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Abstract— In this work, we address the problem of balancing
an autonomous bicycle using direct data-driven control. Firstly,
we demonstrate that a direct implementation of data-driven
approaches may not guarantee reliable performance, and is
highly dependent on how the parameters are selected. To
address this issue, we make the reasonable assumption that
we have access to some inaccurate information about the
system. We use this inaccurate information to design a feedback
linearization, based on a simplified point mass model of the
bicycle, which does not accurately represent the dynamics of
the system. Next, we suggest an inner and outer-loop control
strategy. In the inner loop, we implement the aforementioned
feedback linearization controller. Subsequently, in the outer
loop, we consider the combination of the autonomous bicycle
and the feedback controller as a black box, and we design
a direct data-driven controller from acquired data. We use a
SolidWorks model of a real autonomous bicycle to evaluate the
performance of our proposed control approach and to compare
it with the direct data-driven controller design derived from
acquired data of the bicycle without feedback linearization. The
results show that our proposed strategy significantly improves
the performance and makes the data-driven control approach
more reliable across a broader range of parameter choices
compared to a data-driven controller designed based on data
from the system without feedback linearization. Finally, we
show that introducing an additional integral-like state further
enhances the system’s performance.

I. INTRODUCTION

The seminal study by Willems et al. [1] revealed a
paradigm-shifting concept that has immense potential for
revolutionizing control system design. The study demon-
strated that a finite set of system trajectories, generated
through persistently exciting input, has the capability to rep-
resent the complete behavior of a controllable linear system.
This finding implies that it is possible to describe controllable
time-invariant linear systems solely based on finite historical
data, eliminating the need for traditional state-space or
transfer function representations. Such a breakthrough has
sparked great interest within the control system community,
as it offers a promising avenue to streamline control system
design by potentially circumventing the costly and time-
consuming step of system identification or complex first
principle modeling. For instance, [2]–[4] propose predictive
data-driven approaches, while [5]–[7] focus on optimal data-
driven control methods and [8]–[10] present robust and
nonlinear control design.

However, the Fundamental Lemma mentioned in [1],
which serves as the basis for data-driven approaches, only
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Fig. 1. Integrated squared error (ISE) for an autonomous bicycle tracking
a reference lean angle using the DPT controller in simulations with varying
parameters. ISE values above 1 are considered unstable and are truncated.

applies to linear systems, while, in practical scenarios, most
systems exhibit inherent nonlinearity. Nonlinear data-driven
control approaches, introduced up to date, rely on techniques
such as linearization [8], [9] or Koopman operators shift-
ing [10], [11]. As a result, the performance of these ap-
proaches in practical implementations relies on the accuracy
of the linear representation of the nonlinear system.

The case study in this article is an autonomous bicycle. Bi-
cycle dynamics are nonlinear and they exhibit an unstable be-
havior at low velocities, making it a good illustration of many
interesting issues in control design. Various model-based
methods have been proposed for balancing an autonomous
bicycle, including Sliding Mode Controller (SMC) [12],
state feedback controller [13], feedback linearization con-
troller [14], and by combining feedback linearization with
LQR and LQI controllers [15], to name a few. In this paper,
we investigate how to design a data-driven control approach
for balancing a bicycle.

Fig. 1 shows the results obtained by directly applying
to the bicycle the data-driven control method for nonlinear
systems proposed by De Persis and Tesi [8], referred to as
DPT1 throughout this paper. The controller aims to track a
reference lean angle by actuating the steering velocity. The
figure shows the Integrated Squared Error (ISE)2 between
the reference and the measured lean angle, as a function
of the number of samples, T , used to design the DPT
controller. Moreover, the figure shows how the results change
as a function of the design parameter γ required for the
DPT controller. This design parameter defines the entity
of the allowable disturbance, which includes the entity of
the system’s disturbance and of the mismatch between the
nonlinear and linearized system—more details in [8]. The
historical input and output data were sampled at a rate of

1The name comes from the initial of the authors of [8].
2Note that in the figure the ISE is clamped to 1 and marked with when

the resulting design is unstable.



