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Abstract—Low-power wireless Internet of Things (IoT) devices
employ Time Slotted Channel Hopping (TSCH) Medium Access
Control to achieve predictable timing behaviour. TSCH aims
at collision-free scheduling by exploiting diversity over time
(slots) and frequency (channels). However, existing works on
performance and worst-case analysis are based on deterministic
models, which lead to rather pessimistic non-realistic results, i.e.
tools for probabilistic performance analysis of TSCH schedulers
are still lacking. In this context, we devised a Stochastic Network
Calculus model that enables to calculate end-to-end delays
for specific traffic flows and (deadline) violation probability,
building on Moment Generating Functions. We instantiate this
SNC model and provide bounds for three widely used TSCH
schedulers, namely Minimal Scheduling Function, Orchestra, and
a custom collision-free scheduler, with different parameters such
as radio duty-cycle, radio link quality, and traffic arrival rate.
We demonstrate that our proposed model closely follows the
simulation results, under different network scenarios.

Index Terms—Internet-of-Things (IoT); wireless sensor net-
works; 6loWPAN; 6TiSCH; RPL; stochastic network calculus;
performance analysis; simulation; schedulers; Contiki; COOJA

I. INTRODUCTION

Emerging IoT applications require time-bounded commu-
nication delays, which is challenging to achieve in wireless
networks populated by resource-constrained devices. The Time
Slotted Channel Hopping (TSCH) MAC of the IEEE 802.15.4-
2015 standard protocol [1] is tailored to meet these require-
ments. TSCH involves nodes synchronizing and dividing time
into equal slots. Within each timeslot (typically 10 ms), nodes
can operate in receiving, transmitting, or idle mode. Schedulers
determine a tuple consisting of timeslot offset and channel
offset, referred to as cells, where specific nodes are expected
to transmit or receive packets. The scheduling mechanism
determines how the flows access the wireless link.

The Internet Engineering Task Force (IETF) proposed
IPv6 over Time Slotted Channel Hopping (6TiSCH) [2] that
integrates the Routing Protocol for Low-Power and Lossy
Networks (RPL) and IPv6 over Low-Power Wireless Per-
sonal Area Networks (6LoWPAN). The incorporation of these
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upper-layer protocols into TSCH necessitates schedulers to
allocate cells for routing packets, typically broadcast, along-
side data transmissions. Schedulers also bear the responsibility
of allocating cells in a manner that prevents collisions be-
tween transmissions from neighboring nodes. This collision
avoidance can be ensured through centralized or distributed
negotiations. Alternatively, if a certain amount of collisions is
deemed acceptable, schedulers may opt for simpler approaches
to avoid negotiation overhead.

Analyzing the performance of different schedulers is usually
performed through simulation, as existing analytical models
fail to capture some important aspects of the schedulers.
Existing models either lack the flexibility of network calculus
or disregard the stochastic nature of wireless links and build
on Deterministic Network Calculus. In this paper, we develop
an analytical model based on Stochastic Network Calculus
(SNC) [3], [4], for its flexibility to model various arrival and
service bounds (also inherent to the deterministic versions)
and for achieving a less pessimistic prediction of “worst-case”
communication delays. Using Moment Generating Function
(MGF)-based SNC, we model performance bounds and the
violation probabilities. These bounds can prove useful for
optimizing scheduling parameters as well as designing new
schedulers. The main contributions of this paper are summa-
rized below.

• Ee propose a stochastic analytical model to obtain prob-
abilistic performance bounds for a TSCH network for
3 different scheduling policies: collision-free, Minimal
Scheduling (RFC 8180) and Orchestra [5]. For Orchestra,
we extend the basic theorems of network calculus.

• We analyze the impact of key network parameters on its
performance, namely slotframe duration, arrival rate, and
wireless link reliability.

• We evaluate the tightness of the analytical bounds by
comparing them with simulations (using Contiki/COOJA)
and empirical results1.

The remainder of the paper is structured as follows. Sec-
tion II presents the basics and definitions of TSCH schedulers.
Then, we overview the fundamentals of SNC in Section III
and present our SNC-based model in Section IV. Section V

1https://github.com/iliar-rabet/NetCal-TSCH



presents a comparative performance analysis between the
proposed SNC model and simulations for the three afore-
mentioned scheduling policies. We finalize the paper with
some considerations about related work (Section VI and final
remarks (Section VII).

