search and selection, (ii) data extraction (including the
definition of the classification framework), and (iii) data and main findings
synthesis.

7.3.3 Search and selection

The goal of the search and selection phase is to retrieve a representative set of
modeling tools supporting multiple modeling notations, as demanded by the
principles of blended modeling. First, we perform a systematic review of both the
academic (i.e., scientific articles published at peer-reviewed academic venues)
and grey literature (i.e., websites, online blogs, etc.), and discuss the results
in Section 7.3.3. The output of these two activities (i.e., academic studies and
non-academic entries) is then further analyzed in order to identify the modeling
tools either considered, mentioned, or discussed in them (Section 7.3.3).

Systematic reviews

We follow the same overall process when reviewing both the academic and
grey literature. In this phase, it is fundamental to achieve a good trade-off
between the coverage of existing results on the considered topic and having a
manageable number of studies to be analyzed [63, 16]. To achieve the above-
mentioned trade-off, our search and selection process has been designed as a
multi-stage process; this gives us full control over the number and characteristics
of the entries being either selected or excluded during the various stages. In
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the following, we present each step of our systematic review process. In the
remainder of this report, we refer to both academic studies and non-academic
entries as primary studies, unless specifically noted otherwise. The systematic
review is divided into three subsequent and complementary steps of (i) automatic
search, (ii) application of selection criteria, and (iii) snowballing.

Automatic search. In this step, we automatically inspect all the results re-
turned from a query execution on (i) Google Scholar for academic studies and
(ii) the Google Search engine for grey literature. The automatic searches for
both academic and non-academic literature are executed in November 2020.

For the academic literature, we use Google Scholar. We use Google Scholar
as the data source for the following main reasons: (i) it is one of the largest
and most complete databases and indexing systems for scientific literature;
(ii) as reported in [69], the adoption of this data source has proved to be a
sound choice to identify the initial set of literature studies for the snowballing
process (Section 7.3.3), producing a reasonable number of false positives, but
no false negatives (thus, no information is lost); (iii) the query results can be
automatically processed via already existing tools. Below we report the search
string used in this study. In order to cover as many potentially relevant studies
as possible, we defined the search string so that it includes academic studies on
blended modeling. The search string can be divided into three main components:
the first component captures the model-driven paradigm, the second one captures
the focus on multiple entities (e.g., multiple notations) and blending, and the
third one is used for ensuring that our results focus on software aspects. To
keep the results of this initial search as focused as possible, the query has been
applied to the title of the targeted studies.

("modeling" OR "modelling" OR "model based"
OR "model driven")
AND

("multi*" OR "blended")
AND

("notation*" OR "syntax*" OR "editor"
OR "tool" OR "software")



The search string has been tested by executing pilot searches on Google
Scholar. At the time of writing, Google Scholar produced a total of 280 hits
when searching with the reported search string.

For the grey literature, we target the regular Google Search Engine. The
search engine is selected in accordance with the recommendations for including
grey literature in software engineering multi-vocal reviews [16]. The search
string used for the academic literature yields mostly academic results even in
a general web search. We have, therefore, adapted our search strategy to find
non-academic sources. In particular, we identified a number of relevant hits
through manual searches early on. These manual hits could be classified as
either lists (e.g., Wikipedia’s “List of Unified Modeling Language tools”) or
tool-specific pages (e.g., tool vendor pages or blog posts about how specific
tools are used). We experimented with several search strings to ensure that
we find all relevant hits. In particular, we tried to combine different modeling
languages and diagram types into one large all-encompassing search string to
simplify our search and make it easier to extract results. However, on prototyping
this approach, we realized that the OR clauses that we used did not have the
desired effect and we did not find the tools we expected, and in particular, not
the lists that we expected. In comparison, a search string such as (MARTE)
AND (tool OR editor OR notation OR modelling) yields 162
results on Google, whereas our combined search string that included MARTE35

and many other languages only yielded 150 results.
Therefore, we decided to carry out an independent search for popular mod-

eling languages. We ran the different searches independently and merged the
results later on. We selected the relevant modeling languages using a mixture of
expert knowledge, browsing the web pages of well-known modeling tools from
the reference set and beyond (e.g., Eclipse Capella36 and Enterprise Architect37),
using lists such as Wikipedia’s page on Modeling Languages. We narrowed
down the resulting list of around 40 potential modeling languages by searching
for (Language Name) AND (tool OR editor OR notation OR
modelling) in Google, and analyzing the first ten non-academic hits (i.e.,

35https://www.omg.org/omgmarte
36https://www.eclipse.org/capella
37https://sparxsystems.com/products/ea

https://www.omg.org/omgmarte
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https://sparxsystems.com/products/ea
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search results that were not academic papers). Since the search term explicitly
contains the terms tool and editor, we expected that the Google search engine
would include such a tool within the first ten non-academic hits if it exists, and
has any practical relevance. Experiments where we checked later result pages for
selected searches confirmed this expectation. We thus only included modeling
languages for which Google does report a link to a modeling tool. Otherwise,
we disregarded it. To address the large number of hits we would get this way, we
limited the search results for each included search string to the first 50 unique
results (if less than 50 hits are reported, we collect all of them), which is based
on the suggestion from Garousi et al. [16]. The eventual result set included
1,494 hits, typically containing blog posts, user manuals, websites, technical
reports, white papers, academic articles, etc.

Application of selection criteria. In this step, the identified potentially rel-
evant entries undergo rigorous filtering based on the application of a set of
selection criteria. Following the guidelines for systematic literature review for
software engineering [63], we define the set of inclusion and exclusion criteria a
priori, in order to reduce the likelihood of bias. The potentially relevant entries
are rigorously examined by adopting multiple selection rounds in an adaptive
reading depth fashion [70]. Specifically, in the first round, the title of the entry is
examined. This first step enables us to discard all those papers or web pages that
clearly do not fall within the scope of this study. In the second exclusion round,
the introduction and conclusion sections are inspected (if present). Finally, the
entries are further inspected by considering their full text, in order to ensure
that only the ones relevant to answering the research questions are selected.
While processing the full text of a paper/web page, we also keep track of all the
mentioned modeling tools and consider them in the tools’ identification phase
(Section 7.3.3).

In the following, we detail the set of inclusion and exclusion criteria that
guide the selection of the academic and non-academic entries for our systematic
review.38 A potentially relevant entry is selected if it (i) satisfies all inclusion
criteria and (ii) does not satisfy any of the exclusion criteria. The selection

38The identifiers used in this section are consistent with those used in the replication package
to enable better traceability.



criteria are divided into three categories, namely: generic (i.e., they apply for
both academic and non-academic studies), academic-specific, and grey-specific.
The decision of adopting three categories of criteria originates from the differ-
ent nature of the sources we considered (i.e., Google Scholar and the Google
Search Engine). By defining three different sets, it is possible to design selection
criteria specifically tailored to the specific characteristics of academic and non-
academic entries, and hence, improve the overall quality of the selection process.

Generic inclusion criteria:

GEN-I1) Entries on modeling tools, i.e., where models are used as first-class entities
and used as a substantial abstraction from the problem domain (e.g.,
OSATE [68] for modeling hardware/software systems according to the
AADL modeling language).

GEN-I2) Entries discussing at least two different notations (possibly for the same
abstract syntax). The notations can be of the same type (e.g., both textual).

Generic exclusion criteria:

GEN-E1) Entries on non-modeling tools. For example, articles on IDEs, program-
ming tools, drawing tools, etc.

GEN-E2) Entries that are not in English.

GEN-E3) Duplicates of already included entries.

GEN-E4) Entries that are not available, and hence not analyzable (e.g., the full text
of a scientific article is not accessible or the link to a web page is broken).

Exclusion criteria specific to academic sources:

A-E1) Studies in the form of full proceedings and books since they are too broad
for being thoroughly analyzed in this phase of the study.

A-E2) Studies that have not been peer-reviewed, as peer-reviewing is the de facto
standard of quality assurance for scientific literature.
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Exclusion criteria specific to grey literature:

G-E1) Web pages reporting exclusively the basic principles of modeling tech-
niques, without mentioning any modeling tool.

G-E2) Web pages reporting exclusively abstract best practices while applying
modeling techniques.

G-E3) Web pages reporting an implementation without a discussion of its benefits
and/or drawbacks.

G-E4) Academic literature, since such type of studies is considered by a different
process in our protocol.

G-E5) Videos, podcasts, and webinars since they are too time-consuming to be
considered for this phase of the study.

Snowballing. In this step, we complement the preliminary set of academic
studies by applying the snowballing procedure [69]. To mitigate a potential
bias with respect to the construct validity of the study, backward and forward
snowballing is used to complement the automatic search of the academic litera-
ture [71]. In particular, this process is carried out by considering the scientific
publications selected in the initial automatic search, and subsequently selecting
relevant studies among those cited by one of the initially selected ones (back-
ward snowballing). Then, we also perform forward snowballing, i.e., selecting
relevant studies among those citing one of the initially selected academic stud-
ies [69]. In this context, the Google Scholar39 bibliographic database is adopted
to retrieve the studies citing the ones selected through the initial search phase.
The final decision about the inclusion of the newly considered publications
in the study is based on the application of the selection criteria presented in
Section 7.3.3.

39https://scholar.google.com

https://scholar.google.com


Tool identification

In the tool identification activity, each primary study is manually analyzed and
the mentioned modeling tools are identified. This is achieved by investigating
the full text of each primary study, and collecting every modeling tool mentioned
in it, independently of whether it is blended or not. Then, the set of identified
modeling tools is filtered for duplicates, which are subsequently merged, regard-
less of whether the tool originates from an academic or a non-academic source.
After the merge, we obtained a total of 133 modeling tools. For each tool, we
have collected the following information: (i) name, (ii) link/reference to official
documentation, (ii) organization(s) implementing, maintaining, and supporting
the tool, and (iii) tracing information towards all primary studies mentioning
the tool. In order to ensure that the identified tools support us in answering
the research questions of this study, we further filter the list of all modeling
tools according to a set of selection criteria. Below we report the inclusion and
exclusion criteria.

TI1) The tool allows its users to edit the same model in multiple notations.
The user can switch between these notations easily and without an extra
processing step (i.e., the tool supports some level of blended modeling).
The tool allows a certain degree of temporary inconsistencies. Notations
like an overview tree for navigation purposes or any textual representation
used for file persistency purposes only are not considered (e.g., XMI).

TI2) The tool is publicly available (either as an open-source or commercial
product).

TI3) The documentation of the tool is publicly available.

TE1) The tool is a language workbench. (Our study focuses on modeling tools
themselves.)

TE2) The tool is not available for download as a binary that can be run on
current operating systems from an official website or an affiliated platform
supporting it (e.g., a GitHub repository).

TE3) The documentation of the tool is not in English.
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Figure 7.3. Overview of the conducted search and selection steps

A potentially relevant modeling tool is included if it satisfies all inclusion
criteria (TI1-TI3), and discarded if it satisfies any exclusion criterion (TE1-TE2).

To minimize bias, this activity is performed by five researchers and organized
as follows. First, two researchers are randomly assigned to each of the potentially
relevant tools. Then, the researchers independently apply the tool selection
criteria to their assigned tools; each researcher could mark a tool as included,
excluded, maybe. For the 12 of 133 tools where at least one researcher
indicates an uncertainty (maybe), the conflicts are resolved with the intervention
of a randomly–assigned third researcher and, when needed, discuss plenary
among all researchers involved in this study. After the final set of modeling
tools has been established, we check whether each tool in the reference set is
also included in this final set of tools. If all tools in the reference set are indeed
included in the final set of tools, we continue with the subsequent phases of the
protocol (i.e., data extraction). Otherwise, a dedicated meeting is set up, and a
refinement of the systematic review process is designed and conducted again.
Eventually, the final list of modeling tools contains all tools of the reference set.

Figure 7.3 shows the different steps performed in the search and selection
phase. Out of the 467 papers in the initial scientific search, 44 papers were
included in the snowballing process. The snowballing was performed four times
before no more new papers were included. During this process, a total of 2,134
cited and 3,623 referenced papers were reviewed. In summary, 68 distinct tools
were extracted from the included papers. For the grey literature part, 30 relevant



languages were identified as described above, for which the different search
terms yielded 1,494 distinct websites. After applying the selection criteria, 68
tools were included in the tools set. Merging the academic and grey literature
parts resulted in 133 distinct tools, of which 30 tools were selected according
to the tool selection criteria. Two tools had to be excluded during the data
extraction process due to lack of availability or semantically out of scope (see
Section 7.3.4). Eventually, 26 modeling tools were sampled, shown in the
Referred Tools section at the end of this paper.

Table 7.2. Categories of the classification framework, and their domain.

Category Definition Type/Domain

GENERIC
META

Tool ID The internally used ID of the tool.
The name of the tool. Free text
Analyzed release The version of the release the analysis was carried out on. Free text

TOOL
First release Date of the first available release. Date
Latest release Date of the latest available release. Date
Motivation The self-declared motivation of the tool. Free text
Open-source Whether the tool’s sources are available openly. {Yes, No}
Web-based Whether the tool is web-based. {Yes, No}
Collaboration The degree and type of support for collaboration. {No, Asynchronous, Synchronous}

RQ1: USER-ORIENTED CHARACTERISTICS
NOTATIONS

Notation types Types of notations supported by the tool.
{Textual, Graphical, Tabular,
Tree-based, Mixed textual-graphical}

Notation instances (number of) Sum number of instances of notation types. Numeric

Embedded notations
Whether there are notations
that are embedded into each other. {Yes, No}

Overlap The degree of overlap between notations. {None, Partial, Complete}
VISUALIZATION AND NAVIGATION

Visualize multiple notations The ability to visualize more than one notations. {Yes, No}

Synchronous navigation
Whether the tool supports a synchronous navigation
of multiple visualized notations. {Yes, No}

Navigation among notations The dynamics of navigation between different notations. {Immediate, Complex}
FLEXIBILITY

Flexibility - models
Whether the tool supports temporary inconsistency
at the level of the instance models. {Yes, No}

Flexibility - language
Whether the tool supports temporary inconsistency
at the level of the language. {Yes, No}

Flexibility - persistence Whether the tools can persist inconsistent models. {Yes, No}

RQ2: REALIZATION-ORIENTED CHARACTERISTICS
MAPPING AND PLATFORMS

Mapping The way concrete and abstract syntax are mapped. {Parser-based, Projectional}
Platform The platform the tool is built on. {Eclipse, Other}

CHANGE PROPAGATION AND TRACEABILITY
Change propagation The dynamics of propagating changes across notations. {Sequential, Concurrent}

Traceability
Whether the tool supports explicit
traceability between notations. {Yes, No}

INCONSISTENCY MANAGEMENT
Inconsistency visualization The degree and way the tool visualizes inconsistencies. {No, Internal, External}
Inconsistency management type The way the tool manages inconsistencies. {On-the-fly, On-demand, Preventive}

Inconsistency management automation
The degree of automation of
inconsistency management activities.

{Manual, Partial,
Automated, Not applicable}
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7.3.4 Classification framework definition

Table 7.2 shows the classification framework of this study. The classification
framework is composed of three distinct facets; the first facet is about generic
characteristics of modeling tools (e.g., release dates, vendor, main motivation
for blending notations); the second and third facets directly address research
questions RQ1 and RQ2.

We partially reuse the results of previous work [9] related to blended mod-
eling for defining the initial version of the classification framework. Then, as
suggested in [64], the customization of the classification framework is performed
as follows: (i) firstly we select a random sample of 10 modeling tools, (ii) then
two researchers independently extract the data from the 10 modeling tools by
using the initial version of the classification framework, (iii) the two researchers
then discuss the results of the data extraction with a third researcher, with a
special focus on too generic/abstract parameters, parameters which did not fully
fit with the characteristics of the tools, parameters with redundant values, and
recurrent missing concepts, (iv) the classification framework is customized ac-
cording to the discussion, and lastly (v) the final version of the classification
framework is applied to all remaining modeling tools. It is important to note that
when analyzing the remaining 26 tools, the classification framework can still
be enriched/updated based on the characteristics of the currently analyzed tool.
The details about how we extracted data for each modeling tool are provided in
the next section.

7.3.5 Data extraction

The main goal of this activity is to extract relevant data about each modeling tool
for answering the research questions. The inputs to this activity are: (i) the set
of 28 modeling tools, out of which 26 remained after excluding two additional
tools during this phase; and (ii) the textual contents of the academic studies and
non-academic entries referring to the tools, and the tools’ official documentation
(when publicly available). Moreover, when we are not able to collect all relevant
data for some specific aspects of a tool (e.g., the internal consistency mechanisms
of a proprietary tool) we perform a series of ad-hoc Web searches and contact
the support team of the tool for collecting the missing data. For the sake of



external verifiability, full tracing information is kept between the extracted data
and the considered data sources and it is included in the replication package of
the study.

To carry out a rigorous data extraction process, and to ease the control and
the subsequent analysis of the extracted data, a predefined data extraction form is
designed prior to the data extraction process. The structure of the data extraction
form is based on the various categories of the classification framework.

7.3.6 Data validation

To ensure the validity of the extracted data, the tool vendors are contacted and the
data and the explanation of the reference framework are made available to them.
If a tool does not have a clearly identified vendor, we identify knowledgeable
experts who published scientific papers related to the tool. The vendors and
experts are asked to identify any invalid data related to their tool. The contact
is initiated via email with the vendors and experts having an option to ask
and discuss the details with our research team. The majority of interactions
happened in email. Some vendors and experts preferred a live discussion during
a video call, which we also accommodated. Eventually, we have contacted
vendors and experts of 24 tools. The authors of this paper have developed or
extensively contributed to the remaining 2 tools, and validated them internally.
The validation phase ran for three weeks, between February 28 and March
22, 2022. 69% of tool vendors or experts replied either with minor change
suggestions or with the approval of the extracted data. Based on their responses,
3.8% of the data (20 of 520 records) has been updated. The most changes, five,
were observed in the model-level flexibility category.

7.3.7 Data analysis

The data analysis activity involves collating and summarizing the data, aiming
at understanding, analyzing, and classifying the state of the art of modeling
tools [65, § 6.5]. The data synthesis is divided into two main phases: vertical
analysis and horizontal analysis. In both cases, we perform a combination of
content analysis [72] (mainly for categorizing and coding tools under broad
thematic categories) and narrative synthesis [73] (mainly for detailed explanation
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and interpretation of the findings coming from the content analysis). When
performing vertical analysis, we analyze the extracted data to find trends and
collect information about each category of the classification framework. When
performing horizontal analysis, we analyze the extracted data to explore possible
relations across different categories of the classification framework.

Vertical analysis

Depending on the parameters of the classification framework, in this research,
we apply both quantitative and qualitative synthesis methods, separately. When
considering quantitative data, depending on the specific data to be analyzed,
we apply descriptive statistics for a better understanding of the data. When
considering qualitative data, we apply the line of argument synthesis [64], that
is: firstly we analyze each tool individually to document it and tabulate its main
features with respect to each specific parameter of the classification framework,
then we analyze the set of tools as a whole, to reason on potential patterns
and trends. When both quantitative and qualitative analyses are completed,
we integrate their results to explain quantitative results by using qualitative
results [65, § 6.5]. The results are discussed in Section 7.4.

Horizontal analysis

Following the best practice of previous secondary studies [57, 56, 74, 75], we
explore significant phenomena across pairs of categories as well. We use contin-
gency tables annotated with the Chi-square statistic at ↵ = 0.05, for identifying
statistically significant cases. Following the directions of Haviland [76], we
report the p-values of the conventional Chi-square test without Yates’s correction
for continuity. The results are discussed in Section 7.5.

7.4 Results

In this section, we elaborate on the findings of this study. First, we discuss the
general findings in Section 7.4.1. Then, we elaborate on the two research ques-
tions of our study: the user-oriented characteristics (RQ1) and the realization-
oriented characteristics (RQ2) of the sampled tools, in Section 7.4.2 and 7.4.3,



Table 7.3. Relationships between blended aspects (BA) and the research questions (RQ)
of this study.

RQ1: User-oriented
characteristics
(Section 7.4.2)

RQ2: Realization-oriented
characteristics
(Section 7.4.3)

BA1: Multi-notation Notations
(Section 7.4.2)

Mapping and platforms
(Section 7.4.3)

BA2: Seamless interaction Visualization and navigation
(Section 7.4.2)

Change propagation,
traceability
(Section 7.4.3)

BA3: Flexibility
Model/language/persistence
flexibility
(Section 7.4.2)

Inconsistency management
and tolerance
(Section 7.4.3)

respectively. In both cases, we contextualize our findings in terms of the three
core blended modeling aspects: multi-notation, seamless interaction, and flexi-
bility, as shown in Table 7.3.

7.4.1 Overview

In this section, we review some of the general findings regarding the analyzed
blended modeling tools. The list of the included tools is shown in Table 7.4.

Project age and timeline. The tools and their respective projects spread over
25 years, with SOM/ADOxx [91] being the oldest tool (first release in 1996) in
our sample. On average, the age of the tool projects is 10.6 years (� = 5.9). The
means of the first and last releases are 2008.8 (� = 5.9) and 2019.4 (� = 1.8),
respectively. These numbers suggest a sample of mature enough tools with
sufficient recency in terms of the latest release. Fig. 7.4 provides a visual
overview of the age and timeline of tool projects.

Motivations. The self-declared motivations of the tools vary greatly. We have
recorded the mission statements of the tools and clustered them. General-purpose
modeling tools are typical in our sample, usually offering multi-notation support
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Table 7.4. The list of included tools.

Tool Releases Info
ID Name Vendor/Maintainer First Latest Analyzed Open-source Self-declared motivation

[77] ADOIT: Community
Edition

BOC Products & Ser-
vices AG 2003 2020 ADOIT:CE based on

ADOIT 12.0 No Enterprise architecture management

[78] Archi Beauvoir, P and Sar-
rodie, JB 2010 2021 4.8.1 Yes Enterprise architecture

[79] ARIS Software AG 2009 2017 2.4d - 7.1.0.1161389 No Business process modeling

[80] ASCET Developer ETAS 2002 2020 7.6.0 Build ID 209 No ”Easily combine texts and graphics suiting your
programming needs.”

[81] AToMPM Université de Montréal 2013 2020 0.8.5 Yes Multi-paradigm modeling on the web
[T06] BlendedProfile Mälardalen University 2018 2020 0.3 Yes Blended modelling for UML profiles

[82] Boston Viev 2015 2020 5.0 No Fact-based modeling via Object-Role Modeling
(ORM)

[83] Cardanit ESTECO SpA 2013 2020 Online @07.04.2021. No Modeling BPMN with diagrams and tabular
views

[84] Certware NASA 2013 2016 2.0 Yes Safety case modeling
[85] DBDiagrams Holistics Software 2018 2021 Online @07.04.2021. No Visualize textual DB schema definition

[24] Eclipse Papyrus The Eclipse Foundation 2008 2020 5.0.0 Yes Generic-purpose MBSE tool, based on UML
and providing support for DSLs via UML Profiles

[86] Eclipse Process
Framework Project The Eclipse Foundation 2006 2018 1.5.2 Yes Software process modeling

[67] MagicDraw CATIA No Magic 1998 2021 MagicDraw 2021x LTR
Enterprise No

Modelling tool that facilitates analysis and de-
sign of Object Oriented (OO) systems and
databases. It provides code engineering mech-
anism (with full round-trip support for Java, C++,
C#, CL (MSIL) and CORBA IDL programming
languages), as well as database schema mod-
eling, DDL generation and reverse engineering
facilities.

[87] mbdeddr itemis AG 2012 2018 2018.2.0 based on MPS
2018.2.6 Yes

”Boosting productivity and quality by using ex-
tensible DSLs, flexible notations and integrated
verification tools.”

[T15] MEMO4ADO OMiLAB 2015 2018 1.10 No Multi-Perspective Enterprise Modeling

[88] Modelio Modelisoft 2011 2020 4.1.0 (202001232131) Yes Generic modeling tool for UML, BPMN, Archi-
Mate, SysML, etc

[68] OSATE Carnegie Mellon Univer-
sity 2004 2021 2.9.1 Yes

AADL is a language, with different representa-
tions. A textual representation provides a com-
prehensive view of all details of a system, and
graphical if one want to hide some details, and
allow for a quick navigation in multiple dimen-
sions.

[89] QuickDataBaseDiagrams Dovetail Technologies
Ltd 2002 2021 Online @07.04.2021. No Modeling DB schemas by text and diagram

[90] SequenceDiagramOrg - 2014 2021 Online - 9.1.1 No

Improve the efficiency when creating and work-
ing with sequence diagrams by combining text
notation scripting and drawing by clicking and
dragging in the same model.

[91] SOM/ADOxx OMiLAB 1996 2014 SOM 3.0 on ADOxx 1.5 No
Semantic Object Model. Comprehensive ap-
proach for object-oriented and semantic model-
ing of business systems.

[92] Swimlanes - 2014 2021 Online @07.04.2021. No Visualize sequence diagrams

[93] TopBraid Composer
Maestro Edition TopQuadrant, Inc 2006 2021 7.1.0 No

”TopBraid Composer™ Maestro Edition (TBC-
ME) is a comprehensive Knowledge Graph mod-
eling and SPARQL query tool. In use by thou-
sands of commercial customers, Composer of-
fers robust and comprehensive support for build-
ing and testing configurations of rich knowledge
graphs.”

[94] UMLet TU Wien 2002 2018 14.3 Standalone Yes Allow textual+visual modeling of UML diagrams
[95] UMLetino TU Wien 2013 2018 14.3 Yes Allow textual+visual modeling of UML diagrams

[22] Umple University of Ottawa 2008 2020 Online - 1.30.1.5099
.60569f335 Yes

Support the convenient modeling across differ-
ent formalisms. No particular domain targeted,
thus, it’s a pretty abstract tool.

[96] USE Universität Bremen 2007 2020 6.0.0 Yes System modeling via a subset of UML + OCL
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Figure 7.4. Overview of the age of the tool projects, spanned by their respective first
and last releases.

for UML-based modeling, e.g. Modelio [88], USE [96], and Papyrus [24]. Some
of these tools are very specific about their intentions to combine or augment the
traditional graphical notation of UML with textual elements, such as UMLet [94]
and ETAS ASCET Developer [80]. Among the tools with specific modeling
purposes are the ones aiming at process modeling (e.g., SOM/ADOxx [91],
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ARIS [79]), database modeling (e.g., DBDiagram [85], QuickDBD [89]), and
enterprise architecture (e.g., Archi [78], ADOIT [77]).

Web-based implementation. We have found that the majority of the sampled
tools, 17 of 26 (65%), are exclusively desktop-based applications, as shown
in Table 7.5.

Table 7.5. The web-based nature of tools.

Web-based #Tools Tools

No 17 (65%) [78], [79], [80], [T06], [82], [84], [24], [86], [67], [87],
[T15], [88], [68], [91], [93], [94], [96]

Yes 9 (35%) [77], [81], [83], [85], [89], [90], [92], [95], [22]

Open-source. Half of the sampled tools are released as open-source software
(Table 7.6), allowing access to the source code of the tool.

Table 7.6. The open-source nature of tools.

Open-source #Tools Tools

No 13 (50%) [77], [79], [80], [82], [83], [85], [67], [T15], [89], [90], [91],
[92], [93]

Yes 13 (50%) [78], [81], [T06], [84], [24], [86], [87], [88], [68], [94], [95],
[22], [96]

Collaboration. Collaborative modeling is the joint creation of a shared rep-
resentation of a system through means of modeling [56, 57]. Collaboration
enables an orchestrated interplay among stakeholders of different domains, and
thus, very often, collaboration raises the need for multiple different notations.
In real-time collaborative settings, the groupwork of stakeholders happens syn-
chronously. Off-line collaborative settings do not assume synchronicity, but
rather stakeholders who work on shared models at different times. As shown
in Table 7.7, the majority of tools, 15 of 26 (58%), provides some means of



collaboration. Specifically, off-line techniques are typical, accounting for 9 of
15 collaborative tools (60%) or 9 of 26 tools overall (35%), respectively. Finally,
11 of 26 sampled tools (42%) do not support any means of collaboration.

Table 7.7. Support for collaboration.

Collaboration #Tools Tools

No 11 (42%) [79], [T06], [84], [24], [86], [T15], [90], [91], [92], [93]
[96]

Yes: Off-line 9 (35%) [78], [80], [67], [87], [88], [68], [94], [95], [22]

Yes: Real-time 6 (23%) [77], [81], [82], [83], [85], [89]

7.4.2 User-oriented characteristics (RQ1)

In this section, we discuss the findings related to the user-oriented characteristics
of the sampled tools. We contextualize our findings in terms of the three aspects
of blended modeling tools: the support for multiple notations (Section 7.4.2),
seamless interaction (Section 7.4.2), and flexibility (Section 7.4.2).

Notations

Notation types. As shown in Fig. 7.5a and Table 7.8, the majority of tools, 5
of 26 (19%), support two types of notation, with additional nine tools supporting
three types, and two tools supporting four types.

Every tool, 26 of 26 (100%), features a graphical notation. Textual notations
are supported by 19 tools. Additional 13 tools were found with a support
for tabular notations, and seven with a support for tree-like notations. This
information is detailed in Fig. 7.5b and Table 7.9.
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Figure 7.5. Number and combinations of notation types.

Table 7.8. Number of supported notation types.

#Notation types #Tools Tools

2 15 (58%) [77], [79], [80], [81], [83], [84], [85], [T15], [89], [90],
[91], [92], [94], [95], [22]

3 9 (35%) [78], [T06], [86], [24], [67], [87], [88], [68], [96]

4 2 (8%) [82], [93]



Table 7.9. Support for specific notation types.

Notation type #Tools Tools

Graphical 26 (100%)[77], [78], [79], [80], [81], [T06], [82], [83], [84], [85],
[24], [86], [67], [87], [T15], [88], [68], [89], [90], [91],
[92], [93], [94], [95], [22], [96]

Textual 19 (73%) [78], [80], [81], [T06], [82], [85], [86], [24], [87], [88],
[68], [89], [90], [92], [93], [94], [95], [22], [96]

Tabular 13 (50%) [77], [79], [82], [83], [84], [86], [67], [87], [T15], [88],
[91], [93], [96]

Tree 7 (27%) [78], [T06], [82], [24], [67], [68], [93]

Embedded notations. We found a single occurrence of embedded notations,
i.e., a host notation being enriched by fragments of another notation (Table 7.10).
While the host notation is prevalent during the entirety of the interaction, the em-
bedded notation is accessible in a specific subset of the host notation. For exam-
ple, in the Statecharts + Class Diagrams (SCCD) formalism [97],
Class Diagram fragments are used to augment the Statecharts formalism, and
provide structural information to compose complex systems.

Table 7.10. Support for embedded languages.

