
Robust Online Epistemic Replanning of Multi-Robot Missions

Lauren Bramblett, Branko Miloradović, Patrick Sherman, Alessandro V. Papadopoulos, and Nicola Bezzo

Abstract— As Multi-Robot Systems (MRS) become more
affordable and computing capabilities grow, they provide sig-
nificant advantages for complex applications such as environ-
mental monitoring, underwater inspections, or space explo-
ration. However, accounting for potential communication loss
or the unavailability of communication infrastructures in these
application domains remains an open problem. Much of the
applicable MRS research assumes that the system can sustain
communication through proximity regulations and formation
control or by devising a framework for separating and adhering
to a predetermined plan for extended periods of disconnection.
The latter technique enables an MRS to be more efficient,
but breakdowns and environmental uncertainties can have a
domino effect throughout the system, particularly when the
mission goal is intricate or time-sensitive. To deal with this
problem, our proposed framework has two main phases: i)
a centralized planner to allocate mission tasks by rewarding
intermittent rendezvous between robots to mitigate the effects
of the unforeseen events during mission execution, and ii) a
decentralized replanning scheme leveraging epistemic planning
to formalize belief propagation and a Monte Carlo tree search
for policy optimization given distributed rational belief updates.
The proposed framework outperforms a baseline heuristic and
is validated using simulations and experiments with aerial
vehicles.
Note—Videos are provided in the supplementary material and
also at https://www.bezzorobotics.com/lb-iros24.

I. Introduction
As robotics and artificial intelligence continue to evolve,

Multi-Robot Systems (MRS) have emerged as a particularly
intriguing research domain. At the core of MRS research
lies the concept of robots working together to achieve shared
objectives. This collaboration can be seen in various appli-
cations, from search and rescue operations to underwater
exploration. To collaborate effectively, robots must communi-
cate and coordinate their activities, but challenges often arise
when communication is limited or compromised. Consider a
scenario in which an MRS has limited communication. In a
multi-robot mission, there are typically no policies in place
for limited connectivity. As such, failures or disturbances can
cause the entire operation to be inefficient or compromised
because robots cannot adapt to new information.

In this work, we focus on the following question: How
can we ensure cooperative and efficient behavior for task
allocation when a centralized predefined plan must change
at runtime? This question is an expansion of our previous
work [1], allowing for the elimination of certain limiting
suppositions and making the work more suitable for practical
scenarios where tasks are known but unforeseen changes

Lauren Bramblett, Patrick Sherman, and Nicola Bezzo are with the
Departments of Systems and Information Engineering and Electrical and
Computer Engineering, University of Virginia, Charlottesville, VA 22904,
USA. Email: {qbr5kx, ukw4tc, nb6be}@virginia.edu

Branko Miloradović and Alessandro Vittorio Papadopoulos are with the
Division of Intelligent Future Technologies, Mälardalen University, Sweden.
Email: {branko.miloradovic,alessandro.papadopoulos}@mdu.se

Fig. 1. Pictorial representation of the problem presented in the paper. The
green robot fails, and the blue robot observes that its belief is false. The
blue robot routes to share this information with the red robot, reallocating
tasks in the environment before searching for the green robot.

in the environment or MRS may occur. Our proposed so-
lution has two main components: 1) a centralized mission
planner that accounts for intermittent rendezvous, promoting
the discovery of failures and inefficiencies in the MRS if
something does not go according to plan, and 2) an efficient
runtime plan adaptation that leverages our recent epistemic
planning research [2] to reason about the likely knowledge
and intentions of others based on the current epistemic state
and dynamically reassign tasks. Our proposed framework
enables MRS to cooperate, given limited communication and
an uncertain operating environment.

Consider the example in Fig. 1, where three robots com-
plete tasks based on an initial centralized plan. During
disconnection, each robot maintains a set of possible belief
states for other robots and a set of empathy states that other
robots might believe about it. In the top frame, the blue robot
realizes that its belief of the green robot is false. It then
communicates this to the red robot, and consequently, the
red and blue robots reallocate their tasks (bottom frame). The
blue robot is assigned to locate the green robot to ensure all
tasks are completed. In this manner, robots can successively
reason based on their local observations.

The contributions of this work are two-fold: i) a genetic
algorithm for multi-robot mission planning in a centralized
manner, accounting for intermittent rendezvous at user-
defined priorities, and ii) an epistemic planning framework
for local replanning, utilizing a Monte Carlo tree search to
maximize policy reward based on knowledge and beliefs
about the system and environment. To the best of our
knowledge, this is the first paper combining epistemic logic
with runtime task allocation adaptations with intermittent
communication. We show that our method outperforms a
baseline heuristic in which robots complete their assigned
tasks before backtracking to find faulty robots.