II. TSCH SCHEDULING

This section describes the 3 scheduling policies we consider
in the rest of the paper, as well as the rationale for their
selection. TSCH schedulers are commonly classified based on
the process of negotiation, such as centralized, distributed, and
autonomous schedulers. However, we approach this differently
and select schedulers based on their robustness against colli-
sions and analyze the following schedulers.

A. Minimal scheduling

The 6TiSCH minimal configuration (RFC8180) defines a
schedule where all nodes communicate using a single shared
cell, eliminating the need for negotiation. As depicted in
Figure 1(a), this ”minimal cell” is a solitary shared cell
designated for all types of traffic from all nodes, leaving the
remaining cells unused. This simplified scheduling approach
can lead to collisions within a node’s control and data packets
and among nodes within the same radio range.

B. Collision-free scheduling

In contrast, Figure 1(b) depicts a collision-free schedule for
a pair of nodes. In the schedule, we have a shared cell for EB
and broadcast packets, while data packets have reserved cells
for both upward and downward directions. This guarantees that
data packets will not collide with the control packets. The pro-
cess for achieving such schedule usually involves a centralized
controller and brings extra communication overhead [6].

C. Orchestra

Orchestra [5] introduced the concept of ”autonomous
scheduling”, where nodes determine the schedule without any
negotiation. Orchestra significantly reduces the number of
required control packets, while relying only on nodes local
information (e.g. MAC address) to schedule packet transmis-
sion. Nodes apply a hash function to the MAC address of the
receiver or sender (two modes) to determine which timeslot
to send or receive data. In this paper, we analyze the receiver-
based Orchestra that applies the hash to the MAC address of
the receiver node. Figure 2 exemplifies an Orchestra schedule
and its 3 slotframes. We see that the number of collisions
between the EB, broadcast, and data packets in Orchestra can
be estimated once we know the length of the 3 slotframes.

To enable different traffic classes, each orchestra node is
assigned three slotframes (with different sizes), in a predeter-
mined order of priority:

1) For synchronization and discovering the gateway, all
nodes send Enhanced Beacons (EB). One slot is as-
signed for EBs in a slotframe with a length of LEB

SF .
Let tEB(k) denote the time offset of the EB cell
associated with node k can be determined by applying

a hash function (Hash()) to the MAC address of node
(MAC(k)) [7]. The hash function is implementation-
dependent and not specified by the standard.

tEB(k) = Hash(MAC(k)) mod LEB
SF (1)

2) For Broadcast (BC) packets that are mostly used for
sending routing packets, each node is assigned one slot
in a slotframe with an arbitrary length LBC

SF . Its time
offset is given by:

tBC(k) = Hash(MAC(k)) mod LBC
SF (2)

3) For the Unicast (UC) packets, which contain the actual
data, one dedicated slot is assigned per receiver node
that is present in the routing table at intervals of LUC

SF .
The time offset is given by:

tUC(k) = Hash(MAC(k)) mod LUC
SF (3)

The length of these 3 slotframes is selected to be mutually
prime to make sure that if two slots overlap, this will not
happen again in the next slotframe. The slotframe length de-
termines the traffic capacity, latency, and energy consumption
of the nodes, as shorter slotframes means that cells are reserved
more often.

III. BASICS ON STOCHASTIC NETWORK CALCULUS

This section reviews the basics of Moment-Generated Func-
tions (MGF)-based Stochastic Network Calculus (SNC) theory.
Interested readers can find comprehensive material in [8]–[10].

A. Arrival and service bounds
The core idea behind SNC is to relax deterministic delay

bounds by allowing a certain probability of deadline violation,
thus achieving smaller, less pessimistic bounds. Modeling the
network is based on bivariate random processes that describe
the packet arrival and service functions/curves inherent to
the communication protocol. Let cumulative arrival, departure,
and service in the time interval (s, t] be described respectively
by A(τ, t), D(τ, t), and S(τ, t).

For studying the statistical characteristics of random arrival
and service processes, we resort to their MGFs. For a random
variable X , MGF can be defined as MX(θ) = E[eθX ] with
θ > 0 being a free parameter. The bounds presented by MGF-
based calculus [8] are based on the Chernoff bound, which
states that for all θ > 0, we have:

P [X ≥ x] ≤ e−θxMX(θ) (4)

This means that MGF characterizes the tail distribution of
the underlying random process through its moments. Hence
we can employ certain operations on the MGF of arrival and
service processes to determine the performance bounds.