Embedded lan-
guages

#Tools Tools

No 25 (96%) [77], [78], [79], [80], [81], [T06], [82], [83], [84], [85],
[24], [86], [67], [T15], [88], [68], [89], [90], [91], [92],
[93], [94], [95], [22], [96]

Yes 1 (4%) [87]

Overlap. The majority of tools, 21 of 26 (81%), comes with notations that
are not fully overlapping. This means that different notations provide different
modeling aspects in these tools. An example of full overlap is where a graphical
state machine language can render a state machine model with every structural
feature; whereas a table only shows which states have transitions to which states.
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Table 7.11. Overlap between notations.

Overlap #Tools Tools

Partial 21 (81%) [77], [78], [79], [80], [81], [T06], [82], [83], [84], [24],
[86], [67], [T15], [88], [68], [91], [93], [94], [95], [22],
[96]

Complete 5 (19%) [85], [87], [89], [90], [92]

Visualization and navigation

Usability aspects in general are hard to measure. To gain reliable results, it is
necessary to conduct a complex user study with concrete tasks, a larger number
of participants, interviews and/or surveys, and a thorough evaluation of the
answers. This is not feasible in the context of this study and therefore, we
decided to focus on usability aspects that are i) easily measured objectively and
ii) specific to blended modeling. We do not consider the usability of modeling
languages themselves as discussed in [98] and [99]. Instead, we focus on the
usability of the tools in terms of the topics that are crucial for blended modeling.
The idea of blended modeling is to use the notation that is best suited for the
current task at hand. This makes it necessary to switch frequently between the
available notations. Therefore, for pleasant usability with good support for the
user, a tool must offer the possibility to visualize multiple notations side by side
and/or provide seamless navigation between notations, or even synchronized
navigation. To clarify this more focused view of usability, we use the term
“seamless interaction”.

Visualization of multiple syntaxes. In general, a blended modeling tool must
have the ability to support multiple concrete syntaxes of the same abstract syntax.
This parameter, in particular, addresses the possibility of simultaneously viewing
multiple notations within a modeling tool, e.g., side-by-side or in an integrated
manner such as projectional editors as mbeddr [87] do. All 26 identified tools
support the simultaneous view of two or more notations.



Synchronized navigation. In addition to the previous parameter, this parame-
ter investigates whether the navigation across multiple notations in the models’
editors is synchronized. For instance, this can be the case in a side-by-side view,
if an element in one notation is selected, also its corresponding element in the
other notation is selected. Another example of such synchronized navigation
is the usage of the double click feature to jump between different views show-
ing corresponding elements but belonging to different notations. As shown in
Table 7.12, more than half of the tools, 16 of 26 (62%), provides synchronized
navigation facilities.

Table 7.12. Support for synchronized navigation.

Sync’d navigation #Tools Tools

Yes 16 (62%) [78], [79], [81], [T06], [82], [83], [85], [86], [67], [87],
[88], [89], [90], [92], [93], [22]

No 10 (38%) [77], [80], [84], [24], [T15], [68], [91], [94], [95], [96]

Navigation among notations. Blended modeling tools introduce the benefit
that the same model can be viewed and modified using different notations.
To enable a fluent modeling experience, the effort required to navigate across
notations should be minimal. This binary parameter classifies the effort. It
can be either immediate (e.g., a click or a keyboard shortcut), or it can involve
more complex steps, such as the navigation through multiple (context) menus or
wizards. The majority of tools, 20 of 26 (77%), provide immediate navigation
from one notation to the other, suggesting a better user experience in terms of
seamless interaction.

Flexibility

Flexibility is the user-related embodiment of tolerating vertical and horizontal
inconsistencies [10] at various levels of abstraction in the modeling stack and
various modeling facilities. In this study, we specifically consider three types of
flexibility, as follows.
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Table 7.13. Navigation among notations.

Navigation #Tools Tools

Immediate 20 (77%) [78], [79], [80], [81], [T06], [82], [83], [85], [24], [86],
[67], [87], [T15], [88], [89], [90], [91], [92], [93], [22]

Complex 6 (23%) [77], [84], [68], [94], [95], [96]

Flexibility – models. As shown in Table 7.14, the majority of tools, 19 of 26
(73%), does not provide flexibility at the model level. This means that there are
no inconsistency tolerance mechanisms in place that would allow deviations
between different notations describing the same model. However, a small set of
six tools support model-level flexibility.

Table 7.14. Support for model-level flexibility.

Flexibility: models #Tools Tools

No 19 (73%) [77], [78], [79], [81], [T06], [83], [84], [24], [67], [87],
[88], [68], [90], [91], [92], [93], [94], [95], [96]

Yes 7 (27%) [82], [86], [80], [85], [T15], [89], [22]

Flexibility – language. The majority of tools, 22 of 26 (85%), does not provide
flexibility at the language-level. (Table 7.15) This means that vertical incon-
sistencies between model and language (e.g., broken conformance or typing
relationships) are not tolerated. We found three exceptions, which are, how-
ever, different from the ones with support for model-level flexibility discussed
above: mbeddr [87], OSATE [68], TopBraid Composer [93]. Only a single tool,
Umple [22], supports both model- and language-level flexibility.

Flexibility – persistence. The majority of tools, 22 of 26 (85%), does not
support persisting inconsistent models. (Table 7.16) Out of the ones with support
for persistence-level flexibility, ETAS ASCET Developer [80] and Umple [22]
support model-flexibility and flexibility at both levels, respectively. The other



Table 7.15. Support for language-level flexibility.

Flexibility: language #Tools Tools

No 22 (85%) [77], [78], [79], [80], [81], [T06], [82], [83], [84],
[85], [86], [24], [67], [T15], [88], [89], [90], [91],
[92], [94], [95], [96]

Yes 4 (15%) [87], [68], [93], [22]

two tools with support for persistence-level flexibility are MagicDraw [67] and
SequenceDiagramOrg [90].

Table 7.16. Support for persistence flexibility.

Flexibility: persistence #Tools Tools

No 22 (85%) [77], [78], [79], [81], [T06], [82], [83], [84], [85],
[24], [86], [87], [T15], [88], [68], [89], [91], [92],
[93], [94], [95], [96]

Yes 4 (15%) [80], [67], [90], [22]

7.4.3 Realization-oriented characteristics (RQ2)

In this section, we discuss the findings related to the implementation charac-
teristics of the sampled tools. We contextualize our findings in terms of the
three aspects of blended modeling tools: the support for multiple notations (Sec-
tion 7.4.3), seamless interaction (Section 7.4.3), and flexibility (Section 7.4.3).

Mapping and platforms

Mapping. The mapping between abstract syntax and notation is typically
implemented either in a parser-based or in a projectional fashion. In parser-
based approaches, the user modifies the models via different notations, and a
parser produces the abstract syntax tree. In projectional approaches, however,
the abstract syntax tree is modified directly. Since projectional editors bypass
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the stages of parser-based editors, they provide support for notations that cannot
be easily parsed, but at the same time deliver a different editing experience for
textual notations. As shown in Table 7.17, the majority of tools, 22 of 26 (85%),
implement a parser-based editor, while four come with projectional facilities.

Table 7.17. Type of mapping.

Mapping #Tools Tools

Parser-based 22 (85%) [78], [79], [80], [81], [T06], [82], [83], [84], [85], [24],
[86], [88], [68] [89], [90], [91], [92], [93], [94], [95], [22],
[96]

Projectional 4 (15%) [77], [67], [87], [T15]

Platforms. Eclipse is the only frequently encountered platform in our sample.
As shown in Table 7.18, 10 of 26 tools (38%) are built on top of Eclipse, and
18 are built on other, mainly custom platforms. mbdeddr [87] is the only MPS-
based tool in our sample. One tool, MagicDraw [67], also supports more than
one platform.

Table 7.18. Platforms of implementation.

Platform #Tools Tools

Other 17 (65%) [77], [79], [81], [82], [83], [85], [67], [T15], [87], [88],
[89], [90], [91], [92], [95], [22], [96]

Eclipse 10 (38%) [78], [80], [T06], [84], [24], [86], [67], [68], [93], [94]

Change propagation and traceability

Change propagation and traceability are the realization-oriented manifestations
of the seamless integration blended modeling aspect. (See Table 7.3.) During the
data extraction phase, however, we have failed to obtain any useful information
in these two categories. In the vast majority of cases (exception for ADOIT [77],



ARIS [79], the Eclipse Process Framework [86], and MagicDraw [67]), we
have not found explicit discussions of these concerns, nor any evidence of these
concerns being explicit in the tool. We report these negative results to maintain
the symmetry of our classification framework. We suggest replications of this
study to be carried out in a conceptual way [100], i.e., attempting to answer the
research questions using different methods.

Inconsistency management

Inconsistency visualization. As shown in Table 7.19, the majority of tools,
15 of 26 (58%), does not provide any visualization for inconsistencies. Out of
the remaining 11 tools, eight implement an internal visualization mechanism,
and three rely on external services.

Table 7.19. Support for inconsistency visualization.

Inconsistency
visualization

#Tools Tools

No 15 (58%) [77], [79], [81], [T06], [83], [84], [86], [67], [68], [90],
[91], [92], [94], [95], [96]

Internal 8 (31%) [78], [82], [80], [85], [87], [88], [89], [22]

External 3 (11%) [24], [T15], [93]

Inconsistency management type. The two fundamental approaches to man-
age inconsistencies are prevention, and allow-and-resolve [14]. Preventive
techniques effectively prohibit the emergence of inconsistencies, either by se-
rializing user operations (e.g., via locking), or by constructing the underlying
data structures in a way that they can never be inconsistent (e.g., in conflict-free
replicated data types (CRDT) [38]. Allow-and-resolve approaches embrace the
existence of inconsistencies [47] instead of preventing them. This allows treat-
ing inconsistencies with highly sophisticated operations for tolerance [50, 52],
and resolution [101, 102, 103]. As shown in Table 7.20, half of the tools,
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13 of 26 (50%), prevent inconsistencies. The remaining tools either manage
inconsistencies on-the-fly (11 of 26 – 42%) or on-demand (2 of 26 – 8%).

Table 7.20. Support for different inconsistency management types.

Inconsistency
mgmt type

#Tools Tools

Preventive 13 (50%) [77], [79], [T06], [83], [86], [67], [T15], [88], [92], [94],
[95], [22], [96]

On-the-fly 11 (42%) [78], [80], [81], [82], [84], [85], [87], [89], [90], [91], [93]

On-demand 2 (8%) [24], [68]

Inconsistency management automation. As shown in Table 7.21, 13 of 26
tools (50%) do not provide inconsistency resolution due to their preventive
inconsistency management approach. These tools are identical to the ones of
the preventive category in Table 7.20. Out of the remaining 13 tools, 11 provide
some level of automation for resolving inconsistencies, while two tools rely on
manual resolution.

Table 7.21. Level of automation of inconsistency management.

Inconsistency
automation

#Tools Tools

Not applicable 13 (50%) [77], [79], [T06], [83], [86], [67], [T15], [88], [92], [94],
[95], [22], [96]

Fully automated 6 (23%) [82], [68], [89], [90], [91], [93]

Semi-automated 5 (19%) [78], [84], [85], [87], [24]

Manual 2 (8%) [80], [81]



7.5 Orthogonal findings

We have analyzed the extracted data for horizontal findings, orthogonal to the
vertical analysis reported in the previous section. Specifically for this purpose,
we have generated contingency tables for each pair of categories of the clas-
sification framework and looked for relevant emerging correlations. In this
section, we discuss these findings and contextualize them in terms of the aspects
of blended modeling: the support for multiple notations (Section 7.5.1), seam-
less interaction (Section 7.5.2), and flexibility and inconsistency management
(Section 7.5.3); and in the additional aspect of technological trends that are
independent from the blended aspects (Section 7.5.4).

7.5.1 Number of notation types and overlap of notations

As shown by the data in Section 7.4.2, the sampled tools support 2.5 types of
notation on average. In about 81% of the cases, the overlap between the specific
notations is only partial, thus providing a richer way to build models.

Notation types count vs Web-based nature. The number of types of notation
tends to be higher in desktop tools. Tools with more than two types of notation
are exclusively desktop-based. While every web-based tool in our sample
provides a maximum of two types of notations, 11 of 17 desktop tools (65%)
provide three or more types of notations. We have measured a statistically
significant difference at p = 0.0064.40

Overlap of notations vs Web-based nature. We found significantly more
completely overlapping notations in web-based tools than in desktop-based tools.
4 of 9 web-based tools (44%) come with completely overlapping notations. This
ratio is 5.9% in desktop-based tools (p = 0.0176). This is in line with the
previous observation of web-based tools typically providing fewer types of
notation. It is plausible to assume that in desktop tools, the higher number of

40For the remainder of the paper, ↵ = 0.05, unless specifically noted otherwise. Following
the directions of Haviland [76], we report the p-values of the conventional Chi-square test without
Yates’s correction for continuity.
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notation types might result in relevant differences between the notations and,
thus, less overlap among them.

Notation types count vs Open-source nature. The number of notation types
tends to be higher in open-source tools than in commercial ones. Three or more
types of notations are supported in 8 of 13 open-source tools (62%), while this
number is only 3 of 13 (23%) in commercial tools. However, a deeper look also
reveals that the only two tools supporting four types of notations are commercial
ones ([82], [93]). While 2 of 13 commercial tools (15%) provide four types
of notations, 10 of 13 (77%) of them support only two. These differences are
significant at p = 0.0105. It is plausible to assume that while commercial tool
vendors have the capabilities to develop sophisticated tools with many types
of notations, they still opt for a more streamlined user experience either due to
explicit user requirements, or to minimize the technological risks and improve
the maintainability of the tools.

7.5.2 Seamless interaction

In terms of seamless interaction, we have found significant relationships be-
tween the navigation among notations, their synchronicity, and the presence of
inconsistency visualization.

Navigation among notations vs Synchronous navigation. We have observed
a statistically significant difference (p =4E-4) between the complexity of navi-
gation among notations, and the synchronicity of navigation. The two features
go hand in hand. 16 of 16 tools (100%) with support for synchronous navigation
also support immediate navigation across different notations. In contrast, only 4
of 10 tools (40%) without synchronous navigation support immediate naviga-
tion. That is, in over half of such tools, navigation between notations becomes a
complex and tedious task, significantly impacting the user experience in terms
of seamless interaction. Synchronous navigation is more frequently observed in
tools with completely overlapping notations. While 5 of 5 tools (100%) with
completely overlapping notations operate with synchronous navigation, this
ratio is only 11 of 21 (52%) in tools with partially overlapping notations.



Navigation among notations vs Inconsistency visualization. We observed
that 11 of 11 tools (100%) that support inconsistency visualization operate with
immediate navigation; while tools without inconsistency visualization support
immediate navigation only in 9 of 15 cases (60%). The difference is significant
at p = 0.0168.

7.5.3 Flexibility and inconsistency management

As discussed in Section 7.4.2, flexibility, in general, is sporadically supported
by the tools we have sampled. We have found that the three types of flexibility
features (model-level, language-level, persistence-level), often correlate with
inconsistency management aspects.

Model-level flexibility vs Inconsistency visualization. Inconsistency visu-
alization is significantly better supported in tools with model-level flexibility.
We have found that 7 of 7 tools (100%) with model-level flexibility also support
inconsistency visualization, while this ratio drops to 4 of 19 (21%) in tools
without model-level flexibility (p = 3E�4). It is plausible to assume that in-
consistency visualization is an enabler to model-level flexibility. Visualizing
inconsistencies certainly helps the stakeholders to keep track of inconsistencies
and reason about the most appropriate time and approach to resolving them.

Inconsistency visualization vs Collaboration. Tools with internal inconsis-
tency visualization features are also collaborative tools. This holds for 8 of
26 tools (31%). Conversely, the 11 of 26 tools (42%) without collaborative
features do not support internal means of inconsistency visualization. The
ratio of collaborative and non-collaborative tools is split almost evenly when
inconsistency visualization is not present. 15 of 26 tools (58%) come without
inconsistency visualization, out of which seven (27%) support collaboration and
eight (31%) lack collaborative features. These relationships are significant at
p = 0.0047. These observations can be explained by the strong relationship
between collaboration and inconsistencies: as the lack of collaboration might
severely reduce the cases when inconsistencies can appear, tools vendors whose
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tools do not support collaboration might be less interested in developing internal
inconsistency visualization techniques.

7.5.4 Technological trends

We have further identified some purely technological trends, orthogonal to the
three facets of blended modeling, mainly related to the web-based nature of
tools (Table 7.5), their collaborative features (Table 7.7), and their platforms of
implementation (Table 7.18).

Collaboration on the web. The type of collaboration tends to correlate with
the type of client software. 5 of 6 tools (83%) that operate with synchronous
(real-time) collaboration, are implemented as web-based tools. In contrast, 7
of 9 tools (78%) that operate with asynchronous (off-line) collaboration, are
implemented as desktop tools. The type of client software is nearly evenly split
in collaborative tools between web clients (7 of 15 – 47%) and desktop clients
(8 of 15 – 53%). However, 9 of 11 non-collaborative tools (82%) are built as
desktop applications, and we found only two web-based non-collaborative tools.
These differences are significant at p = 0.0164. These observations are in line
with the observations of our previous work [57], especially on the apparent
mobilization of collaborative modeling.

Modeling platforms are primarily desktop-based. We observed that neither
of the web-based tools in our sample is implemented on a platform that explicitly
aims to provide modeling capabilities. In contrast, 11 of 18 desktop tools (61%)
are implemented on top of a modeling platform, such as Eclipse (10 of 18 –
56%), JetBrains MPS (1 of 18 – 6%), and other, custom platforms (7 of 18 –
39%). While the web-based tools in our sample leverage web frameworks that
provide reusable elements to build front-end and back-end functionality, the lack
of modeling frameworks tailored to the web are apparent. These differences are
significant at p = 0.0097.



7.6 Discussion

The corpus of this paper consists of 68 academic papers and 68 entries of grey
literature survey, which eventually resulted in 26 identified tools. Based on the
rigorously constructed research protocol, we are reasonably confident in the
representativeness of our sample for the field under study.

7.6.1 Takeaways

The main takeaway of our investigation is that the state-of-the-art and state-
of-the-practice tools only provide partial and accidental support for blended
modeling. This is not a surprising result, considering the novel and emerging
nature of the concept of blended modeling. We have found adequately scal-
ing tools in terms of the number of supported notation types. 11 of 26 tools
(42%) provide more than the minimal two notation types (Table 7.8). Various
aspects related to flexibility, however, pose a potentially serious obstacle for
multi-notation tools to become true blended modeling tools. Only 7 of 26 tools
(27%) provide flexibility at the instance model level, i.e., tolerance of horizon-
tal inconsistencies between models (Table 7.14). 4 of 26 tools (15%) support
flexibility at the language level, i.e., tolerance of vertical inconsistencies, such
as conformance or type discrepancies (Table 7.15). In terms of user experience
(UX), and especially seamless interaction, we noticed encouraging signs in
cross-notation navigability and inconsistency management automation. 16 of 26
tools (62%) support a synchronized navigation across their supported notations
(Table 7.12) and, in 20 of 26 tools (77%), immediate navigation is also available
(Table 7.13). This enables a better concert of notations, allowing using them in
a truly complementary fashion. 11 of 13 tools (85%) that allow inconsistencies
to occur treat them with a substantial level of automation; only 2 of 13 (15%) of
such tools (a grand total of 8% – 2 of 26) rely on manual resolution of inconsis-
tencies (Table 7.21).

In terms of user-oriented characteristics (RQ1), we observed a strong domi-
nance of graphical notations, supported by 26 of 26 tools (100%), followed by
textual (19 of 26 – 73%), tabular (13 of 26 – 50%), and tree-based ones (7 of 26 –
27%) (Table 7.9 and Fig. 7.5b). Only 5 of 26 tools (19%) feature a combination
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of notations that are completely overlapping in terms of modeling language
concepts (Table 7.11). This means that multi-notation tools tend to leverage the
complementary nature of different types of notation. This is a welcome direction
as it opens up for opportunities of a richer modeling experience, paramount in
approaches such as MVM and MPM and, as such, it motivates the efforts of
blended modeling.

In terms of realization-oriented characteristics (RQ2), we observed the dom-
inance of parser-based solutions, employed in 22 of 26 tools (85%)(Table 7.17).
Evidence suggests that projectional editors align better with multi-view and
multi-notation principles [32, 104, 30], which are now the typical modeling
settings for complex systems [1]. The average age of tools in our sample is
10.6 years (� = 5.9), dating the typical modeling tool earlier than the uptick in
research interest in projectional editors 41. We foresee the support for projec-
tional editors to grow as modeling tools are becoming more complex in their
denotational and semantic functionalities. We observed a relatively high support
for automation of inconsistency management (Table 7.21). Inconsistency man-
agement, and tolerance in particular (Tables 7.14-7.16), are key enablers to the
flexibility of modeling tools. Only 2 of 26 tools (8%) come without some level
of automation in resolving conflicts and these are either research tools, such
as [81], or tools that are explicitly not supporting groupwork, such as [80].

7.6.2 Challenges and opportunities

By mapping the state-of-the-art and state-of-the-practice, we have identified
challenges and opportunities related to the concept of blended modeling in
relation to tools.

Multi-formalism. Our study assumed one single underlying abstract syntax
and a single underlying formalism, but even with this simplification, the support

41A directed search on Google Scholar using the (intitle:”projectional
editing” OR intitle:”projectional editor” OR
intitle:”projectional editors” OR (”projectional editing” OR
”projectional editor” OR ”projectional editors”) search string suggests
an increasing publication output starting from 2013.



for multi-notation is sporadic. Multi-formalism, and especially multi-semantics,
exacerbates this problem as we anticipate the interest in blended modeling gradu-
ally shifting towards more complex domains [18, 13, 10]. We see an opportunity
for tool builders and integrators in complex engineering domains that inherently
work in an MVM/MPM setup, such as mechatronics, automotive, and robotics,
to incorporate blendedness as an enabling concept into their existing tool ecosys-
tems. However, this should be preceded by academic research on extending
blended modeling, especially on topics such as coordination between models of
different languages [105], and synchronization of abstract and concrete syntax
in DSLs [106]. Nevertheless, we expect an early maturation and rapid take-
off of blended modeling techniques in an array of applied modeling settings.
Therefore, we advise technology transfer entities to closely follow academic and
semi-academic advancements to propel the transition of the concept to applied
industrial settings.

Seamless interaction. As a primary user experience (UX) concern, seamless
interaction can make a substantial difference in user satisfaction [107] towards
modeling tools. The user-oriented aspects of our study (Section 7.4.2) show
that current tools are often equipped with related features (e.g., synchronous
navigation among notations). Such tools have the opportunity to provide holistic
support for blended modeling. The evaluation and comparison of realization-
oriented aspects, however, is certainly a challenge, as demonstrated in Sec-
tion 7.4.3. The scope of our study did not include the development of methods
that would allow extracting information about user experience and seamless
integration of the different modeling paradigms in blended modeling tools. In
general, the evaluation of such user-facing aspects remains a challenge. We
encourage researchers to develop methods suitable for extracting the types of
information outlined in Section 7.4.3; and to further enrich the user-facing
aspects, based on Section 7.4.2. We suggest facilitating dedicated evaluation
events, e.g., hands-on workshops at major conferences, where crowdsourcing
models for hands-on experimentation and evaluation are feasible because of the
volume of the co-located participants and their significant expertise, such as the
Hands-on Workshop on Collaborative Modeling (HoWCoM)42, and the work-

42http://howcom2021.github.io/

http://howcom2021.github.io/


7.6 Discussion 125

shop on Human Factors in Modeling / Modeling of Human Factors (HuFaMo)43

at MODELS44, as well as the Conference on Human Factors in Computing Sys-
tems (CHI)45. Explicitly modeled user interfaces [108] and API protocols [109]
provide especially good foundations for developing software tools that allow
seamless switching between notations. Seamless interaction across textual and
graphical notations is especially challenging [105] due to the differences be-
tween their respective grammar-based and metamodel-based approaches [110].
Projectional editing [30] provides appropriate means to overcome these limita-
tions, thus, we advise researchers to investigate seamless interaction from this
standpoint as well.

Flexibility. The flexibility of modeling tools in terms of (temporarily) tol-
erating inconsistencies, such as violations of well-formedness rules and inter-
notation/inter-view discrepancies, is best approached by employing state-of-the-
art inconsistency models, such as eventual and strong eventual consistency [38].
Although the scope of this study does not entail the particularities of inconsis-
tency management, we have identified traces and patterns of shortcomings in this
aspect. While the majority of tools operate in a preventive inconsistency man-
agement fashion (Section 7.4.3), they implement prevention in the traditional
way, i.e., by prohibiting consistency-breaking operations. Such approaches stem
from the limitations of strict consistency, whereas novel developments in the
field offer much better inconsistency management and, by extension, better flex-
ibility. Strong eventual consistency (SEC) [38], for example, offers a convenient
trade-off between the strictness of strong consistency and the guarantees of
eventual consistency. As such, SEC is especially well-suited for tools whose
developers are more comfortable with preventive inconsistency management
models. Such avenues have been explored in multiple collaborative modeling
frameworks, such as lowkey46, and C-Praxis [111]. We see an opportunity in
developing advanced inconsistency tolerance methods that work at the semantic
level of models, especially if blended modeling is extended to support multiple

43https://www.monash.edu/it/humanise-lab/hufamo21
44http://www.modelsconference.org/
45https://chi2021.acm.org/
46https://github.com/geodes-sms/lowkey

https://www.monash.edu/it/humanise-lab/hufamo21
http://www.modelsconference.org/
https://chi2021.acm.org/
https://github.com/geodes-sms/lowkey


abstract syntaxes or multiple semantics. Recently, inconsistency management
between the data and (meta)model level has been investigated, e.g., by Zaher
et al. [112]. Such directions align well with the persistence flexibility aspect
of modeling tools, which is sporadically supported currently. In general, we
encourage tool builders to treat inconsistencies as first-class citizens and, in-
stead of overspending on resources to prevent them, we suggest appropriately
managing them [47, 14].

The many facets of web-based tools. The interconnected nature of web-
based tools and the advanced communication and networking standards of the
Internet align well with building collaborative modeling tools. We observed a
tendency of tool builders to use web technologies more in collaborative tools
(Section 7.5.4). However, we also observed that web-based tools come with
significantly less types of notations (Section 7.5.1), and that modeling platforms
and frameworks are built for desktop applications (Section 7.5.4). It is possible
that the shortage of modeling frameworks and language workbenches with a
web-based focus limits the ability of tool vendors to provide rich modeling tools
with numerous types of notations and advanced modeling facilities. Model-
ing platforms such as Eclipse already started providing support for deploying
modeling tools onto the web, but this is merely a workaround. We foresee
an increasing industrial interest in web-based modeling frameworks, such as
WebGME [113], providing researchers of language engineering and language
workbenches with opportunities.

Tools performance assessment. The current generation of modeling tools
is facing challenges to manage large-scale complex models [114, 115]. Given
the presence of multiple different notations in blended modeling, estimating
tool performance when dealing with large-scale and complex models is crucial
for the future technical sustainability of blended modeling. However, in our
data analysis, we did not observe that tool builders discuss the performance of
their blended modeling tools. We conjecture that this lack of communication is
mainly because (i) tool performance is still an open problem in MDE [114], and
(ii) there are still no standard benchmarks for objectively and fairly comparing
the performance of different modeling tools. We suggest that researchers inves-
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tigate a shared and open benchmark for assessing the performance of modeling
tools when dealing with models of different levels of size and complexity (i.e.,
from a few up to millions of modeling elements). To avoid bias concerning
specific DSMLs or application domains, populating such benchmark should be
a community effort, where researchers and tool builders coming from different
domains collaborate and contribute their models, language definitions, and re-
quirements (e.g., expected time to open a model with 1M elements, expected
time to propagate a model change from a visual syntax to the corresponding
textual one, etc.). Having such shared benchmarks will provide practitioners
with an evidence-based instrument for comparing similar modeling tools and
choosing the best one according to their project and organizational needs. Also,
a shared benchmark will help MDE researchers in designing and conducting
empirical studies assessing the performance of (blended) modeling tools, thus
providing objective and replicable knowledge for addressing the grand challenge
of scalability in Model-Driven Engineering [114].

7.7 Threats to validity

The study reported in this paper has been carried out based on a carefully
designed protocol. To minimize the threats to validity, we have designed our
protocol based on well-established guidelines for systematic studies in software
engineering [65, 64, 116] and those for including grey literature by Garousi et
al. [117]. We have assessed the quality of our study following the guidelines by
Petersen et al. [66] and achieved a 63.6% result. This score is significantly higher
than the median and absolute maximum scores (33% and 48%, respectively)
reported in [66]. This high score can be mainly attributed to the detailed search
strategy; the involvement of external senior consultants in the study design phase;
and the involvement of multiple authors in the screening phase, minimizing
the number of false inclusions and exclusions. In the following, we discuss
the possible threats to the validity of our study and elaborate on how we have
mitigated them.



7.7.1 External validity

External validity concerns the generalizability of the results [64] and it is pri-
marily associated with the sampling method. The most severe threat to external
validity is the lack of representativeness of the selected tools to the field of
interest in general. We have mitigated this threat by an appropriately constructed
protocol with two orthogonal concerns. First, our search strategy included
manual and automated search steps, with exhaustively iterative backward and
forward snowballing. Second, we have carried out this search both for the aca-
demic and the grey literature [117]. Another class of threats to external validity
can be attributed to the inclusion and exclusion criteria used in the screening.
To mitigate these threats, we defined exclusion criteria specific to the type of
literature (white or grey) being surveyed. Some threats remain, for example, due
to the exclusion of non-peer-reviewed academic material (A-E2 in Section 7.3),
and the exclusion of proprietary tools that do not allow experimentation with at
least a trial version (GEN-E4). We consider these threats minimal.

7.7.2 Internal validity

Internal validity is the extent to which claims are supported by data and it is
primarily associated with the study design. We have mitigated this risk by the
thorough construction and validation of our protocol. The protocol has been
developed by multiple authors with relevant expertise on the topics related to
blended modeling. Additionally, the protocol has been validated by an external
reviewer with significant expertise in empirical research. We have employed
rigorous descriptive statistical methods for orthogonal analysis and validation of
the data to further mitigate the threats.

7.7.3 Construct validity

Construct validity is concerned with the generalizability of the measures of the
study to the investigated concepts, and it is primarily associated with the cate-
gories and parameters employed during the data extraction and the subsequent
analysis. We have mitigated the threats by mapping the research questions to
typical parameters before constructing our search strategy. Consequently, we
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are reasonably confident about the construction validity of the search strings
used in the automatic search steps. We have further minimized the threats in
the screening phase by refining the inclusion and exclusion criteria in multiple
iterations, to reach unambiguous definitions. Each study was assigned to two
researchers randomly, and a third researcher was involved to oversee the results
and make the final decisions on the inclusion.

7.7.4 Conclusion validity

Conclusion validity is the degree of credibility of the conclusions, based on the
relationship between cause and effect. Specifically, in our case, conclusion va-
lidity is concerned with the relationship between the conclusions communicated
in Sections 7.4.2–11.7 and the extracted data. We mitigated the main threats in
two steps. First, considering that different researchers might interpret the same
data in different ways, we have documented our research protocol in great detail
and made it available along with our datasets and statistical analysis scripts
in the publicly available replication package.31 Second, we have constructed
conclusions based only on the available data. Any hypotheses and conjunctures
were explicitly marked as such.