II. RelatedWork

Task allocation and planning are challenging problems
that have attracted researchers from different disciplines.

The Traveling Salesman Problem (TSP) [3], a well-studied
problem in operations research, is often used to model the
planning challenges encountered by a single robot. Later,
this formulation was extended to include multiple vehicles
(mTSP) in [4]. The mTSP is more suitable for large-scale
applications but is more complex than the TSP. Several
solutions have been proposed to solve this problem, such as
the genetic algorithm (GA) [5], [6], which considers tasks
that require specific vehicle types, and [7], which uses a
consensus-based bundling algorithm for limited replanning,
but few works have included communication restrictions
and failures. An approach, presented in [8], utilizes an
auction allocation algorithm to assign tasks but assumes
enough locally connected robots to perform the assigned
tasks. Other works, such as [9], address the issue of pro-
longed disconnections using rendezvous locations. However,
this can lead to unnecessary communication and laborious
backtracking. In these environments, robots may operate with
outdated or incomplete information while also being aware
of the possibility of misinformation. A robot may act on
information that it believes to be accurate, only to discover
later that it is outdated or incorrect. This can have significant
consequences, particularly in critical applications such as
disaster response or military operations. In [10], system
failures are considered in the multi-agent policy search, but
it is assumed that robots can communicate these disruptions.

In contrast, this work applies dynamic epistemic logic
(DEL) [11], allowing each robot in the MRS to reason and
plan using its beliefs of other robots in the system while
disconnected, updating its beliefs and policy if new events are
observed, and routing to communicate when necessary. DEL
is a formal logic that describes how beliefs and knowledge
change and has recently been integrated into robotics appli-
cations. The method presented in [12] recreates the Sally-
Anne psychological test for human-robot interactions. Typi-
cal DEL-based multi-agent research uses epistemic planning
for game theory-based policies [13]. We evaluate the use of
DEL for an MRS application, equipping each robot with the
ability to reason about the system’s state, considering local
observations. Our proposed solution expands on previous
mTSP research. It shows that intermittent rendezvous will
allow the MRS to reason about the system’s state and share
any new knowledge, updating its beliefs at runtime utilizing
an epistemic planning framework.

III. Preliminaries

A. Notation, Communication, & Control

Consider an MRS of m robots in the set A. We assume
that all initial positions of the robots are known. The MRS’s
communication range is denoted as rc, and a robot i and j
can communicate when within this range.

The variable Vi ⊆ V represents the subset of all tasks V
assigned to a robot i. We let xi(t) denote the state variable
of the robot i that evolves according to general dynamics:

xi(t + 1) = g(xi(t),ui(t),νi(t))

where ui ∈ R
du and the variable νi ∈ R

dν denote the
control input and zero-mean Gaussian process uncertainty
at time t. The tuple Ωi = (qi,Vi) is called the robot i’s

disposition and is defined by the capability of the robot i and
its assigned tasks. The capability qi of robot i is informed
by its kinematic specifications, such as maximum velocities
and physical dimensions.

B. Epistemic Logic
For this application, the epistemic language, L(Ψ, AP,A)

is obtained as follows in Backus-Naur form [14]:

ϕF H(η) | ϕ ∧ ϕ | ¬ϕ | Kiϕ | Biϕ

where i ∈ A. H ∈ Ψ with Ψ being a set of functions
that describe the system state. η generally denotes function
arguments. ¬ϕ and ϕ∧ϕ are propositions that can be negated
and form logical conjunctions, where ϕ ∈ AP and AP is a
finite set of atomic propositions. Kiϕ and Biϕ are interpreted
as “robot i knows ϕ” and “robot i believes ϕ”, respectively.