Definition 1: (ρA, σA) constrained arrival and service
Arrival process A(s, t) is (ρA, σA)-constrained if for all t ≥
s ≥ 0 we have:

E[eθA(s,t)] ≤ eθ(ρA(θ).(t−s)+σA(θ)) (5)

Alternatively, for the service process:

E[e−θS(s,t)] ≤ e−θ(ρS(−θ).(t−s)+σS(−θ)) (6)
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Fig. 1. In the ”minimal” scheduler (a), there is a shared cell that is used for all transmissions. In the custom collision-free scheduler (b), each node has its
reserved cell for upward and downward traffic, and control packets (EB and broadcast) are sent in a separate cell.
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Fig. 2. An example of Orchestra scheduler with 3 repeating slotframes, with EB having the highest priority. Assuming the hash of node ID is 13, transmission
of EB happens in the 2nd timeslot and is repeated every 11 timeslots after that. If the transmission EB, BC and UC collide, the node transmits the higher-
priority packet which is EB as in the 13th slotframe. If a collision happens between EB and UC at t, the next collision will happen at t+ LEB

SF × LUC
SF .

B. Basic operations of SNC

The (min,+)-algebra is the underlying basis for SNC. It
defines the convolution (⊗) and deconvolution (⊘) operators
using minimum and addition operations which are later used
to devise the performance bounds.

Definition 2: (min,+) convolution and deconvolution
For two bivariate functions x(s, t) and y(s, t), the (min,+)
convolution and deconvolution are respectively defined as:

(x⊗ y)(s, t) = inf
τ∈[s,t]

[x(s, τ) + y(τ, t)]

(x⊘ y)(s, t) = sup
τ∈[0,s]

[x(τ, t)− y(τ, s)]

Definition 3: Dynamic server
Let A(0,t) and D(0,t) be the arrival and departure process of a
server. Then the server is defined as a dynamic server [3] if,
for any sample path, we have:

D(0, t) ≥ (A⊗ S)(0, t)

for all t ≥ 0

We aim at deriving a bound on the delay in the form of
IP(d(t) > ω) ≤ ε where ε is the delay violation probability
associated with the delay bound.

Theorem 1. Suppose we have a (ρA, σA)-constrained dy-
namic service and arrival. Under the stability condition that

ρA < ρS , the violation probability of a given delay ω ≥ 0 at
time t ≥ 0 is bounded by:

P [d(t) > ω] ≤ e−θρS(−θ)ω eθ(σA(θ)+σS(−θ))

θ(ρS(−θ)− ρA(θ))
(7)

By reordering Eq. 7, given the violation probability the delay
that can be guaranteed :

ω <
log( εθ(ρS(−θ)−ρA(θ))

eθ(σA(θ)+σS(−θ))

−θρS(−θ)

For proof see: [10]

C. Modeling the cross traffic

The concept of leftover service can be used to model
multiple flows that share a server. If no information is known
about how the scheduling is performed, a pessimistic bound
can be derived for the service using the concept of blind
multiplexing. In blind multiplexing, the assumption is that
the whole available service (ρS , σS) is first offered to the
cross traffic, which is (ρcr, σcr)-constrained. The remaining
(leftover) service is proved [3] to be (ρlo, σlo)-constrained
where:

ρlo = ρS − ρcr and σlo = σS + σcr (8)

This results in very conservative bounds as the assumptions
are pessimistic and the bounds can be improved for the
schedulers such as Orchestra, or collision-free by exploiting
the knowledge about the schedulers.



IV. SNC MODEL FOR TSCH SCHEDULERS

This section describes the proposed SNC-based model for
a 6TiSCH network and the probabilistic performance bounds.
We assume a Markov On-Off service model for the wireless
link behaviour. This section addresses how classic network
calculus tools can be used to model collision-free and Minimal
schedulers. For Orchestra, we present a theorem that takes as
input a set of parameters, including slotframes size, and gives
the service curve as output.

A. Arrival

We consider the following two models for the arrivals:
1) Periodic traffic: Assume we have a source of data that

generates packets of size α with a deterministic time interval
(period) of τ . Then the MGF of the arrival is bounded: [3]

E[eθA(s,t)] ≤ eθα/τ.(t−s)+θα

Based on definition of (ρ, σ)-constrained arrival we have:
σA(θ) = α and ρA(θ) =

α
τ

2) Poisson traffic: Assume the counting process associated
with the arriving packets is Poisson with rate λ and the packet
size α. Then the MGF of the arrival is given by equation
below [9]:

E[eθA(s,t)] ≤ eλ(t−s)(eθα−1)

Then, based on definition of (ρ, σ)-constrained arrival we have:
σA(θ) = 0 and ρA(θ) =

λ(eθα−1)
θ

B. Service Curve

Considering the 3 selected schedulers, for Minimal and
collision-free scheduling, we use existing theorems from
network calculus; for Orchestra, we prove the performance
bounds.