7.8 Conclusions

In this paper, we have reported the results of our systematic, multi-vocal study on
the potential, opportunities, and challenges of the emerging approach of blended
modeling. We have reviewed nearly 5,000 academic papers, and nearly 1,500
entries of grey literature. Based on these, we have identified 133 candidate tools,
and eventually selected 26 state-of-the-art and state-of-the-practice modeling
tools which represent the current spectrum of modeling tools. We defined a
classification framework for these tools which we used to map their support for
other blended aspects, such as navigation and inconsistency tolerance.

Our findings show that current tooling only provides partial support for
the features of blended modeling, in particular for inconsistencies between
different notations of the same model. The existing support for automated
consistency management is encouraging. We also observe that the overlap



between notations is not complete. Projectional editing seems to be a promising
avenue for future blended modeling, but most existing tools we reviewed are
not projectional. Concerning the challenges, we observe that support for multi-
formalism and multi-semantics is still largely lacking. We also see opportunities
for improvements when it comes to the seamless integration of the different
modeling notations and the evaluation of the user experience. Finally, we identify
incorporating “softer” models of consistency that directly use the semantics of
the models to achieve eventual consistency as a promising area of future research.
We foresee a new generation of modeling tools that will take blended modeling
further by introducing semantic techniques that will allow basing the modeling
workflow on multiple different abstract syntaxes. As for future work, we are
working on implementing a generator that produces blended modeling tools for
arbitrary domain-specific languages. These tools will be based on the takeaways
of this study as well as on a prototype implementation that already embraces the
blended principles by Addazi et al. [8]. We intend to keep our dataset up-to-date
and report increments on the efforts made on improving blended modeling.
Finally, we plan to develop methods for the evaluation of the user experience of
blended modeling tools based on hands-on events and workshops.
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Abstract

The Unified Modeling Language for Real Time (UML-RT) is a UML-based
domain-specific language for modeling real-time embedded systems. HCL RTist,
a model-based development environment for creating complex, event-driven
and real-time software with advanced automation features provided by HCL
Technologies, provides advanced support for UML-RT. Historically, as for the
majority of UML profiles, editing support for UML-RT has also mainly exploited
graphical notations (e.g., composite component and state-machine diagrams).
Nevertheless, our previous experiments with blended graphical and textual
modeling showed that the seamless use of different notations (i.e., graphical
and textual) can significantly boost the work of architects and modelers. The
results of those experiments together with the exposed wish of RTist customers
of being able to design software architectures and applications via multiple
notations led us to initiate this work towards an automated support for blended
modeling of UML-RT. In this paper we describe the first step of the work – the
effort of designing, implementing and integrating a textual notation for UML-RT
state-machines in RTist.
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8.1 Introduction

Software steers our daily life and methods for architecting it in more effective and
efficient ways have been the focal point of research in software architecture for
decades now. Automation is an inescapable ingredient of efficient architecting
and software is not an exception. In the architecting of software, automation
boosts the throughput, as well as improves the quality of the results, of virtually
any architecting task, from requirements specification to maintenance, through
design, development and validation. While automation relieves the architect
from tedious and time-consuming activities, abstraction in terms of modeling
allows to focus on the problem at hand from a more human-oriented perspective
than programming. Abstraction and automation are considered to be the core
pillars of Model-Driven Engineering. Models are first-class entities of the
architecting and engineering process that abstract from certain aspects of the
problem at hand; models are automatically manipulated via transformations for
multiple purposes, from validation to code generation, but also communication
among different stakeholders.

Commonly, domain-specific abstractions described in Domain Specific mod-
eling Languages (DSML) [1] are leveraged to allow domain experts, who may
or may not be software experts, to express complex functions in a domain-
focused and human-oriented way than if using traditional programming lan-
guages. DSMLs formalise (for computer-based analysis and synthesis purposes)
the communication language of architects at the level of domain-specific con-
cepts such as an engine and wheels for a car. UML is the most used architecture
description language in industry [2], the de-facto modeling standard in indus-
try [3], and an ISO/IEC (19505-1:2012) standard. It is general-purpose, but it
provides powerful profiling mechanisms to constrain and extend the language to
achieve UML-based DSMLS, called UML profiles; in this paper, we focus on
the UML real-time profile (UML-RT)[4], and its implementation in an industrial
tool, HCL RTist1.

1https://www.hcltechsw.com/rtist

https://www.hcltechsw.com/rtist


8.1.1 Problem, motivation, and the RTist case

Domain-specific modeling tools, like RTist, traditionally focus on one specific
editing notation (such as text, diagrams, tables or forms). This limits human
communication, especially across stakeholders with varying roles and expertise.
Moreover, architects and engineers may have different notation preferences; not
supporting multiple notations negatively affects their throughput. Besides the
limits to communication, choosing one particular kind of notation has the draw-
back of limiting the pool of available tools to develop and manipulate models
that may be needed. For example, choosing a graphical representation limits
the usability of text manipulation tools such as text-based diff/merge, which is
essential for team collaboration. When tools provide support for both graphical
and textual modeling, it is mostly done in a mutual exclusive manner. Most
off-the-shelf UML modeling tools, such as IBM Rational Software Architect2

or Sparx Systems Enterprise Architect3, focus on graphical editing features and
do not allow seamless graphical–textual editing. This mutual exclusion suffices
the needs of developing small scale applications with only very few stakeholder
types. RTist is not an exception. It provides support for modeling UML-RT
architectures and applications based on graphical composite structure diagrams,
to model structure, and state-machine diagrams, to model behavior. In addition,
the implementation of UML-RT in RTist provides support for leveraging C/C++
action code for the description of fine-grained, algorithmic, behaviors within
graphical state-machines. That is needed to enable the definition of full-fledged
UML-RT models from which executable code can be automatically generated.
While providing means to model graphical entities and “program” algorithmic
behaviours textually, the two are disjoint, since the modeling of UML-RT is
graphical only and the textual C/C++ is injected in graphical models as “foreign”
entity and with almost no overlapping with graphical model elements. The aim
is instead to achieve a modeling tool that is able to make different stakeholders
to work on overlapping parts of the models using different modeling notations
(e.g., graphical and textual) in an automated manner.

2http://www-03.ibm.com/software/products/en/ratsadesigner/
3https://sparxsystems.com/

http://www-03.ibm.com/software/products/en/ratsadesigner/
https://sparxsystems.com/
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8.1.2 Paper contribution

In this paper we describe the first step towards providing a fully blended
graphical-textual modeling environment for UML-RT in RTist. Our experi-
ments in a previous study with blended graphical-textual modeling showed that
the seamless use of different notations can significantly boost the architecting
of software using UML profiles [5]. The results of those experiments together
with the exposed wish of RTist customers of being able to design software via
multiple notations led us to initiate this work towards an automated support for
blended modeling of UML-RT in RTist. In this paper we focus on the design,
implementation and integration of a textual notation for UML-RT state-machines
in RTist.

8.2 Blended modeling: what and why

We have previously defined the notion of blended modeling [6] as:

the activity of interacting seamlessly with a single model (i.e., ab-
stract syntax) through multiple notations (i.e., concrete syntaxes),
allowing a certain degree of temporary inconsistencies.

A seamless blended modeling environment, which allows stakeholders to
freely choose and switch between graphical and textual notations, can greatly
contribute to increase productivity as well as decrease costs and time to mar-
ket. Such an environment is expected to support at least graphical and textual
modeling notations in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to visualise and edit the same
information through a set of diverse perspectives always in sync has the potential
to greatly boost communication between stakeholders, who can freely select
their preferred notation or switch from one to the other at any time. Besides
obvious notation-specific benefits, such as for instance the possibility to edit
textual models in any textual editor outside the modeling environment, a blended
framework would disclose the following overall benefits.



Flexible separation of concerns and better communication. Providing graph-
ical and textual modeling editors for different aspects and sub-parts (even over-
lapping) of a DSML like UML-RT enables the definition of concern-specific
architectural views characterised by either graphical or textual modeling (or
both). These views can interact with each other and are tailored to the needs of
their intended stakeholders. Due to the multi-domain nature of modern software
systems (e.g., cyber-physical systems, Internet-of-Things), this represents a
necessary feature to allow different domain experts to describe specific parts of
a system using their own domain-specific vocabulary and notation, in a so called
multi-view modeling [7] fashion. The same information can then be rendered
and visualised through other notations in other perspectives to maximise under-
standing and boost communication between experts from different domains as
well as other stakeholders in the development process.

Faster modeling activities. We have experimented with blended modeling
of UML profiles [5] and the seamless combination of graphical and textual
modeling has shown a decreased modeling effort in terms of time thanks to the
following two factors:

1. Any stakeholder can choose the notation that better fits her needs, personal
preference, or the purpose of her current modeling task, at any time.
For instance, while structural model details can be faster to describe by
using diagrammatic notations, complex algorithmic model behaviours are
usually easier and faster to describe using textual notations (e.g., Java-like
action languages).

2. Text-based editing operations on graphical models4, such as copy&paste
and regex search&replace, syntax highlighting, code completion, quick
fixes, cross referencing, recovery of corrupted artefacts, text-based diff
and merge for versioning and configuration, are just few of the features
offered by modern textual editors. These would correspond to very com-
plex operations if performed through graphical editors; thereby, most of
them are currently not available for diagrams. Seamless blended modeling

4Please note that by graphical/textual model, we intend a model rendered using a graphical/-
textual notation.
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would enable the use of these features on graphically-described models
through their textual editing view. These would dramatically simplify
complex model changes; an example could be restructuring of a hierar-
chical state-machine by moving the insides of a hierarchical state. This
is a demanding re-modeling task in terms of time and effort if done at
graphical level, but it becomes a matter of a few clicks (copy and paste) if
done at textual level.

8.3 A textual notation for UML-RT state-machines

In this paper, we introduce a textual notation for UML-RT state-machines that is
intended to be part of future RTist release. UML-RT is a real-time profile that
aims to simplify the ever-increasing complex software architecture specification
for real-time embedded systems. The UML-RT concepts are inherited from the
ones defined in the Real-time Object-Oriented modeling Language (ROOM)
[4] and represented using UML extensibility mechanisms. UML-RT enables
both structure modeling and behavior modeling of real-time systems [8]. The
structural part is represented using composite structure diagrams, whereas the
behavioral part is represented using state-machine diagrams. The fundamental
concepts of UML-RT are capsules, which are encapsulated active entities that
can execute in parallel. UML-RT relies on state-machines for the modeling of
capsules’ behaviour. In the case of a missing state-machine, the capsule only
operates as container for other sub-capsules. A behavioral state-machine in
UML-RT is composed of states, pseudo states, and transitions. States can be
simple or composite, and the presence of composite states results in a hierarchical
state-machine. Pseudo states consist of the initial pseudo state that acts as
the starting point of the state-machine, and choice and junction pseudo states
where guards on outgoing transitions determine which one to execute next.
The remaining pseudo states (i.e., entry, exit, and history) are only used in
hierarchical state-machines. Entry and exit pseudo states are used to enter and
exit composite states, while history pseudo state is used to invoke the last active
state prior to the exit of the composite state. Transitions indicate a change of
state and can contain triggers that initiate transitions in the form of events, guard
conditions that must evaluate to true for the initiation of the transition, and



effects.

8.3.1 Textual language workbench

To complement the existing graphical editor in RTist with a textual notation
and editor, a language workbench for such purpose needed to be carefully
selected. HCL RTist is an Eclipse-based environment that leverages the Eclipse
Modeling Framework (EMF)5 as a backbone. Thereby, by choosing an EMF-
based language workbench, we could leverage EMF as a common data layer.
For this reason, we chose Xtext6, a framework for the development of textual
DSMLs, based on EBNF grammars. The textual editor supports an outline
view, syntax highlighting, error checking, quick-fix proposals, and many other
features provided by Xtext. Furthermore, Xtext provides code completion for
keywords and cross-references by increasing the usability of the language and
decreasing the learning curve.

8.3.2 Definition of a textual notation

Our goal was to introduce a textual notation (and related editor) to the already
existing UML-RT profile supported by RTist. A possible alternative was to use
this underlying metamodel consumed by the RTist’s graphical editor as an input
for an Xtext plugin to automatically generate a textual editor. However easy to
implement, this process generates erroneous and unintuitive grammar, too far
from the expectations of RTist’s users. Manually editing this generated gram-
mar would have been a tedious and potentially error-prone process. Therefore,
we decided to design a textual notation, in terms of an Xtext grammar, from
scratch. Starting from a wish-list of RTist’s customers and architects, and using
the UML-RT metamodel portion describing state-machines as blueprint, we
manually defined of our UML-RT textual notation for state-machines in Xtext.
The steps needed for the definition of the grammar were the following.

Identify reserved keywords. When defining a DSML, it is crucial to iden-
tify the reserved keywords used to typify the core concepts of the language.

5https://www.eclipse.org/modeling/emf/
6https://www.eclipse.org/Xtext/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
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The importance of these keywords lies in improved readability, higher language
familiarity, and efficient parsing as they serve as directives for specific concepts.
The chosen keywords for the textual syntax for UML-RT state-machines are
the following: capsule, statemachine, state, initial, junction, choice, entry, exit,
entrypoint, exitpoint, history, transition, when, on and inherits.

Elements’ ordering strategy. Even though it is not mandatory for our lan-
guage to have a fixed order of elements, this approach enhances readability and
navigation of the textual syntax, as well as increased predictability on where
the elements created in other notations will be placed in the textual syntax.
Our grammar is based on the vertical distance approach where elements that
affect each other’s understandability and are closely related [9], are grouped
together and have a low vertical distance. Furthermore, being that this grammar
prohibits cross-references before element declaration, we take the aforemen-
tioned statement into consideration and make sure that elements that need to be
cross-referenced will be declared before the cross-reference takes place.

A spoonful of syntactic sugar. The majority of programming languages, in-
cluding C++, that is used as action code for behavioral state-machines, makes
use of statement terminators in the form of semi-colons. Being that one of
the main goals when introducing this textual syntax is for developers to use it
jointly with the C++ action code, we introduced consistent use of semi-colons
for indication statement termination to make the grammar more conforming to
C++ and to increase readability. For the same readability reasons and developers’
preferences, we also introduce colons after transition names. Furthermore, to
make the grammar more compact, we allow the declaration of multiple objects
of the same type in one single line of code. Due to the combination of the textual
syntax with action code, we need to handle C++ code blocks so we can “isolate”
them and make them distinguishable from the rest of the grammar. For this
reason, we include backticks in order to enclose code snippets and to make the
lexer aware of where the code block begins and ends.

The overall goal during this process was to keep a fixed concrete syntax while
simultaneously enhancing the abstract syntax, even though frequently we had to



trade-off between ease of expression in the concrete syntax and extra complexity
in the abstract syntax.

8.3.3 Scoping

Scoping in Xtext is concerned with the visibility of elements; therefore, the
scope provider computation returns the target candidates that are visible in the
current context and by a given reference. In order to enforce the UML-RT’s
modularity it is necessary to specify a custom scope provider. The default
behavior of Xtext allows establishing a cross-reference to all the elements of a
particular type that are located inside the same Eclipse resource (i.e., project).
By customizing the scope provider, we restrict this behaviour, and only allow
cross-references for elements declared in the same model file. The rationale
behind this decision lies in the fact that multiple model files containing different
capsules can be located inside the same resource, and a particular capsule should
not be able to cross-reference elements of other capsules. However, a key
concept in which UML-RT relies on to reuse and extend parts of existing state-
machines is the inheritance mechanism. When capsule A inherits capsule B,
the state-machine of capsule A implicitly inherits the state-machine of capsule
B. Therefore, to support inheritance, we need to customize the scope provider
so that it allows cross-references for elements not only from the capsule itself,
but also from the inherited capsule, in case there is one. Another default
behavior of Xtext consists in allowing cross-references for all elements of a
particular type declared in the same model file, regardless of their level of
nesting. This contradicts an important UML-RT concept; compound transitions.
Since transitions in UML-RT state-machines can not cross state boundaries, the
concept of compound transitions is applied, consisting of multiple segments that
are connected by means of pseudo-states. However, with the default behaviour
of Xtext, a transition can cross state boundaries. Therefore, the scope provider
is customized to restrict that, and provide the desired behavior in conformance
with UML-RT concepts, by allowing transitions to only cross-reference pseudo
states and states that are on the same level of nesting as the transition, or their
immediate entry and exit points.
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8.3.4 Integration in RTist

By customizing the Xtext ASTFactory and Linker it becomes possible to map
the syntax to the existing environment for UML-RT modeling in RTist. This
means that RTist treats a textual state-machine in exactly the same way as a
graphical state-machine. The state-machine AST created by the Xtext parser
must be inserted into the proper model context, which is the capsule to which
the state-machine belongs. The Xtext parser recreates the AST every time the
state-machine textual model is modified (or to be more accurate, a short time
after each consecutive sequence of text modifications). Each newly created
AST will contain cross-references that target elements both within the AST
itself as well as elements contained in the RTist model. As soon as the AST is
inserted into a capsule, RTist will treat this state-machine in the same way as a
state-machine that was modeled graphically (since the model representation is
identical).

8.4 Challenges

There are some challenges involved in synchronizing changes across graphical
and textual state-machine models. These challenges are identified during the
process of integrating the textual notation in RTist and are described in the
following sections.

8.4.1 Incoming cross-references

The user may create cross-references that target elements in the state-machine.
For example, she may create a dependency from a capsule to one of the states
in the state-machine. If attention is not paid when inserting the state-machine
into the capsule, such cross-references could break. For instance, if the state-
machine is updated by simply deleting the old version and then inserting the
new updated version this will happen, since the deletion will trigger clean-up
of cross-references (i.e., the tool “thinks” that the state was deleted and hence
resets the dependency to avoid a broken reference).



8.4.2 Model information not represented in the textual notation

The textual state-machine notation does not cover the entire UML-RT meta-
model. That is, there are certain pieces of information that cannot be specified
using the textual syntax, but which other views in RTist may allow to view and
edit. One example is UML stereotypes which may be applied to any model
element, including elements in a state-machine. When the state-machine model
gets updated due to a change in the textual notation it is important not to lose this
additional information. Both these problems are related to how the state-machine
graphical model is updated when the textual model changes. The solution is
to “merge” the changed parsed AST into the RTist graphical model, rather than
replacing it (i.e., updating it by a delete followed by an insert).

8.4.3 Model element unique identifiers

It is important to ensure that URIs of elements in the AST are stable. More
specifically, the last part of an EMF URI, the so called fragment, which iden-
tifies the element within its file, shall remain the same. RTist uses by default
random unique IDs as fragments, but this obviously does not work for AST
elements, since it would mean that all AST elements get new URIs each time
the textual state-machine is modified (and hence it becomes impossible to keep
incoming cross-references bound). To solve this, an Xtext fragment provider
was implemented. Its job is to assign fragments using fully qualified names
instead. The alternative would have been to make the fragment strings visible in
the textual notation, which is obviously not an option from a user-friendliness
point of view.

8.4.4 Code formatting and comments

Just like it is possible to have additional information in the UML-RT state-
machine graphical model that is not carried by its textual counterpart, the
opposite is also possible. A textual state-machine model may have lexical
entities that the parser would not reflect in the AST. Typical examples include
code formatting (i.e., indentations, use of newlines etc) and comments. If a
state-machine is modified in another way than through the textual editor, it is
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necessary to serialize the updated model and then update the textual model in
a way that preserves code formatting and comments. This problem is not fully
solvable in an automated manner since there usually is no formalized means
for how code formatting and comments are used. Xtext provides an approach
for serialization that attempts the preservation of as much code formatting and
comments as possible. If the user has experienced how this algorithm works in
practice, she could probably adjust the code formatting and use of comments to
avoid losing information when the model is serialized. Anyhow, we will look
into potential semi-automated solutions for this.

8.5 Related work

The Action Language for Foundational UML (Alf) [10] is a textual language
standardized by the Object Management Group (OMG) for representing UML
models. Since its underlying semantics are indicated by a limited subset of
UML named Foundational UML (fUML), the Alf syntax is restricted within
its bounds and does not support state-machines as they are not available in
the fUML subset. tUML is a textual language for a limited subset of the
standard UML metamodel targeted at real-time embedded systems that consists
of class diagrams, composite structure diagrams, and state diagrams. The
implementation of tUML has been carried out to have a very close proximity to
the UML metamodel. Consideration has been given to propose tUML to OMG
as an extension of Alf, being that the latter lacks support for state-machines
[11]. There also exists a plethora of tools and modeling languages that support
textual notations for UML models. Earl Grey [12] is a textual modeling language
that supports the creation of UML class and state models. MetaUML [13] is
a MetaPost library for creating UML diagrams using textual notations, and
it supports class diagrams, package diagrams, component diagrams, use case
diagrams, activity diagrams, and state diagrams. The textual notation is not only
used to define the elements and their relationships but also their layout properties.
PlantUML [14] is an open-source tool that supports the generation of both UML
and non-UML diagrams from a textual language. Among the most important
UML diagrams they support are sequence diagrams, class diagrams, activity
diagrams, state diagrams, and more. Umple [15] is an open-source modeling tool



that can be used to add UML abstractions to programming languages (i.e., Java,
C++, PHP, and Ruby) and create UML class and state diagrams from a textual
notation. The generated graphical view for class diagrams can be edited, while
for state-machines, it is read-only. Textual, executable, and translatable UML
(txtUML) [16] is an open-source project that supports the creation of models
from a textual notation and generates the corresponding graphical visualization.
TextUML Toolkit [17] is an open-source IDE that allows the creation of UML2
models from a textual notation. This toolkit is available on Cloudfier, as a
plug-in for Eclipse IDE and as a standalone command-line tool.

There have been a handful of attempts at providing textual syntax for UML-
RT, and we have been involved with some of them. Calur [18] provides a
textual syntax only for UML-RT’s action language, not state-machines. Unlike
our approach, both eTrice7 and Papyrus-RT8 provide a kind of all-or-nothing
approach. They both provide syntax for both structure and behaviour, but the
entire model is described as either textual or graphical, whereas in our approach
the user can select only parts of the model to be represented textually. This
allows the user to retain the ability to use existing RTist tooling for graphical
modeling. Note also that our textual notation for UML-RT state-machines has
been designed and implemented to maximise user experience of architects and
engineers, as their throughput thanks to the possibility of blended modeling.

8.6 Outlook

The provision of textual modeling as complement to the existing graphical
modeling for UML-RT state-machines is the first step towards a fully blended
modeling environment for UML-RT in RTist. The next planned steps concern
the extension of the textual notation to the rest of UML-RT concepts as well
as the provision of more effective synchronisation mechanisms. Moreover, we
plan to investigate the possibility to leverage the Language Server Protocol, and
in particular the Graphical LSP in Eclipse9 to provide a web-based modeling
solution too. In addition, we intend to implement this approach using other

7https://www.eclipse.org/etrice/
8https://www.eclipse.org/papyrus-rt/
9https://www.eclipse.org/glsp/

https://www.eclipse.org/etrice/
https://www.eclipse.org/papyrus-rt/
https://www.eclipse.org/glsp/
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graphical modeling tools (e.g., Sirius, GMF) and compare the results.
The involved architects at HCL have confirmed a satisfactory result achieved

via the textual notation, and they were involved in the effort from start to
end. Nevertheless, to provide a quantification of the improvements brought by
blended modeling in RTist, we plan to run additional experiments with a larger
number of stakeholders from multiple companies, including RTist’s users. We
have built an international consortium across 4 countries and running a project
in the ITEA3 cluster programme on blended graphical–textual modeling called
BUMBLE10. In that context, we will run more extensive controlled experiments
and industrial case-studies too. An important element of the dissemination
plan consists in leveraging the different opportunities provided in the Eclipse
community, including Eclipse conferences (e.g., EclipseCon Europe) and mar-
keting. We will also collaborate with the Eclipse Working Groups, Papyrus and
Capella Industry Consortia to reach out to industrial MDE tool users. We plan
to disseminate results via research forums (conferences, workshops), corporate
presentations, participation to industrial events like expos, on-line community
forums for Eclipse, social media, fact sheets and wikis.

10https://itea3.org/project/bumble.html

https://itea3.org/project/bumble.html
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Abstract

The ever increasing complexity of modern software systems requires engineers
to constantly raise the level of abstraction at which they operate to suppress the
excessive complex details of real systems and develop efficient architectures.
Model Driven Engineering has emerged as a paradigm that enables not only ab-
straction but also automation. UML, an industry de-facto standard for modeling
software systems, has established itself as a diagram-based modeling language.
However, focusing on only one specific notation limits human communication
and the pool of available engineering tools. The results of our prior experiments
support this claim and promote the seamless use of multiple notations to develop
and manipulate models. In this paper we detail our efforts on the provision of a
fully blended (i.e., graphical and textual) modeling environment for UML-RT
state-machines in an industrial context. We report on the definition of a textual
syntax and advanced textual editing for UML-RT state-machines as well as the
provision of synchronization mechanisms between graphical and textual editors.
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9.1 Introduction

The complexity of software systems has been growing at an unbelievable pace
for decades now. Relying merely on human efforts to develop high-quality
software is presently regarded as a futile attempt. It can be argued that in the
face of this complexity, without an efficient and effective architecture, software
is inscrutable [1]. To tackle the architectural complexity of software develop-
ment, Model Driven Engineering (MDE) has emerged as a software engineering
paradigm that focuses on raising the level of abstraction when architecting soft-
ware systems [2, 3]. This is done by promoting modeling languages and models,
which are closer to human understanding, instead of code, closer to machines, as
core architectural and engineering artefacts. This approach imposes limits to the
problem-domain, facilitates the identification of relevant abstractions, and avoids
superfluousness. Together with that, MDE pledges automation by exploiting
modeling technologies that among others, enable the generation of fully fledged
code from architectural models. Domain-specific abstractions facilitating the
architectural description of software systems are defined using formal specifi-
cations expressed in Domain Specific Modeling Languages (DSMLs), which
capture the core aspects of a domain, thus promoting productivity, efficiency and
comprehensibility of domain-specific problems. UML is the most used archi-
tecture description language in industry [4], the de-facto modeling standard in
industry [5], and an ISO/IEC (19505-1:2012) standard. It is general-purpose, but
it provides powerful profiling mechanisms to constrain and extend the language
to achieve UML-based DSMLS, called UML profiles; in this paper, we focus on
the UML real-time profile (UML-RT)[6], as this is the profile implemented in
the commercial tool HCL RTist1 of our industrial partner. We also leverage an
open-source implementation of it provided in the Eclipse Papyrus-RT2 tool.

9.1.1 Problem, motivation, and the RTist case

Domain-specific modeling tools, like RTist, traditionally focus on one specific
editing notation (such as text, diagrams, tables or forms). This limits human

1https://www.hcltechsw.com/rtist
2https://www.eclipse.org/papyrus-rt/.

https://www.hcltechsw.com/rtist
https://www.eclipse.org/papyrus-rt/.


communication, especially across stakeholders with varying roles and expertise.
Moreover, architects and engineers may have different notation preferences; not
supporting multiple notations negatively affects their throughput. Besides the
limits on communication, choosing one particular kind of notation has the draw-
back of limiting the pool of available tools to develop and manipulate models
that may be needed. For example, choosing a graphical representation limits
the usability of text manipulation tools such as text-based diff/merge, which is
essential for team collaboration. When tools provide support for both graphical
and textual modeling, it is mostly done in a mutual exclusive manner. Most
off-the-shelf UML modeling tools, such as IBM Rational Software Architect3

or Sparx Systems Enterprise Architect4, focus on graphical editing features and
do not allow seamless graphical–textual editing. This mutual exclusion suffices
the needs of developing small-scale applications with only very few stakeholder
types. RTist is not an exception. It provides support for modeling UML-RT
architectures and applications based on graphical composite structure diagrams,
to model structure, and state-machine diagrams, to model behavior. In addition,
the implementation of UML-RT in RTist provides support for leveraging C/C++
action code for the description of fine-grained, algorithmic, behaviors within
graphical state-machines. That is needed to enable the definition of full-fledged
UML-RT models from which executable code can be automatically generated.
While providing means to model graphical entities and “program” algorithmic
behaviours textually, the two are disjoint, since the modeling of UML-RT is
graphical only and the textual C/C++ is injected in graphical models as a “for-
eign” entity and with almost no overlapping with graphical model elements. The
aim is instead to achieve a modeling tool that is able to make different stake-
holders to work on overlapping parts of the models using different modeling
notations (e.g., graphical and textual) in an automated manner.

9.1.2 Paper contribution

In this paper we describe our proposed solution for providing a fully blended
graphical-textual modeling environment for UML-RT state-machines in an indus-

3http://www-03.ibm.com/software/products/en/ratsadesigner/
4https://sparxsystems.com/

http://www-03.ibm.com/software/products/en/ratsadesigner/
https://sparxsystems.com/
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trial setting. Our experiments in a previous study with blended graphical-textual
modeling showed that the seamless use of different notations can significantly
boost the architecting of software using UML profiles [7]. The results of those
experiments together with the exposed wish of RTist customers of being able
to design software via multiple notations led us to initiate this work towards
an automated support for blended modeling of UML-RT in RTist. In a prior
work [8], we describe the effort of designing, implementing and integrating a
textual notation for UML-RT state machines in RTist. In this paper, we extend
that work, and address the problem formulated in the previous section by pro-
viding the following additional research contributions.

C1. Definition of a textual editor for UML-RT state-machines with advanced
formatting features including systematic support for hidden regions which group
hidden tokens (e.g., comments, whitespaces) between two semantic tokens.

C2. Provision of synchronization mechanism between textual and graphical
notations to achieve a seamless blended modeling environment and validation
of the solution.

9.1.3 Paper outline

The remainder of the paper is organized as follows. In Section 9.2 we describe
the concept of blended modeling and in Section 9.3 we detail the design of our
proposed solution. The implementation details of the solution are presented
in Section 9.4, whereas the validation is discussed in Section 9.5. The related
works are detailed in Section 9.6 and the paper is concluded in Section 9.7 with
a brief summary and an overview of the current and upcoming enhancements to
the overall blended modeling approach.

9.2 Blended modelling: what and why

We have previously defined the notion of blended modeling [9] as:

the activity of interacting seamlessly with a single model (i.e., ab-
stract syntax) through multiple notations (i.e., concrete syntaxes),



allowing a certain degree of temporary inconsistencies.

A seamless blended modeling environment, which allows stakeholders to
freely choose and switch between graphical and textual notations, can greatly
contribute to increase productivity as well as decrease costs and time to mar-
ket. Such an environment is expected to support at least graphical and textual
modeling notations in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to visualise and edit the same
information through a set of diverse perspectives always in sync has the potential
to greatly boost communication between stakeholders, who can freely select
their preferred notation or switch from one to the other at any time. Besides
obvious notation-specific benefits, such as for instance, the possibility to edit
textual models in any textual editor outside the modeling environment, a blended
framework would disclose the following overall benefits.