The distributed knowledge and reasoning for robots in the
system are modeled using epistemic logic [12]. An epistemic
state for AP is represented by the tuple s = (W, (Ri)i∈A, L,Wd)
where W is a finite set of possible worlds, Ri ⊂ W × W
is an accessibility relation for robot i simplified to R for
reference to all robots, L : W → AP assigns a labeling to
each world defined by its true propositions, and Wd ⊆ W
is the set of designated worlds from which all worlds in
W are reachable. The initial epistemic state is denoted as
s0 = (W,R,V, {w0}). If Wd = {w0}, s0 is the global epistemic
state. The world, w, signifies a set of true propositions that, in
our application, is the disposition of each robot. The worlds
that exist for the system are defined by the combinations of
all possible dispositions of each robot in the MRS (e.g., task
assignment, velocity). The truth of L-formulas in epistemic
states is defined with standard semantics similar to [12]:

(W,R, L,Wd) |= ϕ iff ∀w ∈ Wd, (W,R, L,w) |= ϕ
(W,R, L,w) |= ϕ iff ϕ ∈ L(w) where ϕ ∈ AP

(W,R, L,w) |= Kiϕ iff ∀v ∈ W, if (w, v) ∈ Ri

then (W,R, L, v) |= ϕ
(W,R, L,w) |= Cϕ iff ∀v ∈ W, if (w, v) ∈ ∪i∈A

then (W,R, L, v) |= ϕ

The accessibility relation Ri represents the uncertainty of
robot i at run-time for a global epistemic state s =
(W,R, L,wd). In this state, the robot i cannot distinguish
between the actual world wd and any other world v where
(wd, v) ∈ Ri. Consequently, robot i’s knowledge is based on
what is true in all of these worlds v. Sequences of relations
are used to represent higher-order knowledge. For example,
the statement “robot i knows that robot j knows ϕ” is true
in s if and only if s |= KiK jϕ. This condition is satisfied
when ϕ is true in all worlds accessible from wd through the
composite relation of Ri and R j. The perspective of robot i
is defined as si = (W,R, L, {v | (w, v) ∈ Ri; w ∈ Wd}. If s is
the global state, then si is the perspective of robot i on s.
In this work, we represent a subset of these perspectives as
particles moving through the environment in the set

Pi = {pi j,b ∀ j ∈ A,∀b ∈ B}. (1)

where beliefs b ∈ B are a finite set of particles for each
robot i that represent how a robot j would behave given a
different, but accessible, world w ∈ Wd.

Dynamic epistemic logic is expanded from epistemic logic
through action models [12]. These models affect a robot’s
perception of an event and influence its set of reachable
worlds, Ri. A robot may plan to reduce the run-time un-
certainty by taking actions. We simplify the notation of the
action model by referring to actions in plain language. The
action library, A, is the set of actions that a robot can enact
during mission execution. We express the epistemic product
model as s⊗ i : a = (W ′, L′i ,V

′,W ′d) where s⊗ i : a represents
the new epistemic state after the action a ∈ A has been
enacted by robot i. A planning task is represented by the
tuple Π = (s, A, γ). An execution policy π is a sequence
of actions in A for robots in the MRS that will satisfy the
common mission objective γ given an epistemic state s.

IV. Problem Formulation
In this work, we assume that all robots know the location

of all tasks V present in the environment and the initial
location of all robots in the system. Given a limited commu-
nication range rc, this approach aims to minimize the total
time to complete all tasks in the environment since robots
can experience failures or disturbances during operation. We
formally define our problems as:

Problem 1: Centralized mTSP Planner with Intermittent
Communication: Design a strategy for an MRS to complete
all tasks while weighing efficient rendezvous points. The goal
is to minimize the mission’s duration, considering that faults
and disturbances may occur during execution, necessitating
a communication and replanning mechanism.

Problem 2: Robust Online Replanning: Formulate a pol-
icy for robust online replanning of the team’s operations
when faults or disturbances decrease the original plan’s
efficiency. The policy should minimize the time to complete
all tasks, considering any necessary communications with
disconnected robots and the deprecated state of the system.

The mathematical formulation of Problem 1 matches the
one of mTSP [15] where we seek to minimize the longest
tour of any robot represented by Q. However, in our work,
robots can have different starting and ending depots. We also
allow robots to have no tasks assigned to them. The opti-
mization problem is expressed in its epigraph representation,
where the objective function is included in the constraints as

min Q (2)

s.t.
∑
i∈VΣ

∑
j∈V∆
ωi js · xi js ≤ Q, ∀s ∈ A,

where ωi js is the cost of traveling from task i to task j for
robot s ∈ A. The binary decision variable xi js defines if the
robot s travels from task i to task j. The sets VΣ and V∆
represent the inclusion of all the tasks and all the starting
depots, and all the tasks and the ending depot, respectively.
The goal of the optimization process is to minimize the
variable Q, also known as “minMax” optimization, where
we minimize all robots’ maximum tour or makespan.