1) Modeling collision-free schedule: Suppose nodes are
scheduled in a way that there is no collision between data
(UC) packets and control packets (EB and BC). Also, the νth

slotframe contains a set of 10ms slots. The service process
between τ and t can be described by a sum of increments:

S(τ, t) =

t∑
ν=τ+1

X(ν)

For the case of a Markov On-Off process, the incremental pro-
cess (X) describes the number of bits served at νth slotframe
and constitutes i.i.d Bernoulli trials with the probability mass
function pX(x). The packets of size r are either received suc-
cessfully (with probability Pon) or dropped. Retransmission is
not allowed during the same timeslot (if the packet gets lost).
We assume the link quality is stable during the 10ms timeslot.

pX(x) =

{
Pon x = r

1− Pon x = 0
(9)

The MGF of a sum of independent random variables is the
product of their individual MGFs. Hence the MGF of the
service process can be described as follows:

MS(−θ, t) = (MX(−θ))t =

(
∑
x

e−θxpX(r))t = (Pone
−θr + 1− Pon)

t (10)

Therefore, for a single TSCH node with a collision-free
schedule, we have (ρ, σ)-constrained service envelope with
σS = 0 and

ρS =
ln (Pone

−θr + 1− Pon)

−θ
(11)

2) Modeling Minimal scheduling: As we explained in sec-
tion II, Minimal scheduling leads to a high level of con-
tention between the control and data packets and collision
between neighboring nodes. We can only use the pessimistic
bounds of Blind Multiplexing (BMUX). Consider three (ρ, σ)-
constrained arrival processes AUC , AEB and ABC . According
to a BMUX scheduler, the leftover service for data packets
(SUC(s, t)) is given by:

SUC(s, t) = [S(s, t)−AEB(s, t)−ABC(s, t)]
+

Thus, the leftover service is also (ρ, σ)-constrained with:

ρUC(−θ) = ρS(−θ)− ρEB(−θ)− ρBC(−θ)

σUC(−θ) = σS(−θ) + σEB(−θ) + σBC(−θ)

Throughout our analysis, all the broadcast packets consist
of RPL packets, and the Trickle algorithm determines their
rate. Trickle adapts the interval of routing packets to the
dynamism of the network but the minimum (Imin) interval
can be configured. Therefore, the arrival process of broadcast
packets can be modeled as periodic traffic with a rate of
1/Imin.

3) Modeling Orchestra: The following theorem exploits the
existing knowledge about the scheduling mechanism in the
autonomous schedulers to achieve tighter bounds.

Theorem 2. Assume we have a pair of Orchestra nodes with
three slotframes with length LEB

SF , LBC
SF , and LUC

SF .
Then the service that is given to the UC is (ρUC , σUC)-

bounded

ρUC = ρS − ρC and σUC = σS + σC

where C(s, t) represents the collisions between UC and other
traffic classes. C(s, t) is bounded by:

ρC = r(
1

LEB
SF

+
1

LBC
SF

− 1

LEB
SF LBC

SF

) and σC = r (12)

Proof. According to the functionality of Orchestra, we have:

SUC(s, t) = [S(s, t)− C(s, t)× r]+ (13)
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Fig. 3. A Venn diagram of the sets of timeslots associated with each traffic
class. The set of slots that are guaranteed (no collision with higher priority
traffic) for unicast is UC − EB −BC.

where r is the size of packets (we assume 1 bit), and C(s, t)
is the number of times collisions stop a UC packet from being
transmitted.

