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Abstract—Machine Learning (ML) systems require representa-
tive and diverse datasets to accurately learn the objective task. In
supervised learning data needs to be accurately annotated, which
is an expensive and error-prone process. We present a method
for generating synthetic data tailored to the use-case achieving
excellent performance in a real-world usecase. We provide a
method for producing automatically annotated synthetic visual
data of multirotor unmanned aerial vehicles (UAV) and other
airborne objects in a simulated environment with a high degree
of scene diversity, from collection of 3D models to generation of
annotated synthetic datasets (synthsets). In our data generation
framework SynRender we introduce a novel method of using
Neural Radiance Field (NeRF) methods to capture photo-realistic
high-fidelity 3D-models of multirotor UAVs in order to automate
data generation for an object detection task in diverse environ-
ments. By producing data tailored to the real-world setting, our
NeRF-derived results show an advantage over generic 3D asset
collection-based methods where the domain gap between the
simulated and real-world is unacceptably large. In the spirit of
keeping research open and accessible to the research community
we release our dataset VISER DroneDiversity used in this project,
where visual images, annotated boxes, instance segmentation and
depth maps are all generated for each image sample.

Index Terms—datasets, neural networks, synthetic data gener-
ation, automatic annotation, dataset generation

I. INTRODUCTION

There are considerable changes going on in aviation
airspace management, where U-space is a framework de-
veloped by the European Union Aviation Safety Agency
(EASA) and supported by the Single European Sky ATM
Research (SESAR) Joint Undertaking, designed to facilitate
integration of UAVs safely into the airspace. It encompasses
a set of services and procedures aimed at managing UAV
traffic in a given airspace, especially at low altitudes. This
framework is essential for enabling complex drone operations
beyond visual line of sight (BVLOS) by providing a stan-
dardized system for airspace access, UAV localization, data
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Fig. 1. Sample of images from dataset Viser DroneDiversity. Top left: RGB
image with two annotated objects. Top right: Depth map (exaggerated for
illustration purposes). Bottom left: Instance segmentation image. Bottom right:
Background image where objects have been removed. Best viewed in colour.

exchange, and collision avoidance. Globally, the International
Civil Aviation Organization (ICAO), a specialized agency of
the United Nations, also plays a significant role in setting
international standards and recommended practices for civil
aviation, including integrating unmanned aerial system (UAS)
into the global airspace. Surveillance systems for this cause,
specifically real-time tracking of UAVs in confined airspace,
are important parts of this concept. Here, our project Visual
Inspection of airspace for air traffic safety and SEcuRity
(VISER) aims at providing a scalable solution for a networked
system of visual cameras for monitoring a particular area of
interest (e.g. critical infrastructure) where the objectives of the
system are to determine the position in 3D space of potential



threats and classify them in type of UAV or dismiss them
as non-invasive naturally occurring objects (e.g. birds). These
findings will be handed to a U-Space Service Provider (USSP)
for further processing and decision-making.

In this paper, we tackle the problem of visual surveillance
of critical infrastructure by detecting UAVs, e.g. multirotor
drones in a specific airspace. The object detection problem is
not new, however, we are addressing the problem using only
minimal amounts of annotated real captured data, and these
are used only for test purposes. The way we approach this
problem is by introducing a digital simulation world in which
we place the objects we wish to detect. Programmatic control
over a wide range of environment aspects and parameters
enables controlled data generation for our object detection
task. Automating the data generation facilitates the growth
of the annotated synthetic datasets (synthsets) over time and
allows for a quick turn-around time for exploring different
simulation configurations and their impact on the detection
task. We also generate all the annotation meta data, assuring
it is always in sync with the visual representations of the scene.
Another important reason for doing this is to be able to scale
the solution, allowing for future growth by mining extensions
to synthsets in an iterative way.

This paper is organized as follows: In Section II we present
relevant related work. In Section III we explain our method
for creating the synthsets from sourcing 3D assets to finalized
synthset. In Section IV we describe the main properties of
our datasets, including annotation meta-data, illustrating how
they can be built upon in future work. In Section V we utilise
our generated synthsets to train detection models in different
configurations. In section VI we present the results from
our experiments, including a statistical analysis of accuracy
improvements. In Section VII we discuss the results and how
to interpret the findings. Finally, Section VIII concludes this
paper and layout possible future extensions of this work.