Flexible separation of concerns and better communication. Providing graph-
ical and textual modeling editors for different aspects and sub-parts (even over-
lapping) of a DSML like UML-RT enables the definition of concern-specific
architectural views characterised by either graphical or textual modeling (or
both). These views can interact with each other and are tailored to the needs of
their intended stakeholders. Due to the multi-domain nature of modern software
systems (e.g., cyber-physical systems, Internet-of-Things), this represents a
necessary feature to allow different domain experts to describe specific parts of
a system using their own domain-specific vocabulary and notation, in a so called
multi-view modeling [10] fashion. The same information can then be rendered
and visualised through other notations in other perspectives to maximise under-
standing and boost communication between experts from different domains as
well as other stakeholders in the development process.

Faster modeling activities. We have experimented with blended modeling
of UML profiles [7] and the seamless combination of graphical and textual
modeling has shown a decreased modeling effort in terms of time thanks to the
following two factors:

1. Any stakeholder can choose the notation that better fits his/her needs,
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personal preference, or the purpose of the current modeling task, at any
time. For instance, while structural model details can be faster to describe
by using diagrammatic notations, complex algorithmic model behaviours
are usually easier and faster to describe using textual notations (e.g.,
Java-like action languages).

2. Text-based editing operations on graphical models5, such as copy and
paste and regex search and replace, syntax highlighting, code completion,
quick fixes, cross referencing, recovery of corrupted artefacts, text-based
diff and merge for versioning and configuration, are just few of the fea-
tures offered by modern textual editors. These would correspond to very
complex operations if performed through graphical editors; thereby, most
of them are currently not available for diagrams. Seamless blended mod-
eling would enable the use of these features on graphically-described
models through their textual editing view. These would dramatically
simplify complex model changes; an example could be restructuring of a
hierarchical state-machine by moving the insides of a hierarchical state.
This is a demanding re-modeling task in terms of time and effort if done
at graphical level, but it becomes a matter of a few clicks (copy and paste)
if done at textual level.

9.3 Design solution

In this section, we detail the solution design, illustrated in Fig. 9.1, for the pro-
vision of a blended modeling environment for UML-RT state-machines. Note
that in order to maximise accessibility to our solution, we describe the solution
for an open-source tool, Eclipse Papyrus-RT, which is orthogonal to the one
in RTist (which also is Eclipse EMF-based). The starting point is the already
existing Ecore-based DSML formalizing the UML-RT profile (i.e., MMG), which
is utilized to instantiate graphical models (i.e., MG) in both Papyrus-RT and
RTist. Using this DSML as blueprint, we define a textual language (i.e., MMT)

5Please note that by graphical/textual model, we intend a model rendered using a graphical/-
textual notation.



in Xtext6 that will be used to instantiate textual models (i.e., MT) of UML-RT
state-machines. Moreover, using Xtext’s formatting APIs, we also customize the
textual editor to preserve essential textual information, such as lines, formatting
and hidden regions like comments. This provides our first contribution C1. Sub-
sequently, we design and implement the synchronization mechanisms between
the two notations by model-to-model (M2M) transformations [11]. These trans-
formations are defined on the basis of implicit mappings between metaelements
of the source and target metamodels and implemented in terms of the operational
version of the Query/View/Transformation language (QVTo7) in Eclipse. QVTo
supports only unidirectional transformations, thus, to achieve bidirectionality,
we defined two unidirectional transformations; MMT2MMG, where the source
metamodel is MMT and target metamodel is MMG, and MMG2MMT, where
the source metamodel is MMG and the target metamodel is MMT. Both model
transformations are horizontal as the source and target model reside in the same
abstraction level, and exogenous as the models are expressed in different mod-
eling languages. This makes for our second contribution C2. Further details
on the definition of the textual syntax and synchronization mechanisms can be
found in Section 9.3.1 and 9.3.2. The implementation details are included in
Section 9.4, and the validation of the solution is detailed in Section 9.5.

9.3.1 Textual notation for UML-RT state-machines

Textual language workbench. To complement the existing graphical editor in
RTist with a textual notation and editor, a suitable language workbench needs
to be carefully selected. HCL RTist and Papyrus-RT are Eclipse-based envi-
ronments that leverage the Eclipse Modeling Framework (EMF)8 as backbone.
Thereby, by choosing an EMF-based language workbench, we could leverage
EMF as a common data layer. For this reason, we chose Xtext, a framework
for the development of textual DSMLs, based on EBNF grammars. The textual
editor supports an outline view, syntax highlighting, error checking, quick-fix
proposals, and many other features provided by Xtext. Furthermore, Xtext

6https://www.eclipse.org/Xtext/
7https://wiki.eclipse.org/QVTo
8https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/Xtext/
https://wiki.eclipse.org/QVTo
https://www.eclipse.org/modeling/emf/
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Figure 9.1. Synchronization solution design

provides code completion for keywords and cross-references by increasing the
usability of the language and decreasing the learning curve.

Textual notation definition. Our goal was to introduce a textual notation (and
related editor) to the already existing UML-RT profile supported by RTist. A
possible alternative was to use the underlying metamodel consumed by the
RTist’s graphical editor as an input for Xtext to automatically generate a textual
editor. However, although easy to implement, this solution generates erroneous
and unintuitive grammar, too far from the expectations of RTist’s architects and
customers. Manually editing this generated grammar would have been a tedious
and potentially error-prone process. Therefore, we decided to design a textual
notation in terms of an Xtext grammar, from scratch. Starting from a wish-list
of RTist’s customers and architects, and using the UML-RT metamodel portion



describing state-machines as blueprint, we manually defined our UML-RT tex-
tual notation for state-machines in Xtext. The steps needed for the definition of
the grammar were the following.

1 Identify reserved keywords: When defining a DSML, it is crucial to identify
the reserved keywords used to typify the core concepts of the language. The
importance of these keywords lies in improved readability, higher language
familiarity, and efficient parsing as they serve as directives for specific concepts.
The chosen keywords for the textual syntax for UML-RT state-machines are
the following: capsule, statemachine, state, initial, junction, choice, entry, exit,
entrypoint, exitpoint, history, transition, when, on and inherits. A more detailed
description of the concepts represented by each keyword can be found in the
official documentation 9 of UML-RT by HCL.

2 Elements’ ordering strategy: Even though it is not mandatory for our lan-
guage to have a fixed order of elements, this approach enhances readability and
navigation of the textual syntax, as well as increased predictability on where
the elements created by using the graphical notation will be placed in the tex-
tual syntax. Our grammar is based on the vertical distance approach where
elements that affect each other’s understandability and are closely related [12],
are grouped together and have a low vertical distance. Furthermore, being that
this grammar prohibits cross-references before element declaration, we take the
aforementioned statement into consideration and make sure that elements that
need to be cross-referenced will be declared before the cross-reference occurs.

3 A spoonful of syntactic sugar: The majority of programming languages,
including C++, which is used as action code for behavioral state-machines,
makes use of statement terminators in the form of semi-colons. Being that one
of the main goals when introducing this textual syntax is for developers to use it
jointly with the C++ action code, we introduced consistent use of semi-colons
for indicating statement termination to make the grammar more conforming to
C++ and to increase readability. For the same readability reasons and developers’

9https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.
webdoc/pdf/RTist%20\Concepts.pdf
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preferences, we also introduce colons after transition names. Furthermore, to
make the grammar more compact, we allow the declaration of multiple objects
of the same type in one single line of code. Due to the combination of the textual
syntax with action code, we need to handle C++ code blocks so we can “isolate”
them and make them distinguishable from the rest of the grammar. For this
reason, we include back-ticks in order to enclose code snippets and to make the
lexer aware of where the code block begins and ends. The overall goal during
this process was to keep a fixed concrete syntax while simultaneously enhancing
the abstract syntax, even though frequently we had to trade-off between ease of
expression in the concrete syntax and extra complexity in the abstract syntax.

Enforcing UML-RT’s modularity. Scoping in Xtext is concerned with the
visibility of elements; therefore, the scope provider computation returns the
target candidates that are visible in the current context and by a given refer-
ence. In order to enforce the UML-RT’s modularity, it is necessary to specify
a custom scope provider. The default behavior of Xtext allows establishing a
cross-reference to all the elements of a particular type that are located inside
the same Eclipse resource (i.e., project). By customizing the scope provider, we
restrict this behaviour, and only allow cross-references for elements declared
in the same model file. The rationale behind this decision lies in the fact that
multiple model files containing different capsules can be located inside the
same resource, and a particular capsule should not be able to cross-reference
the elements of other capsules. However, a key concept in which UML-RT
relies on to reuse and extend parts of existing state-machines is the inheritance
mechanism. When capsule A inherits capsule B, the state-machine of capsule A
implicitly inherits the state-machine of capsule B. Therefore, to support inheri-
tance, we need to customize the scope provider so that it allows cross-references
for elements not only from the capsule itself, but also from the inherited capsule,
in case there is one. Another default behavior of Xtext consists in allowing
cross-references for all elements of a particular type declared in the same model
file, regardless of their level of nesting. This contradicts an important UML-RT
concept; compound transitions. Since transitions in UML-RT state-machines
can not cross state boundaries, the concept of compound transitions is applied,
consisting of multiple segments that are connected by means of pseudo-states.



However, with the default behaviour of Xtext, a transition can cross state bound-
aries. Therefore, the scope provider is customized to restrict that and provide the
desired behavior in conformance with UML-RT concepts by allowing transitions
to only cross-reference pseudo states and states that are on the same level of
nesting as the transition, or their immediate entry and exit points.

Advanced textual editing features. The aforementioned steps provide a solid
platform for developing a sophisticated editor for the specification of textual
state-machines. Besides the editing features provided out-of-the-box by Xtext
for textual languages, we incorporated formatting features like text indentation
and syntax highlighting in the textual editor to simplify the specification of these
textual models. Furthermore, the support to associate both single and multiline
comments within textual specifications is provided too.

9.3.2 Synchronization transformations

Model transformation language. For model transformations, we chose QVTo,
which is an implementation of the Operational Mapping Language defined by
Object Management Group’s (OMG’s) Meta-Object Facility (MOF) 2.0 Query/
View/Transformation (QVT10). The reasons behind this choice were first of all
the fact that QVT is a MOF standard, and since our focus is on MOF languages,
a transformation language also based on MOF is preferred. In addition, QVTo
brings together benefits from both declarative and imperative QVT and it is very
well-suited for both exogenous and endogenous transformations, also in-place.

Transformation structure. The transformations are executed in Eclipse QVTo,
the only actively maintained QVTo implementation, adhering to its default struc-
ture composed of the modeltype declarations, the transformation declaration,
main function and mapping operations. In the following, we detail the QVTo
structure.

• Modeltype declaration: The modeltype declaration in QVTo serves as
a reference to the metamodels that will be used for the transformation.
When declaring the modeltype, it is obligatory to define the name and

10https://www.omg.org/spec/QVT/1.3/About-QVT/
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reference. The latter can be specified either by using the package nsURI
or file location URI. In our use case, we reference the metamodels via
the nsURI which is resolved via the global package registry in the run-
ning platform instance. Optionally, the modeltype definition can include
the conformance kind (i.e., strict or effective) and a set of constraint
expressions (i.e., OCL expressions). In our case we do not define the
conformance kind, thus by default it assumes an effective conformance.
The rationale behind this decision is to allow the transformations to be
applied to similar metamodels. Moreover, we do not define any constraint
expressions as we have no additional restrictions over the set of the in-
volved models. As an example, the modeltype definition that references
MMT, is detailed in the following.

modeltype MMT uses MMT_Package_Name (MMT_Package_nsURI)

• Transformation declaration: The transformation declaration defines the
name of the unidirectional transformation and specifies the involved meta-
models. Additionally it details the direction kind of the transformation
via the following values; in, out, and inout. As an example, the
MMT2MMG transformation declaration has the following structure that
details the name of the transformation, the involved metamodels, and the
direction of the transformation.

transformation MMT2MMG (in source:MMT, out target:MMG);

• Main function: The main function is also referred to as the entry point
of the transformation as it initiates the execution of the transformation
by executing the operations defined in the body of the function. As an
example, for the MMT2MMG transformation, the defined operation selects
the root metalelements (i.e., metaelements at the highest level) of MMT,
and filters out the StateMachinemetaelement. Additionally, it invokes
the SM2SM() top-level mapping rule that maps the StateMachine
metaelement of MMT to the StateMachine metaelement of MMG.



main() {
src.rootObjects()[MMT::StateMachine] -> map SM2SM();
}

• Mappings: The transformations in QVTo are executed by means of map-
ping operations. Each mapping operation consists of a signature, an
optional guard (i.e., when clause), a mapping body, and an optional post
condition (i.e., where clause). The signature of the mapping operation
minimally includes the following elements:
Mapping Type: A mapping operation can either be an abstract mapping or
a concrete mapping (non-abstract). An abstract mapping operation is dis-
tinguished by the abstract keyword which indicates that the mapping
can not be invoked in isolation. Such mapping operations are common
when the target metaelement is abstract and are usually inherited by other
mappings with concrete target types.
Metaelements: QVTo does not strictly require the fully qualified name of
the metaelements that are to be mapped (i.e, metamodelName :: metaele-
mentName), but in the presence of source and target metamodels that
contain similar concepts, the fully qualified name is used to resolve possi-
ble ambiguities.
Mapping Name: Serves to identify the mapping and it is always unique.
As an example of a mapping signature, in the following we detail an
abstract mapping between the concrete State metaelement of MMT

and the abstract State metaelement of MMG, where we use the fully
qualified name to separate them from one another.

abstract mapping MMT::State::State2State() : MMG::State { ... }

Moreover, a mapping declaration can include mapping guards described
with OCL expressions and distinguished by the when keyword. If the
guard evaluates to true, it restricts the execution of the mapping operation
only to a subset of elements; alternatively, the mapping operation is not
invoked.
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Finally, the body of the mapping operation is populated by assigning
EReferences and EAttributes of the source metaelement to corresponding
EReferences and EAttributes of the target metaelement. For EReferences,
a type-dependent mapping operation is invoked by using the map key-
word. When invoking the mapping on a single element, the element is
followed by a dot which precedes the map keyword. Alternatively,
when invoking the mapping on a collection of elements (i.e., Set, Bag,
Sequence, or OrderedSet), the latter is followed by an arrow which pre-
cedes the map keyword. Moreover, the self and result variables,
refer to the source and target metaelements, respectively. As an exam-
ple, in the following we detail a regular mapping between State and
CompositeState that is extended with a mapping condition.

mapping MMT::State::State2CMPState() : MMG::CompositeState
when {not(self.states -> isEmpty() ...)}
{
result.choicePoints := self.choice.map Choice2Choice();
result.name := self.name; }

To conclude the definition of the synchronization transformations, we
detail two additional QVTo concepts that we used for this purpose:
inherits and disjuncts. Inheritance enables the reuse of other
mapping operations with the condition that the signature of the mapping
which is inheriting must conform to the signature of the mapping that is be-
ing inherited. In short, the source and target metaelements of the inheriting
mapping operation must either be the same or subtypes of the source and
target metaelements of the inherited mapping, respectively. This feature
allows for a more compact code and increased readability as the operations
are defined once in the inherited mapping and reused in each inheriting
mapping. In the following, we provide an example of these mapping op-
erations. Mapping operation State2SimpleState inherits mapping
operation State2State. The signatures are conformant as the source
metaclasses are the same, while the target metaclass of the inheriting map-
ping (i.e., State2SimpleState), is a subtype of the output metaclass
of the inherited mapping (i.e., State2State). By inheriting this map-



ping, in the State2SimpleState mapping operation, we do not need
to rewrite what is already defined in the State2State mapping oper-
ation, as it is automatically invoked when the State2SimpleState
mapping operation is executed.

mapping MMT::State::State2SimpleState() : MMG::SimpleState
inherits MMT::State::State2State { ... }

Moreover, mapping operations can be defined as disjunctions of multiple
other mappings, which are then extended with distinct guards. When
invoking such operation, the guards of the mapping operation alternatives
specified after the disjuncts keyword are sequentially checked. When
the first guard evaluates to true, the corresponding mapping operation is
invoked; alternatively if they all evaluate to false it returns null. The
body of such mapping operations is always empty, because that part of
the code is unreachable. This concept is primarily applied to operations
transforming abstract types that are extended by multiple subtypes. In
this case, the alternative mapping specified after the disjunct keyword,
consists of subtypes of the original mapping.

mapping MMT::State::StateDisjunct() : MMG::State
disjuncts MMT::State::State2SimpleState,
MMT::State::State2CompositeState { }

9.4 Implementation

In this section we present the implementation details of the proposed solution
and show examples both of the textual syntax and model instances after applying
the model transformations for synchronization.

9.4.1 Textual language and editor for UML-RT

Based on the aforementioned approach (see Section 9.3.1), in this section we
detail the implementation specifics of the textual language and editor in Eclipse
Xtext. We focus particularly on the customization of the scope provider in Xtext
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to enable inheritance and compound transitions in our textual UML-RT, as well
as on the customization of the Xtext’s formatter for advanced textual editing and
formatting features.

Customization of the scope provider.

Listing 9.1 provides a snippet of the customized scope provider in Xtext for
supporting the concept of inheritance. The conditional if statement in Line 1
checks whether the current capsule inherits another capsule. If this condition
evaluates to true, the EObject is down casted to a Capsule object in Line 3.
Depending on the instance type of the context’s container, the desired elements
of the inherited capsule are added to the list of eligible candidates that the scope
provider will return as detailed in Lines 4-6.

1 if (rootCapsule.getSuperclass() != null) {
2 parentinheritance = rootCapsule.getSuperclass();
3 Capsule inheritedCapsule = (Capsule) parentinheritance;
4 if (context.eContainer() instanceof StateMachine) {
5 transitionfrom.addAll(inheritedCapsule.getStatemachines().getStates()

);
6 ...
7 }
8 }

Listing 9.1. Inherited capsule scope provider

Listing 9.2 provides instead a snippet of the customized scope provider in
Xtext for supporting the concept of compound transitions. The eContainer()
method in Line 2 is used to return the containing object of the context object. The
list of objects T_F in Line 3, is initialized to be used for storing all the eligible
candidates that can be cross-referenced. The block of code to be executed if
the specified condition of the if statement in Line 4 evaluates to true, down
casts the currentParent EObject into a StateMachine object and uses
the addAll() method to add all elements of a specific type that are contained
in the state-machine as the context element, to the list.

1 else if (reference == HclScopingPackage.Literals.TRANSITION__FROM) {
2 EObject currentParent = context.eContainer();
3 List<EObject> T_F = new ArrayList<>();
4 if (currentParent instanceof StateMachine) {
5 StateMachine s = (StateMachine) currentParent;



6 T_F.addAll(s.getStates());
7 ....
8 for (State states : rootCapsule.getStatemachines().getStates()) {
9 transitionfrom.addAll(states.getEntrypoint());

10 transitionfrom.addAll(states.getExitpoint());
11 }
12 }
13 return Scopes.scopeFor(T_F, N_C, IScope.NULLSCOPE);

Listing 9.2. Compound transitions scope provider

Customization of the textual editor

Parsing and serialization are two major concepts in Xtext associated with the
textual model and Abstract Syntax Tree (AST), respectively. The instance of a
grammar in the editor, technically referred to as XtextResource, is represented
through a textual model. The equivalent AST is generated from the textual
model through the parser. On the other hand, the serializer converts the AST into
the equivalent textual model. The conversions between textual model to AST
and vice versa are very frequent and, therefore, Xtext supports the exploitation
of built-in APIs to customize certain functionalities that may be required before
or after the conversions from one to the other. We exploited the built-in APIs for
customizing our textual editor.

The synchronizations targeted in our solution between the textual and graph-
ical models lead to frequent changes in the AST related to the textual model,
like deletion or addition of textual elements. In this case, the line numbers and
other hidden region elements like comments need to be updated in the textual
editor. Furthermore, the formatting of the text needs to be preserved in the
textual editor after synchronizations since it brings along semantic information
in most cases. To achieve this, we utilized Xtext’s formatting infrastructure.
In particular, we extended the AbstractFormatter2 class to implement
a customized state-machine formatter, composed of two core functions (i.e.,
Lines and Hidden Regions). The Lines function updates the sequence of lines
in the textual editor according to the synchronized changes to the AST. Hidden
Regions instead preserves the place of hidden regions that group all hidden
tokens (e.g., whitespace, newlines, tabs and comments) between two semantic
tokens upon changes to the AST.
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9.4.2 Synchronization

Based on the aforementioned approach (see Section 9.3.2), in this section, we
detail the implementation specifics of the synchronization model transformations
in Eclipse QVTo. Synchronization mechanisms are provided in terms of two
unidirectional M2M transformations; MMT2MMG and MMG2MMT. The majority
of metaelements between the two metamodels require a one-to-one mapping,
thus the mapping rules are rather straightforward. In the following, for each
model transformation, we discuss the mapping operations that highlight a few
interesting and less simple cases.

Textual to graphical synchonization – MMT2MMG

• The StateMachine metaelement behaves as a root element both in
MMT and MMG. Nevertheless, there is a notable difference between
the two. In MMT, StateMachine has multiple children and its con-
tainment of elements State has a zero-to-many (0..*) cardinality. In-
stead, in MMG, StateMachine has a one-to-one (1..1) cardinality to
CompositeState. In short, whilst in MMT StateMachine can con-
tain many States as immediate children, in MMG the StateMachine
can only contain one CompositeState as its immediate child, and
in turn CompositeState would contain the other elements. Conse-
quently, when transforming a StateMachine in MMT to a State
Machine in MMG, two possible narratives need to be taken into ac-
count. First, if we consider a model instance of MMT (i.e., MT) and the
StateMachine of this model instance contains only one State and no
other immediate children, State is transformed to a CompositeState
in MG (i.e., model instance of MMG) as detailed in Lines 4-5 in List-
ing 9.3. Otherwise, if the StateMachine in MT contains more than
one immediate state, when transforming to a StateMachine in MG,
a CompositeState object is created (Lines 9-10) and the immedi-
ate children of the StateMachine in MT are assigned as immediate
children (Line 11) of the CompositeState in MG.

1 mapping text::StateMachine::SM2SM() : graph::StateMachine{
2 result.name:=self.name;



3
4 if (self.states -> size() = 1 and self.initialtransition ->

isEmpty() and self.transition -> isEmpty() and self.junction
-> isEmpty() and self.choice -> isEmpty()) {

5 result.top := self.states -> first().map State2CMPState();
6 }
7
8 else {
9 var cs := object graph::CompositeState{};

10 top :=cs;
11 cs.substates := self.states.map toState();

Listing 9.3. StateMachine to StateMachine

• With respect to states, MMT considers only State metaclass, while MMG

makes a distinction between SimpleState and CompositeState,
which extend the State metaclass. Thus, when transforming a State,
the mapping operations in Lines 1-9 in Listing 9.4 need to be extended
with mapping guards that determine if the State metaclass will be
transformed to a SimpleState or CompositeState. Moreover, an
additional mapping operation is defined in Lines 13-14, which is a dis-
junction of the aforementioned mapping operations and is invoked in
Line 10. Upon its execution, the guards of State2SimpleState and
State2CMPState are checked in a sequential order. For a State to
be transformed to a SimpleState, the State should have no chil-
dren. To evaluate that we use the OCL expression isEmpty(), which
evaluates whether the collection is empty or not, in Line 3. Alterna-
tively, a CompositeState has children, thus in Line 8 we use the OCL
expression notEmpty().

1 mapping text::State::State2SimpleState() : graph:: SimpleState
2 inherits text::State::State2State
3 when {self.states -> isEmpty() and self.entrypoint -> isEmpty()

and self.exitpoint -> isEmpty() and self.junction -> isEmpty
() and self.choice -> isEmpty() }

4 { }
5
6 mapping text::State::State2CMPState() : graph:: CompositeState
7 inherits text::State::State2State
8 when {self.states -> notEmpty() or self.entrypoint -> notEmpty()

or self.exitpoint -> notEmpty() or self.junction -> notEmpty
() or self.choice -> notEmpty()}
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9 {
10 substates := self.states.map State2StateDisjunct();
11 ...
12 }
13 mapping text::State::State2StateDisjunct() : graph::State
14 disjuncts text::State::State2SimpleState, text::State::

State2CMPState
15 {}

Listing 9.4. State to SimpleState and CompositeState

Graphical to textual synchronization – MMG2MMT

• SimpleState and CompositeState metaelements in MMG both
have to be transformed to State in MMT. Hence, two corresponding
mapping operations are defined in Line 1 and Line 4 in Listing 9.5. In this
particular situation, a disjunctive mapping operation (i.e., State2State
Disjunct()) is introduced in Line 10. Contrary to the first two map-
ping operations where a mapping body is defined, this operation spec-
ifies a list of mapping operations (i.e., SimpleState2State and
CMPState2State) which are evaluated when the mapping operation
is invoked. The invocation of the operation occurs in Line 7 when trying
to map substates to states as the EType for substates is the
abstract metaclass State which is extended by SimpleState and
CompositeState.

1 mapping graph::SimpleState::SimpleState2State() : text::State
2 inherits graph::State::State2State {}
3
4 mapping graph::CompositeState::CMPState2State() : text::State
5 inherits graph::State::State2State
6 {
7 result.states := self.substates -> map State2StateDisjunct();
8 ...
9 }

10 mapping graph::State::State2StateDisjunct() : text::State
11 disjuncts graph::CompositeState::CMPState2State,
12 graph::SimpleState::SimpleState2State{}

Listing 9.5. SimpleState and CompositeState to State



• Transition metaclass in MMG can be transformed to either History
Transition, InitialTransition, InternalTransition or
Transition in MMT, all extending the Transitions metaclass,
depending on the source and/or target vertices it connects. First, the
T2Ts() mapping operation is defined, which details the creation of the
TransitionBody and the assignment operations for its children. This
is then inherited by all other mapping operations that in their signature
include Transition as source and a subtype of Transitions as
target. Inheritance eliminates the need to rewrite the operations that are al-
ready defined in T2Ts() such as the creation of the TransitionBody
and the corresponding assignments. In addition, all mapping operations
that map Transition to subtypes of Transitions include a map-
ping guard (i.e., when clause) that specifies the type of vertices that the
Transition must connect, to be transformed to a specific subtype
of Transitions. The mapping body of these mapping operations
details the assignments of the sourceVertex and targetVertex
properties of the source metaelement, to from and to properties of
the target metaelement, respectively as shown in Lines 18-19 in List-
ing 9.6. The mapping operation that is invoked on them is a disjunction
of other mapping operations in which the source and target metaele-
ments are subtypes of the source and target metaelements of the origi-
nal mapping (i.e., Vertex2VertexDisjunct). This is because the
types of the source and target metaelements of the invoked mapping (i.e.,
Vertex2VertexDisjuncts) must conform to the types of properties
from and to.

1 mapping graph::Vertex::Vertex2VertexDisjunct() : text::Vertex
2 disjuncts graph::CompositeState::CMPState2State, graph::

SimpleState::SimpleState2State, graph::EntryPoint::
EntryPoint2EntryPoint, graph::ExitPoint::ExitPoint2ExitPoint,
graph::ChoicePoint::ChoicePoint2Choice, graph::JunctionPoint
::JunctionPoint2Junction{}

3
4 mapping graph::Transition::T2Ts() : text::Transitions
5 {
6 var TransitionBodyObject := object text::TransitionBody{

transitionguard := self.guard.map Guard2TransitionGuard();
7 ....
8 };



9.4 Implementation 189

9 transitionbody := TransitionBodyObject;
10 result.name := self.name;
11 }
12 mapping graph::Transition::T2T() : text::Transition
13 inherits graph::Transition::T2Ts
14 when {not(self.sourceVertex.oclIsTypeOf(InitialPoint) or
15 self.targetVertex.oclIsTypeOf(DeepHistory) or
16 self.sourceVertex = null or self.targetVertex = null)}
17 {
18 result._from := self.sourceVertex.map Vertex2VertexDisjunct();
19 result.to := self.targetVertex.map Vertex2VertexDisjunct();
20 }
21
22 mapping graph::Transition::T2HT() : text::HistoryTransition
23 inherits graph::Transition::T2Ts
24 when {self.targetVertex.oclIsTypeOf(DeepHistory)} { ...}
25
26 mapping graph::Transition::T2INI_T() : text::InitialTransition
27 inherits graph::Transition::T2Ts
28 when {self.sourceVertex.oclIsTypeOf(InitialPoint)} {...}
29
30 mapping graph::Transition::T2INT_T() : text::InternalTransition
31 when {self.sourceVertex = null and self.targetVertex = null} {...}

Listing 9.6. Transition to Transitions

• Trigger metaclass in MMG can be transformed to either Trigger,
PortEvent Trigger, or MethodParameterTrigger in MMT

depending on which of the mapping guards (i.e., when clause) evalu-
ates to true. Hence, three corresponding mapping operations are defined.
The PortEventTrigger consists of a Port and Event separated by
a dot (e.g., port.event), thus in order for a Trigger in MMG to be trans-
formed to a PortEventTrigger in MMT it should match the pattern
defined in Line 7 in Listing 9.7. Moreover, the Port and Event meta-
classes in MMT have no correspondence in MMG therefore they should
be created as new elements. Lines 9-17 detail the creation of Port and
Event metaclasses and the assignment of the name attribute for each of
them. The same procedure is applied to transform Trigger in MMG

to MethodParameterTrigger in MMT and to create the Method
and Parameter metaelements. The MethodParameterTrigger
consists of a Method followed by parentheses, which may or not contain



a Parameter (e.g., method(parameter)). In this case, the mapping con-
dition specifies that the name of the Trigger in MMG should match the
pattern specified in Line 19.

1 mapping graph::Trigger::Trigger2Trigger() : text::Trigger
2 when {not(self.name.matches(".*\\(.*") or self.name.matches("

.*\\..*"))}
3 {
4 result.name := self.name;
5 }
6 mapping graph::Trigger::Trigger2PETrigger() : text::

PortEventTrigger
7 when {self.name.matches(".*\\..*")}
8 {
9 var PortObject := object text::Port{

10 name := self.name.substringBefore(".");
11 };
12 port := PortObject;
13 var EventObject := object text::Event{
14 name := self.name.substringAfter(".");
15 };
16 event := EventObject;
17 }
18 mapping graph::Trigger::Trigger2MPTrigger() : text::

MethodParameterTrigger
19 when {self.name.matches(".*\\(.*")}
20 { ... }

Listing 9.7. Trigger to Trigger, PortEventTrigger, and
MethodParameterTrigger

9.5 Validation and discussion

The M2M transformations detailed in this paper make possible the synchroniza-
tion between multiple notations. As such, the correctness of the unidirectional
transformations and the consistency between them is crucial.

