
Modeling and Verification of ROS Systems
Using Stochastic Timed Automata

Peter Backeman1 and Cristina Seceleanu1

Mälardalen University, Väster̊as, Sweden
{peter.backeman, cristina.seceleanu}@mdu.se

Abstract. Robotic systems often operate under real-time constraints,
requiring timely responses to sensor inputs. Early consideration of such
requirements during design is advantageous. The Robot Operating Sys-
tem (ROS) provides a mature framework for system setup and com-
munication, with ROS2 offering real-time capabilities. However, deter-
mining the maximum reaction time within a ROS network is intricate
due to complex variable processing and scheduling, especially with pe-
riodic and event-triggered tasks. In this report, we propose a model of
ROS-based structural designs with timed automata semantics, facilitat-
ing real-time behavior analysis. We extend this model to incorporate
non-deterministic execution time and probabilistic loads, employing sta-
tistical model checking (SMC) for scalability and accuracy. We compare
against previous work to confirm the validity of our approach.

1 Introduction

Many robotic systems are subject to real-time constraints that should be obeyed.
One such constraint can be that a system must react to a certain sensor input
within a time bound (e.g., door opening when light sensor is activated). Ensuring
such requirements already at early design stages, e.g., on the architecture level, is
beneficial. Formal methods, e.g., model checking [3], is one such approach which
is powerful. It can help establish both liveness and safety properties subject to
timing constraints using timed automata.

When designing a robotic system there are many aspects to take into con-
sideration. Computation and communication issues must be decided upon and
implemented. To alleviate this, one can use a pre-existing framework that al-
ready solves many challenges. The Robot Operating System (ROS) provides a
framework for setting up nodes and their communication. However, to establish
properties of a ROS network, e.g., finding an upper bound for the maximum
reaction time, is complex as it is affected by the run-times of the involved tasks
and how these are scheduled. Furthermore, tasks can be both periodic (e.g.,
scheduled every second) or triggered by another function publishing new data.
In this technical report, we present a model of ROS-based structural designs,
and assign semantics to allow model checking with respect to real-time behavior
to help establish such properties. In particular we focus on bounding an end-to-
end reaction time. We assign semantics in the form of timed automata (TA) [1]

templates, yielding a precise definition of the underlying behaviour that uses
ROS communication. We begin with basic semantics and validate it against pre-
vious work [14]. This is extended with non-deterministic execution times and
probabilistic loads. For scalability and richness of modeling purposes, we employ
the statistical model checking [9] technique, where properties are guaranteed to
a specific degree of confidence, by using the UPPAAL SMC [8] tool, to verify
properties of the model. We present the following contributions:

– Introduction of a pattern-based TA semantics of ROS networks, covering
both a deterministic and probabilistic running times and loads.

– Validation of our base semantics towards previous simulation-based work.
– Application of UPPAAL/UPPAAL SMC to find maximum reaction times.

The report is structured as follows: after the preliminaries in Sec. 2, we present
our formalization of ROS systems in Sec. 3, followed by our TA semantics in
Sec. 4 and its validation in Sec. 5. Afterwards, we show how the semantics can
be extended in several directions in Sec. 6. Finally, related work is presented in
Sec. 7, and our conclusions and future work in Sec. 8.

2 Preliminaries

In this section we briefly present scheduling of, and communication between,
tasks in the robot operating system and summarize timed automata.

2.1 Robot Operating System

The Robot Operating System (ROS) is intended to provide developers with
a set of open-source software frameworks, libraries, and tools to create appli-
cations for robots. The platform offers services for a heterogeneous computer
cluster, such as hardware abstraction, device control, implementation of func-
tionalities, message-passing between processes, and package management [12].
The operating system’s version ROS1 underwent a major revision and became
ROS2 [11], bringing many improvements, most notably the Data Distribution
Service (DDS) support. DDS acts as middle-ware for inter-node communication,
using the quality-of-service profile to provide real-time communication, scalabil-
ity, performance enhancement, and security benefits not found native in ROS1.

The ROS2 platform has already been used in designing the communication
architecture of collaborative and intelligent automation systems [6], or of self-
driving cars that require safe and reliable real-time behaviour [13]. Most such
robotic systems are subject to real-time constraints that, if not met, might result
in issues of various severity degrees, from the application failing to perform cor-
rectly to a lowered performance of the overall system. Verifying if such undesired
issues occur in a ROS-based robotic system, already at a structural design level,
is very desirable. To achieve this, the basic, high-level communication and com-
putation paradigms of ROS need to be given formal semantics, to be amenable
to analysis, e.g., via model checking.

2

Scheduling A ROS network consists of nodes and topics. A node is a com-
ponent which has one or more tasks (i.e., callbacks) which can be scheduled
for execution. When a task is scheduled, a job is instantiated and put in the
scheduling queue. When a job has finished, it can publish its value to a topic,
or store it locally on the node. The ROS scheduling works by at each polling
point, i.e., beginning of a processing window, pick one job from each task (which
has queued job) and schedule them according to priority (with timers always
having higher priority than subscribers). Then each of the tasks are executed
and afterwards a new polling point is reached. If at any polling point, there are
no jobs queued, then the scheduler idles until a task becomes scheduled. The
process is illustrated in Fig. 1.