II. RELATED WORK

Synthetic data can be generated in multiple ways for dif-
ferent purposes [1]-[5]. Suter and Nuesch [6] and Zdziebko
and Holak [7] have explored the use of simulators in gen-
erating synthetic visual data. Suter and Nuesch focused on
the automated generation of landscape visualization databases
using remote sensing and Geographic Information Systems
(GIS), while Zdziebko and Holak used the finite element
method and Blender graphics program [8] to render synthetic
images of mechanical structures. Wang et al. [9] presented a
scheme for generating and adapting synthetic images for object
detection in smart vending machines, where they considered
the simulation of cluttered objects and wide-angle cameras.
Their environment was well-defined and they focused on the
foreground objects under different lighting conditions. They
also included a style-transfer adaptation step primarily to the
foreground objects to increase photo-realism and a geometry
deformation procedure to increase diversity in the objects’
appearance.

Adams et al. [10] provided a review of the qualities of
synthetic visual data production, where they highlighted the
use of filtering, augmentation, and object domain random-
ization techniques to improve accuracy, and concluded that
the problems related to labeling, image quality and privacy
issues where clearly reduced as the bottleneck of manual data
annotation was removed.

Akyon et al. [11] took on the Drone-vs-Bird Challenge and
their solution was largely based on two things - they added
synthetic data to expand the provided annotated dataset and
they applied a tracking Kalman filter in the temporal domain.
Their synthetic data were, however, limited to inserting models
of drones onto a 2D image background. Although that might
have been sufficient for distant drone detection, it will not
handle occlusions due to terrain in a good way. They also
implied that the domain gap between synthetic and real sets
was so large that only small amounts of synthetic data could be
used. We use Drone-vs-Bird dataset for parts of the evaluation.

Vin et al. [12] recently released an updated version of the
Scenic probabilistic programming language, which allows for
describing scenarios with objects scattered in 3D space. Scenic
enables the user to programmatically define a scenario where
object pose and position, as well as camera view-point, are
randomized in a controlled way. Furthermore, it provides scene
randomization and accurate occlusion detection using ray-
tracing techniques. We leverage Scenic in our scene generation
process since it ties well into the simulator of our choice.

Josifovski et al. [13] addressed the challenge of instance-
based object detection and fine pose estimation in computer
vision. Their proposed approach combined CNN robustness
with fine-resolution 3D pose estimation using fully annotated
synthetic data generated from 3D models (Blender). Results
showed effective application on real-world images, and offered
insights into training neural models with synthetic data for
practical tasks like object grasping.

A study by Ros et al. [14] focused on vision-based semantic
segmentation for autonomous driving in urban environments.
The paper proposed using a virtual world to generate syn-
thetic images with pixel-level annotations automatically. Their
synthetic dataset, Synthia, was combined with real-world
annotated images. The study demonstrated that incorporating
Synthia in the training stage significantly enhanced the per-
formance of deep convolutional neural networks (DCNNs) for
semantic segmentation tasks.

In [15], Tremblay et al. employed domain randomization,
where simulator parameters were intentionally randomized
to enhance the network’s ability to learn essential features.
The study demonstrated that compelling performance could
be achieved with non-artistically-generated synthetic data, and
further fine-tuning on real data improved results beyond using
real data alone. That approach offered a cost-effective solution
for training neural networks, and reduced the reliance on
large amounts of hand-annotated real-world data or high-
fidelity synthetic worlds, addressing common bottlenecks in
various applications. The evaluation focused on bounding
box detection of cars using the KITTI [16] dataset. They



noted that the partial freezing of weights during fine-tuning
decreased their performance instead of increasing it. This way
(not freezing) is how we perform our fine-tuning. They also
introduced distractors (i.e. flying random geometric shapes,
not of interest to the detection function) in the environment.

In [17], Rajpura et al. implemented a transfer learning
approach to address the challenge of detecting packaged food
products in refrigerator scenes. It is interesting to note that
achieving a high degree of photorealism in the synthetic
images is not deemed crucial for achieving high performance
levels (24% mAP across 55 categories). Furthermore, the au-
thors observed a 12% boost by infusing a small set (10%) real
images into the training dataset alongside the synthetic images.
These findings highlighted the efficacy of the transfer learning
strategy and showcased its potential for object detection tasks,
even with limited annotated real-world data.

An open-source package [18] enhanced the Unity Editor and
engine components, and facilitated the generation of perfectly
annotated examples for various computer vision applications.
Notably, the model trained with predominantly synthetic data
surpassed the performance of a model trained solely on real
data.