100Hz and were obtained by exciting the system input with
u(t) = 36

π cos((9−0.4t)t) deg/s while the bicycle was riding
at a constant velocity of 8km/h.

As can be observed from the initial results depicted
in Fig. 1, the performance of the controller depends in a
nontrivial way on the sampling size T , and the parameter
γ, and it seems difficult to draw any conclusions on how
these parameters should be chosen for reliable performance.
However, in most practical systems, valuable information
about some of the system’s dynamics or parameters is
available, which could be exploited in the control design.
This information might not be sufficiently precise or reliable
for designing a controller based solely on it, but it can still
be precise enough to mitigate the nonlinear behaviors of
a practical system and make the adoption of data-driven
approaches smoother.

A. Statement of Contributions

The main contributions of this article are as follows:
• We apply the DPT control for nonlinear systems in-

troduced in [8] to an accurately mechanically modeled
autonomous bicycle designed in SolidWorks.

• We demonstrate that the minimum number of acquired
samples required to design data-driven controllers, as
determined in idealized studies, may not be sufficient in
practical implementations when dealing with nonlinear
unstable systems.

• We enhance the performance of data-driven control for
nonlinear systems by incorporating prior information
about the system and adding an inaccurate feedback
linearization controller to the control design.

• We show that introducing an additional integral-like
state can further enhance the system’s performance.

B. Organization

The rest of the paper is structured as follows, first, in
Section II the control design and fundamental concepts of
data-driven control are presented. The control setting and
the simulation setup are discussed in Section III followed by
the results in Section IV. Finally, concluding remarks and
future work are given in Section V.

C. Notation

Throughout this paper, Z, N, and R represent the sets
of integers, positive integers, and real numbers, respectively.
Unless clearly specified otherwise, scalars are denoted as x,
while x, x, and X denote a (column) vector, a signal, and a
matrix, respectively. Given a signal s : Z → Rd, of size d,
we denote the trimmed s within the time interval [k, k+T ],
where T ∈ N and k ∈ Z, by s{k:k+T}, i.e.

s{k:k+T} ≜ {s(k), . . . , s(k + T )}.

Furthermore, we denote the matrix that contains T successive
samples of s starts from k by S[k,T ], i.e.

S[k,T ] ≜
[
s(k), . . . , s(T + k − 1)

]
.

Furthermore, diag([x1, . . . , xn]) denotes a diagonal matrix
with the elements x1, . . . , xn on its diagonal. Finally, tr(X),
rank(X), and X′ denote the trace, rank, and transpose of
matrix X, respectively.

II. DIRECT DATA-DRIVEN CONTROL

This section introduces some preliminaries for designing
controllers based solely on the historical input and output
data of a system. Next, the DPT controller [8] is presented.

Consider a discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), k ∈ N, (1)

where x ∈ Rn and u ∈ Rm represent the state and input
vectors, respectively. We assume that T historical samples
of u are accessible, where T ∈ N. In other words, the signal
u{0:T−1} is known. We recall the fundamental property
introduced by Willems et al. [1] that establishes a necessary
condition for the T -long historical data of x(k) and u(k) to
effectively represent the dynamical system described by (1).
Let us begin by defining the concept of persistently exciting
inputs.

Definition 1 ( [1]): The signal u{0:T−1} ∈ Rm is said to
be persistently exciting of order l if

U0 =


u(0) u(1) · · · u(T − l)
u(1) u(2) · · · u(T − l + 1)

...
...

. . .
...

u(l − 1) u(l) · · · u(T − 1)

 ,

has full rank ml.
■

Definition 1 implies that signal u must be sufficiently long,
namely

T ≥ (m+ 1)l − 1, (2)

to be persistently exciting. The following lemmas play a key
role in the data-driven approaches used in this paper.