Idling Picking jobs Executing

Queue Empty?

New job New Processing Window

Done

No

Yes

Fig. 1. Scheduler in ROS.

2.2 Timed Automata

A Timed Automaton (TA), as used in the model-checker UPPAAL [8] , is defined
as a tuple, ⟨L, l0, C,A, V,E, I⟩, where L is the set of finite locations, l0 is the
initial location, V is the set of data variables, C is the set of clocks, A = Σ ∪
τ is the set of actions, where Σ is the finite set of synchronizing actions(c!
denotes the send action, and c? the receiving action) partitioned into inputs and
outputs, Σ = Σi ∪ Σo, and τ /∈ Σ denotes internal or empty actions without
synchronization, E ⊆ L × B(C, V) × A × 2C × L is the set of edges, where
B(C, V) is the set of guards over C and V , that is, conjunctive formulas of clock
constraints (B(C)), of the form x ▷◁ n or x− y ▷◁ n, where x, y ∈ C, n ∈ N, ▷◁∈
{<,≤,=,≥, >}, and non-clock constraints over V (B(V)), and I : L −→ Bdc(C)
is a function that assigns invariants to locations, where Bdc(C) ⊆ B(C) is the
set of downward-closed clock constraints with ▷◁∈ {<,≤,=}. Invariants bound
the time that can be spent in locations, ensuring the progress of TA’s execution.

An edge from location l to location l′ is denoted by l
a,g,r,u−−−−→ l, where a is an

action, g is the guard of the edge, r is the clock reset set, that is, the clocks that
are set to 0 over the edge and u is an update action. Variables are initialized

3

with a value of zero and an update action updates the value of zero, one or more
variables. A location can be marked as urgent or committed, indicating that time
cannot progress in such locations. The latter is more restrictive, indicating that
the next edge to be traversed needs to start from a committed location.

The semantics of TA is a labeled transition system. The states of the labeled
transition system are pairs (l, u), where l ∈ L is the current location, and u ∈ RC

≥0

is the clock valuation in location l. The initial state is denoted by (l0, u0), where
∀x ∈ C, u0(x) = 0. Let u ⊨ g denote the clock value u that satisfies guard g. We
use u+ d to denote the time elapse where all the clock values have increased by
d, for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u ⊨ I(l) and (u + d′) ⊨ I(l),

for 0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−−→ l′, a ∈ Σ, u ⊨ g, clock
valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks
in the reset set r of the edge, such that u′ ⊨ I(l′).

A real-time system can be modeled as a network of TA (NTA) composed via
the parallel composition operator (“||”), which allows an individual automaton to
carry out internal actions, while pairs of automata can perform handshake syn-
chronization. The locations of all automata, together with the clock valuations,
define the state of an NTA. The properties to be verified by model checking on
the resulting NTA are specified in a decidable subset of (Timed) Computation
Tree Logic ((T)CTL), and checked by the UPPAAL model checker.

UPPAAL is also capable of handling statistical model checking (SMC) [9],
where simulations are used to extract information of the system. In UPPAAL
SMC, automata have a stochastic interpretation based on: (i) the probabilistic
choices between multiple enabled transitions (uniform distribution by default,
marked with weighted probabilities otherwise1), and (ii) the non-deterministic
time delays that can be refined based on probability distributions, either uniform
distributions for time-bounded delays or user-defined exponential distributions
for unbounded delays. SMC has the downside of not providing full guarantees
of results, but allows handling models of much larger sizes, as well as including
probabilistic aspects of the system.

3 Formalization of ROS systems

In this section, we provide a formalization of constrained ROS systems. We
assume each node can be subscribed to zero or more nodes, read from zero or
more variables, publish to zero or one topic, and write to zero or one variables. We
assume three kinds of nodes: timer nodes, subscription nodes and data-generator
nodes. A timer node is triggered with periodic intervals and then schedules a
task to publish or write its result. A subscription node has a special triggering
subscription, and schedules a task to publish or write its result whenever data
is published onto the triggering topic. Finally, a data-generator node is a timer

1 We annotate edge guards with ?prob to denote that the edge weight is prob

4

node which has no subscriptions nor reads from any variable. For simplicity, we
assume that there is only one publishing node per topic and that each variable
is written to by at most one node.

3.1 Nodes

We define a set of nodes N , a set of topics T and a set of global variable V. For
convenience, we introduce a unique topic and variable for each task τ denoted
by T (τ) and V(τ) respectively. We define each kind of node separately:

Definition 1. A timer node tn = (p,wcet , S, St,D, t, v), where:

– p ∈ N+ is the period,
– wcet is the WCET of the main task,
– S = {s1, . . . , sn}, si ∈ T , are the subscribed topics,
– St = {st1, . . . , stn}, sti ∈ N, are the WCET of subscription tasks,
– D ⊆ V, are the read-variables,
– t ∈ T is the result-topic,
– v ∈ V is the write-variable.

Intuitively, a timer node is activated each p period, creating a job of the main
task. The node subscribes to the topics S and uses the data from the variables
D. Whenever a message is retrieved on topic si, a job is created to processes the
retrieved value, with WCET sti.