The validation is conducted for RTist and Papyrus-RT by applying the model
transformations to instances (i.e., models) of MMG and MMT. The representation
of the graphical instance MG is detailed in Fig. 9.4, while the representation of
the textual instance MT is detailed in Fig. 9.5. Fig. 9.4a details the graphical
editor of MG, whereas Fig. 9.4b details the Exeed editor (an extended version of
the built-in tree-based reflective editor provided by EMF) of MG. Alternatively,
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Figure 9.2. Decomposition diagram portion Figure 9.3. Input

Fig. 9.5a details the Xtext editor of MT, whereas Fig. 9.5b details the Exeed
editor of MT. We have included the Exeed editor for both instances, as it conveys
additional structural information that is not glaring in the other editors. In the
following we describe the execution of the validation process.

1 The correctness of the model transformations is validated by carrying
out testing of the MMG2MMT and MMT2MMG model transformations at the
unit level [13]. To carry out this procedure, we have defined a functional
decomposition diagram for each model transformation. Such diagram, can
facilitate the identification of the test subjects, as the nodes of the diagram (i.e.,
mapping operations) will represent the subjects. Additional consideration has
been given to guarantee that the test cases cover all the mapping operations of a
given model transformation. The metaelements of the input metamodels will
be considered as test inputs whereas the expected output will be represented
by a regular expression. For a test case to pass, the expected output of a given
mapping operation must match the actual output. The latter is the result that
we get after the execution of the mapping operation. In the following we use
the CMPState2State mapping operation defined in the MMG2MMT model
transformation to exemplify our manual testing process. In Fig. 9.2 we detail
only a portion of the decomposition diagram to highlight CMPState2State.
Then we extract the input of the CMPState2State mapping operation, which
is the CompositeState. In Fig. 9.3 we detailed an instance of MMG, which
is used to test the CMPState2State mapping operation.

The expected output after the execution of the CMPState2State on the
instance of MMG detailed in Fig. 9.3 is as follows. The CompositeState
Top included in the StateMachine SM in MG must be transformed to a
CompositeState Top included in the StateMachine SM in MT. Lastly
we execute the transformations and check whether the actual output is same as



the expected output.

<hcl:StateMachine name=SM>
<states name=Top>
</hcl:StateMachine>

2 The second step involves validating the consistency between the two
model transformations. For achieving this, we apply the MMG2MMT model trans-
formation to MG detailed in Fig. 9.4. The output is MT detailed in Fig. 9.5. We
then apply the MMT2MMG model transformation to the output of the MMG2MMT

model transformation. The output of the MMT2MMG model transformation must
be identical to the instance of MG detailed in Fig. 9.4 for the QVTo transforma-
tion to be considered consistent. The model transformations are revised until
full consistency is achieved. In addition to the testing results, architects at HCL
have assessed both the usability and usefulness of the textual notation, as well
as the synchronization mechanisms between notations.

On another note, by inspecting the instances of MMG and MMT detailed in
Fig. 9.4 and Fig. 9.5 respectively, we can highlight the most significant differ-
ences in terms of semantics and structure. For instance, CompositeState A
and SimpleState B in MMG are transformed into State A and State B
in MMT, respectively, where State A is the parent of State B. Although the
structure is identical, there exist semantic differences between SimpleState
B and State B, because SimpleState B cannot contain other elements,
whilst State B can. For transitions, if we consider the same transformation, it
is the opposite. For instance, Transition T0 in MMG is transformed into
InitialTransition T0 in MMT and Transition T7 in MMG is trans-
formed into HistoryTransition T7 in MMT. Alternatively, structural
differences are prominent when creating new metaelements instead of transform-
ing them (because of the lack of a corresponding source metaelement). This is
the case of TransitionBody, Port, Event, Method, and Parameter
metaelements in MMT. For instance, Transition T1 in Fig. 9.4 has two chil-
dren, Trigger and ActionChain, whilst Transition T1 in Fig. 9.5 has
only one child, TransitionBody, which contains the PortEventTrigger
and TransitionOperation. Another interesting difference is that whilst
in Fig. 9.4 Transition T7 and Deep History H reside on the same
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(a) Graphical editor (b) Exeed Editor.

Figure 9.4. Graphical model

(a) Xtext editor (b) Exeed Editor

Figure 9.5. Textual model

level (i.e., they are siblings), in Fig. 9.5 Deep History H is a child of
Transition T7. The reason for this is to allow the user to initialize DeepHistory
when writing Transition T7, and not before initializing it, and then refer-
ence it in Transition T7.



9.6 Related work

The Action Language for Foundational UML (Alf) [14] is a textual language
standardized by the Object Management Group (OMG) for representing UML
models. Since its underlying semantics are indicated by a limited subset of
UML, named Foundational UML (fUML), the Alf syntax is restricted within
its bounds and does not support state-machines as they are not available in
the fUML subset. tUML is a textual language for a limited subset of the
standard UML metamodel targeted at real-time embedded systems that consists
of class diagrams, composite structure diagrams, and state diagrams. The
implementation of tUML has been carried out to have a very close proximity to
the UML metamodel. Consideration has been given to propose tUML to OMG
as an extension of Alf, being that the latter lacks support for state-machines
[15]. There also exists a plethora of tools and modeling languages that support
textual notations for UML models. Earl Grey [16] is a textual modeling language
that supports the creation of UML class and state models. MetaUML [17] is
a MetaPost library for creating UML diagrams using textual notations, and
it supports class diagrams, package diagrams, component diagrams, use case
diagrams, activity diagrams, and state diagrams. The textual notation is not only
used to define the elements and their relationships but also their layout properties.
PlantUML 11 is an open-source tool that supports the generation of both UML
and non-UML diagrams from a textual language. Among the most important
UML diagrams they support are sequence diagrams, class diagrams, activity
diagrams, state diagrams, and more. Umple [18] is an open-source modeling tool
that can be used to add UML abstractions to programming languages (i.e., Java,
C++, PHP, and Ruby) and create UML class and state diagrams from a textual
notation. The generated graphical view for class diagrams can be edited, while
for state-machines, it is read-only. Textual, executable, and translatable UML
(txtUML) [19] is an open-source project that supports the creation of models
from a textual notation and generates the corresponding graphical visualization.
TextUML Toolkit 12 is an open-source IDE that allows the creation of UML2
models from a textual notation. This toolkit is available on Cloudfier, as a

11http://plantuml.com/guide
12ttp://abstratt.github.io/textuml/

http://plantuml.com/guide
ttp://abstratt.github.io/textuml/
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plug-in for Eclipse IDE and as a standalone command-line tool.
There have been a handful of attempts at providing textual syntax for UML-

RT and we have been involved in some of them. Calur [20] provides a textual
syntax only for UML-RT’s action language, not state-machines. Unlike our
approach, both eTrice13 and Papyrus-RT14 provide a kind of all-or-nothing
approach. They both provide syntax for both structure and behaviour, but the
entire model is described as either textual or graphical, whereas in our approach
the user can select only parts of the model to be represented textually. This
allows the user to retain the ability to use existing RTist tooling for graphical
modelling. Note also that our textual notation for UML-RT state-machines has
been designed and implemented to maximise user experience of architects and
engineers, as their throughput thanks to the possibility of blended modelling.

9.7 Outlook

In this work, we have reported on our work to provide a seamless blended
graphical and textual modelling environment for UML-RT state-machines. Our
proposed solution involves the provision of (i) a textual notation as complement
to the existing graphical notation for UML-RT state-machines and (ii) ad hoc
synchronization mechanisms between the metamodels underlying the two nota-
tions. The synchronization mechanisms have been designed as model-to-model
transformations and implemented using the operational implementation of the
QVT language in Eclipse. With regards to the limitations of this approach, we
argue that the solution is language-agnostic (i.e., applicable to UML-RT state
machines only). For any other language, the related editors and transformations
have to be re-done from scratch. On a similar note, if the metamodels evolve,
the model transformations would have to be manually updated.

For that reason, future work involves the definition of a mapping language
that allows the definition of explicit mappings between arbitrary metamodels
(MMs), and automatic generation of synchronization transformations via Higher
Order Transformations (HOTs). The HOTs are transformations that take as
input and/or generate as output other model transformations [21]. Given two

13https://www.eclipse.org/etrice/
14https://www.eclipse.org/papyrus-rt/

https://www.eclipse.org/etrice/
https://www.eclipse.org/papyrus-rt/


MMs defined, a mapping model, conforming to the mapping language, would
conceive the mapping rules for synchronizing models conforming to the two
MMs. The mapping model together with the two MMs would be given in input
to a set of HOTs that we are currently designing. The outputs of the HOTs
are synchronization model transformations, as the ones defined manually in
Operational QVT for the solution presented in this paper. The type of generated
transformations (i.e., endogenous, exogenous, out-of-place, in-place) depends
on the nature of the two MMs. In fact, this architecture and the HOTs in it
would entail multiple usage scenarios, as follows. In case the MMs are two
entirely disjoint (but somehow connected/dependent) languages, the generated
transformations provide synchronization across different languages (either same
or different notations). In case the MMs represent two notations of the same
language, the generated transformations provide synchronization across different
notations of the language. In addition, in case the target MM represents an
evolution of the source MM, the generated transformations provide co-evolution
mechanisms for models conforming to MM.

This work is run in the context of an international consortium across 4
countries within the ITEA3 BUMBLE project15. In that context, we will run
more extensive controlled experiments and industrial case-studies too. An
important element of the dissemination plan consists in leveraging the different
opportunities provided in the Eclipse community, including Eclipse conferences
(e.g., EclipseCon Europe) and marketing. We will also collaborate with the
Eclipse Working Groups, Papyrus and Capella Industry Consortia to reach out
to industrial MDE tool users. We plan to disseminate results via research forums
(conferences, workshops), corporate presentations, participation to industrial
events like expos, on-line community forums for Eclipse, social media, fact
sheets, and wikis.

15https://blended-modeling.github.io/

https://blended-modeling.github.io/
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Abstract

Blended modeling aims at boosting the development of complex multi-domain
systems by enabling seamless multi-notation modeling. The synchronization
mechanisms between notations are embodied in model transformations. Man-
ually defining model transformations requires specific knowledge of transfor-
mation languages, and it is a time-consuming and error-prone task. Moreover,
whenever any of the synchronized languages or notations evolves, those transfor-
mations become obsolete. In this paper, we propose an automated solution for
generating synchronization transformations in an industrial setting. Although
our main goal was to provide a solution for synchronization between graphical
and textual notations of UML-RT state machines, the proposed approach is
language- and notation-agnostic. The approach entails i) the specification of
mapping rules between two arbitrary domain-specific modeling languages lever-
aging a mapping modeling language, appositely defined for this purpose, and ii)
the automatic generation of synchronization model transformations driven by
the mapping rules. We validated the proposed approach in two use cases.
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10.1 Introduction

Demands on software functionality and quality increase at a very fast pace, and
the interconnected nature of software-intensive systems makes complexity of
software grow exponentially. A rather direct consequence is that the time and
costs for software development increase notably. Model-Driven Engineering
(MDE) has been largely adopted in industry as a powerful means to effectively
tame the complexity of software-intensive systems and their development, as
shown by empirical studies [1], by using domain-specific abstractions formal-
ized in domain-specific modeling languages (DSML). DSMLs allow domain
experts, who may not be software experts, to describe complex functions in a
more domain-focused and human-centric way than if using traditional program-
ming languages. DSMLs formalize the communication language of engineers
at the level of domain-specific concepts such as an engine and wheels for a car.
These concepts may not exist in other domains. Moreover, DSMLs support
more efficient integration of software with designs and implementations of other
disciplines. Domain-specific modeling demands a high level of customization
of modeling tools, typically involving combinations and extensions of DSMLs
and tailoring of the modeling tools for their respective development domains
and contexts. Furthermore, tools are expected to provide multiple modeling
means, e.g., textual and graphical, to satisfy the requirements set by different
development phases, stakeholder roles, and application domains.

However, domain-specific modeling tools, especially those based on the
Unified Modeling Language (UML) and its profiles (as in the industrial tool ad-
dressed in this paper), traditionally focus on one specific notation, which is most
often graphical or textual. This limits human communication, especially across
engineering disciplines. A notation that is well understood by one engineering
discipline may not be as easily understood by engineers from another discipline.
Moreover, engineers from the same or different disciplines may have different
notation preferences; not supporting multiple notations negatively affects the
throughput of engineers. Besides the limits to communication, choosing one par-
ticular notation also limits the pool of available tools to develop and manipulate
models that may be needed. For instance, choosing a graphical notation limits
the usability of text manipulation tools such as text-based diff/merge, which is



essential for team collaboration. This mutual exclusion suffices the needs of
developing small-scale applications with only few stakeholder roles.

For larger systems, with heterogeneous components and entailing different
domain-specific aspects and different types of stakeholders, mutual exclusion of
notations is too restrictive and voids many of the benefits that MDE can bring
about. When applying MDE in large-scale industrial projects, efficient team sup-
port is crucial. Therefore, modeling tools need to allow different stakeholders to
work on overlapping parts of models using different concrete syntaxes or simply
notations. In addition, the diversity of stakeholders leads to the need for domain-
specific editing facilities, which can be graphical, table-based, form-based, and
for many domains also textual (e.g., formal verification [2]).

10.1.1 Blended modeling

We have defined the notion of blended modeling in a previous work [3] as
follows:

Blended modeling is the activity of interacting seamlessly with
a single model (i.e., abstract syntax) through multiple notations
(i.e., concrete syntaxes), allowing a certain degree of temporary
inconsistencies.

Blended modeling is expected to aid in keeping the cognitive flow of mod-
eling effective and efficient, offering stakeholders a proper set of intertwined
formalisms, notations, and supporting computer-aided mechanisms. This is im-
portant in the design of modern systems, as their complexity has been increasing
exponentially over the past years [4].

At first sight, the notion of blended modeling may seem similar to or overlap-
ping with multi-view modeling [5] (and even multi-paradigm modeling) that is
based on the paradigm of viewpoint/ view/ model as formalised in the ISO/IEC
42010 standard1. Multi-view modeling is commonly based on viewpoints (i.e.
“conventions for the construction, interpretation, and use of architecture views to
frame specific system concerns” [6]) that are materialized through views, which
are composed of one or more models. In blended modeling, the focus is not

1https://www.iso.org/standard/50508.html
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on identifying viewpoints and related views, but rather on providing multiple
blended editing and visualizing notations to interact with a set of concepts.

The blended modeling paradigm focuses on the provision of multiple con-
crete syntaxes, or simply notations, for a non-empty set of abstract syntactical
concepts. As such, it aims to accommodate different notations, each designed
for particular modeling needs. The main implication of this definition of blended
modeling is that it assumes a single abstract syntax supported by multiple con-
crete syntaxes. However, although this definition is theoretically correct, in
reality, language-specific modeling frameworks can benefit from multiple ab-
stract syntaxes for the following reasons. To begin with, the definition and
management of a concrete syntax may be simpler if directly related to a ded-
icated abstract syntax. Relating this to our industrial case, where we started
from a graphical concrete syntax, the first step involved the definition of a
textual concrete syntax by first defining a dedicated abstract syntax. This was
needed since the two abstract syntaxes were not fully matching, and it generally
allows for high syntax-specific customizations. Furthermore, since notations
are usually meant to be highly customizable to user needs, and each notation
serves a different purpose, often at a different level of detail, it may not be
practical to adapt an existing abstract syntax supporting one notation to another.
In addition, depending on the needs of two different users, there might exist
two “different” notations of the same type (e.g., two different textual notations
focusing on different aspects of the same modeling concepts tailored to two
different user types). Having a dedicated abstract syntax per notation alleviates
possible syntactical “pollution” caused by reusing and adapting an existing
abstract syntax, which was not envisioned for that particular notation. Moreover,
there exist scenarios where different notations are represented by different exist-
ing notation-specific DSMLs, formalizing the same underlying language with a
significant overlap, to serve the needs of different communities, stakeholders,
and/or purposes. Therefore, in practice, blended modeling is not always limited
to seamless interaction with a single abstract syntax through multiple notations,
but it rather entails more complex cases.

The representative scenario of our work is a single underlying language (set
of concepts) formalized through multiple abstract syntaxes. We define this as
extended blended modeling. In this case, the abstract syntaxes may represent



either two partly overlapping formalizations of the same DSMLs or even two
entirely different DSMLs, provided that they are in some way related to each
other.

10.1.2 Our contribution

Our overall contribution is the means to automate the definition of synchroniza-
tion mechanisms across multiple notations, regardless of whether the underlying
abstract syntaxes associated with the notations represent the same or disjoint lan-
guages. The mechanisms described in this paper were conceived for automating
the engineering of synchronization transformations across multiple notations
of the same language (UML-RT), but they have a broader applicability since
they can produce synchronization transformations across notations of different
languages as well as means for co-evolution across different versions of a lan-
guage. Technically, we provide a solution for modeling environments based
on the Eclipse Modeling Framework (EMF) [7] and DSMLs described using
EMF’s meta-metamodel, Ecore.

10.1.3 Paper organization

The remainder of the paper is organized as follows. The industrial setting and
supporting arguments on the motivation behind this work are described in Sec-
tion 10.2. We discuss work related to the problem domain in Section 10.3. The
developed approach and implementation are described in detail in Section 10.4.
Experiences from validating the approach are included in Section 10.5. A dis-
cussion is provided in Section 10.6 and the paper is concluded in Section 10.7.

10.2 Industrial setting, core problem, and expected ben-
efits

The research work described in this paper was carried out in cooperation with
HCL Technologies, which offers an industrial Eclipse-based modeling tool,
RTist2, for the development of complex, event-driven, and real-time software.

2https://www.hcltech.com/software/rtist
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The tool is designed to support UML and its real-time profile (UML-RT). More
specifically, the tool provides support for specifying UML-RT architectures and
applications by means of graphical composite structure diagrams, for model-
ing structural information, and state-machine diagrams, for modeling behavior.
Furthermore, the tool provides specific features to complement models with
fine-grained algorithmic behaviors by embedding C/C++ action code in state-
machines.

The long-term goal of HCL behind this research effort is to improve the
process of engineering software applications by enabling developers, which will
also be referred to as users in the remainder of the paper, to work on overlapping
parts of a model using different modeling notations (i.e., graphical and textual)
seamlessly in the same modeling environment. Although the ultimate goal of
this effort is to provide a blended modeling environment for the entire UML-RT
language, in this paper we focus on the most complex part, namely the provision
of a flexible solution for blended modeling of UML-RT state-machines.
Starting from the canonical graphical concrete syntax for UML-RT state ma-
chines, the provision of a blended modeling environment with seamless synchro-
nization can be broken down into two main steps which we have successfully
carried out in [8] and [9]. More specifically, in [8] we describe the effort of
designing, implementing and integrating a textual notation for UML-RT state
machines in RTist. In [9] we contribute with the customization of the textual
editor for UML-RT state-machines with advanced formatting features includ-
ing systematic support for hidden regions which group hidden tokens (e.g.,
comments, whitespaces) between two semantic tokens and the provision of syn-
chronization mechanism between textual and graphical notations. However, the
synchronization mechanisms were manually defined in terms of model transfor-
mations between two specific DSMLs describing textual and graphical notations.
If any of the two concrete syntaxes underwent a change, the mechanisms became
obsolete.

The specific industrial aim of this work was instead to provide an auto-
mated solution for generating synchronization infrastructures between poten-
tially evolving concrete syntaxes of UML-RT. To allow for evolution of the
entailed DSMLs and the co-evolution of the synchronization mechanisms, in
this work we contributed with the design and implementation of a mechanism



for the automatic generation of the infrastructure required for seamless synchro-
nization, i.e., model transformations, between virtually any pair of Ecore-based
DSMLs (not only graphical and textual UML-RT state-machines), that may or
may not represent two different concrete syntaxes of the same language. The
provision of automatic means for generating model synchronization transforma-
tions from two given DSMLs that may or not represent two versions of the same
language simplifies remarkably the life of modeling tool developers, but also
allows domain experts without particular knowledge in model transformations
to practically put in place the infrastructure needed for synchronization purposes.
In our specific industrial setting, our approach brings the following benefits.

• It provides the means for seamless synchronization of the standard graph-
ical and the newly introduced textual concrete syntaxes for UML-RT
state-machines. Being a standard language, UML-RT is unlikely to evolve
frequently. However, customers require viewing and editing UML-RT
models using various specialized notations, each described by a specific
DSML. These DSMLs are tailored to customer needs and, unlike the
underlying UML-RT based language, they may be subject to frequent
changes. Thanks to our solution, as soon as any of the notations under-
goes a change, the synchronization mechanisms can be regenerated with
a minimal mapping effort from the developers. Without our approach, the
actual model synchronization transformations would need to be manu-
ally edited by the developers, which is clearly a risky, error-prone, and
time-consuming task. Our solution gives architects and developers the
possibility to experiment when extending or evolving either concrete
syntax.

• Similarly, in case the UML-RT language itself would evolve, alongside
its concrete syntaxes, without a solution like this based on automatic
generation of synchronization, all transformations would need to either be
co-evolved manually, which is again, an error-prone and time-consuming
effort, or re-written from scratch in case of deep changes to the language
and/or the related concrete syntaxes. Our solution eases this process and
provides the means for a more flexible and “fast prototyping” kind of
modeling language and tool engineering process. Engineers and develop-
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ers can sketch changes to either of the concrete syntaxes and try them out
with automated generated synchronization, too.

• If any other language would be included in the tool ecosystem for, e.g.,
modeling multi-domain systems, alongside UML-RT, our solution aids
in establishing synchronization infrastructures between them, pairwise.
Automation gives flexibility but also the possibility to “try out” alternatives
without having to spend much effort and time writing and validating
synchronization transformations, and instead focus on the languages, their
concrete syntaxes, and how they are supposed to interact.

10.3 Related work

Prior to describing the literature related to our work and comparing other ap-
proaches with ours, we want to emphasize that not all solutions dedicated to
the automatic generation of model transformations relate to our research. For
instance, we limit our focus to the automatic generation of horizontal model
transformations and do not analyze approaches toward the automatic generation
of vertical model transformations as described in [10], or generation of model
transformations for the exchange of models between meta-modeling tools such
as [11], since the mapping correspondences are defined between elements of
M3 level models, while we target the specification of mapping correspondences
between elements of M2 level models.

10.3.1 Blending graphical and textual editors

With respect to the proposed solutions dedicated to the blending of textual and
graphical editors, a large portion of tools that offer graphical and textual nota-
tions such as [12], Umple by [13], Excalibur by [14], Light UML3, MetaUML4,
PlantUML5, or FXDiagram6, provide a limited set of features as one of the
notations is read-only and is only used for visualization purposes; thus editing

3http://lightuml.sourceforge.net
4https://github.com/ogheorghies/MetaUML
5https://plantuml.com
6https://jankoehnlein.github.io/FXDiagram/
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the model via multiple notations is not possible and that violates the base notion
of blended modeling that allows interacting (i.e., write and read) with the model
via multiple notations.

For another category of tools, the notations are predefined and cannot be
customized, and the solution is language-specific. Alternatively, our approach
is language-agnostic, meaning that the synchronization mechanisms can be
generated for arbitrary DSMLs. For instance, [15] provide a solution for the
semi-automatic generation of textual editors from UML profile-based DSMLs
and the implementation of synchronization mechanisms with the existing graphi-
cal editor; however, the developed transformations are specific to the considered
UML profile. [16] propose a blended modeling framework, but the solution is
specific to UML-based DSMLs. [17] develops a textual editor for the Action
Language for Foundational UML (Alf), but the editing capabilities are restricted
only to some parts of a UML model, thus they do not cover the complete model.
[18] proposes embedded textual editors for existing graphical models, but the
solution only provides pop-up boxes to textually edit elements of graphical
models rather than allowing seamless editing of the entire model.

On another note, while the majority of tools intermixing between graphical
and textual editors do so in a parser-based fashion, tools such as JetBrains MPS 7

and MelanEE [19] follow a projectional approach where the abstract syntax tree
(AST) is modified directly upon every change, and the changes are automatically
reflected in the different concrete syntaxes that are visualized as projections.
This bypasses the stages of parser-based approaches where the parser must first
check the correctness of the syntactic aspects and then construct the AST from
the character sequence that users input through text editors. In terms of textual
notations, tools that follow a projectional approach only imitate the behavior of
parser-based textual editors, and are actually limited to a fixed format. Lastly,
the interested reader can find a more extensive systematic review of solutions
dedicated to the blending of multiple notations in [20]. These solutions, how-
ever, are based on the concept of only one abstract syntax, whereas our focus
is on multiple abstract syntaxes that may represent two partially overlapping
formalizations of the same DSML or even two completely different DSMLs as
long as they are related in some way.

7https://www.jetbrains.com/mps/concepts/
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10.3 Related work 211

10.3.2 Model weaving

Model weaving allows the definition of relationships and correspondences be-
tween metamodel elements in a weaving model, and allows the execution of
operations based on them (e.g., a model transformation can be automatically
generated based on a weaving model) [21]. Several publications in the literature
have been devoted to efforts to automate the generation of model transformations
by means of weaving models. [22] propose a mapping metamodel based on the
Eclipse Modeling Framework (EMF), and contribute with tools that enable the
generation of model transformations conforming to the Atlas Transformation
Language (ATL) from a mapping model. [23] build on that work and propose
a solution to use matching transformations for the creation of weaving models
that can automate the production of executable model transformations. These
approaches focus on the semi-automatic creation of weaving models and their
manual adjustment for semantically and syntactically similar languages, and the
manual creation of weaving models for semantically and syntactically different
languages for several purposes, including model transformations. However,
relying only on metamodel data to create weaving models (i.e., mapping models)
without considering the developer’s intentions does not guarantee the accuracy
of the mapping model with respect to the requirements. The use of inaccurate
and ambiguous weaving models may result in incorrect model transformations
that do not meet the initial requirements. Manual verification and adjustment
of an extensive weaving model can be as challenging as finding a needle in the
haystack. This might lead to the creation of mapping models being simpler
than manually fine-tuning automatically generated ones. In addition, while
one may argue that the weaving approaches provide a flexible and automated
way to derive mapping models, they may not be able to properly deal with
semantic differences among the mapped languages (i.e., semantics often needs
human understanding to be correctly managed). In our setting, the mapping
modeling language is not the main focus, but rather a key enabler for the overall
goal being the definition of powerful higher-order transformations (HOTs) for
generating synchronization transformations and addressing challenging cases,
such as synchronization between different languages.

In a nutshell, by allowing for more complex unambiguous mappings, we
can cater to a wider range of languages, and provide powerful mechanisms to



support the translation of these mappings to model transformations, thus the
generation of the synchronization infrastructure between languages and nota-
tions. By doing so, we also increase the generalizability of our approach. Lastly,
from a usability point of view, these solutions tend to provide a tree-based editor
only, while providing an additional textual editor can prove useful thanks to its
syntax-agnostic editing features.

Ecore2Ecore8 is a plugin, distributed with EMF, that was originally imple-
mented with the goal of supporting metamodel evolution. As it is possible to
define mappings between two metamodels, we presume that it could be used to
define mapping models that, in turn, can be used to generate language-specific
model transformations. However, the solution does not provide mechanisms
for the generation of model transformations. On another note, [24] propose
a theoretical framework where traceability mappings are regarded as a core
aspect of transformations definition and management and our approach can be
considered a materialization of this message. [25] propose Malan, a MApping
LANguage that supports mutually exclusive graphical and textual definitions
of schema mappings in Papyrus. The source and target schemas are expressed
as UML class diagrams, and the solution only generates XSLT stylesheets that
convert XML documents into other formats, such as HTML or plain text. [26]
propose Mapping Ecore-OWL, a textual mapping language that defines corre-
spondences between EMF objects and RDF resources. The approach generates
ATL transformations that enable the use of RDF resources as EMF objects and
the serialization of EMF objects in RDF resources. While the last two solutions
provide mapping languages and semi-automatic approaches for the generation
of model transformations, in contrast to our work, they do not provide support
for Ecore-based DSMLs.

10.4 Proposed solution

Consider the model of our solution depicted in Figure 10.1. Depending on what
the involved pair of DSMLs represents, we focus on two different scenarios:

8https://eclipse.googlesource.com/emf/org.eclipse.emf/+/R2_8_
3/plugins/org.eclipse.emf.mapping.ecore2ecore/

https://eclipse.googlesource.com/emf/org.eclipse.emf/+/R2_8_3/plugins/org.eclipse.emf.mapping.ecore2ecore/
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1. DSMLA and DSMLB represent two notations of the same language (e.g.,
graphical and textual UML-RT state-machines), then the generated M2M
transformations provide synchronization across different notations of
the same language.

2. DSMLA and DSMLB are disjoint, then the generated M2M transforma-
tions provide synchronization across different notations of different
languages.

Our approach was designed and implemented with open-source technolo-
gies in the Eclipse Modeling Framework (EMF)9 ecosystem and can thereby
be leveraged by any EMF-based tool, as for the RTist case. More specifically,
we provide a semi-automatic approach where developers are relieved from writ-
ing model synchronization transformations, and, instead, focus their efforts in
describing how they want concepts across DSMLs to be mapped using a specifi-
cally defined mapping modeling language. There are two main contributions to
our approach, since to generate synchronization transformations, the user first
needs to be given the means to define the relationships between concepts from
both notations, and second the user needs to be given the means to generate
synchronization transformations based on the defined relationships. Therefore,
given a pair of DSMLs, DSMLA and DSMLB , defined in terms of Ecore, our
first contribution (C1), is an Ecore-based Mapping Modeling Language (MML),
which gives the user the ability to simply model mapping rules between the
two DSMLs. Mapping models constitute the only manual input required for the
approach to generate synchronization transformations; thereby, it is crucial that
the information in these models is correctly captured and unambiguous. For our
second contribution (C2), Higher-Order Transformations (HOTs) implemented
using Xtend 10 take as input the instantiated mapping models that capture the
mapping rules and use DSMLA and DSMLB to resolve the references of the
mapped elements and generate synchronization mechanisms between the two
DSMLs in terms of two unidirectional model transformations conforming to
the QVT operational (QVTo) language11. In the remainder of this section, we

9https://www.eclipse.org/modeling/emf/
10https://www.eclipse.org/xtend/
11https://wiki.eclipse.org/QVTo
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provide details on the definition of MML and HOTs together with a rationale
behind the choices made in the process and details on how we implemented
them. The complete implementation can be found in our GitHub repository12).

10.4.1 Mapping modeling language

We refer to a mapping language as a structured and formalized means for the
specification of mapping rules between two or more DSMLs. The definition
of the mapping language is given in terms of a metamodel; thus, it can also be
defined as the correspondence of elements between arbitrary metamodels [22]. A
mapping language provides a fundamental input to correctly synchronize models
conforming to different DSMLs, as explicit mapping rules link multiple DSMLs
deterministically. In our specific case, mapping rules in those models drive the
HOTs to properly generate model transformations conforming to QVTo. The
mapped DSMLs shall conform to the Ecore meta-metamodel and may represent
two different notations of a same language, as in our UML-RT state-machines
use-case.