Lemma 1 ( [1]): If the system (1) is controllable and
u{0:T−1} is persistently exciting of order n+ 1, then

rank(W0) = n+m,

where

W0 :=

[
U[0,T ]

X[0,T ]

]
.

■
In [8], De Persis and Tesi transformed the state space

representation in (1) into a form that exclusively relies on
historical data.

Lemma 2 ( [8]): If u{0:T−1} is persistently exciting, then
the system (1) with a state feedback u = Kx can be
represented by:

x(k + 1) = X[1,T ]GKx(k), (3)

where GK is a T × n matrix that satisfies[
K
In

]
= W0GK, (4)



and as a result

u(k) = U[0,T ]GKx(k). (5)

■
From (3) we notice that in the closed-loop discrete system

(1) under state-feedback control u = Kx it holds,

A+BK = X[1,T ]GK. (6)

Thus, one can find an appropriate GK so that X[1,T ]GK

satisfies the classical Lyapunov stability condition. In [8], De
Persis and Tesi proved that if rank(W0) = n +m, then K
defined by

K = U[0,T ]Q
(
X[0,T ]Q

)−1
, (7)

asymptotically stabilizes (1) by any matrix Q that satisfies[
X[0,T ]Q X[1,T ]Q
Q′X′

[1,T ] X[0,T ]Q

]
≻ 0. (8)

A. DPT Control for Nonlinear Systems
Based on the results of the data-driven state-feedback

controller in (7), the authors in [8] investigated the conditions
under which the linearization around the equilibrium point
can be implemented to drive a data-driven approach for
controlling smooth nonlinear systems. Consider a nonlinear
system defined by

x(k + 1) = f(x(k),u(k)), (9)

suppose that f is continuous and differentiable and (x̄, ū),
which serves as the target for moving the system’s states
towards, is known. By linearization around this equilibrium
point, one can rewrite (9) as

∆x(k + 1) = A∆x(k) +B∆u(k) + d(k), (10)

where ∆x(k) := x(k)− x̄, ∆u(k) := u(k)− ū and

A := ∂f
∂x

∣∣∣
(x,u)=(x̄,ū)

, B := ∂f
∂u

∣∣∣
(x,u)=(x̄,ū)

. (11)

In [8], it is proved that if the matrices[
∆U[0,T ]

∆X[0,T ]

]
, ∆X[1,T ],

have full rank and d(k) is upper bounded such that there
exists γ > 0 that satisfies

D[0,T ]D
′
[0,T ] ⪯ γ∆X[1,T ]∆X′

[1,T ], (12)

then the state-feedback K = ∆U[0,T ]Q(∆X[0,T ]Q)−1,
which has similar shape to (7), locally stabilizes the system
by any (Q, µ) that satisfies[

∆X[0,T ]Q− µ∆X[1,T ]∆X′
[1,T ] ∆X[1,T ]Q

Q′∆X′
[1,T ] ∆X[0,T ]Q

]
≻ 0,[

IT Q
Q′ ∆X[0,T ]Q

]
≻ 0, µ2

(4+2µ) > γ.

(13)
Remark 1: In DPT, it is assumed that the exact dynamical

system model is unknown. Consequently, the precise value
of D[0,T ] in (12) remains unknown. Therefore, determining
the lower bound of γ that satisfies (13) through mathematical
means is not feasible. As a result, the tuning of γ in DPT
must be conducted experimentally.

III. AUTONOMOUS BICYCLE CONTROL DESIGN

The results depicted in Fig. 1 show that the DPT con-
troller in (13) may not always deliver reliable performance.
Under certain parameter combinations, the system becomes
unstable. Furthermore, the inherent instability of a bicycle
at low velocities complicates the task of sampling input and
output data. For example, when the bicycle leans to the left
and is steered to the right, it quickly falls over. In contrast,
steering to the left eventually stabilizes it and brings it back
to an upright position. These characteristics render some
input signals infeasible for acquiring data.