A very thorough review on the topic of synthetic data
creation for computer vision was given by Paulin et al. [19],
where they discussed the evolution and importance of synth-
sets for computer vision applications, focusing on representing
dynamic environments. It provided an overview of synthsets,
identifying and analyzing nine distinct methods and outlined a
synthset generation diagram with 17 individual processes for
creators to follow based on task requirements. They concluded
geometric diversity within the objects of interest to be one
of the more important parameters for a model to be able to
generalize well to a given detection or classification problem.
Furthermore they advised against using methods of generative
adversarial training to create entire synthetic scenes because of
problematic annotations. In our work we acknowledge this by
focusing on scene diversity, object diversity and object photo-
realism using the Unreal Engine-based Carla Simulator [20].

On the topic of NeRF, Moon et al. [21] explored the use of
NeRFs for data augmentation in defense applications, where
they generated synthetic images for neural network learning.
Unlike traditional image-based defense tech facing security
issues, NeRF creates photo-realistic synthetic images without
data screening. The study compared object detection perfor-
mance with NeRF-generated images and live image learning,
addressing potential performance issues. The paper highlighted
NeRFs’ effectiveness in augmenting data for defense-related
neural network tasks.

The OMMO dataset [22] was introduced for evaluating
NeRFs in tasks like novel view synthesis and surface recon-
struction.

Li et al. [23] introduced Adv3D, a novel approach to model-
ing adversarial examples as NeRFs for 3D object detection in
autonomous driving systems. Unlike traditional 2D pixel-level
attacks, Adv3D leveraged NeRFs to generate more realistic
and physically plausible adversarial examples in 3D space. The

approach is trained by minimizing confidence in surrounding
objects predicted by 3D detectors. The evaluation on an unseen
validation set demonstrated significant performance reduction
across different poses, scenes, and 3D detectors. The paper
also proposed a defense method involving adversarial training
through data augmentation.

Sattler et al. [24] developed a theoretical model for camera
pose regression to understand the limitations of Convolu-
tional Neural Network (CNN)-based camera pose regression
problems, which in turn impacted the generalizability of
rendering frameworks to unseen camera poses. Moreau et
al. [25] acknowledged this in using NeRFs to improve robot
relocalization. By incorporating a synthetic dataset generated
by NeRF and strategically selecting virtual camera locations,
their approach achieved a 60 percent reduction in error on
datasets like Cambridge Landmarks and 7-scenes. The method
enhanced pose regression accuracy without modifying the
architecture, showcasing NeRFs’ potential in advancing robot
re-localization.

Meta-Sim [26] addressed the synthetic-to-real domain gap
in machine learning by adapting synthetic scenes to match
real-world dataset diversity for specific tasks. Using probabilis-
tic scene grammars and optimizing non-differentiable objec-
tives, Meta-Sim excelled in controlled settings and improved
content generation quality for self-driving datasets.
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Fig. 2. Simulation assets preparation flow. We may start either by collecting
existing 3D models or by generating our own such models using the NeRF
generation flow. Map information can be sourced from OpenStreetMap,
however several additional steps need to be taken to get a functioning
simulation map.

III. METHOD: SYNRENDER

For the given object detection task our automated data
generation framework - SynRender - is composed of a number
of sequential steps. Figure 2 outlines the principal steps of the
process.

The main objective of implementing the SynRender method
is to experiment with how our learned detection model is
affected by the different ways we generate our datasets.
Specifically we compare training on purely synthetic sets such
as Synth Base described in section IV to training on additional
synthetic datasets with NeRF-based objects infused. These
trained detection models are validated mainly on realsets to
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Fig. 3. Left: Data generation flow of SynRender. We iterate each scene N =
10 times before generating a new scene. We also removed all objects of
interest and recorded the background image. Right: Flow for custom object
generation in our simulator system setup. We use a tool to create a digital
twin 3D-object from video recordings. Objects are segmented out from the
background, and the model is exported as a mesh with draping textures. The
models generated in this process are input to the simulation preparation flow
shown in Figure 2.

capture the authenticity of real world use-cases and not remain
completely in the simulated world.

We target in this work the specific simulator Carla [20] but
the process is general and may be adopted to other simulators.
The steps are outlined in the figures and referred to in the
following subsections.