Let UC, EB, and BC be the sets containing the timeslots
that Orchestra allocates for each traffic class. Since UC is the
lowest priority traffic class, we need to account for |UC −
EB−BC|. The principle of inclusion-exclusion states that to
find the cardinality (number of elements) of the union of two
sets A and B, you can sum the cardinalities of each set and
subtract the cardinality of their intersection. As illustrated in
Figure 3, the number of timeslots that are reserved for UC and
have no collision with other traffic classes can be formulated
as:

|UC − EB −BC| = |UC| − |EB ∩ UC| − |BC ∩ UC|+
|EB ∩BC ∩ UC| (14)

Now, we need to calculate the cardinality of the set of unions
(the number of collisions). Let m1 and m2 be coprime integers
(corresponds to the size of slotframe for different traffics in
this problem) and arbitrary integers a1, a2 (the hash of MAC
address). The Chinese remainder theorem [11] states that the
following system of congruences:
a1 mod m1 = x and a2 mod m2 = x
has a unique solution modulo m1m2. In other words, if, for
example, UC and EB collide at time slot x, then the next
collision happens at x + LUC

SF × LEB
SF . Chinese remainder

theorem can also be extended to 3 or more congruences [11].
Let t′ be the time interval defined as the number of

slotframes of size LUC
SF . According to the Chinese remainder

theorem, during an interval of t′, the collisions between EB
and UC slots are bounded (same is valid for BC and UC):

⌊ t′

LUC
SF × LEB

SF

⌋ ≤ |UC ∩ EB| ≤ ⌊ t′

LUC
SF × LEB

SF

⌋+ 1 (15)

NUC(t′) the number of timeslots that each node has re-
served for UC during an interval of t′ is bounded by:

NUC(t′) < ⌊t′/LUC
SF ⌋ − ⌊ t′

LUC
SF × LEB

SF

⌋ − ⌊ t′

LUC
SF × LBC

SF

⌋

+ ⌊ t

LUC
SF × LBC

SF × LEB
SF

⌋+ 1 (16)

Now if we consider the slotframes between s and t, the
collisions during the interval t − s = ⌊t′/LUC

SF ⌋ would be
upper-bounded by C(s, t):

C(s, t) <
(t− s)

LEB
SF

+
(t− s)

LBC
SF

− (t− s)

LEB
SF LBC

SF

+ 1

We want to calculate a (ρ, σ)-constrained service for the
Orchestra scheduler. Under the assumption that S(s, t) and
C(s, t) are independent, it follows that the MGF of the leftover
service for UC is:

E[e−θSUC(s,t)] ≤ E[e−θS(s,t)]E[eθrC(s,t)] (17)

The MGF of collisions is (ρ, σ)-constrained with

ρC = r(
1

LEB
SF

+
1

LBC
SF

− 1

LEB
SF LBC

SF

) (18)

and σC = r By substituting this in (17), we have:

E[e−θSUC(s,t)] ≤ e−θ(ρS−ρC)(t−s) + e−θ(σS+σC) (19)

which proves the theorem.

V. EVALUATION

In order to compare the proposed SNC model with the
actual performance of the system, we conducted extensive
simulations using Contiki-NG/Cooja for different network
scenarios and configurations. We implement our SNC toolbox
using Python, extending some existing libraries [10]. Each
simulation is repeated 50 times for a duration of 10 minutes
each, and we measured the end-to-end delay for the afore-
mentioned schedulers and compared it with our SNC model.
We evaluated the model under different (i) slotframe sizes, (ii)
wireless link Packet Reception Ratio (PRR), and (iii) arrival
rates (for periodic and Poisson traffic patterns). The simulation
results as shown with the violin plots while we plot the delay
bound (calculated according to Eq. 1) with 3 different violation
probabilities (ε) with solid lines.

Due to size restrictions, in this paper we limit the evaluation
to a network scenario with just two nodes: a transmitter and
a receiver. The transmitter sends one data packet (UC) every
2 seconds, while the receiver only transmits control packets.
A periodic traffic arrival with inter-packet arrival of 2 s is
considered, unless stated otherwise. The radio link between the
nodes is assumed to be ideal except for the results associated
with Figure 5.

First, as illustrated in Figure 4, we evaluate the impact of
slotframe size on the delay. For Orchestra, we refer to the
UC slotframe in this chart, and the other two slotframes are
configured to their default value (970 and 3970 ms for BC and
EB, respectively). As Figure 4 shows, we expect higher delays
for longer slotframe sizes. Both delays computed by the SMC
model and resulting from simulation increase with slotframe
length. We also observe that if a higher violation probability is
acceptable, the SNC model expects a lower delay. Comparing
the 3 schedulers also shows that Minimal scheduling leads
to the highest contention between control and data packets,
thus yielding higher delays. We see that the contention is
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Fig. 4. Delay relative to slotframe size for various schedulers: (a) collision-free, (b) Minimal, and (c) Orchestra. The delay bound according to the model is
shown with solid lines, while simulations are plotted using a violin chart.
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Fig. 5. Delay relative to Packet Reception Ratio for various schedulers: (a) collision-free, (b) Minimal, and (c) Orchestra.

much lower in Orchestra and non-existent for the collision-
free scheduler.