In this section, we make a reasonable assumption that
some imprecise and simplified information about the sys-
tem is available. We address both of the aforementioned
challenges by implementing output feedback linearization,
using the available inaccurate information to reduce the
nonlinear behavior of the system and push it toward linearity.
Subsequently, to improve the closed-loop performance of the
system compared to relying solely on feedback linearization
or data-driven control, we design a data-driven controller
for the system composed of the autonomous bicycle and
the feedback linearization. Given that the nonlinear data-
driven control approaches introduced up to date rely on tech-
niques such as linearization [8], [9] or Koopman operators
shifting [10], [11], this modification can offer performance
improvements by reducing the nonlinearities of the system.
Additionally, this section provides details on the multibody
simulation of the bicycle and an explanation of how the data
was collected.

A. Control Design

Consider the following point mass model of a bicycle [16]:

h2φ̈(t)m = gm
(
h sin

(
φ(t)

)
+

ca

b
sin(λ)σ(t) cos

(
φ(t)

))
−(

1− h

b
σ(t) sin

(
φ(t)

)) h

b
σ(t) cos

(
φ(t)

)
v2(t)m

− ahm

b
cos

(
φ(t)

)(
σ(t)v̇(t)− v(t)ωσ(t)

)
,

(14)
where h and a are the vertical and horizontal distances
between the center of gravity and the contact point between
the rear wheel and the ground, denoted P1 in Fig. 2. Gravity,
wheelbase, mass, trail, and head angle are denoted g, b,
m, c, and λ respectively. The curvature of the bicycle is
represented by

σ(t) =
tan(δ(t)) sin(λ)

cos(φ(t))
, (15)

where δ and φ represent the steering and lean angles re-
spectively, and ωσ(t) = σ̇(t) ≈ δ̇(t) sin(λ). By assuming a
constant forward velocity (v̇ = 0) and a vertical steering axis
(λ = 90, c = 0), (14) can be simplified as:

φ̈(t) =
g

h
sin

(
φ(t)

)
+

a

bh
cos

(
φ(t)

)
vδ̇(t)−(

1

bh
− 1

b2
tan

(
δ(t)

)
tan

(
φ(t)

))
tan

(
δ(t)

)
v2,

(16)



with x(t) = [φ(t), φ̇(t), δ(t)]′ and u(t) = δ̇(t). Although
(16) is not full-state linearizable, it can be partially linearized
by output feedback linearization.

Let y(t) = φ(t), ẏ(t) = φ̇(t), and let the desired output
and its time derivatives be denoted yd(t), ẏd(t), and ÿd(t) .

If we choose u =
1

p(x)
(w − f(x)), where

f(x) = −
(

1

bh
− 1

b2
tan

(
x3

)
tan

(
x1

))
tan

(
x3

)
v2,

+
g

h
sin

(
x1

)
p(x) =

a

bh
cos

(
x1

)
v,

w = ÿd(t) + k1 (ẏd(t)− ẏ(t)) + k2 (yd(t)− y(t)) .
(17)

Then, by properly selecting k1 and k2, the nonlinearities of
the system are partially canceled.

Remark 2: It is worth highlighting that the objective of
feedback linearization in (17) is to push the nonlinear dy-
namics of the system toward linearity. The stability of the
overall system will be achieved by the outer loop data-driven
controller. Therefore, there is no necessity to investigate the
stability of the internal dynamic or to select k1 and k2 in
a way that stabilizes the observable dynamics. However,
choosing k1 > 0 and k2 > 0 to satisfy the Routh–Hurwitz
stability criterion of the linearized system makes the sam-
pling phase smoother.