A. Assets preparation

We start out with the objects of interest, following either of
two options:

a) Collect 3D objects: We can collect openly available
3D models of the objects. In our study, we want to detect
different-sized UAVs, amongst other airborne objects such
as aircraft and birds. We have used models that are openly
available from online collections.

b) Generate 3D objects: Alternatively, we may choose
to source our 3D models from another process, outlined in
Figure 3 (right) where NeRF training learns to represent
a full 3D object using photos as input. There are several
methods of automating the creation of virtual 3D objects
based on real-world examples, sometimes referred to as digital

twins. Photogrammetry is a commonly used method based on
collecting images, registering them relative to each other (i.e.
finding the camera poses) and using triangulation to deduce a
mesh-based object optionally draped with textures. However
when increased photo-realism and ease of use is preferred
over absolute geometric accuracy of the deduced model, NeRF
techniques are sometimes preferred. As in photogrammetry,
we need to start with camera pose extraction (unless such
information can be provided directly from the camera), which
relies on the assumption that adjacent images overlap quite
a bit. This means it is possible to find feature point corre-
spondences between pairs of images. This will in turn make it
possible to describe a rotation and translation matrix for each
camera pose using homogeneous coordinates, relative to some
fixed origin:

0 1)’ t translation vector.

This matrix transforms coordinates between the world frame
and the camera frame of reference. The rotations are applied
in the order yaw(t)), pitch(#) and finally roll (¢). The NeRF
training process essentially maps 3D coordinates and viewing
angles to colour and density distributions along rays of light. A
fully connected deep neural network is trained on this mapping
problem. The photometric loss function £ is taken to be the
difference in colours between rendered and observed pixel for
each generated ray in direction d from the camera origin o.

r(\) = 0+ Ad o)
L=>"1C(r) = Cops(r)|? 3)
reR

Here R is the set of simulated rays, Cops(r) are the colours
observed in the images. For more details on how the training
of NeRFs are implemented, we refer to [27]. When training
a NeRF to represent a real-world 3D object, we utilise
Lumalabs’ [28] service for generating high quality NeRFs
using collections of images or video clips as input. For each
NeRF-based model we collect a sequence of images of the
object. From the images the camera pose is calculated and
this information is used in the NeRF training process. From
the trained NeRF model a segmentation is done separating the
object from its background and the object is converted into a
mesh with textures, all generated from the image data input.
When all objects are independently generated in this way, each
object is exported for use in our simulator (this flow is outlined
in the right-hand part of Figure 3).

c) Source 3D Environments: In this step, we again have
a choice to create our custom maps, using different methods
like sourcing environment data for a particular area using, e.g.,
Open StreetMap [29], or re-use generic maps created by others
for research purposes.

d) Prepare Assets: The 3D objects made available
through the above inputs are imported into Blender [8]; objects
are organized and named according to simulator guidelines and
exported using the Filmbox (FBX) file format. Any manual



alteration or touch-ups may be applied here. A collection of
object models is created in an object asset package. This is
prepared in a format suitable for the simulation tool targeted.
In our case, the asset package is prepared using the flow
described in the Carla documentation [20]. Since we want to
have segmentation label information included in our dataset
generation, we need to build a custom distribution of the
simulator with some minor amendments to the segmentation
label definitions. With this customized simulator, we may
properly prepare the asset packages from previous steps.

e) Prepare Maps: Custom map generation requires sev-
eral additional steps to work, and hence, we limit our study to
not include custom-generated maps. However it is the intention
to extend in this direction in future studies.

f) Asset and map ingestion: Packages and maps are
imported into the simulation environment and tested to assure
all objects spawn correctly in the simulator.

B. Data generation

The task here is to generate data for our detection model
training experiments. Figure 3 (left) outlines the steps included
in the generation of synthsets.

1) Scenario generation: is the first step. We use Scenic [12]
for automatically generating 3D scenes where objects of inter-
est are placed procedurally in the scene according to a scenario
description language. This allows for diverse scene rendering
within specified parameters (e.g. min and max elevation of
a multirotor UAV), but also camera placement, weather and
daylight parameters. Scenic also checks the generated scene
for consistency (e.g. objects do not occupy the same space)
before it is finally rendered.

2) Sensor image rendering: 1is the next step, and here
multiple virtual sensors are placed in the environment to
capture several aspects of what is happening in the scene.
Figure 1 shows one example of the sensor data recorded in
our setup.

3) Annotation generation: is the next step. Here, we gen-
erate not only bounding boxes for the detection task but also
save metadata on the global conditions of the scene (e.g.
weather conditions). The bounding boxes are based on instance
segmentation labels, allowing precisely fitting boxes.

4) Data Storing: is the final step in this iterative process,
where we save all data. More information on the details of the
dataset can be found in [30].

5) Object perturbation: is performed between successive
image iterations, whereby we add a random shift to the pose
and position of all our objects of interest. Our virtual camera
pose is also slightly shifted for increased diversity. This means
the background of the scene is largely unchanged, but the
objects of interest are moving around.