Although more intuitive and easier to interact with than complex model
transformations, MML is still intended for users with meta-modeling knowl-
edge. Understanding of the meta-modeling concepts and structure is essential
to properly describe how concepts between DSMLs are intended to be mapped.
Definition of mapping rules instead of manually writing model transforma-
tions is particularly useful for domain experts with no specific knowledge of
model transformation languages, but also for developers who can benefit from
a semi-automatic, more accurate, and less cumbersome approach for establish-
ing synchronization mechanisms. Practically, domain knowledge is the only
required input. Also maintenance of the generated model transformations in
response to evolving DSMLs or requirements can be performed by domain
experts, since adjustments only need to be made at the level of the mapping
models, while HOTs would use them to regenerate model transformations. That
is to say that developers are not expected to manually edit generated model
transformations at any point in the process.

As part of our effort in defining MML, we conducted an analysis to identify

12https://github.com/MLJworkspace/BlendedModellingSolution
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Figure 10.1. Semi-automatic synchronization infrastructure



the input required to correctly generate model transformations. Considering
that one of the main goals of this study was to minimize the amount of manual
input required from the user, we first identified the maximum set of information
that could be automatically retrieved from DSMLs (DSMLA and DSMLB ). For
instance, the mapping rule type (i.e., abstract or non-abstract) is calculated based
on whether the source element is abstract or not. Moreover, disjunctive/dis-
juncted mapping rules and inheriting/inherited mapping rules are automatically
generated by examining the hierarchical structure of the involved metamodels.
The user is also relieved from invoking the corresponding mapping rules as they
can also be retrieved automatically. The assignment operator is automatically
generated in the case of mono-valued attributes or properties (i.e., :=), while
in the case of multi-valued elements the user must manually define it based on
whether the goal is to add elements to the collection (i.e., +=) or to reinitialize the
collection with the element, dropping all previous elements (i.e., :=). Navigation
operators (. and ->) are also automatically generated by assessing whether the
source is a single element or a collection of elements. In addition, navigation
paths are also automatically generated when they involve containment references
or when there is a single non-containment reference between two EClasses. The
remaining information would have to be manually provided by the user. Based
on this, we defined the concepts to be included in the MML metamodel.

Once identified the concepts that MML should include, the last step was
to implement it, focusing on abstracting away the implementation - specific
details (e.g., syntax and semantics) of model transformation languages, and
allowing the user to focus exclusively on the specification of mapping rules. To
comply to our overall settings, we implemented the MML in a blended modeling
fashion, allowing the user to interact with MML via both textual and tree-based
editors. Blending for MML is useful, since it combines the strength of text for
syntax-agnostic editing operations, such as copy and paste, search and replace,
auto-complete features, and a good integration with widely used versioning
and configuration tools, with clear structural overview features typical of tree-
based editors. We assume that MML users have experience with at least one
object-oriented programming (OOP) language; therefore, several syntactical
features of MML are similar to those of OOP languages. In addition to that,
users have an advantage if they have some knowledge of the Object Constraint
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Language13 (OCL), since in certain cases mapping rules require the specification
of conditions for the correct navigation of elements and for the expression of the
so-called “guards” in the generated transformations.
MML is developed using the Xtext language workbench14. Xtext relies on EMF
and it generates an Ecore model that represents the abstract syntax tree (AST),
lexer, parser, and the corresponding Java code. In Figure 10.2 we describe the
MML metamodel defined as an Ecore model, and in the following we detail the
metaconcepts of MML.

MappingModel serves as the root of the metamodel and is a tuple <name,
Rules*, SourceMetamodels*, TargetMetamodels*, MainSo-
urceMetamodel>, where name is a unique name for MappingModel,
Rules* is a possibly empty set of elements of type MappingRule, Source-
Metamodels* and TargetMetamodels* are sets of elements of types
SourceMetamodel and TargetMetamodel respectively, with at least
one element each. MainSourceMetamodel is a single element of type
SourceMetamodel that in the case of multiple SourceMetamodels is
required to indicate the SourceMetamodel to be used at the entry point of
the transformation to be generated.

MappingRule is a tuple <name, operator, condition, comm-
ent, source, helperLiteral, target, ChildRules*, Chi-
ldHelpers*>where name is a unique name for MappingRule, and oper-
ator represents the type of operator between mappings (i.e., assignment, addi-
tion). This is required when it comes to Collections to determine whether the
user intends to append an element to the Collection or to reinitialize the Collec-
tion by deleting all previous elements and adding the new one. condition
supports the definition of a condition that can be interpreted in different ways
depending on the type of source and target elements of the mapping rule
(i.e., mapping guard for EClasses and OCL filter for EReferences and EAt-
tributes). comment supports the definition of comments to the mapping rule
which can help the user keep track of the piece of generated code with the

13https://wiki.eclipse.org/OCL
14https://www.eclipse.org/Xtext/
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corresponding mapping rule. source and target are optional elements of
type EObject that represent the source and target elements of the Mappin-
gRule. helperLiteral is used for EEnumLiterals and is included since
EcoreQualifiedNameProvider does not support EEnumLiterals, thus
they are not indexed. To surpass this limitation, we need two references;
one to the EEnum and the other to the EEnumLiteral. Thus, source or
target will be used to reference EEnum and helperLiteral to refer-
ence EEnumLiteral. ChildRules* is a possibly empty set of elements
of type MappingRule, while ChildHelpers* is a possibly empty set of
elements of type HelperStatement.

SourceMetamodel and TargetMetamodel represent the DSMLs that
will be involved in the transformation and inherit all members of Metamodel.
A Metamodel is a tuple <name, model>, where name is a unique model
name and model is the EPackage representing the root element of a particular
metamodel involved in the mapping.

HelperStatement is a tuple <statement, ChildRules*, Chi-
ldHelpers*> where statement is a unique element that allows the user
to define statements; for the moment, we support OCL and QVTo statements.
ChildRules* is a possibly empty set of elements of type MappingRule,
while ChildHelpers* is a possibly empty set of elements of type Helper-
Statement.

Operator is an enumeration with two mutually exclusive possible values,
being: assignment, used when a single input element in the source model is
mapped to a single output element in the target model, or when a non-empty set
of input elements in the source model are mapped to a non-empty set of output
elements in the target model by re-initializing the set of output elements, and
addition, used when a non-empty set of input elements in the source model
are transformed into a non-empty set of output elements in the target model by
adding to the set of output elements.

After defining the metaconcepts of MML, we leverage the features provided
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by Xtext in combination with EMF to automatically generate textual and tree-
based editors. Afterwards, we customize them to provide a more user-friendly
and precise scoping as well as more intuitive labeling of the mapped model ele-
ments. More specifically, we specialize the MappingRuleItemProvider
class, to limit the scope for elements source, target and EEnumLiteral.
Limiting the scope, especially for the source and target plays a significant
role in reducing the likelihood of errors on the part of the user. For instance, the
customization of scoping limits the user into defining child mapping rules (i.e.,
mapping rules that link EReferences, EAttributes and EEnums) only
if there exists a navigation path from the source and target element (i.e.,
EClass) of the main mapping rule to the source and target of the child
mapping rule. Moreover, we specialize the ItemLabelProvider class, to
provide intuitive labeling, similar to qualified names. This is particularly useful
in the tree-based editor for distinguishing between different metaelements that
may have the same name. Moreover, we specialize the Formatter class to
customize indentation, line breaks, white spaces, etc., to improve the readability
of MML textual models.

10.4.2 Higher-order transformation

The automatic generation of model transformations for synchronization purposes
is achieved by means of HOTs. According to their definition [27], HOTs are
particular model transformations that generate, in turn, model transformations.
In our case, HOTs are defined at meta-metalevel using the Xtend language
and automatically generate unidirectional model transformations in QVTo for
synchronization purposes. The synchronization infrastructure generated by the
HOTs consists of two unidirectional model transformations. As depicted in
Figure 10.1, starting from two DSMLs, DSMLA and DSMLB , and two sets
of high-level mapping rules between them defined in two mapping models,
one per direction (i.e., DSMLA_2_DSMLB and DSMLB_2_DSMLA, the
HOTs generate two unidirectional QVTo transformations that, when executed,
take a model instance of one DSML, DSMLA and DSMLB respectively, and
transform it into a model instance of the other DSML, DSMLB and DSMLA

respectively. Each mapping rule defined in the mapping models is transformed
into one or more mapping operations in the generated QVTo transformations.



Figure 10.2. MML metamodel in Ecore

The choice of QVTo as target transformation language was due to its suitability
for both in-place and out-of-place, as well as endogenous and exogenous trans-
formations, and for its imperative programming fashion, which is particularly
suitable for automatic generation of complex algorithms. Moreover, we opted
for multiple unidirectional transformations rather than bidirectional transforma-
tions to simplify the maintainability of the generated transformations and their
manageability in the target modeling tool ecosystem.
The HOTs are implemented in Xtend, a flexible dialect of Java, which compiles
into readable Java 8 compatible source code and is particularly suitable for the
generation of pretty-printed textual artefacts. The remainder of this section is
structured in paragraphs corresponding to the different metaconcepts of MML
to maximize readability. There, we describe how the HOTs combine the input
specified by the user in the mapping models with the information automatically
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extracted from the mapped DSMLs in order to generate the model transforma-
tions for synchronization.

Mapping Model: MappingModel is the root element of the mapping
language and represents the starting point for traversing a mapping model. The
user assigns a name to it, which is then used to generate the name of the model
transformation. If there is more than one SourceMetamodel, the user must
select the MainSourceMetamodel, which represents the metamodel that
is used as the entry point of the model transformation. Alternatively, in the
case of only one SourceMetamodel, the latter is automatically selected as
MainSourceMetamodel.

Metamodels: The information extracted from SourceMetamodel and
TargetMetamodel is used to generate the modeltype, and transform-
ation signature of the model transformations. The user loads the DSMLs
and selects the EPackages to be mapped that will be used as the source and
target of the model transformation. The HOTs automatically retrieve the name
and nsURI of the EPackages to generate the modeltype, identify the direction
of the model transformation, as specified in the mapping model, and generate
parts of the transformation signature according to the following pattern:
in «SourcePackageName»Model : «SourcePackageName»,
out «TargetPackageName»Model : «TargetPackageName»

Mapping Rule: The mapping rules can be grouped based on the EObject
that contains them as follows.

1. MappingRules are contained in MappingModel and we refer to them
as immediate mapping rules. source and target of these mappings
are objects of type EClass.

2. MappingRules are contained in other MappingRules or Helper-
Statements and we refer to them as child mapping rules. source and
target of these mappings are objects of type EReference, EAttribute,
or EEnum.

The mapping rules in the first category are used to generate the mapping dec-



laration, whereas those in the second are utilized to generate the body of the
mapping operations. In the following, we detail the implementation of the
features that apply to each category.

1. Immediate mapping rules

• Mapping operation name: The name of the mapping operation is automati-
cally generated as: «sourceElementName»2«targetElementN-
ame». This not only reduces the amount of manual effort from the user,
but it also increases readability, as the naming follows a specific standard
pattern and is rather intuitive. Moreover, to minimize the risk of errors
when mapping elements with the same name, source and target elements
are printed using fully qualified names (i.e., modelName::elementN-
ame»), thanks to our customized model editors.

• Mapping operation type: The generated mapping operations can be ab-
stract or non-abstract. Abstract mapping operations are used when the
target of the mapping operation is abstract. This information is automati-
cally extracted from the target DSML; hence, it does not require user input.
Before printing a mapping rule, the HOTs determine whether the target ele-
ment of the mapping rule is an abstract or non-abstract EClass. In the case
of an abstract EClass, the mapping operation is printed as abstract accord-
ing to the following pattern: Abstract«sourceElementName»2-
«targetElementName».

• Conditions: For immediate mapping operations, the source and target
elements are EClasses, therefore conditions that are manually defined by
the user are automatically generated as when clauses that are evaluated
to determine in which circumstances the mapping operation should be
executed.

• Inheritance: The concept of inheritance allows reuse of mapping oper-
ations under the condition that the signature of the inherited mapping
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conforms to the one of the inheriting mapping. The source and target of
any potential inherited mapping rule must be supertypes of, or identical
to, the source or target of the inheriting mapping rule. The HOTs iterate
through each of the immediate mapping rules in the mapping model and
determine whether the mapping operation under analysis inherits from any
of the iterated mapping rules. If it does, after the transformation signature
and the inherits keyword, the names of the inherited mapping rules are
printed (in the case of multiple inherited mapping rules, they are separated
by a comma).

• Disjunction: Invocation of a disjunct mapping operation results in an as-
sessment of disjunct candidate mapping operations. To determine whether
a mapping operation is disjunctive and, if so, to identify the disjunct
candidates, the HOTs iterate through all the immediate mapping rules of
the mapping model and identify those where the source and target are
identical or subtypes of the source and target of the potentially disjunctive
mapping rule. If these mapping rules exist, the analyzed mapping rule is
considered disjunctive and is named according to the following pattern:
«sourceElementName»2«targetElementName»Disjunct.
After printing the signature of the mapping operation and the disjuncts
keyword, the HOTs print the identified disjunct candidates. A mapping
can be both abstract and disjunctive. The user needs to define the mapping
rule only once in the mapping model and the HOTs will generate two
rules: one abstract and one disjunctive, since QVTo does not allow to
combine them into one.

2. Child mapping rules

There are three different possible scenarios for child mapping rules, depend-
ing on the values of the source and target attributes.

SC1: source!=null and target!=null

SC2: source==null and target!=null



SC3: source!=null and target==null

In SC1 a non-empty set of input elements in the source model are transformed
into a non-empty set of output elements in the target model. In SC2 a non-empty
set of output elements are added to the target model. In SC3 a non-empty
set of input elements in the source model facilitates the navigation of model
elements in the generated transformations. This is used for complex and possibly
ambiguous navigation cases, such as the one depicted in Figure 10.3, where on
the left-side is illustrated an excerpt from the source metamodel and on the right
side an excerpt from the target metamodel.

Consider that the user defines an immediate mapping rule Organization-
Organization2Company as detailed in Figure 10.4. The user then wants to
map the value of the name attribute of Person in the source metamodel,
to the managerName attribute of Company in the target metamodel, by
defining the mapping rule name2managerName. The correct navigation
path in this case would be self.department.manager.name, where
self = Organization. To navigate to the name attribute, starting from
Organization, there is, in fact, also another path ; self.department.-
secretary.name. However, this navigation path is not considered correct,
as it would map the name of a Person that is a secretary in Department to
managerName in Company. Therefore, the information to navigate to name
attribute via manager reference is to be decided by the user, as the HOTs
cannot automatically determine which path to take. Therefore, the user needs to
define an additional mapping rule manager2null that will guide the HOTs in
generating the expected model transformation. Being that manager is not an
immediate reference of Organization HOTs must automatically generate
the navigation path from Organization to manager. For that reason, we
implement a recursive Depth-First Search (DFS) algorithm, which starts at the
root node (i.e., Organization) and explores as far as possible along each
EClass, before backtracking (unless it finds the target).

• Invoking rule: In QVTo, mapping operations are run with an explicit
rule-invocation style, which initiates execution from an entry mapping
operation generally found in the main function, and invokes the other
mapping operations in a nested manner. The entry mapping operation that
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Figure 10.3. Ambiguous navigation

Figure 10.4. Ambiguous navigation mapping rules

should be invoked is automatically determined.

• OCL expressions: For sub-mapping operations, derived from child map-
ping rules, where the source and target elements are EReferences or
EAttributes, condition attributes of the mapping rules are used to
specify OCL expressions.

• Navigation operators: The HOTs determine the navigation operator based
on whether the source of the mapping rule is a single object or a collec-
tion of objects (i.e., by checking the upperBound). A single object is
navigated using the dot (.) operator, whereas collections of objects are
navigated using the arrow (->) operator.

HelperStatement: It is intended to facilitate the definition of complex
mappings requiring the use of for loops, while loops, or if/else con-
ditional statements. HelperStatements are contained in MappingRules
(i.e., immediate mapping rules) similarly to how they are defined in map-
ping operations in QVTo transformations. Moreover, they may contain other
HelperStatements and MappingRules that are generated within the loop
or statement defined by HelperStatement.



10.5 Validation and use cases

The proposed approach and reference implementation have been validated by
means of two use cases and model-to-text testing. During this process, the
implementation of our solution was validated in multiple testing phases and
the results of each phase were analyzed and used, when needed, to tune the
implementation. In Section 10.5.1 we provide details on the two use cases in
isolation and then conduct a comparison between the two, while in Section 10.5.2
we provide the details of the model-to-text test cases. Lastly, in Section 10.5.3
we provide an example of our industrial use case.

10.5.1 Use cases

The first use case refers to the UML-RT language, more specifically the subset for
modeling state-machines, where DSMLA and DSMLB represent the graphical
and textual notation of the UML-RT language. The second use case concerns
two disjoint DSMLs, one for describing and manipulating calendars, while the
other for describing and manipulating organizational structures. Both use cases
encompass scenarios entailed by our solution.

UML-RT use case

UML-RT is a real-time profile that aims to simplify the ever increasing complex-
ity of the software architecture specification for real-time embedded systems.
UML-RT enables both structure modeling and behavior modeling of real-time
systems. This use case focuses on the behavioral part which is represented using
state-machine diagrams. Considering that both DSMLA and DSMLB represent
two different notations of the UML-RT language, they contain similar concepts.
As a result of textual concrete syntax requirements aimed at maximizing usabil-
ity and reducing learning curves, the different DSMLs for different notations
are required. In fact, the DSML associated with the textual notation has evolved
to fit the needs of various customers, so we have been able to also support the
co-evolution of model transformation in response to DSML changes. In the
following, we provide more details on the mapping models and generated QVTo
transformations.
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The Textual2Graphical mapping contains a total of 71 mapping rules,
of which 66 (93 %) of them fall under SC1, one under SC2 (1.4 %), and four
under SC3 (5.6 %). Eight mapping rules contain conditions, of which seven
are in the form of guards, as they are applied to mapping rules that link two
EClasses, while one is in the form of an OCL filter. This mapping model gener-
ates a total of 29 main mapping operations in the output QVTo transformation
from a total of 25 mapping rules that link EClasses. The four additional mapping
operations are the result of the abstract and disjunctive mappings that
are automatically calculated from the HOTs.

The Graphical2Textual mapping contains a total of 61 mapping rules,
of which 56 (91.8 %) fall under SC1, five under SC2 (8.2 %), and no mapping
rule falls under SC3. 14 mapping rules contain conditions, of which seven
are in the form of guards, as they are applied to mapping rules that link two
EClasses, while the other are in the form of OCL filters. This mapping model
generates a total of 26 mapping operations in the output QVTo transformation
from a total of 22 mapping rules that link EClasses. The same reasoning as in
the case of Textual2Graphical mapping applies for the four additional
mapping operations.

Making a comparison between the two mapping models, we notice that
the most significant differences are with regard to SC2 and SC3. While in the
Textual2Graphical mapping model only 1.4 % of the mapping rules fall
under SC2 (i.e. are used for adding a non-empty set of elements in the output
model), in the Graphical2Textual mapping model 8.2 % of the mapping
rules fall under SC2. This is a consequence of the fact that the DSML repre-
senting the textual notation contains more concepts that are either not present
in the DSML representing the graphical notation (e.g., TransitionBody)
or are more specialized (e.g., InitialTransition). The high number of
mapping rules that contain conditions in the Graphical2Textual mapping
model compared to the Textual2Graphical one is another indicator of
the specialization of concepts. With regard to SC3, we notice that while the
Graphical2Textual mapping model has no mapping rules falling under
this category, in the Textual2Graphical mapping model 5.6 % of the map-
ping rules are used to facilitate the navigation of elements in the textual model
that cannot be directly accessed.



Calendar and organization use case

The second use case relates to two disjoint DSMLs where one is used to describe
a meeting calendar for an organization, while the other is used to describe the
organization. An organization consists of personnel that can have different avail-
ability (e.g., available or on vacation) and is divided into multiple departments.
Each department is responsible for multiple projects, which in turn consist of
multiple work packages and external partners. Each work package has a status
(e.g., active or non-active) and consists of multiple tasks for which external
partners and/or organization personnel are in charge. A calendar can be split into
multiple divisions, where each division consists of active meetings, non-active
meetings, and personnel that is not participating in any meeting. Active and
non-active meetings consist of a group of participants composed of internal,
external, and non-available participants, and an agenda composed of multiple
tasks. These are two semantically and syntactically disjoint DSMLs, thus the
definition of mapping links might not be as intuitive as for the first use case.
They are related to one another, as depending on the status of work packages
in the model representing the organization and people in charge, meetings are
automatically created in the calendar. There is a similar relation for the reverse
transformation. In the following, we provide more details on the mapping mod-
els and generated QVTo transformations.

The Calendar2Organization mapping model contains a total of 50
mapping rules, of which 45 (90 %) fall under SC1, one under SC2 (2 %) and
four under SC3 (8 %). Eight mapping rules contain conditions and they
are all in the form of OCL filters. Furthermore, this mapping model introduces
the use of HelperStatements in the form of for loops and if conditional
statements. This mapping model generates a total of 12 mapping operations
in the output QVTo transformation from a total of 11 mapping rules that link
EClasses.

The Organization2Calendar mapping model contains a total of 40
mapping rules, of which 36 (90 %) fall under SC1, two under SC2 (5 %) and
two under SC3 (5 %). Ten mapping rules contain conditions, of which
seven are in the form of guards as they are applied to mapping rules that link
two EClasses, while three are in the form of OCL filters. Furthermore, this
mapping model introduces the use of HelperStatements in the form of if
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conditional statements. This mapping model generates a total of 12 mapping
operations in the output QVTo transformation from a total of 11 mapping rules
that link EClasses.

Making a comparison between the two mapping models, we notice that the
number of mapping rules that fall under SC1 is equal in both. It is important to
note that the two DSMLs contain an approximately equal number of elements
(i.e., Organization contains 35 elements, while Calendar contains 39 elements)
and an equal number of EClasses; thus, they are of relatively similar sizes,
which deeply affects the distribution of mapping rules with regard to the three
scenarios. Assuming that there is no loss of information (typically occurs when
not all elements of the involved DSMLs are linked by mapping rules), after
the execution of the forward and backward transformations, in the case of two
DSMLs of significantly different sizes, we believe that it is likely to have a
higher number of mapping rules associated with SC2 and SC3.

Use case comparison

Comparing the distribution of the mapping rules between the three scenarios,
in the first use case, the number of mapping rules that fall under SC2 and SC3
is mainly due to the specialization of concepts, while in the second use case it
is due to semantic and syntactical differences. Despite the fact that there is no
significant difference between the number of mapping rules falling under SC1
for the first and the second use case, we still argue that the second use case is
more complex than the first, since while in the UML-RT use case there is a string
similarity between the mapped elements of the involved DSMLs and similarity
in the structure of the DSMLs, in the second use case such similarities cannot be
found. Furthermore, while the first use case covers only a subset of the concepts
of the MML, the second use case covers all concepts of the MML including the
HelperStatement and helperLiteral, which we could not validate in
the first use case. What adds to the complexity of the second use case is that,
while the mapping models for the UML-RT use case exhibit a flatter hierarchy
(a maximum of two-level deep-nested hierarchies), the mapping models of the
second use case exhibit a deeper hierarchy, reaching a maximum of five-level
deep-nested hierarchy. This is the case in the Calendar2Organization
mapping model, where the Division2Department mapping rule is made



up of a mix of two consecutive HelperStatements and three mapping rules
that cover the three scenarios. As a consequence, the generation of QVTo
transformations for the second use case demonstrating more complex mappings
is a stronger indication of the powerful HOTs.

10.5.2 Model-to-text testing

Validation was performed based on model-to-text tests classified by [28] as
i) conformance tests, ii) semantic tests, and iii) textual tests. Taking into
account the different types of model-to-text tests, for each mapping model,
we evaluated whether the generated QVTo transformations matched the ex-
pected QVTo transformations. In detail, we defined transformation test cases
<MappingModel_file, Exp_QVTo_file>, where MappingModel_-
file represents the mapping model used to determine the links between ele-
ments of the source and target metamodels, and Exp_QVTo_file represents
the expected QVTo transformations that we manually defined. For a test case
to pass, the output of the HOTs (generated QVTo transformations) must match
Exp_QVTo_file. In the following, we provide more details on the different
types of model-to-text tests.

Conformance tests

They were used to verify whether the generated transformations were structured
textual artifacts that conformed to the QVTo language. QVTo has specific rules
that specify how statements can be written, and the set of these rules constitutes
the syntax of the language. Failed conformance tests typically occur due to pos-
sible syntactical mistakes, such as missing or unbalanced parentheses, missing
or unbalanced quotes, missing colons or semicolons, misspelled variables, and
so on. When a QVTo file for which conformance tests have failed is opened, the
syntax errors are flagged in the file, together with a message error. The most
common message errors in these cases are: missing “x” to complete scope, “x”
expected instead of “y”, “x” expected after “y”, unrecognized variable(x) and so
on. For instance, in the UML-RT use case, the majority of mapping rules have as
source and target elements with the same name. However, when the source and
target of a mapping operation have the same name, only the element belonging to
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Figure 10.5. Example of failed conformance test

the metamodel that is first defined is taken into account. This can lead to unrecog-
nized variables in the body or condition of the mapping operations. An example
of a failed conformance test is illustrated in Figure 10.5. While in the map-
ping model the user has defined the source as hclScope/StateMachine
and target as statemach/StateMachine, the first defined metamodel is
statemach in Line 1, thus if we hover over StateMachine elements in
Line 8 we notice that they are both statemach: StateMachine. When
trying to access the states EReference of the StateMachine element from
the second metamodel (i.e., hclScope) the variable is unrecognized. There-
fore, to avoid such failed conformance tests, we print the fully qualified name
of the source and target elements as shown in Line 9 in Figure 10.10. Failed
conformance tests can also be the result of incomplete or incorrect mapping
models defined by the users. For instance the State2CompositeState
mapping rule in Line 11 is invoked automatically, meaning that the user does not
need to define the mapping rule that should be invoked when assigning the value
of the source element to the target element. The only requirement is that the
State2CompositeState mapping rule should be created by the user in the
mapping model (a rule that has not been defined in the mapping model cannot
be invoked).The absence of this rule in the mapping model before executing the
HOTs would result in an error, and the user would have to revisit the mapping
model and define the State2CompositeState mapping rule.



Semantic tests

They are used to verify whether the generated transformations adhere to the
semantics of the QVTo language. Failed semantic tests are often due to missing
mapping operations, incorrect hierarchical structure, incorrect type of map-
ping operations (abstract/non-abstract), missing/incorrect inheritance and dis-
junct candidates, and so on. For instance, our HOTs are expected to auto-
matically identify whether a mapping operation inherits another. Mistakes
in the implementation could lead to the HOTs failing to identify inheriting
mapping operations. This would not trigger any syntactical error in the file
and the generated transformations would be executed. However, the result-
ing models of the generated transformations would not be semantically cor-
rect. The lack of error messages makes these types of errors not easy to lo-
cate. Another interesting example would be the one illustrated in Figure 10.3.
While the user expects the transformation to navigate from Organization
to name via self.department.manager.name, the HOTs generate the
path self.department.secretary.name. The generated QVTo trans-
formation would be executable and syntactically correct but semantically wrong.
Instead of mapping the name of a person who holds the role of a manager in
the department to the managerName in a company, it would, in fact, map
the name of a person who holds the role of a secretary in the department to
the managerName in a company. For that reason we have introduced map-
ping rules as per SC3 where source!=null and target==null. These
rules aim to assist the user specify the correct navigation path for accessing a
particular element of the source metamodel, thus avoiding failed semantic tests.
An example of such rule is illustrated in Figure 4, where the manager2null
mapping rule ensures that the correct navigation path is generated to access
the name of the manager instead of the name of the secretary. It is common
to encounter such a scenario when the navigation path from one EClass to
another includes multiple non-containment references. For instance, in Fig-
ure 10.3, navigation between EClass Department and EClass Person can
be accomplished through manager or secretary references.
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Textual tests

They are used to verify whether the textual elements of the generated model
transformations have the required format. Errors discovered through these tests
are not identified through conformance testing. Examples of textual testing
involve checking whether the name of the transformation is the one inputted by
the user or whether the names of the mapping operations are defined following
the defined template. Furthermore, these tests verify whether the generated
transformations adhere to the QVTo formatter (e.g., new lines, indents, white
spaces).
On a side note, to increase the reliability of our approach, we complemented
the aforementioned tests by manually defining target models that represent the
expected outputs of the execution of the generated QVTo transformations. We
compared the XML representation of the manually defined target models and
the generated target models using the XML compare tool15. As part of this
process, it is important to leverage extensive input models, which conform either
to DSMLA or DSMLB , depending on the direction of the transformation), that
cover as many variations and combinations of concepts as possible, thus mini-
mizing the likelihood of untested scenarios. While the generated target models
were identical to the manually defined target models (with the exception of the
line order), it is still a valid concern whether the target models generated are
correct and meet the requirements. In order to generate correct target models,
two conditions must be met; i) the user must select “correct” mappings that
illustrate the requirements, and ii) the HOTs should generate the expected QVTo
transformations based on the input data (i.e., involved DSMLs and mapping
model). While we have executed model-to-text test cases to validate the correct-
ness of the HOTs, there is no guarantee that the user will select the “correct”
mappings that conform to the requirements. Since mappings reflect the user
intentions, we cannot provide guarantees on their appropriateness, meaning their
reflection of the user’s intentions. However, such a risk is apparent also on the
traditional approach of manually writing model transformations. Furthermore, in
addition to the limitations built in the MML by customizing the scope provider,
the execution of the HOTs in cases where the mapping model is not correct

15https://extendsclass.com/xml-diff.html

https://extendsclass.com/xml-diff.html


(e.g., the user is mapping an EClass to an EReference) will generate an
error message. In summary, in light of the validation results, we can argue
with certain confidence that MML contains all those concepts needed to specify
deterministic unidirectional mappings between two Ecore-based DSMLs, and
mapping models can then be effectively used to generate well-formed model
transformations.

10.5.3 Example

In Figure 10.7 we provide an example of a mapping model between the ex-
cerpts of DSMLA and DSMLB illustrated in Figure 10.6 and Figure 10.8. In
Figure 10.9 we illustrate the properties view for three mapping rules defined in
Figure 10.7, to provide the reader with a more concrete example of the manual
input that is required from the user in different cases. The requirements for
transforming from DSMLA to DSMLB are as follows:

• StateMachine element in MDSMLA is transformed to StateMachine el-
ement in MDSMLB . Moreover, being that a StateMachine element in
MDSMLB must contain only one direct CompositeState element,
if the StateMachine element in MDSMLA contains only one direct
State, the latter is transformed to a CompositeState; alternatively
if the StateMachine element in MDSMLA contains more than one di-
rect State a new CompositeState element is created in MDSMLB .

• A State element in MDSMLA is transformed to a SimpleState ele-
ment in MDSMLB , if the State element in MDSMLA does not contain
any other elements.