Definition 2. A subscriber node sn = (s,wcet , S, St,D, t, v), where:

– s ∈ T , s ̸∈ S, is the triggering topic,
– wcet is the WCET of the main task,
– S = {s1, . . . , sn}, si ∈ T , are the subscribed topics,
– St = {st1, . . . , stn}, sti ∈ N, are the WCET of subscriptions tasks,
– D ⊆ V, are the read-variables,
– t ∈ T is the result-topic,
– v ∈ V is the write-variable.

A subscriber node works like a timer node, except it is instead triggered
whenever a message is received from the triggering node s.

Definition 3. A data-generator node dn = (p,wcet , t, v), where:

– p ∈ N, is the period,
– wcet is the WCET of the main task,
– t ∈ T is the result-topic,
– v ∈ V is the write-variable.

A data-generator works as a timer but has no subscriptions nor read-variables.

Example 1. Consider the small system in Fig. 2. It has three nodes, a sensor
node which publishes data to the filter node, which in turn publishes data to
the actuator node (which is triggered by a timer). We will be interested in
measuring the reaction time from the sensor to the actuator. Each component
can be formalized (for particular values for WCET, etc) as:

5

– the sensor, a data-generator node ns = (40, 10, T (ns), ∅),
– the filter, a subscriber node nf = (T (ns), 10, ∅, ∅, ∅, T (nf)),
– the actuator, is a timer node na = (100, 20, {T (nf)}, {10}, ∅, ∅, T (na)),

Sensor Filter Actuator
Publish Publish

Fig. 2. Small ROS network.

3.2 Tasks

Each node contain one or more task. All nodes have a main task which is respon-
sible for combining all data, compute and publish/write the output. Additionally,
every node has for each (non-triggering) a task is responsible for retrieving the
published data, process it, and store it in a local variable. All tasks have an
assigned WCET. Let τn denote the main task of node n and τ in to refer to the
subscription task for subscribed topic si of node n.

Example 2. The system presented in the previous example contains three nodes.
The sensor and filter node will only contain two main tasks: τns triggered by a
timer and τnf triggered by a subscription). The actuator node will have one
main task τna (triggered by a timer) and one subscription task τ1na responsible
for reading the value from the filter node.

3.3 Job chains

In this report we are looking for maximum reaction times. To define the notion
of reaction time, we first present the notion of task and (forward) job chains:

Definition 4. A task chain T = {τ1, . . . , τn} is a sequence of tasks s.t.:

– the task τ1 is the main task of a data-generator, and
– ∀τi ∈ [τ1, . . . , τn−1] either:

• τi stores its result in V(τi) and τi+1 reads from V(τi), or
• τi publishes ts result to T (τi) and τi+1 subscribes to T (τi).

Definition 5. A (forward) job chain J = {j1, . . . jn} is a sequence of jobs s.t.
for a task chain T:

– ∀ji ∈ J, ji is an instance of τi.
– ∀i ∈ [j1, . . . , jn−1] either:

• ji+1 is the unique earliest job of τi+1 which reads the result from ji, or
• ji+1 is the unique earliest job of τi+1 which receives the result from ji

(through subscription).

6

Let start(τ) and end(τ) represent the start-time and end-time of the task τ
respectively, where start(τ), end(τ) ∈ N .

Definition 6. For a job chain J = {j1, . . . , jn}, the reaction time rt(J) =
end(jn)− start(j1).

Example 3. Consider again the small example network in Figure 2, now executed
with scheduling as presented in Section 2.1. The resulting trace is shown in
Figure 3. The job chain J = {τns1 , τnf 1

, τ1na1
, τna1

} has a reaction time of 90.
Thus if an (external) value is modified at time step zero (right after the sensor
task is fired), it would be read at time step 50, which yields a reaction time for
the external event of 50 + 90 = 140.

0 50 100 150

τns

τnf

τ1
na

τna

Fig. 3. Schedule for small ROS network example. Processing windows are separated
by red dashed lines. An upwards arrow indicates the start of a job and downwards
indicates the end. The blue line traces the reaction time.

In this report, we focus on the case where there is only one executor (i.e.,
processing unit), on which all functions are executed, and we further assume
that there are no cycles in the dependencies between nodes. Then we can define
the maximum reaction time for a given ROS system:

Definition 7. We define the maximum reaction time from data-generator dn =
(p,wcet , t, v) to node n for a ROS system as: maxJ∈J (p + rt(J)), where J is
the set of all job-chains beginning with dn.

Note that we add the period p of the data-generator to account for the worst-
case delay of a data-generator observing an external event. We acknowledge that
for an over-utilized system, no finite maximum reaction time may exist, but for
a non-over-utilized system, the maximum reaction time will be finite.

4 TA Semantics for ROS

In this section, we present a formalization of ROS semantics in UPPAAL timed
automata. As we focus on analyzing the end-to-end maximum reaction time –
we do not model how data is processed, but rather the age of data and check the
resulting age at the destination. In particular, we instantiate with a particular
task chain T in mind, such that the resulting system considers the reaction time
of T.