When sufficient data has been collected, we stop the
process. After this, we have a minor post-processing step,
essentially converting from our internal annotation format to
whatever is needed in the experiments.

IV. DATASETS

In this section we provide details on the generated synthsets
and otherwise sourced datasets (realsets).

A. Synthsets

In general, all synthsets are generated in the Carla simulator
[20] and are structured in a consistent way. For each capture,
we name all image and annotation files with a timestamp
for ease of relating different sensor images. For each of
the eight towns/maps included in Carla we sample 500 or
1000 images and additionally a number of background images
(where objects of interest have been removed). The number of
background images is equal to the number of unique scenes
used for the set.
We include the following sensors and annotation:
e RGB camera, 24-bit RGB image, stored in Portable
Network Graphics (PNG) format

o Depth image, 8-bit (each pixel value corresponds to the
distance from the camera to the object to which the pixel
belongs), stored in PNG format

o Semantic instance segmentation image, 24-bit (each

pixel is encoded with a semantic label for the object type,
but also a unique label for each instance of an object) with
unique labels for our custom object types
o Bounding box annotation with unique labels for our
custom object types, stored in JavaScript Object Notation
(JSON) struct in a plaintext file

o Scene metadata including cloudiness, precipitation, pre-
cipitation deposits, wind intensity, solar position, fog
density and distance and wetness, stored in JSON struct
along with bounding box annotation in plaintext file

« RGB + Bounding box 24-bit RGB image, for conve-

nience, we also record an RGB camera image with the
bounding box annotation overlayed, stored in PNG format

In [30], we show more details concerning the dataset,
including distribution of simulation parameters over the sets.

1) Synth Base: This synthset is generated with 4 categories
of objects of interest: Commercial multirotor drones (6 differ-
ent synthetic models), Fixed wing drones (2 larger military
synthetic drone models), Commercial aeroplanes (1 synthetic
model) and birds (7 synthetic models), see Figure 4. This is
considered our baseline synthset. Each recorded snapshot in
this dataset is rendered with a freshly generated scene, i.e.
the scene is considered exploited after one generated snapshot
and the object perturbation route in Figure 3 is never executed.
This maximizes the scene diversity in the set, at the cost of
generation time. Figure 6 shows an example of these images,
of which we generate 500 per town.

2) NeRF Diverse: This synthset is generated with the same
four categories of objects of interest, however the multirotor
category objects are replaced with a total of four different
NeRF-based models, see Figure 5, which carry a higher degree
of photo realism compared to the synthetic multirotor models.
Similarly to the Synth Base set, each recorded snapshot in this
dataset is rendered with a freshly generated scene, see Figure
7. We generate 500 images per town.



Fig. 4. Synthetic CAD-based assets. Leftmost column shows two fixed wing
drones then an airliner-type aircraft. From the top-right corner we show the
multirotor drones and the remaining thumbnails show birds. Note that objects
are not to scale.

Fig. 5. Synthetic NeRF-based assets. Here we show the multirotor drones
generated from NeRF models.

Fig. 6. Example of generated RGB image from Synth Base synthset. Note
that the simulation environments generate shadows of our objects where
applicable, however shadows remains un-annotated since they do not represent
the real object. Best viewed in colour.

Fig. 7. Example of generated RGB image from NeRF Diverse synthset. Best
viewed in colour.

3) NeRF Perturb: This synthset is generated with the
same 4 categories of objects of interest (multirotors, birds,
aircraft and fixed wings) with the same NeRF-based multirotor
models. In this dataset, each scene is exploited 10 times (see
Figure 3) before a new scene generation step is executed.
The objects of interest are randomly moved around the scene,
including object pose alteration. This yields a greatly reduced
generation time. Because of the quicker generation time, we
generated twice the amount of images in this set (i.e. 1000
images per town).

4) Swan Perturb: This synthset is generated with the same
4 categories of objects of interest, however in this set we target
a specific multirotor model (the Swan), so only this NeRF-
based model is in the multirotor object category. Similarly
to NeRF Perturb, in this dataset each scene is exploited 10
times before a new scene generation step is executed. This
dataset is a more targeted set to the detection of this specific
multirotor model and is shown in Figure 8. Because of the
quicker generation time, we generated twice the amount of
images in this set (i.e. 1000 images per town).