V. Approach
Our proposed framework is designed for an open mTSP

in which robots are not required to return to their starting
location; instead, each robot has a starting and ending
depot. When solving the mTSP, we promote intermittent

communication by rewarding robot interactions during their
respective tours, allowing robots to share information or
realize that the original plan has changed. To realize changes,
each robot propagates belief and empathy states to allow
robots to observe the local environment, reason about system
operations while disconnected, and adjust local plans when
necessary. For ease of discussion, let us consider two robots,
i and j. From the perspective of the robot i, a belief state,
pi j,b ∈ Pi, represents a possible state of a robot j and an
empathy state, pii,b ∈ Pi, is robot i’s belief about itself from
the perspective of other robots. With this knowledge, robot i
predicts and tracks empathy states to decrease the number of
locations in which robot j may search for robot i and allows
the system to complete all tasks more efficiently, given new
operational constraints. The diagram in Fig. 2 summarizes
this architecture, where the centralized planner first routes
robots to tasks in the environment, assessing the solution’s
fitness by minimizing the maximum tour length of a robot
and rewarding intermittent communication based on a user’s
preferred settings. If robots disconnect, the set of belief and
empathy particles, Pi propagates according to the sequence
of actions, π0 set by the centralized planner. If the robot
locally observes system changes, epistemic planning allows
each robot to determine the best series of actions to estimate
the positions of lost robots, share any necessary information
with other robots, and navigate to the remaining cities.

Controller

Belief State 𝑝!",$

𝒖!
Plant

Robot 𝑖
Connected?

Y
N

System
- Controller
- Plant
- Prediction
- Allocation

𝒙"

Propagation

𝒙!

Connected?

Y
N

Local Replanning

Expand
Solutions

Backpropagate

Stopping
Criteria Met?

N Y

N
Y

Local
Update?

Goal
Selection

Empathy State 𝑝!!,$

Epistemic
Planning

Centralized Planner
Start Generate

Solutions
Simulate

Operations
Evaluate
Fitness

Rollout

Y
N

Stopping
Criteria Met?

Robot 𝑗

Fig. 2. Diagram of the proposed approach. The contributions of this paper
are within the green box.

A. The Centralized Planning Algorithm

The centralized planner used in this work is based on a
GA adapted to solve combinatorial optimization problems,
specifically mTSP. Chromosomes are encoded as a set of
arrays, where each array encodes a robot’s plan. A graphical
representation of a single chromosome is given in Fig. 3.
The size of each array is equal to the sum of the number of
robots and tasks, that is, n+m. The elements of the array are
integer task IDs. Following the task chain, the robot’s route
can be extracted from the encoding. For example, in Fig. 3,
if we look at Robot 1, we can see that the first task in its plan
is 5, and the next task ID is then stored in column 5, which is
Task 7. This continues until a destination depot with the ID of
n+m, 10 in this example, is reached. The initial population is
generated randomly to start with a high diversity and seeded
in the feasible region of the search space.

The crossover operator is a modified version of Edge
Recombination Crossover (ERX) [16]. The first step is to
select two parents for crossover from the mating pool.
The mating pool is generated, accounting for the crossover
probability and each individual’s fitness. Next, an adjacency

0 1 2 3 4 5 6 7 8 9

5 0 0 0 0 7 0 9 0 10

0 4 0 8 3 0 0 0 10 0

0 0 6 0 0 0 10 0 0 0

Path: 0-5-7-9-10

Path: 1-4-3-8-10

Path: 2-6-10

Robot
1

Robot
2

Robot
3

Robot IDs Task IDs

Destination depot; the end of the path.

Fig. 3. Graphical representation of chromosome encoding.

matrix that contains the makeup of neighboring tasks based
on the two chosen parents is constructed. We then randomly
select a starting task and the selection chain continues
by randomly selecting a task from a neighboring list of
previously allocated tasks. We randomly select a new task
if all neighboring tasks are already allocated. We apply a
jump mutation that randomly changes the placement of a
single task in the route, and the swap mutation selects two
tasks and swaps their locations. Jump and swap mutations
are invoked twice: the first for intra-robot mutations and the
second for inter-robot mutations, such that there are both
local and global mutation operations.

Greedy Search (GS) and 2-opt [17] are two local refine-
ment methods implemented to reorder cities within a robot’s
plan resulting from the GA allocation of cities to salesmen.
Local refinement methods exploit the candidate solution by
reordering the list of tasks governed by the nearest-neighbor
or 2-opt. In the next sections, we explain our modifications
to increase the robustness of the MRS.