7

We introduce TA templates which are instantiated depending on the nodes
of the ROS system, and the task chain which should be monitored. Note that in
this report we assume that all nodes are scheduled on the same host (i.e., share
the same CPU). We begin by introducing the global variables and functions used,
followed by each TA template. Finally we describe how a particular system is
instantiated. For simplicity, we assume that each task publishes to its dedicated
topic and/or writes to its dedicated variable.

4.1 Constants, Variables, Functions and Channels

Table 1 show a set of constants, variable, functions and channels. Some are used
for easier reading, while some have a semantic impact. In particular, BUF SIZE

and MONITORS must be set sufficiently large. In the remained of this report we
assume that this is the case. Note that PRIO[C], WCET[C], PUBLISHER[C] and
WRITER[C] must also be initialized with proper values. As mentioned we only
allow nodes to either publish or write the results to a topic or variable. Therefore,
the queue job is overloaded to accept either a topic or a global variable.

4.2 TA Templates

The semantics are given as template-based instantiation, i.e,. for each task in
the ROS system, we introduce an UPPAAL TA, based on the templates given
in this section. Furthermore, teach TA is given a unique ID. We are interested
only in the reaction time of data processed in the task chain T under analysis.
Thus we can ignore all other data values (however me must remember to trigger
subscription tasks). Thus, every task only needs to consider the received and
read values from the previous task of the task chain.

Data-generator The template for a data-generator dn = (p, wcet, t, v), is in-
stantiated given its task id id and its period p, the remaining values are used
in the global variables. The data-generator is responsible for generating a value
each period p, then queuing a job of type τdn. There is also an extra Boolean
parameter: if m is true, it will also activate the monitor whenever a value is read
(it is set to true for the first task of T). The template is shown in Figure 4.2

Also, location lfire is marked committed.

Monitored Data-generator : A monitored data-generator is identical to a data-
generator with the difference that the edge from lfire to lwait is replaced by:

lfire
start monitor !,∅,x,queue job(id,PAYLOAD)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait

Intuitively, this means that when a monitored data-generator publishes data,
a monitored is requested to be started and a payload value is queued.

2 Graphical representations from UPPAAL of all TA are found in the appendix.

8

Constant Description

EMPTY Value for representing empty data.
MONITORS Number of parallel monitors.

FIRST PAYLOAD Represents the value of the first monitored package.
MONITOR FREE/MONITOR SENT Status value of a free/busy monitor.

BUF SIZE Buffer size of queues.
PRIO[C] Priority of each task.
WCET[C] WCET of each task.

Variables Description

payload value of next payload value to be sent.
last payload value of last sent payload.

next monitor (nm) Index of next free monitor.
last monitor (lm) Index of oldest busy monitor.
published data (pd) Value of last published data.

monitor status[MONITORS] Status of monitors.
monitor payload[MONITORS] Payload monitored.

QUEUES[C][BUF SIZE] Job queues (one for each task).
QUEUES COUNT[C] Number of jobs in each queue.
HOST JOBS[C][2] ID and data of scheduled jobs.

HOST JOBS COUNT Number of scheduled jobs.
DATA[C] Unique variable for each task.

Function Description

waiting jobs Returns the number of jobs waiting for the host.
queue job Add a job to the host queue.
dequeue Dequeue the first job from the host queue.
schedule Sort all jobs in the host waiting list by priority.
take jobs Take (up to) one job of each task.

next job idx Get the index (i.e., task id) of next job.
get data Get data for a specific task.

assign monitor Assign next free monitor to current package.
free monitor Free all finished monitors.

Channel Description

new job Announce the (possible) scheduling of new job.
start monitor Signal to start monitoring next data.
publish[C] Unique topic for each task.

Table 1. Constants, variables, functions and channels of the model.

L = {lwait , lfire}, ℓ0 = lwait , C = {x}, A = {new job!,new job?},
V = ∅, I = {lwait 7→ x ≤ p},

E = {lwait
new job!,x=p,∅,∅−−−−−−−−−−−→ lfire ,

lwait
new job?,x=p,∅,∅−−−−−−−−−−−→ lfire ,

lfire
τ,∅,x,queue job(id,EMPTY)−−−−−−−−−−−−−−−−−→ lwait}

Fig. 4. Template of a Data-Generator.

9

Subscriber A subscriber sn = (s, wcet, S, St,D, t, v), is instantiated given three
parameters: s, task id and a data source. The subscriber waits for a message to
be published to s and then queues a job to publish the result, based on data
from data source to task id topic. The template is shown in Figure 5.

L = {l}, ℓ0 = l, C = ∅, A = {s?}, V = {vpublished data}, I = ∅,

E = {l s?,∅,∅,queue job(id,vdata source)−−−−−−−−−−−−−−−−−−−→ l}

Fig. 5. Template of a Subscriber.

Timer A timer node tn = (p, wcet, S, St,D, t, v) is instantiated using three
parameters: p, task id and data source. The timer is activated each period p.
The parameter data source is set to data source of d ∈ D∪{vsti}. If two or more
timers are activated at the same time instant, one of them will use the active
synchronization new job! and all others will follow using new job?, ensuring that
all jobs are added at the same time point. The template is shown in Figure 6.