B. Realsets

1) Drone-vs-Bird Subset: This is a real-world captured
dataset, with video sequences of multirotor drones and birds
originating from the WOSDETC 2023 Drone-vs-Bird detec-
tion challenge [31]. Only the drones are annotated. Since this
dataset’s original purpose was to target tiny drone detection,
we sub-sample this dataset, leaving out the lower-resolution
images. This subset serves as a real-world testing dataset
in our experiments. However, we do also perform, in one
experiment, some training on data from this source; therefore
we have prepared two sets: DvB-train (randomly selecting
2456 samples from all images in the set) and DvB-test (for
test) with 1235 images sampled as described above.

2) Field Swan: This is a real-world captured internal
dataset, with one video sequence of a multirotor drone. The
drone is a Swan-K1 drone from HEQUAV [32] and this
recorded field realset is one of the test sets for our experiments.



Fig. 8. Example of generated RGB image from Swan synthset. Best viewed
in colour.

Fig. 9. Example of captured RGB image from field Swan realset. Best viewed
in colour.

The annotation was done by us and includes 151 annotated
images of a single category (multirotors). Figure 9 shows an
example of this scene.

V. EXPERIMENTS

In this section, we outline the experiments we performed to
evaluate our data generation process. We also explain the real-
world datasets (realsets) and synthetically produced synthsets
used throughout the paper.

A. Experimental setup

In general, in our experiments, we apply a K-fold cross-
validation setup, where our folds stem from the 8 different
world maps we have in our simulator (i.e., ' = 8). Specif-
ically, we use 5 towns for training, two for validation, and
one for testing and rotate this in K steps to get an estimate

not only on model performance on a detection task but also
the spread of ditto. For testing however, we also measure our
performance results on two realsets (DvB-test and Field swan)
for a more applicable target domain. We use Yolov8m as our
base model provided by Ultralytics. It has been pre-trained on
the MS-COCO [33] dataset.

B. Synthetic only

In this experiment we simply train on the Synth Base set.
We train first for 100 epochs and in an extended experiment
also on another 100 epochs. In these experiments we include
only the artificially generated objects (i.e. no NeRF-based 3D-
models).

C. NeRF Diverse fine-tuning

Here, we continue the model training from the result of
experiment Synthetic only and fine-tune on the NeRF Diverse
set. The tuning training is done for 100 epochs.

D. NeRF Perturb fine-tuning

In an attempt to increase image generation efficiency, we try
to further our model training based on the NeRF Perturb set.
the initial training is still based on the result of experiment
Synthetic only and Similarly to the other experiments, the
tuning training is done for 100 epochs. The idea behind this
experiment is to see if emphasis on changing the objects’
poses and positions yield sufficient diversity or if more scene
diversity is beneficial.

E. Swan Perturb fine-tuning

For this study, we start our training from the result of
experiment Synthetic only like in previous setups, however,
the fine-tuning is done using the Swan Perturb set. Similarly
to the other experiments, the tuning training is done for 100
epochs. This is done to see if we can successfully tailor a
synthset towards a particular real-world scenario and achieve
better performance this way.

F. Real world Drone-vs-Bird fine-tune

In this experiment, we start our training from the result of
experiment Synthetic only and fine-tune on the Drone-vs-Bird
Subset (dvb-train) set. Similarly to the other experiments, the
tuning training is done for 100 epochs, however here we do
this training on real-world data.

This experiment is included as a performance reference
in the case that we have the full annotation of a real-world
dataset. However, the purpose of this paper is not to produce
the best possible model trained on labeled real data but rather
to explore to what degree our automated data generation
method keeps up with this method.

VI. RESULTS

In this section, we show our experimental results. The
results of the following sub-sections will be analyzed in
following sections.



We measure how well an object detection model performs
using a commonly used accuracy measure called mean Av-
erage Precision (mAP). This measure usually comes in two
different flavours, mAP and mean Average Precision @ 50%
IoU (mAP50). mAP50 requires an Intersection over Union
(IoU) of at least 50% between the true and predicted bounding
box (i.e. the boxes need to overlap by at least 50%) to count a
detection as correctly classified. For mAP we consider a range
of IoU from 50% up to 95%. The effect this will have on the
metric is that mAP50 will be less sensitive (more forgiving)
to errors in predicted box position.

In Figure 10 we first show how all our trained models
perform relative to each other on synthetic test data. This
shows that our training process is able to learn quite well the
content of our data, but it does not show how well the models
generalize. We show this for multirotor and bird classes here,
but in the following diagrams we focus only on the multirotor
class since it is the only class where we have annotation across
all test sets. Every box in the boxplot diagrams with a distinct
colour represents an experiment where a collection of models
were trained on a particular type of data, given by the legend.
In Figure 11 we show how our trained models perform on
the realset Drone-vs-Birds test set DvB-test on the task of
multirotor detection. In Figure 12 we see how our models
perform on our own real world test scenario.