Since (16) does not perfectly represent the actual system,
applying (17) results in the presence of nonlinearities in
the data sampled from the multibody model of the bicycle.
Furthermore, perfect knowledge of the system and all the sys-
tem’s parameters is rarely available in practical applications.
Therefore, we consider the mismatches, as listed in Table I,
between the parameters used in the multibody model and the
control law. Throughout the paper, we choose the feedback
gains in (17) to k1 = 10 and k2 = 10. Optimization of these
parameters could improve the results, however, it is out of
the scope of this paper.

As depicted in Fig. 3, we propose the implementation
of feedback linearization, introduced in (17), as the inner
control loop responsible for mitigating the nonlinear behavior
of the system. We consider our autonomous bicycle and
the feedback linearization controller, depicted by the gray
rectangle in the figure, as a new black box, for which we aim
to design a data-driven controller. During the first T samples,

TABLE I
ACTUAL AND ESTIMATED PARAMETERS OF THE INSTRUMENTED

BICYCLE.

Geometric parameters

Parameter Symbol Unit Real value Estimated value
CoG w.r.t. P1 (x) a m 0.473 0.550
CoG w.r.t. P1 (z) h m 0.515 0.700
Wheelbase b m 1.080 1.200

1

2

3

P1

Fig. 2. Instrumented bicycle.

we position the switch in (a) to enable the transmission
of the persistently exciting signal u{0:T−1} to the system.
Subsequently, we position the switch in (b) and apply the
designed DPT state-feedback controller u(k) = Kx(k)
using (13). The feedback linearization control in the inner
loop reduces the nonlinearities of the autonomous bicycle,
bringing the overall system closer to linearity. Consequently,
we anticipate that data-driven results should fit better, leading
to improved outcomes compared to the results presented in
Fig. 1.

B. Simulation setup

To evaluate our proposed control setting, we employ a
multi-body simulation model of an instrumented bicycle [17].
The instrumented bicycle is initially designed using Solid-
Works and subsequently imported into Mathworks Simscape.
Two revolute joints connect the rear wheel and the front
wheel to the bicycle’s frame and fork, respectively, as de-
picted by 1 and 2 in Fig. 2. Additionally, a third revolute
joint connects the fork to the frame, highlighted as 3 in the
figure, and is actuated using the proposed controller.

To model the steering dynamics, including the steering
motor, we employ a step response matching procedure [17].
The resulting transfer function, from the input, u(t), to the
steering rate, δ̇(t), is

H(s) =
100 + s

100
, (18)

and is incorporated in series with the bicycle model, as illus-
trated in Fig. 3. The gray rectangle in the figure illustrates
the system that is treated as a black box when sampling
data between the points u(k) and x(k). The switch in the
figure represents the setup of the system when we sample
data (a) and when the DPT control stabilizes the system
in a feedback loop (b). The normal force between the tires
and the ground is modeled with a stiffness of 106N/m, a
damping coefficient of 103N/(m/s), and a transition region
width of 10−4m. In addition, we utilize a smooth stick-
slip method to model the friction between the tires and the
ground. This method incorporates static and dynamic friction
parameters of 0.9 and 0.75, respectively. The critical velocity,
which determines the friction parameter to consider, is set to
10−3m/s.
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Fig. 3. Block diagram of the control system.

Let φ(k) and δ(k) denote the bicycle lean and steer angles
at time step k, respectively. u(k) represents the control input
and is utilized to stabilize the bicycle by steering in the
direction of the lean angle. The simulation is initialized with
zero steer and lean angle, i.e., δ(0) = 0 and φ(0) = 0, along
with a forward velocity of 8km/h. It is worth noting that
this velocity is below the so-called self-stabilization speed
of the bicycle [18]. As a result, without proper actuation,
the bicycle would inevitably fall over.