L = {l}, ℓ0 = l, C = {x}, A = {new job!,new job?},
V = ∅, I = {l 7→ x ≤ p},

E = {lwait
new job!,x=p,x,queue job(id,data source)−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait ,

lwait
new job?,x=p,x,queue job(id,data source)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait}

Fig. 6. Template of a Timer.

Host A host is the most complicated template, but has no parameters. The host
waits for waiting jobs, and when present picks (up to) one from each task and
schedules them according to priority. In the bottom half of the automaton it then
simulates the execution of each job with reading, storing and publishing data
accordingly. The host sends a message on the corresponding node-specific topic
when finishing executing a job with the resulting data written to the associated
global variable. The template is shown in Figure 7. Also, locations lcheck , lnext
and ldone are marked urgent, and lloop is marked committed.

Monitor A monitor is instantiated with two parameters: actuator , the last task
of the task chain, and the period p of the first task if the chain. The monitor
waits for a data-generator to start monitoring and assigns a free monitor (setting
the clock to p to allow for worst-case analysis). The location measure is reached
whenever the monitored actuator publishes data, so queries can be over this

10

L = {lidle , lcheck , lnext , lexec , ldone , lloop}, ℓ0 = lidle , C = {x},

A = {new job!,new job?} ∪ {T (n)! ∀n ∈ N)}}, V = {idx , job, data},
I = {lexec 7→ x ≤ WCET [job]},

E = {lidle
new job?,∅,∅,∅−−−−−−−−−→ lcheck , lcheck

τ,¬waiting jobs(),∅,∅−−−−−−−−−−−−−→ lidle ,

lcheck
τ,waiting jobs(),∅,take jobs()−−−−−−−−−−−−−−−−−−→ lnext ,

lnext
τ,∅,x,idx :=next job idx(),job:=HOST JOBS [idx][0],data:=get data(HOST JOBS [idx][1])−−−→ lexec ,

lexec
τ,x=WCET [job],∅,DATA[job]=data;pd=data−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ldone , ldone

publish[job]!,∅,∅,∅−−−−−−−−−−−→ lloop ,

lloop
τ,HOST JOBS COUNT>0,∅,∅−−−−−−−−−−−−−−−−−−−→ lnext , lloop

new job!,HOST JOBS COUNT=0,∅,∅−−−−−−−−−−−−−−−−−−−−−−−−→ lcheck}

Fig. 7. Template of a Host.

location to check worst-case reaction times. The template is shown in Figure 8.
Also, location lmesuare is marked committed.

L = {li , lmeasure}, ℓ0 = li , C = {x1, . . . , xMONITORS},

A = {start monitor? T (actuator?, V = ∅, I = ∅,

E = {li
start monitor?,∅,∅,xnm=p;assign monitor()−−−−−−−−−−−−−−−−−−−−−−−−−−−→ li ,

li
T (actuator)?,pd ̸=EMPTY ,∅,∅−−−−−−−−−−−−−−−−−−−→ lmeasure ,

lmeasure
τ,∅,∅,free monitors()−−−−−−−−−−−−−→ li}

Fig. 8. Template of a Monitor.

4.3 Instantiation

For a given ROS network, each component is instantiated with the correspond-
ing template using suitable values for the parameters. Each component also is
given a global integer id (from zero and up), and the global constants PRIO

and WCET are set accordingly. The first data-generator node of the task chain T
is instantiated as a monitored data-generator, while remaining data-generator
nodes are instantiated as regular data-generators. The resulting network will be
deterministic insofar that the value of the clocks in the monitor automaton when
measured in the state measure will always be the same.

Example 4. We instantiate the ROS network from Ex. 3 according to the above
formula and obtain five TAs: a Monitored Data-Generator(task id = 3, p = 40),
a Subscriber (task id = 2, s = T (3), data source = pd), a Subscriber (task id =
1, s = T (1), data source = pd), a Timer (task id = 0, data source = V(1)), a
Monitor (actuator = 0, p = 40), and a Host. Note that when data source = pd ,

11

this means that the data should be read from the subscribed topics most recently
published data.

4.4 Queries

Given an instantiated ROS system we can establish an upper bound on the
maximum reaction time for T using the following TCTL query:

□monitor .measure → monitor .x[last monitor] ≤ t

Intuitively, this query checks that reaction times are lesser than t, i.e., that t is
an upper bound. This bound is not guaranteed to be tight. We can find a tight
bound by using the following query to check if reaction time can exceed than t:

⋄monitor .measure ∧monitor .x[last monitor] ≥ t

To use this to find an upper bound, the above query is used using t = 0. When
UPPAAL finds a greater bound t′, the query is checked once again with the new
bound t′. This process is repeated until UPPAAL states that no greater value
exists, establishing the final value of t to be the upper bound. Furthermore,
UPPAAL allows the extraction a trace for a given bound.

Example 5. If we use UPPAAL to query for an upper bound for Example 4, we
can find that the upper bound is 190, and extract the trace shown in Figure 9.
Note that the time starts at 50. Thus the first sensor reading has a shorter reac-
tion time, but every subsequent value change has the same maximum reaction
time of 190.