Detection results for synthetic test sets
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Fig. 10. Results from detection models trained of different synthsets, detailed
by the legend. The models are tested on unseen test data from the same source
as the training data (e.g. the 'SWAN-perturb tuning 100’ experiment is tested
on test data from the Field Swan synthset). Best viewed in colour.

A. Statistical tests

We perform a Wilcoxon signed rank test [34] to determine
whether or not our achieved NeRF-model-based results out-
perform those where only synthetic content is present. Our
test is setup with the hypothesis that the reference experiment
(Synthetic only base experiment) mAP results are equally dis-
tributed to those of the various experiments we subject to this
test. By rejecting the hypothesis with a p-value < 0.05 we may
conclude that there is a statistically significant difference in the
distribution of the reference and test experiment distributions,
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1.0
g

0.8
- —
E == Synthetic only 100 T
3 961 = synthetic only 200 -
2 [ NeRF-diverse fine-tuning 100
H mmm NeRF-perturb tuning 100
"3 0.4 =0 SWAN-perturb tuning 100
% *"| mmm Real world Drone-vs-birds 100
=]

0.2 < g

;{?@ .L?
0.0 = == =

Test: Drone-vs-birds [mMAP50] Test: Drone-vs-birds [mAP]

Fig. 11. Results from detection models trained of different synthsets, detailed
by the legend (except the red boxes, representing a model fine-tuned on real
data). The models are tested on unseen test data from the Drone-vs-Birds
subset. Best viewed in colour.
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Fig. 12. Results from detection models trained of different synthsets, detailed
by the legend. The models are tested on unseen test data from the Field Swan
realset. Best viewed in colour.

with > 95% confidence level. In Table I and Table II, we
see the median results from our cross-validation experiments
for mAP50 and mAP metrics, respectively. The tables also
show which experiments yielded results superior to those of
the synthetic-only reference. These are marked in bold face.

VII. DISCUSSION

Here we discuss the results of our experiments.

A. Synthset accuracy

Figure 10 shows that the detection accuracy is rather high
for the multirotor class across all different experiments, with
a notably higher level for the NeRF-based synthsets. In this
case, we are validating on synthsets which are in-distribution
with the training data for each case, meaning the domain gap
is not an issue here. However for the bird class where we have
no NeRF-based bird objects we notice a drop in performance.
Likely this is due to the limited number of annotated objects
in the bird class, compared to the multirotor class. This in



TABLE I
RESULTS FOR MULTIROTOR CLASS MAP50 ACCURACY. ROWS IN BOLD
INDICATE EXCEEDING THE SYNTHETIC ONLY 100 BASE EXPERIMENT
WITH > 95% CONFIDENCE LEVEL. P-VALUE COLUMN SHOWS THE
PROBABILITY OF THE RESULT BEING EQUAL TO THE REFERENCE.

Test Split Experiment name 2?;,2% P-value
Synthsets Synthetic only 100 0.88 -
Synthsets Synthetic only 200 0.87 0.74
Synthsets NeRF-diverse fine-tuning 100 0.95 0.01
Synthsets NeRF-perturb tuning 100 0.95 0.15
Synthsets SWAN-perturb tuning 100 0.97 0.01
Synthsets Real world Drone-vs-birds 100 0.07 0.01
Drone-vs-bird Synthetic only 100 0.07 -
Drone-vs-bird Synthetic only 200 0.09 0.46
Drone-vs-bird NeRF-diverse fine-tuning 100 0.11 0.02
Drone-vs-bird NeRF-perturb tuning 100 0.26 0.01
Drone-vs-bird SWAN-perturb tuning 100 0.02 0.01
Drone-vs-bird | Real world Drone-vs-birds 100 0.98 0.01
Field Swan Synthetic only 100 0.76 -
Field Swan Synthetic only 200 0.68 0.15
Field Swan NeRF-diverse fine-tuning 100 0.85 0.01
Field Swan NeRF-perturb tuning 100 0.78 0.20
Field Swan SWAN-perturb tuning 100 0.83 0.01
Field Swan Real world Drone-vs-birds 100 0.89 0.01

TABLE II
RESULTS FOR MULTIROTOR CLASS MAP ACCURACY. ROWS IN BOLD
INDICATE EXCEEDING THE SYNTHETIC ONLY 100 BASE EXPERIMENT
WITH > 95% CONFIDENCE LEVEL. P-VALUE COLUMN SHOWS THE
PROBABILITY OF THE RESULT BEING EQUAL TO THE REFERENCE.