Figure 5 shows longer delays when PRR decreases. In this
experiment, the slotframe size for the collision-free, Minimal
schedulers and UC Orchestra were set to 170 ms.

The next set of results (Figures 6 and 7) focuses on the
characteristics of Periodic and Poission traffic arrival patterns.
With a periodic arrival, the inter-packet interval is constant;
thus, the delay is not as volatile as for Poisson arrival.
However, Minimal scheduling still suffers from the collision
between data packets (BC) and control packets (EB), which
leads to an ”explosion” when the rate is increased to 4 packets
per second (Figure 6). Minimal scheduling and Orchestra show
a stable delay for different arrival rates as long as the stability
condition holds (ρA < ρS). For a Poisson traffic arrival pattern,
Figure 7 shows that the delay increases with the arrival rate
at a faster rate (when compared to periodic arrival).

VI. RELATED WORK

This section reviews previous works on modeling and per-
formance analysis of TSCH networks. The schedule primarily
determines the performance of the network and there have
been plenty of surveys in the literature regarding different
types of schedulers [12], [13]. Here, we browse some tools
that have been applied to model TSCH networks.

Elst et.al. [14] have studied the impact of schedulers (specif-
ically autonomous schedulers such as Orchestra). This work
has formulated an analytical model based on the probability
of hash collisions. Their model neglects the collision between
different traffic classes (EB, BC, UC). On the other hand,
network calculus provides a more flexible framework to model
the network under many different parameters.

Van Leemput et.al. [15] proposed an analytical model for
6TiSCH based on a real-time telemetry approach thus relying

heavily on the availability of real-time reports from the in-
network nodes. Additionally, this model focuses on the impact
of protocols accompanying TSCH, such as RPL and CoAP,
rather than the underlying schedule.

Unlike classical queue theory models [16] that focus on
the average performance of the network, network calculus
models study (deterministic and stochastic) bounds on the
performance of the system. Deterministic Network Calculus
(DNC) is another modeling tool that allows worst-case per-
formance analysis and dimensioning. DNC has been used to
model the allocation of the Guaranteed Time Slots (GTS) in
IEEE 802.15.4 [17]. Kurunathan et. al. [18] addressed three
different modes of IEEE 802.15.4e (TSCH and two other
modes) in a single-hop setting. Sensor Network Calculus [19]
is another DNC model that studied duty-cycling radio that
can be used for various topologies. Evidently, DNC fails to
capture the stochastic nature of wireless networks, resulting
in pessimistic bounds. Importantly, accepting a certain risk of
deadline violation allows to compute tighter bounds and more
realistic network modeling and dimensioning.

Stochastic bounds were derived for IEEE 802.15.4 networks
using the (min, x) calculus, later extended to optimize trans-
mission power [20]. The (min, x)-network calculus proposed
a variation of SNC that is more convenient for multihop
networks [21]. While we opted to use MGF-based network
calculus, (min, x)-network calculus is a parallel choice. For
IoT networks, Cui et. al. [9] used the MGF-based SNC and
proved bounds for three fading channels commonly used to
model IoT networks: Rayleigh, Rician, and Nakagami-m. They
also devised bounds on schedulers such as blind multiplexing,
generalized processor sharing, and rate latency service.

All previous models neglect important aspects of TSCH,
such as the underlying scheduling and contention between
control and data packets. To our best knowledge, our proposed
SNC model is the first work that models different TSCH-
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Fig. 6. Delay relative to arrival rate under periodic arrival for various schedulers: (a) collision-free, (b) Minimal, and (c) Orchestra.
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Fig. 7. Delay relative to arrival rate under Poisson arrival for various schedulers: (a) collision-free, (b) Minimal, and (c) Orchestra.

specific schedulers under a comprehensive set of parameters.

VII. CONCLUSION

We propose a Stochastic Network Calculus model for 3
TSCH schedulers. Analytical and simulation results show
that considering a small deadline violation probability, tighter
performance bounds are achieved. Our model is flexible and
considers different parameters. We show the results of the
model for some of those parameters including the underlying
scheduler, traffic arrival models, and link characteristics.

We plan to extend the SNC model to multi-hop topology,
optimizing parameters such as transmission power [22], and to
integrate it in a centralized scheduler that adapts to changing
network dynamics, for example, due to nodes’ mobility.
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