50 100 150 200 250

τns

τnf

τ
T (nf)
na

τna

Fig. 9. Example trace for maximum reaction time for small example.

5 Validation

To validate our semantics, we have implemented the case-study ROS network
from [14], where Teper et. al. provides a simulation-based measurement of the
maximum end-to-end reaction time. It is a small network, connecting sensors
with filters, representing processing of data, a fusion node which merges data
and an actuator and the end of the processing chain. The network is depicted in

12

Component Formal object

Sensor 1 s1 = (420, 10, T (s1),0)
Sensor 2 s2 = (420, 20, T (s2),0)
Filter 1 f1 = (T (s1), 10, ∅, ∅, ∅, T (f1),0)
Filter 2 f2 = (T (s2), 20, ∅, ∅, ∅, T (f2),0)
Fusion fs = (T (f1), 30, {T ({∈)}, {30}, ∅, T (fs),0)
Filter 3 f3 = (T (fs), 30, ∅, ∅, ∅, T (f3),0)
Actuator a = (840, 30, {T (f3)}, {30}, ∅,0,0)

Table 2. Formalized validation case

Sensor 1 Filter 1

Sensor 2 Filter 2

Fusion Filter 3 Actuator

Component Parameter Value Component Parameter Value

Sensor 1 WCET 10 Sensor 1 period 420

Sensor 2 WCET 20 Sensor 2 period 420

Filter 1 WCET 10 Filter 2 WCET 20

Fusion Sub1 WCET 30 Fusion Sub2 WCET 30

Filter 3 WCET 30

Actuator WCET 30 Actuator period 840
Actuator Sub1 WCET 30

Fig. 10. Case-study network and parameter values for subscriber/timer-scenario from
[14].

Figure 10. The case-study varies the type of the fusion node and the actuator
node. Both of the nodes can either be subscription-based or timer-based resulting
in four combinations. Each node is formalized as shown in Table 2.

In Table 3 the computed maximum reaction times are shown for both the
simulation-based measurement of Teper et. al. and the model checking-based
computation from UPPAAL. Note that we only consider the under-utilized case
of [14]. For the over-utilized system we have different results, as the solution
from Teper et. al. throws away messages when buffers are overflown.

6 Non-Deterministic Modeling

In this section we extend our semantics where we allow for non-determinism:
we allow for tasks to execute in faster than their worst-case execution time, and
data-generators to only generate data with a certain probability.

13

Case Fusion Actuator Simulation Model-Checking

1 Subscriber Subscriber 540 540
2 Subscriber Timer 1320 1320
3 Timer Subscriber 1470 1470
4 Timer Timer 2490 2490

Table 3. Comparison of simulation and model-checking approaches.

6.1 Non-deterministic execution times

In the base semantics, the host would always execute jobs for the duration of their
WCET. However, in general a jobs execution time t is constraint by BCET ≤
t ≤ WCET , where BCET is the best-case execution time. We modify the host
accordingly, by changing the guard accordingly: x = WCET [job] is replaced
by BCET [job] ≤ x ∧ x ≤ WCET . Note that this require the introduction of a
BCET-constant for each task.3

6.2 Probabilistic Data-Generator

The sensor as presented in Section. 4 would always read a new value each period .
However, we now introduce a probabilistic data-generator which only generates a
value each period with a probability p, i.e., each p with chance prob a new value
is generated and the job scheduled. If prob = 100, the behaviour is identical to a
regular data-generator. The probabilistic data-generator is shown in Figure. 11.
Also, location lchoose and lfire are marked committed.

Monitored Probabilistic Data-generator : A monitored probabilistic data-generator
is identical to a probabilistic data-generator with the difference that the edge
from lfire to lwait is replaced by:

lfire
start monitor !,∅,∅,queue job(id,PAYLOAD)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait}

Intuitively, this means that when a probabilistic monitored data-generator
publishes data, a monitored is requested to be started and a payload value is
queued.

6.3 Statistical Model Checking

When a probabilistic model is chosen, it might no longer be interesting to es-
tablish maximum upper bounds, as in many cases these will be the same as for
the non-probabilistic case (i.e., the worst case). However, the worst case could
be very rare, and thus acceptable. Using statistical model checking (SMC) it
is possible to find an upper bound which is only violated with a certain (low)

3 We assume for convenience that in this report BCET [job] = WCET [job]/2.

14

L = {lwait , lchoose , lfire}, ℓ0 = lwait , C = {x}, A = {new job!,new job?},
V = ∅}, I = {lwait 7→ x ≤ p},

E = {lwait
new job!,x=p,x,∅−−−−−−−−−−−→ lchoose , lwait

new job?,x=p,x,∅−−−−−−−−−−−→ lchoose ,

lchoose
τ,?prob,x,∅−−−−−−−→ lfire , lchoose

τ,?100−prob,x,∅−−−−−−−−−−→ lwait ,

lfire
τ,∅,∅,queue job(id,EMPTY)−−−−−−−−−−−−−−−−−→ lwait}

Fig. 11. Template of a Probabilistic Data-Generator.

chance. For example, the following UPPAAL SMC query yields the probability
that the reaction time is observed to be more than t within u time-steps:

Pr[≤ u] (⋄((monitor .measure ∧monitor .x[last monitor] ≥ t)))

The answer to such a query can be p ≤ 0.0499 with 95 % CI. This means that
the probability that the bound of t is violated within u is less than 5 %, and that
if we would redo the test, the probability that we would yield the same answer
is 95 %. Depending on the application these probabilities could be sufficiently
tight to be acceptable.