C. Data collection

We explore two scenarios, related to the states that we
sampling data from in our study,

• Scenario 1: x(k) = [φe(k), φ̇e(k), δe(k)]
′,

• Scenario 2: x(k) = [φe(k), φ̇e(k), δe(k),
∑k

i=0 φe(i)]
′,

where φe(k), φ̇e(k) and δe(k) denote the difference between
the lean angle, lean rate, and steering angle, with the desired
values, respectively, i.e. φe(k) = φr(k)−φ(k). Furthermore,∑k

i=0 φe(i) is the sum of the lean angle error. In the
first scenario, as proposed for designing the model-based
LQR controller in [17], we assume that the state vector
consists of [φe(k), φ̇e(k), δe(k)]

′. It is important to note that
we implicitly assume the order of the autonomous bicycle
system to be 3 in this scenario. The exact order of the
system is a crucial parameter, typically assumed to be known
in published articles in the field of data-driven control,
as authors often start their simulations based on a known
mathematical model. However, practical systems generally
have more actual states than their simplified mathematical
models account for. These neglected states, along with dis-
turbances in (9), which include both nonlinearities and actual
system disturbances, can degrade the performance of the
control system and lead to steady-state errors. To address this
undesired behavior, we introduce an additional state, denoted
as

∑k
i=0 φe(i), in the second scenario. This approach draws

inspiration from linear control theory, where proportional
feedback of the integral of the error is commonly employed
to compensate for steady-state errors [19].

Data were sampled at a rate of 100Hz from experiments
conducted at a constant velocity of 8 km/h. Two datasets
were collected, with the first dataset sampled from the un-
stable system without feedback linearization. In this system,
the input signal was a sinusoidal function, represented as
u{0:T−1} = 36

π cos((9 − 0.4t)t) deg/s. This choice was
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motivated by the highly unstable nature of a bicycle at low
velocities, making it necessary to gather sufficient data to
capture the primary dynamics of the bicycle.

In the second dataset, when the system is initially stabi-
lized using feedback linearization, the restrictions on the in-
put signal can be neglected. Instead, an input signal u{0:T−1}
sampled from a uniform distribution U(−1.5, 1.5) rad/s is
utilized. For both datasets, we considered 120 samples, as
shown in Fig. 4, for control design. It is important to note
that both of our proposed data collection settings ensure that
the input signal remains persistently exciting, satisfying the
condition in (2). The dataset from the unstable system was
used to design the DPT control, whilst the second dataset,
from the stable system, was used to design the Feedback
Linearization DPT (FL+DPT) control.

IV. NUMERICAL RESULTS

In the simulation, the bicycle maintains a constant forward
velocity of 8 km/h and tracks a reference lean angle. The
reference lean angle, represented by a black dashed line in
Fig. 5, consists of two sections. The first section features
a sinusoidal pattern, φr = 36

π sin(t) deg/s, followed by a
section with a constant lean angle of zero degrees. Both φ̇
and δ track a reference of zero.

To solve (13) for various combinations of γ and T , we
employed CVX [20]. In Fig. 5, a comparison is presented
between the two different controllers and the two scenar-
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ios. The performance displayed in Fig. 5 is based on 120
historical samples from Scenario 1 to design DPT and 120
historical samples from Scenario 2 to design FL+DPT3. For
both controllers, we used γ = 10−15. Table II reports the
corresponding feedback gain matrices, defined by:

Scenario 1: K = [kφe
, kφ̇, kδe ],

Scenario 2: K = [kφe , kφ̇, kδe , k
∑

φe
].

(19)

TABLE II
RESULTING GAINS FOR THE DIFFERENT CONTROLLERS WITH

γ = 10−15 AND T = 120.

K

kφe kφ̇e kδe k∑φe

DPT
Scenario 1 -43.8419 -1.4154 -3.7688 —
Scenario 2 -45.9845 -2.4332 -2.9955 -0.2471

FL+DPT
Scenario 1 -140.0391 -10.2119 8.2020 —
Scenario 2 -165.1003 -11.6436 9.9205 -4.4944

To investigate the impact of γ in (13) and T , an extensive
simulation study was conducted for both Scenarios 1 and 2.
The simulations encompassed five distinct values for γ in
(13). For each scenario, and each value of γ, 10 different
sample sets, T1, T2, . . . , T10, was considered where each
sample set increased by 12 samples, i.e., T1 = 12, T2 =
24, . . . , T10 = 120. The comparison of results, illustrated in
Fig. 6, focused on evaluating the Integrated Squared Error
(ISE) between the lean angle and the reference lean angle,

3https://youtu.be/z6_i4nLCoXk

i.e.