• A State element in MDSMLA is transformed to a CompositeState
element in MDSMLB if the State element in MDSMLA contains at least
one element.

To begin with, the user would instantiate a new mapping model and give it a
name (e.g., Textual2Graphical). Upon loading the metamodels, the user would
select the respective EPackages to define the source and target metamodels.
MainSourceMetamodel is not required in this particular instance, since
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there is only one SourceMetamodel (i.e., DSMLA) that is automatically
assigned as MainSourceMetamodel. Following this, the user would begin
defining mapping rules in accordance with the requirements. First, the user
would map the root elements of both metamodels, which in our case are the
StateMachine elements. Based on the first requirements, there are two
ways that the user can define the mapping rule. The first option consists of
defining one single StateMachine2StateMachine and then using two
HelperStatements to specify the conditional statements. The second option
consists of the user defining two StateMachine2StateMachine mapping
rules and specifying the condition , by using the condition property of the
each mapping rule. While the first option is more similar to OOP and can be
easier for modeling tool developers, the second option can be more intuitive
for domain experts. Therefore, in this example we detail the second option
where we define two StateMachine2StateMachine mapping rules. The
details of the first mapping rule StateMachine2StateMachine can be
seen in Figure 10.9. The user would have to define the source, target, and
condition. The name is automatically generated, while the operator is
set to assign by default. The user would then define a new child mapping
rule (i.e.,states2top) and define the source, target, and condition.
Both of these mapping rules fall under SC1. An interesting mapping rule falling
under SC2, is the null2top, defined as a child mapping rule for the second
StateMachine2StateMachine mapping rule. The null2top mapping
rule creates a new CompositeState element in MDSMLB , for which there is
no match in MDSMLA .

In Figure 10.10 we present a more extensive excerpt of the Textual2Grap-
hical mapping model for UML-RT state machines on the left-hand side and an
excerpt of the generated QVTo transformation on the right-hand side. The gen-
erated QVTo transformation is the output of the execution of the HOTs that take
as input DSML, DSMLB , and Textual2Graphicalmapping model. There
are a few peculiarities to highlight here. The first StateMachine2StateMa-
chine mapping rule generates Lines 12-13. However, being that the mapping
model contains two mapping rules named StateMachine2StateMachine
where sources and targets are identical, the HOTs generate three mapping
operations, where one of them (Line 9) is a disjunctive mapping operation that



Figure 10.6. DSMLA
Figure 10.7. Mapping

model
Figure 10.8. DSMLB

Figure 10.9. Properties view for the mapping rules defined in Figure 10.7

disjuncts the other two (Lines 12 and 19). The disjunctive mapping operation is
invoked on Line 6 and the first matching candidate (StateMachine2State-
Machine0 or StateMachine2StateMachine1) is selected. HOTs deter-
mine the order in which the disjunctive candidates are printed based on whether
they have a mapping condition. As can be seen, StateMachine2StateMac-
hine0 on Line 12 has a mapping condition; thus, it is printed as the first dis-
juncted mapping operation on Line 10. To define the model transformations
manually, the users would have to possess a strong understanding of these
details. More specifically, users would need to understand the syntax of the
model transformation language (i.e., QVTo), the concept of disjunction (e.g.,
the order in which the disjunct candidates appear), and which rules to invoke
in particular situations (e.g., Line 6). Instead, with our solution, the user is
only required to define two mapping rules, specifying the source, target,
and condition attributes. By doing so, the HOTs would be able to automat-
ically generate model transformations that conform to the QVTo syntax and
include concepts that the user is not expected to understand. Consequently, this
reduces the amount of effort and expertise required. Furthermore, Lines 21
to 25 detail the generation of mappings from child mapping rules according to
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Figure 10.10. Textual to graphical mapping model and generated QVTo
transformations for UML-RT state machines

SC2 described in Section 10.4.2, where source == null and target ==
top. The referred EClass of EReference top, is CompositeState,
thus the latter is added to the target model. Alternatively, Line 16 details the
generation of a mapping from a child mapping rule according to SC1, where
source == name and target == name.

On another note, the State2State mapping rule in the mapping model
has been generated as two mapping operations: AbstractState2State
in Line 47, because the State class in the target metamodel is abstract, and
State2StateDisjunct in Line 44, as in the mapping model there are two
rules (State2SimpleState and State2CompositeState) that fulfill
the conditions to be disjuncted mapping operations (sources are identical, while
targets are subtypes). Moreover, since SimpleState and CompositeState
extend State in the target metamodel, the mapping operations in Lines 28 and



38 inherit the abstract mapping operation in Line 47, having identical sources.
The example above further illustrates the reduced effort and expertise needed, as
it eliminates the need for the user to comprehend the concepts of abstract map-
pings, inheritance, and disjunction. Additionally, HOTs reduce the likelihood
of human-errors by automatically analyzing the involved DSMLs and mapping
models.

10.6 Discussion

In this section we reflect on several aspects of our approach. We present the
design principles that guided our solution, followed by an analysis of the benefits
and an identification of the limitations and possible solutions.

10.6.1 Design principles

Three main principles have guided the design of the proposed solution, as
outlined below.

1. Separation of concerns. A strict separation between domain logic and
implementation-specific details reduces complexity and allows for in-
creased reusability, maintanability and extensibility of the solution. More-
over, the definition of domain logic in a separate model (i.e., mapping
model), using a language that provides a higher level of abstraction than
model transformation languages, facilitates the understanding and solv-
ing of problems and ensures that software developers are not exposed to
unnecessary information.

2. Consideration of user’s intentions. A complete and carefully written
specification of how the DSMLs are mapped to one another forms the
basis for producing complete and accurate model transformations. As a
result, it is essential to provide the developer with the ability to capture
his/her intentions in the form of unambiguous mapping links between
elements of two DSMLs as semantics often needs human understanding
to be correctly managed.
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3. Tooling that seamlessly integrates the target audience’s current tool
ecosystem. An essential aspect of successful software is the ability to
seamlessly integrate with the environment that the target audience already
uses. Our target modeling environment is the well-established Eclipse
Modeling Framework, thereby our approach focuses on Ecore-based
DSMLs and we opted for technologies (Xtend, QVTo, Xtext, etc.) that
integrate seamlessly with the Eclipse environment.

10.6.2 Analysis of the benefits

The adoption of a novel approach for the synchronization infrastructure between
multiple notations for blended modeling can be challenging due to the customers’
uncertainty of whether the benefits outweight the costs. Our proposed approach
is therefore subjected to a cost-benefit analysis while simultaneously being
compared with traditional approaches.
Firstly, we will discuss the transition costs involved. The transition costs consist
of i) implementation costs and ii) training costs. Implementation costs are
concerned with the adaptation of an organization’s existing systems to integrate
the proposed approach. Since our tool seamlessly integrates with EMF tools,
we do not incur any costs in this regard. There is, however, a concern that
companies with existing synchronization infrastructures would have to create
the mapping models from scratch although they already have the synchronization
infrastructure in place. Nevertheless, the benefits of doing so outweigh the costs
in a significant manner due to the following reasons. First, as metamodels
evolve, the co-evolution of the model transformations can be facilitated, as the
respective changes can be made at a higher level of abstraction. Moreover, in
case DSMLA and DSMLB would represent two versions of the same language
DSML (e.g., DSMLB is an evolution of DSMLA), the generated transformations
would instead provide model co-evolution. Further, it enables faster prototyping,
allowing for user feedback prior to releasing a new version of the modeling tool,
and verifying that the requirements of the users are understood and met. As part
of our strategy to further reduce costs, we intend to use reverse transformations
that build mapping models from model transformations. Training costs are
instead concerned with the time and resources required to learn to utilize the
proposed approach. Many industries are cautious to adopt new technologies



that require a considerable amount of training and practice before they can be
effectively implemented. Nonetheless, when applications are implemented with
a focus on user experience, training is less complex, faster, and more effective.
Since users are interacting with the MML, we have minimized the training costs
by designing the MML to be as simple and intuitive as possible. MML exhibits
the following characteristics:

• Encapsulates the minimum set of concepts necessary for defining deter-
ministic mappings, keeping the language concise, and avoiding unneeded
verbosity.

• Developed with a blended modeling approach to support textual and
tree-based notations, which exhibit complementary usability features.

• Syntactically similar to object-oriented programming languages, which
pushes down the learning curve for the average software developer.

• Raises the level of abstraction by allowing the user to focus on the do-
main’s logic instead of dealing with lower-level model transformations.

While users must become familiar with MML and while at first glance it may
appear to be an additional overhead, it is in fact a one-time effort which proves
beneficial in the long run. Compared to model transformations, mapping models
require significantly less input, resulting in lowers effort on the part of the
developer. MML also enables domain experts without model transformation
knowledge to be involved in the definition of the mapping models, since domain
logic is presented in a format that is easily understood by all stakeholders rather
than embedded in boilerplate model transformations. This could even reduce
the time of development and number of errors caused by misunderstandings
or miscommunications between domain experts and developers. The approach
has also demonstrated acceptance and practical applicability in an industrial
setting among HCL developers, who used it i) to define mapping models for
generating the synchronization infrastructure between graphical and textual
DSMLs, and ii) to co-evolve the mapping models and consequently the model
transformation in response to changes in the textual DSML until the latter was
refined to its present form. Moreover, HCL is currently applying this approach
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for model co-evolution/migration purposes. To further decrease the learning
curve and consequently, the training costs, we have contributed with a tutorial to
an established MDE community (ICSA conference), and we plan on delivering
a tutorial at a premier conference for practitioners and researchers interested in
software architecture. Finally, we plan to contribute more examples and step-by-
step tutorials to the online repository. As we presented a summary of potential
costs and benefits associated with our approach, we would like to emphasize that
the settings in which an organization operates is an instrumental factor in this
analysis. The size of the involved DSMLs and the frequency of their evolution,
for example, can greatly impact the decision on whether the adoption of the
approach is appropriate for the specific organization. Our first recommendation
is for interested industrial parties to conduct their own cost-benefit analysis using
this example as a guide. In addition, we recommend a gradual and step-wise
adoption of the approach through the establishment of a multi-functional team
staffed with both domain experts and software developers to investigate the
integration and usability of the approach in their particular settings through our
prototype.

10.6.3 Limitations and possible solutions

As a result of this research, we have identified a number of limitations and po-
tential solutions associated with the automatic generation of the synchronization
infrastructure for blended modeling.

• Bi-directionality. Our study focused on the use of unidirectional map-
pings (and generated transformations) instead of bidirectional ones. While
our synchronization approach has the same goal of bidirectional trans-
formations, there are multiple reasons for which we made this decision.
Unidirectionality facilitates the management and maintenance of the syn-
chronization infrastructure. Although a bidirectional approach would
have been a theoretically more elegant solution, we had to adapt to
the existing tool ecosystem and the knowledge base of the tool engi-
neers. We chose a pragmatic approach, trying to provide engineers with a
“tool” (i.e., mapping language) as close to their metamodeling and object-
oriented knowledge as possible. Moreover, since the involved DSMLs



could be non-bijective, which is most likely in the case of two disjoint
DSMLs, there is a higher risk of significant differences between the for-
ward and backward transformations, leading to transformations being
non-invertible [29]. While there could be an opportunity to incorporate
the definition of bidirectional mappings, a proper balance must be found
also with respect to the usability of the tool and the correctness of the
generated model transformation with respect to the requirements.

• Interoperability. Another interesting point relates to the use of MML
as a core artifact for interoperability between model transformation lan-
guages [30]. In fact, MML is designed with a focus on generalizability; in
our context, this is defined as the ability to use the same mapping model to
drive the generation of model transformations in multiple model transfor-
mation languages. Generalizability is achieved by ensuring the separation
of the domain-logic from implementation-specific details. The domain
logic is included in the MML, whereas implementation-specific details
are specified in the HOTs, which are specific to a transformation language.
By providing an automatic generation of mapping models from existing
model transformations, the generated mapping models could be used as
input to other HOTs for generating model transformations conforming to
other transformation languages. Although we cannot exclude that MML
could need to be extended to support specific transformation languages,
we are confident that the eventual changes would be relatively minor and
only related to language-specific details that would require user input to
generate correct transformations.

• In-place transformations. In this work we assume that there exist mapping
links between all elements of DSMLA and DSMLB . Nevertheless, one of
the involved DSMLs (e.g.,DSMLA) can have higher expressiveness than
its counterpart (e.g.,DSMLB ). In this regard, it should be noted that the
existence of mapping links for all elements cannot be guaranteed, there-
fore, when executing the transformation from DSMLA to DSMLB and
then executing the reverse transformation, there is a risk of information
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loss. We assume that scenarios with disjoint DSMLs will generally be
more affected by this phenomenon compared to simpler scenarios. This
can be mitigated by leveraging in-place transformations that can propagate
changes to the target model (which can be the same as the source model),
without reconstructing it from scratch, thereby preventing information
loss.

10.7 Conclusions

In this paper, we presented our effort towards an approach for the automatic gen-
eration of synchronization model transformations to support blended modeling
in an industrial setting. The resulting solution entails the provision of automatic
means for the generation of model synchronization transformations across multi-
ple notations of the same or different languages. This was accomplished by first
designing and implementing a mapping modeling language (MML) in terms of
an Ecore model. MML is instantiated in terms of mapping models, which de-
fine mapping relations between elements of two arbitrary Ecore-based DSMLs.
Given the two DSMLs in terms of Ecore models and two mapping models (one
per direction), we provide a set of higher-order transformations (HOTs) that
generate synchronization model transformations in QVT Operational between
the two DSMLs. The HOTs were implemented using Xtend.

Depending on what the two DSMLs represent, the generated transformations
support two types of synchronization:

1. the DSMLs represent two notations of the same language (e.g., graphical
and textual UML-RT state-machines), then the generated transformations
provide synchronization across different notations of the same language.

2. the DSMLs are disjoint, then the generated transformations provide syn-
chronization across different notations of different languages.

Validation of the solution was performed by leveraging two use cases that
represented the two aforementioned scenarios: synchronization across different
notations of one language (UML-RT state-machines), and synchronization across
different languages (calendar and organizational structure use case). In addition



to multiple testing phases, the solution applied to UML-RT was deemed very
promising by the engineers and tool architects at HCL.

Several directions for future increments of this research and engineering
effort have been identified. One direction is to tune the HOTs and leverage the
proposed MML for the generation of co-evolution transformations to provide
automated support for model co-evolution in response to metamodel evolution.
Another interesting direction is related to the use of MML for interoperability
between model transformation languages. In fact, we plan to provide automatic
generation of mapping models from existing synchronization transformations.
The generated mapping models can then be used as input to other HOTs for
generating synchronization transformations conforming to other transformation
languages than QVTo.
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Abstract

Collaborative model-driven software engineering fosters efficient coopera-
tion among stakeholders who collaborate on shared models. Yet, the involve-
ment of multiple parties brings forth valid concerns about the confidentiality
and integrity of shared information. Unrestricted access to such information,
especially when not pertinent to individual responsibilities, poses significant
risks, including unauthorized information exposure and potential harm to infor-
mation integrity. This work proposes a dual-layered solution implemented as an
open-source Eclipse plugin that leverages the role-based access control policy
to ensure the confidentiality and integrity of model information in collabora-
tive modeling environments. The first layer limits stakeholders’ access to the
shared model based on their specific roles, while the second layer refines this
access by restricting manipulations to individual model elements. By ensuring
that stakeholders access only the information pertinent to their roles and are
authorized to manipulate such information in accordance with their expertise
and responsibilities, this approach ensures the confidentiality and integrity of
shared model information. Furthermore, it alleviates information overload for
stakeholders by enabling them to focus only on the model information relevant
to their specific roles, thereby enhancing the collaborative efforts.



11.1 Introduction

Model-Driven Software Engineering (MDSE) [1] has redirected the focus of
software engineering towards prioritizing models as the fundamental artifacts
in the development of complex software systems. MDSE aims to increase the
level of abstraction and reduce the accidental complexity associated with the
tools and methods used during development [2]. Despite its benefits, the in-
herent complexity and ongoing development demands of such systems render
MDSE an endeavor that cannot always be managed single-handedly. Collabo-
rative MDSE emerges as an integration of collaborative software engineering
principles [3, 4] with the abstraction and automation advantages provided by
MDSE [5, 6]. This approach fosters the development and maintenance of models
collaboratively, enhancing the efficiency and quality of the software develop-
ment process [7]. While collaborative modeling practices offer considerable
advantages, they also introduce notable challenges, particularly in safeguarding
the confidentiality and integrity of sensitive information carried by the shared
models. Such an environment encompasses a wide range of stakeholders, in-
cluding developers, domain experts, and managers, each bringing their distinct
expertise and responsibilities to the table. Their collaboration on a single base
model exposes far more information than necessary to each participant, signifi-
cantly increasing the risk of confidentiality breaches and information integrity
compromise. This issue is especially alarming considering that models can
incorporate proprietary algorithms, business logic, and personal data, making
privacy and security paramount. Insights from industrial practices highlight the
essential need for trustworthy collaborative modeling environments to feature
comprehensive access control mechanisms [8], which are pivotal in safeguarding
the confidentiality, integrity, and availability – collectively known as the CIA
triad – of information [9]. Access control mechanisms should be tailored to meet
practitioners’ needs, increasing the likelihood of their adoption in collaborative
modeling environments. They should support the definition of fine-grained ac-
cess permissions and facilitate the management of these permissions to adapt to
evolving project needs. In addition, beyond the mere definition and management
of access permissions, they must ensure the consistent and accurate enforcement
of access permissions through automated processes.
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Existing access control approaches hinge on transient, virtual view models
that lack independence from their base models [10]. This limitation renders
the models unsuitable for contexts requiring persistent views such as offline
collaboration scenarios. Others enforce access permissions via bidirectional
transformations, potentially leading to user frustration due to delayed feedback
on unauthorized actions [11]. Additionally, most current methodologies focus
primarily on basic read and write permissions. Such gaps highlight the need
for approaches that support persistent views and provide immediate, granular
access control feedback to enhance user experience and efficiency.

In this article, we propose a dual-layered approach that leverages the role-
based access control (RBAC) policy [12] to ensure the confidentiality and
integrity of model information in collaborative modeling environments based
on the Eclipse Modeling Framework (EMF) [13]. The first layer limits access
to the base model by employing multi-view modeling techniques [14] to create
materialized view models, which are essentially subsets of the base model
containing only the elements essential for specific user roles. Users can only
access and interact with the view models designated to their roles, effectively
preventing access to the entire base model. The second layer further refines
access down to the individual elements within view models, establishing fine-
tuned access permissions. These permissions are enforced by model editors that
dictate the extent to which a specific user role can interact with and manipulate
each element of the view model. Unlike the trial and error methods, this approach
proactively prevents restricted operations.

The remainder of this paper is structured as follows. Section 11.2 provides
background information on the key concepts. Section 11.3 illustrates a running
example used throughout the paper. Section 11.4 presents the proposed approach,
while Section 11.5 describes the application of the approach on the illustrative
running example. Section 11.6 describes the related work to this research.
Section 11.7 provides a discussion on the benefits and limitations of the approach.
Section 11.8 concludes the paper and describes future research directions.



11.2 Background

This section describes the key concepts relevant to our study. Section 11.2.1
outlines the modeling framework for our proposed solution. Sections 11.2.2 and
11.2.3 discuss multi-view modeling and access control, respectively.

11.2.1 Eclipse modeling framework and Ecore

Eclipse Modeling Framework (EMF) is a modeling framework and code genera-
tion facility for building tools and other applications based on a structured data
model [13]. It utilizes XMI-based model specifications to generate a suite of Java
classes, complemented by adapter classes that enable viewing and command-
based editing of the model, and a basic editor. EMF consists of three fundamental
parts. EMF’s core framework encompasses Ecore1, a metamodel for defining
models, and provides runtime support including change notifications, default
XMI serialization for persistence, and a reflective API for efficient manipulation
of EMF objects. The EMF.Edit framework provides generic reusable classes for
building editors for EMF models. Lastly, the EMF.Codegen, a code generation
facility, is designed to generate all necessary components for a complete EMF
model editor. This includes a GUI for setting generation options and initiating
generators.

11.2.2 Multi-view modeling

Multi-view modeling delivers customized views designed to cater to the unique
needs, expertise, and goals of various stakeholders, ensuring alignment and
relevance to their specific contributions. The core of multi-view modeling lies in
the viewpoint/view/model paradigm, as formalized by the ISO/IEC 42010:2011
standard [15]. According to this standard, a viewpoint represents a specific ab-
straction using a chosen set of constructs and rules, addressing specific concerns
within a system. Consequently, it determines the conventions, like notations,
languages, and model types, for crafting a specific kind of view. A view is the
resulting instance of applying a viewpoint to a particular system of interest and

1https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/
org/eclipse/emf/ecore/package-summary.html

https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html
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is composed of one or more models. In the context of multi-view modeling,
domain-specific languages (DSLs) are leveraged to address certain system con-
cerns. The models conforming to each DSL then provide a distinct view of
the system. Multi-view modeling approaches are classified into projective and
synthetic [16]. Projective methods involve defining viewpoints by selectively
abstracting concepts from an existing base language. This approach is notable
for facilitating automatic synchronization through centralized manipulations in a
single model. However, it requires a well-defined semantics of the base language
and may restrict customizability due to the static nature and predefined views of
the base language. On the other hand, synthetic methods establish viewpoints
as independent metamodels. In this approach, synchronization is achieved by
defining interactions among different viewpoints or views. As the number of
views increases, this method becomes increasingly complex, making synchro-
nization progressively more challenging. In prior work [16], we have developed
a hybrid methodology that combines the best elements of both projective and
synthetic approaches. This method allows for the creation of views based on a
base metamodel, similar to the projective approach, yet these views emerge as
separate metamodels, similar to the synthetic approach. This ensures inherent
synchronization during view definition, alongside the flexibility of introducing
views at any development stage.

11.2.3 Access control

Access control refers to a security mechanism, pivotal in safeguarding shared re-
sources against unauthorized access, thereby ensuring information security [17].
It acts as a defensive barrier, blocking unauthorized individuals from accessing
or altering sensitive data, including proprietary algorithms and strategic busi-
ness information. This mechanism not only preserves the confidentiality of
information but also safeguards its integrity from malicious tampering. Further-
more, access control policies are key in mitigating unintentional alterations by
individuals who might not possess the required knowledge or expertise, such
as novice engineers. Access control operates fundamentally through two key
processes being authentication and authorization [18]. Authentication entails
the verification of a user’s credentials, assuring that users are who they claim to
be. It necessitates users to provide valid credentials, which are cross-verified



against a pre-established database, thereby ensuring that only authorized indi-
viduals can access specific information within an organization. On the other
hand, authorization determines the extent of access and actions permissible to
authenticated users. Authorization operates through access control policies,
incorporating rules that dictate the allowable levels of access to various data
resources. Two main types of access control policies are recognized [19]:

• Discretionary Access Control (DAC): a user-centric approach that grants
users the autonomy to assign access permissions. For instance, platforms
like Google Drive 2 allow owners to share files or folders, granting specific
access levels to other users, such as edit or view permissions, which can
be modified or revoked as necessary.

• Non-Discretionary Access Control (NDAC): here, the determination of
access permissions is centralized and administered by system authorities
or administrators, rather than the resource owner. This model is partic-
ularly apt for scenarios necessitating rigorous security and hierarchical
access controls, such as in Amazon Web Services (AWS) Identity and
Access Management (IAM) 3, where access is managed centrally using
predefined policies and roles.

Of the many access control policies encompassed within NDAC—like multi-
level security (MLS), attribute-based access control (ABAC), and Separation of
Duty (SoD), we employ Role-Based Access Control (RBAC) [18]. The selection
of RBAC stems from a deliberate consideration of organizational structures and
the principles of effective access management. RBAC mirrors the hierarchical
and role-oriented nature of organizational structures, making it a more intuitive
choice for access control in contexts where users are entrusted with permissions
based on their designated roles, responsibilities, and hierarchical positions within
the organization. Furthermore, RBAC offers a more streamlined and scalable
approach to access management, as it simplifies the process of assigning and
managing permissions by associating them with roles rather than individual
users.

2https://www.google.com/drive/
3https://aws.amazon.com/iam/

https://www.google.com/drive/
https://aws.amazon.com/iam/
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11.3 Running example

This section introduces a simplified version of a university metamodel, serv-
ing as an illustrative example throughout the paper to elucidate the proposed
solution and its workflow. Figure 11.1 illustrates the Ecore-based metamodel
of the structure of the university consisting of multiple departments. Each de-
partment is tasked with the administration of various academic programs. Each
program is comprised of a series of individual courses. Department employees,
are responsible for delivering course content. Additionally, each department
undertakes a variety of research projects. Projects, represent collaborative re-
search initiatives that may involve a combination of department employees and
external partners, which may include individuals from industrial sectors or other
academic institutions.

11.3.1 User roles

In this example, we outline three main user roles engaging with the university
model.

• Project Managers: represent a group of individuals hired by the university
to coordinate the research projects for each department, and oversee the
assignment of both internal employees and external partners to various
projects.

• Program Coordinators: represent a group of individuals hired by the
university to coordinate the development and management of academic
programs, and guarantee that both programs and courses remain current
and relevant.

• Administration: their role is related to the coordination of administrative
matters related to both research and academic programs. As such, they
maintain an overview of the entire model.

User roles and users are defined by an authorized individual, which through-
out the rest of this paper we refer to as admin. The admin is also in charge of
assigning users to user roles.



Figure 11.1. University metamodel

11.3.2 Views

Each of the outlined user roles has unique responsibilities and areas of expertise,
necessitating interaction with only certain parts of the university model that are
relevant to their needs. Defining views that contain only a few aspects of the
overall base university model allows them to concentrate on the elements that
are most crucial to their roles and goals. These views act as a primary access
control layer by excluding non-essential elements, thereby minimizing the risk
of exposure to potential security vulnerabilities. For this example, the following
views are required:
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• Teaching View: tailored to the needs and concerns of program coordina-
tors, while also accessible to the administration. It includes the following
elements: University, Department, Program, Course, and Employee.

• Research view: tailored to the needs and concerns of project managers,
while also accessible to the administration. It includes the following
elements: University, Department, Employee, Project, Partner, and Type.

Figure 11.1 employs color coding to visually distinguish the elements present
in each view. The admin is responsible for defining the properties and meta-
elements of a view and allocating access to this view to specific user roles.

11.3.3 Access permissions

In this example, multiple roles share access to a single view. However, their
access to view information must be further customized to suit their distinct
responsibilities. For instance, both project managers and administrators can
access the research view. Nevertheless, administrators should be limited to
performing actions such as creating, reading, updating, or deleting employee
data, with read-only access to other elements of the view. Conversely, project
managers should be granted the ability to create, read, update, or delete project
and partner information, while maintaining read-only access to all other elements
of the view. The admin should define the access permissions for every role that
has access to the view.

11.4 Proposed approach

The proposed approach is designed to ensure the confidentiality and integrity
of model information in collaborative modeling environments through a dual-
layered strategy. Essentially, the first layer filters access by defining view models
on top of the base model – in a multi-view modeling fashion – and allocating
roles to these views, thereby allowing interactions solely to users with the
designated roles. The second layer refines this access, allowing for precise
control over what each role can do within the view model through fine-grained
access permissions. The solution is designed specifically for EMF and as such it



is tailored to work with Ecore-based metamodels using EMF tree-based model
editors. Before delving into the details and technical aspects of our approach, we
clarify some core terminology. A base metamodel refers to a metamodel defined
in terms of Ecore and representing the foundation for the views. A base model
is a model that conforms to the base metamodel. A view metamodel represents a
selection of elements from the base metamodel, also defined in Ecore. A view
model conforms to a view metamodel.

Figure 11.2 provides a high-level overview of our proposed solution. For
the first layer, an admin (not shown in the figure) establishes a group of users
and roles, and then assigns users to these roles. At the same time, an admin can
also define a series of view metamodels, which may have overlapping elements.
This process results also in the generation of view models, subsets of the base
model, and conforming to the defined view metamodels. A synchronization
infrastructure is generated and maintained between view (meta)models and
base (meta)model. The established roles are granted access to these views.
For the second layer, the admin sets specific permissions, defining the extent
of access each role has over a particular view. To enforce these permissions,
each role uses a dedicated model editor for each view it can access. The total
number of model editors required is the sum of those needed by each role.
These model editors enforce the specified permissions, allowing users with a
given role to manipulate the view models within their permitted scope. For
instance, Sara, a program coordinator, uses model editor PC_A to manipulate
the academic view model. This editor is tailored to enforce the permissions
associated with the program coordinator’s role when manipulating the academic
view model. Any modifications that Sara makes to the academic view model are
then systematically reflected in the base university model. If there are elements
that overlap between the academic and research view models and Sara has
altered these in the academic view, these changes are automatically propagated
from the university model to the research view model.

Section 11.4.1 describes the design and technical execution of the first
layer, highlighting the development of the multi-view modeling environment.
Sections 11.4.2 and 11.4.3 delve into the design and technical execution of the
second layer, focusing on the definition and enforcement of access permissions.
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Figure 11.2. Workflow of the proposed approach

11.4.1 Setting up the multi-view modeling environment

The first step of our approach deals with determining the users and their roles.
These roles will be granted access to the views, utilizing the defined wizards.
The second step involves the development of the multi-view modeling envi-
ronment, including the definition and generation of views, and the setup of a
synchronization framework among these views.



Role and user management

The definition of users and roles is carried out by the admin via specialized Java
SWT 4 wizards. The role wizard streamlines role management, allowing for
the creation, alteration, and removal of roles. Each new role shall have a name
and a description that outlines its specific functions. The user wizard, facilitates
the management of user accounts, allowing for their creation, modification, and
deletion. It necessitates details such as the user’s first name, last name, username,
email, password, and the roles allocated to each user. The solution supports the
assignment of multiple roles to a single user, too.

View metamodel definition

The view metamodel’s definition is administered through a specialized view
wizard, comprised of several pages, each with a specific purpose. On the details
page, the admin inputs essential parameters such as viewName, viewNSUri, and
viewPrefix. In addition, it assigns the roles authorized to access the view models
and loads the base model. The selection page displays the meta elements from
the base metamodel. Here, the admin chooses the meta elements to be included
in the view metamodel. Such selection follows a set of rules described in our
prior work [20] for the views and the base metamodel to be consistent and their
respective models to be synchronizable. In addition, for each EClass element,
the admin selects a sub-element that serves as a unique identifier for matching
elements between the base and view model.

View metamodel generation

View definition is followed by the generation of the view metamodel. The
generation process operates by traversing the elements of the base metamodel,
organized in a tree structure. For each element, it evaluates whether it has been
selected by the admin. Selected elements are included in the view metamodel,
while the rest are omitted. Once all elements have been processed, an Ecore
Modeling Project is automatically generated. This project is configured with the
necessary structure and properties. The generated view metamodel, containing

4https://www.eclipse.org/swt/

https://www.eclipse.org/swt/
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only the user-selected elements, is then saved within this project as an Ecore
file.