‘

7 Related Work

Closest to our work is the TA-based approach, proposed by Halder et. al. [7],
which models and verifies safety and liveness properties of ROS applications,
focusing on the communication between nodes, and considering queue sizes and
internal timeouts. While the work is carried out at a lower level of abstraction
than ours, the authors consider only a publish-subscribe scenario and do not
propose methods to enable both end-to-end reaction time verification in deter-
ministic settings, as well as stochastic analysis of reaction time under probabilis-
tic loads. Dust et. al. [5] propose a pattern-based modeling and UPPAAL-based
verification of latencies and buffer overflow in distributed robotic systems, in-
cluding all versions of the single-threaded executor in ROS 2, yet the authors
do not consider processing chains in their verification, focusing on the node
behavior only. Lin et. al. [10] propose formal models for the real-time publish-
subscribe protocol using UPPAAL and analyze the protocol’s behavior by sim-
ulation in Simulink/Stateflow, however the authors do not validate the formal
models against the simulation results, as we show in this report.

The Coq-based verification of ROS implementations has been the focus of
several works, out of which that of Cowley and Taylor verifies robotic behaviour
using linear logic embedding in Coq [4], and that of Anand and Knepper proposes
ROSCoq, a framework for developing certified Coq programs for robots, where
subsystems communicate using messages [2]. Neither of these works focuses on
verifying end-to-end reaction time of job chains, as they analyze implementation
levels instead.

15

8 Conclusions and Future Work

In this technical report we present a formalization of ROS semantics in UPPAAL
timed automata. We began with a deterministic template-based scheme vali-
dated against previous work. Afterwards we extended it with non-determinism by
allowing variable run-times as well as probabilistic data generation. We demon-
strate how the UPPAAL tool can be used with regular and statistical model
checking to establish maximum upper bounds of the formalized ROS systems.

Acknowledgements. We acknowledge the support of the Swedish Knowledge
Foundation via the synergy ACICS – Assured Cloud Platforms for Industrial
Cyber-Physical Systems, grant nr. 20190038, and via the profile DPAC - De-
pendable Platform for Autonomous Systems and Control, grant nr. 20150022.

References

1. Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,
Computer Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

2. Abhishek Anand and Ross Knepper. Roscoq: Robots powered by constructive reals.
In Interactive Theorem Proving, pages 34–50, Cham, 2015. Springer International
Publishing.

3. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

4. Anthony Cowley and Camillo J. Taylor. Towards language-based verification of
robot behaviors. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4776–4782, 2011.

5. Lukas Dust, Rong Gu, Cristina Seceleanu, Mikael Ekström, and Saad Mubeen.
Pattern-based verification of ros 2 nodes using uppaal. In Formal Methods for
Industrial Critical Systems (FMICS), pages 57–75. Springer Cham, 2023.

6. Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, and Petter Falkman.
A ros2 based communication architecture for control in collaborative and intelligent
automation systems. Procedia Manufacturing, 38:349–357, 2019. 29th International
Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2019),
June 24-28, 2019, Limerick, Ireland.

7. Raju Halder, José Proença, Nuno Macedo, and André Santos. Formal verification
of ros-based robotic applications using timed-automata. In 2017 IEEE/ACM 5th
International FME Workshop on Formal Methods in Software Engineering (For-
maliSE), pages 44–50, 2017.

8. Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Interna-
tional journal on software tools for technology transfer, 1(1-2):134–152, 1997.

9. Axel Legay, Anna Lukina, Louis Marie Traonouez, Junxing Yang, Scott A. Smolka,
and Radu Grosu. Statistical model checking. In Bernhard Steffen and Gerhard
Woeginger, editors, Computing and Software Science: State of the Art and Per-
spectives, pages 478–504. Springer International Publishing, Cham, 2019.

10. Qian-Qian Lin, Shu-Ling Wang, Bo-Hua Zhan, and Bin Gu. Modelling and Verifi-
cation of Real-Time Publish and Subscribe Protocol Using Uppaal and Simulink/S-
tateflow. Journal of Computer Science and Technology, 35:1324–1342, 2020.

16

11. Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66), 2022.

12. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

13. Michael Reke, Daniel Peter, Joschua Schulte-Tigges, Stefan Schiffer, Alexander
Ferrein, Thomas Walter, and Dominik Matheis. A self-driving car architecture in
ros2. In 2020 Int. SAUPEC/RobMech/PRASA Conference, pages 1–6, 2020.

14. Harun Teper, Mario Günzel, Niklas Ueter, Georg von der Brüggen, and Jian-Jia
Chen. End-to-end timing analysis in ros2. In 2022 IEEE Real-Time Systems
Symposium (RTSS), pages 53–65, 2022.