ISE(k) =
k∑

i=0

(φ(i)− φr(i))
2. (20)

ISE values larger than the set threshold of 1, are truncated
to 1 and marked with an in Fig. 6. This indicates that the
controller was not able to stabilize the bicycle or that the
LMI in (13) were unfeasible, resulting in no feedback gains.
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i=0 φe(i), is added to the

control design.

A. Discussion

The simulation results presented in Fig. 5 demonstrate
the effectiveness of both DPT and FL+DPT controllers.
Remarkably, these controllers, relying solely on 120 samples
of input and output data, not only balance an autonomous
bicycle but also successfully track a nonzero reference lean
angle with small deviations. The effectiveness of the pro-
posed method of adding feedback linearization is clear when
comparing the results in Fig. 1 with Fig. 6. By adding
feedback linearization, based on a simplified model with
errors in the parametric estimation, the performance in terms
of the ISE is improved for almost all combinations of γ
and T . Moreover, Fig. 6, for T ≥ 48 the performance
variations between different values of γ are very small in
both scenarios, thus, increasing the reliability compared to
the results in Fig. 1, where the DPT controller was design
from data acquired from the unstable system. From Fig. 6 it
is also evident that the results from the initially stable system
using feedback linearization, highlighted by the yellow line
in the figure, are improved by adding DPT for T ≥ 48.
Furthermore, the results in Figs. 5 and 6 clearly show that

https://youtu.be/z6_i4nLCoXk


by adding a fourth state,
∑k

i=0 φe(i), the performance further
improves. In practical applications, finding the exact order of
a system can be challenging [21]. As a result, in practice, we
typically measure or estimate a reduced-dimensional vector
of states and implicitly assume that the system’s order is
limited to them. However, it is clear from the presented
results that it can be sensible to modify the number of states.

Moreover, Lemma 1 along with (2) implies that only 7
samples in Scenario 1 and 9 samples in Scenario 2 might
be sufficient to obtain a stabilizing controller. However, the
outcomes illustrated in Figs. 1 and 6 reveal that designing
a data-driven feedback controller based on a limited set of
historical samples can potentially compromise the stability
of practical systems. As a result, it is advisable to refrain
from relying solely on a small subset of historical samples
that may not fully capture the nonlinear characteristics and
complexities of a system.

V. CONCLUSION

In this paper, we utilize feedback linearization based on
an imprecise and simplified point mass model of a bicycle.
The primary objective is to mitigate nonlinearities while
simultaneously achieving system stability, which simplifies
the process of acquiring input/output data. Subsequently, we
regard the bicycle, initially stabilized by feedback lineariza-
tion, as a new system for which we have limited information.
We treat it as a black box, and our goal is to develop
a nonlinear direct data-driven controller for its regulation.
To evaluate the performance of the approach, numerous
simulations are conducted using a realistic Solidworks model
of an autonomous bicycle. The results indicate that our
proposed method enhances overall outcomes and makes the
control approach more reliable across a broader spectrum of
parameter choices.

Future research directions include conducting experimen-
tal evaluations of the proposed approaches on the instru-
mented bicycle. Additionally, the results presented in this
paper can be extended by exploring the path-tracking capa-
bilities of an autonomous bicycle using data-driven control.
Moreover, recognizing the inevitability of the bicycle en-
countering various working conditions during its operation
(e.g., different wind speeds, road conditions, etc.), and ex-
ploring dynamical data-driven designs that allow for online
updating of the controller are beneficial.
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