Test Split Experiment name xeAdl:l’an P-value
Synthsets Synthetic only 100 0.73 -
Synthsets Synthetic only 200 0.74 0.15
Synthsets NeRF-diverse fine-tuning 100 0.80 0.05
Synthsets NeRF-perturb tuning 100 0.81 0.46
Synthsets SWAN-perturb tuning 100 0.88 0.01
Synthsets Real world Drone-vs-birds 100 0.03 0.01
Drone-vs-bird Synthetic only 100 0.03 -
Drone-vs-bird Synthetic only 200 0.04 0.38
Drone-vs-bird NeRF-diverse fine-tuning 100 0.06 0.02
Drone-vs-bird NeRF-perturb tuning 100 0.13 0.01
Drone-vs-bird SWAN:-perturb tuning 100 0.01 0.02
Drone-vs-bird | Real world Drone-vs-birds 100 0.68 0.01
Field Swan Synthetic only 100 0.32 -
Field Swan Synthetic only 200 0.30 0.55
Field Swan NeRF-diverse fine-tuning 100 0.34 0.46
Field Swan NeRF-perturb tuning 100 0.35 0.64
Field Swan SWAN-perturb tuning 100 0.38 0.05
Field Swan Real world Drone-vs-birds 100 0.36 0.20

turn is due to the fact that when deriving the annotation
bounding boxes we apply a minimum displayed size threshold
which will exclude small and highly occluded objects from
being annotated. Since the birds are the smallest objects of
our assets, they are affected the most. The primary task is,
however, to detect the multirotors correctly, and the birds may
be thought of as distractor objects in this context. To increase
the accuracy of the bird class, we could for instance impose
class-specific size thresholds for the annotation of objects,
thereby allowing smaller birds to be annotated and hence
reducing class imbalance. This will at the same time help
reduce the number of un-annotated birds present in the dataset,

the presence of which will otherwise likely pollute the set with
respect to the specific class.

B. Realset Accuracy

In Figure 11 the results are shown for both mAP50 and
mAP metrics across the experiments. We note a lower level
of accuracy in general on realsets due to in part the domain gap
between the synthsets and the Drone-vs-Bird test set (this gap
is also apparent for the experiment where we fine-tune on real
Drone-vs-Bird train set). However, when analysing the results
of the experiments trained on our various synthsets we notice
two things. Firstly, introducing NeRF-based multirotor objects
in general boosts the performance (compared to synthetic
only) and for the fine-tuning with NeRF-diverse and NeRF-
perturb synthsets the boosts are statistically significant with
95% confidence levels. Secondly, we see that the result of
the Swan-perturb fine-tuning experiment is significantly lower,
which is expected since this synthset targets specifically the
Swan multirotor drone which happens not to be included in
the Drone-vs-Bird test set.

In Figure 12 we have a different situation. Here, the domain
gap is less pronounced, and consequently, the accuracy on
average is better for the detection task. Specifically for the
mAP50 metric, we note that experiments including NeRF-
based data seem to perform better, most of them significantly
better (again with 95% confidence level) than the synthetic-
only baseline. We note here that the Drone-vs-Bird experiment
achieves performance just over our NeRF-based synthsets.
In the reduced complexity Field Swan case we see that our
method, despite not having to label a single image, still per-
forms on a similar level to the model fine-tuned on annotated
Drone-vs-Bird realset. Since the Swan-perturb synthset was
created to be similar to its realset evaluation counterpart, it is
expected to perform well in this setting.

VIII. CONCLUSIONS

We have proposed a method for generating synthetic
datasets for use in machine learning objects detection and
similar tasks. We outline the entire generation process, from
the sourcing of models to generating the images for model
training. We also include a process for using highly photo-
realistic objects of interest using NeRF-techniques and ingest-
ing such objects in a normal simulation asset management
flow. We perform experiments on several variations of our
synthetically produced datasets, the synthsets, validating the
performance on two different real-world sets. We conclude that
NeRF-based datasets perform significantly better on real-world
data sets compared to the synthetic-only datasets. We also note
that the domain gap between the realsets and synthsets is in the
general case still large, which makes it challenging to use this
process directly in a real-world scenario in its current state.
Instead we foresee other methods of reducing the domain gap
as being necessary to include in future extended versions of
our presented workflow. The authors intend to pursue such
an undertaking in future projects. Finally, we contribute our
annotated synthsets to the community for different research



purposes to explore the possibilities of enhancing and stream-
lining ML model training endeavours.
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