17

A UPPAAL Functions

1 bool wa i t i n g j ob s () {
2 i n t i ;
3 f o r (i =0; i<C; i++) {
4 i f (QUEUESCOUNT[i] > 0) re turn true ;
5 }
6 re turn f a l s e ;
7 }
8

9 void queue job (i n t task , i n t data) {
10 QUEUES[task] [QUEUESCOUNT[task]] = data ;
11 QUEUESCOUNT[task] += 1 ;
12 }
13

14

15 // Right−most job f i r s t , i . e . , g r e a t e s t p r i o r i t y f i r s t
16 void schedu le () {
17 i n t i , j , tmp id , tmp data ;
18

19 // Sort f i r s t by id
20 f o r (i =0; i<HOST JOBS COUNT; i++) {
21 f o r (j =0; j<HOST JOBS COUNT−1; j++) {
22 i f (PRIO[HOST JOBS[j] [0]] > PRIO[HOST JOBS[j

+ 1] [0]]) {
23 tmp id = HOST JOBS[j] [0] ;
24 tmp data = HOST JOBS[j] [1] ;
25 HOST JOBS[j] [0] = HOST JOBS[j + 1] [0] ;
26 HOST JOBS[j] [1] = HOST JOBS[j + 1] [1] ;
27 HOST JOBS[j +1] [0] = tmp id ;
28 HOST JOBS[j +1] [1] = tmp data ;
29 }
30 }
31 }
32 }
33

34 i n t dequeue (i n t task) {
35 i n t i , tmp ;
36 a s s e r t (QUEUESCOUNT[task] > 0) ;
37 tmp = QUEUES[task] [0] ;
38 f o r (i =0; i<BUF SIZE−1; i++)
39 QUEUES[task] [i] = QUEUES[task] [i +1] ;
40 QUEUES[task] [BUF SIZE−1] = 0 ;
41 QUEUESCOUNT[task] −= 1 ;
42 re turn tmp ;
43 }
44

45 void t ak e j ob s () {
46 i n t i , j ;

18

47

48 a s s e r t (HOST JOBS COUNT == 0) ; // Host jobs should be
zero here

49 f o r (i =0; i<C; i++) {
50 i f (QUEUESCOUNT[i] > 0) {
51 j = dequeue (i) ;
52 HOST JOBS[HOST JOBS COUNT] [0] = i ;
53 HOST JOBS[HOST JOBS COUNT] [1] = j ;
54 HOST JOBS COUNT += 1 ;
55 }
56 }
57 schedu le () ;
58 }
59

60 i n t n ex t j ob i dx () {
61 HOST JOBS COUNT−−;
62 re turn HOST JOBS COUNT;
63 }
64

65 // I f va lue i s negat ive , we don ’ t p ick from queue , but from
node

66 i n t ge t data (i n t va lue) {
67 i f (va lue < 0) {
68 re turn value ;
69 } e l s e {
70 re turn DATA[value] ; // Do we need to remove read

va lue s ?
71 }
72 }
73

74 void as s i gn mon i to r () {
75 i f (lm == −1) {
76 lm = nm;
77 }
78 moni to r s ta tus [nm] = MONITOR SENT;
79 monitor payload [nm] = PAYLOAD;
80 PAYLOAD = PAYLOAD − 1 ;
81 i f (PAYLOAD < MIN PAYLOADS) {
82 PAYLOAD = FIRST PAYLOAD;
83 }
84 nm = (nm + 1) % MONITORS;
85 }
86

87

88

89 // When f r e e i n g up , we f r e e up a l l monitors i n c l . those whose
data got thrown away .

90 void f r e e mon i t o r s () {
91 i n t i ;

19

92 // We could get an old value , in that case i t i s not in
the monitored payloads

93 bool o l d va lu e = true ;
94 f o r (i = 0 ; i < MONITORS; i++) {
95 i f (monitor payload [i] == pd)
96 o ld va lu e = f a l s e ;
97 }
98

99 // I f i t i s an o ld value , we can j u s t i gno r e i t as i t has
a l r eady been seen once

100 i f (o l d va lu e)
101 re turn ;
102

103 // Free p r ev i ou s l y used monitors
104 whi le (monitor payload [lm] != pd) {
105 moni to r s ta tus [lm] = MONITOR FREE;
106 monitor payload [lm] = EMPTY;
107 lm = (lm + 1) % MONITORS;
108 }
109

110 // Also f r e e the one j u s t handled .
111 moni to r s ta tus [lm] = MONITOR FREE;
112 LAST PAYLOAD = monitor payload [lm] ;
113 monitor payload [lm] = EMPTY;
114 lm = (lm + 1) % MONITORS;
115 }

20

B Graphical Representation of UPPAAL TA

Fig. 12. UPPAAL figure of data-generator.

Fig. 13. UPPAAL figure of monitored data-generator.

Fig. 14. UPPAAL graphical representation of subscriber.

21

Fig. 15. UPPAAL graphical representation of Monitor.

Fig. 16. Template for timer.

22

Fig. 17. Template for host.

Fig. 18. Template for probabilistic data-generator.

23

Fig. 19. Template for monitored probabilistic data-generator.

24

	Modeling and Verification of ROS Systems Using Stochastic Timed Automata