Synchronization infrastructure

Multi-view modeling environments have two fundamental aspects: the former
involves defining and creating views; the latter involves developing a synchro-
nization infrastructure that propagates changes between the base model and view
models. Considering the broad applicability of our solution across various Ecore
metamodels and the potential for users to define numerous views, the synchro-
nization infrastructure in this work is automatically generated. The generation
process builds upon a previously introduced solution, where we contributed with
a mapping modeling language for specifying relationships between elements
within two Ecore-based metamodels, along with higher-order transformations
(HOTs) that facilitate the generation of model-to-model (M2M) transformations
based on these mapping models [21]. Figure 11.3 depicts the generation of
the synchronization infrastructure, combining our previously proposed solution
with necessary customizations for its adaptation to the current scenario, and is
referenced repeatedly in this section for a detailed exploration of the synchro-
nization infrastructure. This solution builds upon our previous work, but it sets
itself apart in two main aspects.

• In the current approach, we have streamlined the process by automating
the generation of mapping models. This is a significant improvement
over our previous method, which requires manual user-definition of these
mapping models. This enhancement is a direct outcome of the narrower
and more defined context in this work, where the view metamodel forms a
precise subset of the base metamodel, and every meta element in the view
metamodel is identical to its counterpart in the base metamodel, having
been derived directly from the latter.

• The previous approach was designed for scenarios where there is a com-
plete mapping between the source and target metamodels, and the de-
veloped HOTs are intended for such scenarios. In our current approach,
however, the view metamodel is just a part of the base metamodel, hence,
not every element of the base has a corresponding element in the view.



Figure 11.3. Setup of the synchronization infrastructure between base and view model
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As a consequence, employing the previously defined HOTs could lead to
the generation of model transformations, erroneously modifying elements
of the base model not pertaining to the view. To overcome this challenge,
we have designed and implemented new HOTs specifically aimed at en-
suring these transformations effectively retain all the unique elements and
information of the base model.

The following paragraphs provide details on the generation of mapping
models and the HOTs employed for the generation of the synchronization
infrastructure (i.e., model transformations).

Generation of mapping models. The selection of elements for a particular
view triggers not only the construction of an Ecore metamodel representing the
view, but also the generation of two mapping models (i.e., Base2View.mapping
and View2Base.mapping), which contain the relationships between ele-
ments of the base and view metamodels. These mapping models conform to our
mapping modeling language, introduced in previous works [21], and encapsulate
the links between the corresponding elements of the two metamodels. Given
that the view metamodel represents an exact subset of the base metamodel, the
process inherently ensures that each element in the view metamodel has an
unambiguous correspondence with a counterpart in the base metamodel and vice
versa.

Higher-order transformations. HOTs are a type of model transformation
where the input and/or output are transformation models themselves [22]. They
are employed to leverage the capabilities of transformations, treating them as
objects. In prior research [21], we have employed HOTs that, driven by user-
defined mapping models, generate M2M transformations conforming to the
Query/View/Transformation Operational (QVTo)5 language. These transfor-
mations rebuild the target model based on information from the source model.
In the given context, employing these HOTs has proven effective for initially
generating and subsequently updating the view model (i.e., target) from the
base model (i.e., source). This is because the generated model transformation

5https://wiki.eclipse.org/QVTo

https://wiki.eclipse.org/QVTo


(i.e., Base2View.qvto) can account for every element in the view model
by referencing its counterpart in the base model. However, challenges arise
when attempting to propagate changes from the view model back to the base
model. The M2M transformation generated from the previously defined HOTs
regenerates the base model (i.e., target) to match the view model, but cannot
account for all its elements since not all of them have a counterpart in the view
model (i.e., source). As a result, information associated with these unmatched
elements is lost during the transformation process. In response to this challenge,
we developed HOTs that use the generated mapping model defining correspon-
dences from the view model to the base model (i.e., View2Base.mapping)
as input for generating a model transformation (i.e., View2Base.qvto) for
propagating changes from the view model to the base model. This model trans-
formation operates directly on the base model, updating elements that have a
correspondence in the view model, all while preserving those elements that are
unique to the base model. This can also be seen in Figure 11.3. In the case
of Base2View.qvto, it takes a base model as input and produces a view
model as output. On the other hand, View2Base.qvto takes both the view
model and base model as input and directly modifies the base model to reflect
changes made in the view model. In the following, we describe the generated
View2Base.qvto model transformation.

Input/Output specifications: the model transformation uses the base and view
metamodels as input and base metamodel as output. During the execution of
this transformation, it accepts a base and view model as input and produces an
updated base model that accurately reflects the applied changes.

Element matching: the model transformation requires matching elements be-
tween the base and view model by comparing the elements’ unique identifiers
defined at view definition phase. Using identifiers allows to correctly find the
two corresponding elements between base and view models.

Handling of containment EReferences: can be updated, added, or deleted (i.e.,
their target EClass can be updated, added, or deleted). The model transforma-
tions use the information from the element matching process for differentiating



11.4 Proposed approach 267

between updates, additions, and deletions of elements.

• Update: an element in the view model with a match in the base model,
implies that the element has neither been added or deleted, but may have
been updated. Hence, an update rule is invoked to synchronize the possible
changes.

• Addition: an element in the view model with no match in the base model
implies the addition of the element in the view model. Thus, this element
is also added to the base model.

• Deletion: an element in the base model without a match in the view
model implies the deletion of the element from the view model. Thus,
this element is also deleted from the base model.

Handling of non-containment EReferences: can be added or removed (i.e., their
target EClass can be added or removed from the list of referenced EClasses). The
model transformations use the information from the element matching process
to differentiate between the two.

• Addition: a non-containment EReference in the view model, pointing to a
target element with no match among the target elements of the same non-
containment EReference in the base model, implies an addition. Thus, this
element is also added to the list of target elements of the non-containment
EReference in the base model.

• Removal: a non-containment EReference in the base model, pointing to
a target element with no match among the target elements of the same
non-containment EReference in the view model, implies a removal. Thus,
this element is also removed from the list of target elements of the non-
containment EReference in the base model.

Handling of EAttributes and EEnumLiterals: For EAttributes and EEnumLiter-
als, which by design cannot be added or deleted, a standard update transforma-
tion is applied. This step ensures that they are consistently updated between the
view and base model.



After outlining the structure and logic of the model transformation, we
leveraged Xtend 6 – a high-level, Java-based programming language noted for
its efficacy in code generation tasks – to generate the model transformation from
a mapping model. The generated model transformation propagates changes
from the view to the base model while simultaneously ensuring that elements
in the base model, which are not impacted by the transformation, remain intact.
The completion of the synchronization infrastructure, achieved through the
generation of two unidirectional model transformations, marks the establishment
of the initial access layer. This layer permits users to access and alter only
designated areas of the base model, referred to as view models, according to
their allocated roles.

11.4.2 Access permissions definition

The generation of the multi-view modeling environment is followed by the
definition of access permissions for each user role to interact with a given view.
Definition of access permissions is carried out by the admin using CRUD (Create,
Read, Update, Delete) operations [23]. The admin selects the allowed operations
for each role and in relation to each meta element in the view metamodel. The
selection follows a set of predefined rules outlined in the following, ensuring the
consistency of access permissions.

Wizard for access permissions definition

The definition of access permissions for a set of roles on a given view is carried
out using the view wizard introduced in Section 11.4.1. The permissions page is
populated with the roles with access to the view and the view’s meta elements.
Each meta element is associated with four checkboxes, representing CRUD
operations, as shown in Figure 11.4. Depending on the specific kind of EObject
– be it an EClass, a containment or non-containment EReference, EAttribute,
EENum, or EENumLiteral – only certain checkboxes are active and selectable.
Other checkboxes are inactive since the operations that they correspond to do

6https://eclipse.dev/Xtext/xtend/documentation/index.html

https://eclipse.dev/Xtext/xtend/documentation/index.html
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not apply to the EObjects they are associated with. An overview of checkbox
status for each EObject type is provided in Table 11.1.

C R U D
EClass Active Active Inactive* Active
ERef (containment) Active Active Inactive Active
ERef (non-containment) Inactive Active Active Inactive*
EAttribute Inactive Active Active Inactive*
EENum Inactive Active Inactive Inactive
EENumLiteral Inactive Active Inactive Inactive

Table 11.1. Checkbox status per type of EObject

To maintain a consistent layout that helps users navigate the wizard inter-
face more intuitively, we have retained the inactive checkboxes in the wizard.
Although not directly selectable, they serve to provide a clear and coherent
structure. Additionally, checkboxes marked with an asterisk (*) are designed to
be automatically activated in response to the selection of certain related check-
boxes, even though they remain inactive for direct user interaction. For instance,
when a user selects the Create (C), Update (U), or Delete (D) checkboxes for any
EAttribute or EReference within an EClass, the solution triggers the selection
of the Update (U) checkbox for that EClass. Similarly, selecting the Delete
(D) checkbox for an EClass triggers the automatic selection of the Delete (D)
checkbox for all contained EReferences and EAttributes.

Consistency rules

The mechanism for automatically managing checkbox states goes beyond just
handling inactive ones. We established a comprehensive set of rules to ensure
uniform behavior across all checkboxes. For instance, if an EClass is removed,
it naturally entails the removal of its associated EAttributes, EReferences, and
any EClasses linked through containment EReferences. This reasoning is em-
bedded in the wizard to avoid potential errors in the enforcement of permissions.
The wizard updates checkbox statuses (either selecting or deselecting them)
on-the-fly. This real-time mechanism gives users a clear understanding of how
their choices affect the permissions of related meta-elements. To define the con-
sistency rules, we started with overarching principles. These principles served



as the foundation for defining the rules. The latter are presented in Table 11.2
and their interpretation is facilitated by the legend provided in Table 11.3. Each
rule is directly linked to the underlying principles, which are outlined below.

P1: Permission to perform a create (C), update (U), or delete (D) operation on
an object is conditional to having the read (R) permission on the object –
see R1, R5 in Table 11.2.

P2: Permission to perform any CRUD operation on a nested object is con-
ditional to having the read (R) permission on the container object. In
addition, any CUD operation on a nested object is conditional to having
the update (U) permission on the container object – see R2, R3, R6, R7.

P3: Permission to perform a delete (D) operation on a container object is
conditional to having the delete (D) permission on all nested objects – see
R4.

P4: Permission to perform any CRUD operation on an EClass is conditional
to having those permissions on its incoming containment EReference and
the container of that EReference (the latter is based on P2) – see R8 to
R11, R8 toR11.

P5: Permission to perform any CRUD operation on an EReference is condi-
tional to having those permissions on its source and target EClass – see
R12 to R17, R12 to R15.

P6: Permission to perform a read (R) or update (U) operation on an EAttribute
is conditional to having the read (R) permission on the container EClass –
see R18 to R21.

P7: Permission to perform a read (R) operation on an EEnumLiteral is condi-
tional to having the read (R) permission on the container EEnum – see
R22, R23.

In alignment with the established principles, we formulated the set of con-
sistency rules delineated in Table 11.2. The first column lists the identifiers
of the rules, the second outlines the user actions in the wizard interface, the
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third describes the effects of these actions on other checkboxes, and the fourth
provides concrete examples for each rule, based on the wizard shown in Fig-
ure 11.4. The user actions and the examples have been structured to ensure
a precise understanding of the effects. For clarity, we tried out all examples
involving the selection of a specific checkbox with the wizard in a baseline
state, with all checkboxes initially deselected. Similarly, for the deselection
of checkboxes, we consistently used the same checkbox that was previously
selected. This methodological consistency allowed us to isolate the effects of
each action without interference. It is important to note that the user’s interaction
with a checkbox (either through selection or deselection) can initiate a ripple
effect, where each affected checkbox might further alter the state of others. This
chain reaction continues until all affected checkboxes are appropriately adjusted.
To illustrate, assume all checkboxes in Figure 11.4 are initially deselected. If
a user selects checkbox R(9) – which corresponds to the read (R) operation
for EAttribute:depName at index 9 – this action triggers the automatic
selection of the read (R) operation checkbox for EClass:Department, by
principle P2. Following this, selecting R(7) would lead to the selection of R(22),
as dictated by principle P4. Subsequently, selecting R(22) would result in the
selection of R(21), again following principle P2. This example represents a
three-level chain reaction within the checkbox interactions (i.e., R(9) L1 R(7)
L2 R(22) L3 R(21)). For the sake of readability and conciseness, in Table 11.2

we limited the illustration of chain reactions to just the second level. This applies
to both the examples shown and their effects, to avoid the complexity of longer
chains that could span multiple levels.



Figure 11.4. Permissions triggered by selection of D(22)
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Legend
The acronyms employed in Table 11.2 are as follows: object (O), container object (C), nested object (N),
containment reference (CR), non-containment reference (NCR), incoming containment reference (inCR),
source class (sClass), target class (tClass), attribute (Att), enumeration (EN), enumeration literal (ENL).
PX(O) and PX(O) Selection and deselection of a permission X ={C,R,U,D} on an object O
PX8(O) and PX8(O) Selection and deselection of a permission X ={C,R,U,D} on all objects O
PC|U|D(O) and PC|U|D(O) Selection and deselection of at least one of the specified permissions
PCUD(O) and PCUD(O) Selection and deselection of all the specified permissions

Table 11.3. Legend for reading Table 11.2

11.4.3 Access permissions enforcement

The enforcement of the defined access permissions is achieved through EMF tree-
based model editors. These editors provide a graphical user interface that allows
users to visualize and modify models through a hierarchical tree structure. While
they come with essential functionalities, their design allows for customization
to meet specific needs. We leverage this flexibility to enforce the defined
access permissions. The following paragraphs detail EMF’s standard approach
to creating these tree-based model editors and the customization methods we
have employed for generating model editors that enforce the defined access
permissions.

Generation of EMF tree-based model editors

EMF tree-based model editors are generated through an automated process
supported by the framework itself. Starting from an Ecore model, the process
first involves the creation of a generator model (GenModel). The GenModel is a
configuration model that dictates the generation of the following plugins.

• Model plugin: hosts the Java classes that represent the Ecore model. These
classes are derived from the Ecore model, conforming to the GenModel’s
specifications.

• Edit plugin: provides infrastructure for structured interaction with the
model. The key components of this plugin are the Item Providers. Item
Providers are Java classes that support viewing and editing objects within
the EMF tree-based editor. They specify how model elements are pre-
sented and manipulated in the editor.
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• Editor plugin: comprises the graphical user interface for the EMF editor.
This includes the tree-based interface for model interaction and additional
UI components like wizards that enhance user engagement with the model.

The generation process of these plugins involves the use of Java Emitter
Templates (JET)7. EMF comes with a suite of JET templates that are written in
a (Java Server Pages) JSP-like syntax and express EMF code patterns. These
templates undergo processing by the JET engine, which converts each template
into the source of a Java class. Subsequently, the JET engine compiles, dy-
namically loads, and utilizes these classes to produce the specified output. By
default, EMF uses static templates which are converted into template classes
and compiled ahead of time to speed up the generation process [13].

Customization of EMF tree-based model editors

To enforce the user-defined access permissions in EMF tree-based model editors,
we focus on customizing Item Providers, which manage the viewing and editing
of elements. While one could customize each generated Item Provider separately,
this approach is time-consuming and inefficient. Our methodology, therefore,
adopts a streamlined and automated process where we initially customize the
JET template utilized for generating Item Providers to consider the defined
access permissions. Then, we guide the generator to use the customized JET
template, which is also referred to as dynamic because, unlike static templates,
it has not been pre-compiled. This process is described in Figure 11.5. When
the admin finalizes the view wizard, it initiates the generation of view.ecore,
view.genmodel, and view.rbac. The view.rbac file represents a model conforming
to a custom-designed language (detailed in in the following) which encapsulates
the defined access permissions. The view.ecore file encapsulates the specifics
of the established classes, while the view.genmodel file contains essential in-
formation required for code generation. When generating the view.genmodel,
we specified particular properties to instruct the generator to utilize the cus-
tomized JET template. Specifically, we enabled the dynamic templates
property by setting its value to true, guiding the system to skip the use of de-
fault templates from org.eclipse.emf.codegen.ecore.genmodel

7https://projects.eclipse.org/projects/modeling.m2t.jet

https://projects.eclipse.org/projects/modeling.m2t.jet


and instead choose to translate and compile the JET templates we provided.
Moreover, we configured the template directory to point to the location
of the dynamic templates in our project. The combination of these sources of
information enables the EMF code generator to generate a tree-based model
editor enforcing the defined access permissions.

Figure 11.5. Generation workflow of tree-based model editors with RBAC

The advantages of this approach are multiple. Firstly, we automate the
customization process of Item Providers, avoiding the need for individual manual
modifications. Secondly, by embedding the access permissions directly into the
generation process of the Item Providers, we ensure a consistent implementation
of these permissions across the model editor. Finally, we offer flexibility and
adaptability, allowing for straightforward updates to access permissions without
extensive manual reworking of the underlying Item Provider code. The following
paragraphs describe the role-based access control domain-specific modeling
language (DSML) and the customizations made to the JET template responsible
for the generation of Item Providers.
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Role-based access control DSML

To encapsulate the user-defined access permissions, we defined a role-based
access control DSML. For each role that has access to a particular view, a
unique RBAC model is generated. These RBAC models encapsulate the access
permissions each role has over each element within the view. We intentionally
structured the DSML to imitate the structure of an Ecore metamodel for seamless
integration as input to the JET template and possible reverse engineering needed
for future work. As depicted in Figure 11.6, the root element is the AccessCon-
trolModel characterized by attributes name – reflecting the name of the view
metamodel – and role, denoting the user role to which the permissions apply.
The elements EClass and EEnum are compositionally linked to the root element.
In a similar compositional manner, EAttribute and EReference are linked to
EClass, while EEnumLiteral to EEnum. Each of these elements possesses a set
of features that they inherit from the ElementPermission abstract class. These
features include a name attribute for the EObject they are associated with, and a
reference to the EObject element. Moreover, they feature a list of permissions
that define the CRUD operations, as detailed in the Permissions enumeration.

Figure 11.6. Role-based access control DSML



Dynamic templates

EMF utilizes a collection of JET templates to automatically generate tree-based
model editors. To refine this generation process to enforce access permissions
within the model editor, we adapted the JET template responsible for Item
Provider generation. This adaptation involves using a generated RBAC model
as input, directing the generation of Item Providers in a way that enforces the
specified permissions. Initially, we duplicated the JET templates into our project
and we modified the ItemProvider.javajet template accordingly. Since
the tree-based editor’s default setup allows for unrestricted CRUD operations on
all model elements, we intervened to implement constraints where the out-of-the-
box functionality permits more than what the RBAC model dictates. Specifically,
our custom logic in the template evaluates the RBAC model’s permissions for
each model element and adjusts the generation of Item Providers to enforce
these restrictions accordingly. For each element, depending on which operations
are restricted, the template selectively generates or omits code segments in the
Item Providers. For instance, if the RBAC model restricts the creation of certain
EClasses for specific roles, the template is designed to omit the generation of
code segments in Item Providers that would otherwise enable such creation
capabilities. This principle is similarly applied for all the remaining operations.
The mechanisms described so far represent the realization of the second security
layer which permits users to manipulate the elements of the accessible view
models according to the access permissions defined for each element. The
interested reader can find further details on the required adjustments to the Item
Providers for restricting each operation type in our GitHub repository 8.

11.5 Illustrative example

The approach has been applied to the running example described in Section 11.3
and a demo has been made available in our GitHub repository 8. Figure 11.7
illustrates the permissions’ page of the view wizard. In this example, we define
the project manager’s access permissions on the research view. The first column
of the wizard displays the meta model elements that comprise the research view,

8https://github.com/MLJworkspace/RoleBasedAccessControl

https://github.com/MLJworkspace/RoleBasedAccessControl
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selected in prior step. The second column features four checkboxes for each view
element, representing the complete set of CRUD operations. The final column
includes a checkbox for each EAttribute object, enabling the user to select a
unique identifier for each EClass. The wizard ensures real-time consistency in
access permissions through a dynamic check activated each time a checkbox
is selected. This process may prompt the selection of additional checkboxes
to maintain consistency. For instance, selection of delete (D) operation on
EClass:Project leads to the automatic selection of read (R) operation on
EClass:Project , selection of delete (D) permission on all its children, and
selection of delete (D) operation on EReference:project. This cascade
of automatic selections continues, ensuring all relevant checkboxes are selected
to preserve the consistency of access permissions. Finalization of the wizard
results in the creation of several artefacts, including the view metamodel and
the corresponding view model, where the latter is a subset of the base model.
The base model illustrated in Figure 11.8a is an instantiation of the university
(base) metamodel illustrated in Figure 11.1, while the view model illustrated in
Figure 11.8b, is an instantiation of the research (view) metamodel comprised of
the view elements illustrated in Figure 11.7. Model transformations, generated
upon finalizing the wizard, ensure that modifications in the base and view models
are accurately propagated among one another, and guarantee that information
is preserved without loss during the propagation of changes. For example,
when the project is renamed from BUMBLE to Orpheus in the view model,
this change is propagated in the base model. Simultaneously, the program and
course elements, which exist in the base model but not in the view model (nor
are they part of the view metamodel), remain intact.

In the context of enforcing access permissions, the models illustrated in Fig-
ure 11.8 are accessed through their corresponding customized EMF tree-based
model editors. The comparison between the two reveals distinct permission
settings. In the base model, it is possible to delete a department instance and
create new projects, employees, and programs. Conversely, the view model
restricts these capabilities. Here, deleting a department instance is disabled,
and the creation of employees and programs is prohibited. These limitations
align with the access permission established in Figure 11.7, which explicitly
restricts project managers from performing these operations. Access permission



Figure 11.7. Defined access permissions for llustrative example

enforcement is achieved by customizing the generation process of the Item
Providers – responsible for viewing and editing elements in the model editor –
which in the customized version, considers the permissions defined in the wizard
in Figure 11.7 and generates the Item Providers accordingly.

Listing 11.1 presents a code snippet that illustrates the createRemoveCom-
mand() method as implemented in the University ItemProvider. This method
is not generated by the standard generation process. Instead, it is specifically
generated due to the project manager’s lack of delete (D) permission for the
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(a) Editor providing full access to the base model

(b) Editor providing limited access to the view model

Figure 11.8. Tree-based editors for base and view models

EClass:Department. As a result, this method disables the Delete option
when right-clicking on a Department element, a functionality highlighted in
Figure 11.8b.

1 public Command createRemoveCommand (EditingDomain editingDomain,
EObject owner, EStructuralFeature feature, Collection<?> collection
) {



2 if (owner instanceof University) {
3 for (Object object : collection) {
4 if (object instanceof Department) {
5 return UnexecutableCommand.INSTANCE;
6 }
7 }
8 }
9 return RemoveCommand. create (editingDomain, owner, feature,

collection);
10 }

Listing 11.1. createRemoveCommand() method for Department in University
ItemProvider

11.6 Related work

Considerable research has been dedicated to exploring access control mecha-
nisms and their application across various domains. In previous works [20, 16],
we propose a hybrid strategy for multi-view modeling that leverages an arbitrary
number of views built atop a base modeling language. However, we only en-
tailed the specification of basic read-only and editable permissions. Martinez et
al. [10] introduce a method that leverages views as mechanisms for enforcing
access control, utilizing EMFViews [24] to dynamically generate views through
live queries on the base model. The elements within these virtual models serve
merely as proxies for the actual elements in the base model; hence, view mod-
els remain transient and can neither be viewed nor edited independently in
other modeling contexts, since they are tightly linked to the base model. By
having self-persistent views our approach supports offline collaboration, but
also benefits from the versatility of a typical metamodel, such as linking any
desired concrete syntax or be modified if necessary, including extensions or
additional abstraction layers. Other works [25, 26, 27, 11] propose a secure
collaborative modeling framework utilizing lenses to generate and maintain
synchronized secure views with the underlying base model. Lenses support
bidirectional model transformation mechanisms called GET and PUTBACK.
The GET function controls read access by filtering the gold (base) model into a
front (view) model based on read permissions, while the PUTBACK function
validates front model alterations against write permissions before potentially
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updating the gold model. Hence, the enforcement of access permissions is done
by the bidirectional transformations, whereas in our work, this enforcement
is managed by the model editor, and is not dependent on the underlying syn-
chronization infrastructure. In addition, this approach to change propagation
informs users about their editing permissions through a trial-and-error process,
a method the authors themselves acknowledge could lead to user frustration and
inefficiency due to delayed feedback on unauthorized modifications. Connected
Data Objects (CDO)9 model repository by Eclipse follows a similar approach in
which users are only informed of restrictions on write operations at the time of
commit. Our approach adopts a preventive model by integrating a model editor
designed to enforce editing permissions. This ensures that users can only execute
changes they are explicitly authorized to make. Additionally, while the existing
approaches are focused on read and write operations, our solution extends the
functionality to CRUD operations, thus providing a more fine-grained control
over model interactions. Another relevant study [28] explores the definition of
finely-grained role-based access control, but it targets mobile collaborative mod-
eling with active DSLs with a primary focus on mobility aspects. An alternative
path of research in access control management proposes implementing security
policies directly at the file level. A notable example is Apache Subversion 10,
which provides administrators the capability to enforce path-based authorization,
thereby controlling user access to specific segments of the repository. Within
a collaborative MDSE environment, this approach necessitates the division of
models into distinct files. Such fragmentation may obstruct seamless collabo-
ration and is limited to enforcing access control policies with relatively coarse
granularity. As can be observed, our discussion in this section is intentionally
directed towards strategies that predominantly address access control rather than
the broader scope of synchronization in multi-view modeling. This decision
stems from our research’s use of multi-view modeling primarily as a tool for
achieving finely-grained access control efficiently. However, we acknowledge
the existence of other approaches for providing synchronization in multi-view
modeling, such as view triple graph grammars (VTGGs) [29, 30] which similar
to EMFViews, provide non-materialized views, and lenses [31]. Since the en-

9https://wiki.eclipse.org/CDO/Security_Manager
10https://subversion.apache.org
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forcement of permissions is separate from the synchronization infrastructure,
and the consistency rules applied during the definition of views and permissions
ensure the well-formedness of the view model, any appropriate synchronization
transformation approach can be utilized.

11.7 Discussion

Benefits of the proposed solution. The proposed solution enhances both the
confidentiality and integrity of model information in collaborative modeling
environments. Simultaneously, it streamlines the individual modeling experi-
ence by minimizing the information overload that results from interacting with a
comprehensive base model. The latter is achieved by offering customized view
(meta)models, allowing users to engage with only the relevant aspects of the
base (meta)model. The solution employs the RBAC policy and supports the
definition of fine-grained access permissions using CRUD operations. Central
to the solution is the implementation of automatic consistency rules for access
permissions, alongside the automatic enforcement of the latter by the model
editor. This automation plays a crucial role in mitigating the risk of human errors
that could compromise the access permissions’ consistency and their enforce-
ment. The solution allows for immediate adjustments to access permissions,
with changes being automatically reflected in the model editor. This flexibility
ensures that the system can swiftly respond to alterations in project requirements
and team composition. Incorporating these capabilities, the solution effectively
meets the requirement for a fine-grained, consistent, and flexible access control
system in collaborative modeling settings. It not only safeguards shared model
information, mitigating the risks of confidentiality breaches and ensuring the
integrity of model information, but it also enhances the collaborative process,
fostering a more efficient and effective environment for teamwork. This is
achieved by supporting users to perform efficiently in their designated sections
of a shared model, thus enhancing both individual and collective productivity.

Limitations of the proposed solution. The solution is designed for Ecore-
based metamodels as part of the Eclipse Modeling Framework (EMF). Ecore,
a central component of EMF, is widely used in diverse modeling scenarios.
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However, the focus on Ecore-based metamodels restricts the application of our
solution to meta-metamodeling languages other than Ecore. Additionally, the
access permissions are currently implemented solely in EMF tree-based editors
since they are relatively straightforward for users to generate out-of-the-box
and are essential for manipulating instances of Ecore-based metamodels. This
choice, while pragmatic, does not support the diversity of user needs for different
notations and model editors. Hence, we consider our initial implementation a
stepping stone, with plans to broaden our access control solutions to encom-
pass both textual and graphical editors in future enhancements. Moreover, our
current focus is on the authorization aspect of access control. While this ap-
proach effectively allows users to define roles and user profiles, it does not yet
incorporate an authentication mechanism. The implication of this is that, as of
now, the system does not restrict user access to model editors based on their
assigned roles upon login, marking a clear path for future enhancement. In
terms of synchronization infrastructure, our approach relies on user-selected
unique identifiers for element matching, which poses a risk of inconsistencies.
Additionally, the synchronization process is manually triggered, highlighting the
need for automated change detection and conflict resolution strategies. Overall,
these limitations, mostly of implementative nature, reflect our choice to focus
on access control related aspects in the scope of this initial solution, laying the
groundwork for future developments that will address these initial constraints
and broaden the solution’s applicability and functionality.

11.8 Conclusions and future work

This article proposes a dual-layered approach that provides role-based access
control to ensure the confidentiality and integrity of model information in col-
laborative modeling environments. The first layer focuses on the creation of
view (meta)models on top of a base (meta)model, along with a seamless syn-
chronization mechanism between them. This efficiently restricts access to the
base model, limiting users to interact solely with the view models assigned to
their respective roles. The second layer fine-tunes this access by establishing
fine-grained access permissions describing the permissible operations over each
element type within the view models. Together, the two layers contribute to



enhancing the confidentiality and integrity of shared model information in col-
laborative modeling. For future work, we plan to extend the solution to apply to
blended editors [32]. Moreover, we aim to extend this research by focusing on
establishing permissions at the instance level. This will allow assigning permis-
sions to each instance, rather than applying a one-size-fits-all rule to all instances
of a given meta element. Future work will also combine the RBAC policy with
the attribute-based access control (ABAC) policy, adding restrictions based on
attributes, since the current approach can be easily adapted to include additional
access control policies without altering the underlying framework for defining
and enforcing permissions. For example, in ABAC, for attributes that are static
and manually defined this can be achieved by: (i) establishing a method to define
and reference attributes during permission specification, and (ii) implement-
ing a method to extract attribute values and enforce permissions accordingly.
Attributes that are dynamic, like location, necessitate distinct mechanisms for
detection and value extraction. The methodologies proposed by [28] offer valu-
able insights into addressing the latter scenario. In addition, in future work, the
adaptability of the theoretical approach is intended to be explored across various
modeling frameworks beyond EMF. Our analysis into the dependencies among
model elements and CRUD operations has yielded reusable consistency rules
applicable across various technological stacks, potentially requiring only mini-
mal adjustments. Moreover, the strategy for enforcing permissions by utilizing
predefined permissions as inputs in the model editor generation process can be
extended to other modeling platforms. However, a more profound examination
of existing modeling platforms is essential to comprehend both the similarities
and differences with our implementation. Finally, upcoming efforts will be
dedicated to assessing the proposed solution in industrial contexts to analyze
scalability aspects.
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