B. Interaction Reward Mechanism

The general rule for creating a good plan for TSP or mTSP
is to have routes that do not cross. The most successful
heuristic for solving these problems directly exploits this
rule, e.g., 2-opt or Lin–Kernighan heuristics [18], but, in this
work, we take a different approach by allowing the planner
to create interactions between robots. Within this framework,
we define an interaction as an event where robots are within
the range rc to exchange information. Rewarding robots who
travel within rc can create crossings in the resulting routes,
contrary to [18]. However, we argue that this can benefit the
overall execution time of the mission when the system does
not operate as planned. This will enable robots to detect
system failures faster during execution without laborious
backtracking after reaching the depot.

To maximize the number of interactions among robots,
we introduce a mechanism to reward the exchange of infor-
mation between robots. However, maximizing the number
of interactions alone is not sufficient, as each interaction’s
value must be taken into account. For example, exchanging
information at the beginning or close to the end of a mission
may not be beneficial, as little new information can be gained
from these interactions. Furthermore, redundant interactions
over small-time intervals should not be highly rewarded since
no new information is likely to be shared. To capture this,
we introduce, for every robot i, a time interval [τs

i , τ
e
i] when

the robot can be rewarded for interacting with other robots.
The potential reward is designed to grow linearly from t = τs

i
for Φi = (τe

i − τ
s
i)/2 time units and to stay constant for the

remaining part of the interval. Then, the potential reward

function Ui(x) for robot i is defined as:

Ui(x) =

x, if 0 < x ≤ Φi

Φi, if Φi < x ≤ 2Φi,

0, otherwise.
(3)

However, the actual reward Ri(t) is assigned only if the
interaction happens, according to

Ri(t) =

ρUi(t − tlr
i), if robot i interacts at time t ∈ [τs

i , τ
e
i],

0, otherwise,
(4)

where t is the current time, and tlr
i is the time when the last

reward was assigned to robot i. Furthermore, ρ is half of
the average distance between tasks, and it is introduced as
a weight related to the structure of the problem. This means
that ρ scales with the problem instance. The total reward is
then calculated as:

Rtot =

Q∑
t=0

∑
i∈A

Ri(t). (5)

However, two robots may exchange information frequently
while a third robot is in no contact with them. To overcome
this issue, we also introduce a penalty mechanism for robots
not interacting with other robots. This mechanism requires a
tunable threshold, σ, to be defined, e.g., all robots have to
interact with another robot at least once before completing
50% of a given mission, i.e., σ = 0.5. The penalty for failing
to do so is calculated as follows:

Pi =

(tint
i − σ · t

max
i) · ρ if tint

i > σ · t
max
i ,

0, otherwise,
(6)

where tmax
i is the time required for robot i to complete its

plan, and tint
i is the time when robot i had its first interaction

with another robot. To get the total penalty, Ptot, we sum up
the penalties over all robots. The optimization problem (2)
can now be updated with rewards and penalties as follows:

min Q − Rtot + Ptot. (7)

We also extend the aforementioned approach if a user
requires more control over the mission makespan compared
to a traditional mTSP solution. In this case, we solve a bilevel
optimization problem where we first minimize Q subject
to (2) and then optimize the following:

max Rtot − Ptot − ∆Q (8)
s.t (2); ∆Q ≤ δQ∗

where ∆Q represents the difference between the solution
to the upper-level optimization problem (2) represented by
Q∗ and the inner optimization task in (8). The user-defined
variable δ ∈ [0, 1] represents the extent to which the typical
mTSP makespan minimization can be worsened to increase
interactions using (5) and (6). In this way, we have better
control over the quality of the produced solution, with the
mission duration upper-bounded by the user-defined limit.

C. Belief & Empathy Propagation
So far, we have explained how we developed a central-

ized strategy that allows intermittent interactions. Now, we
transition to online adaptations, indicated by the blue section
in Figure 2, to plan based on the information gained from
these interactions. In our framework, each robot propagates
belief states for all robots in the MRS. This allows a robot
i to plan according to its beliefs about other robots and to
empathize with what other robots expect robot i to do while
disconnected. Each robot predicts the future states of a set of
beliefs for all robots in the system and will follow the closest
empathy state even if a malfunction occurs, allowing a robot
only to propagate a finite number of beliefs represented by
the set Pi in (1). A robot i defines its empathy particles
as Pe

i = {pii,b ∀b ∈ B} and its belief particles about other
robots as Pr

i = {pi j,b ∀ j ∈ A,∀b ∈ B}. If disconnected,
a robot i propagates beliefs according to the last globally
communicated epistemic state between robot i and robot j,
moving particles based on how robots would behave given
a subset of true propositions from the set AP introduced
in Sec. III-B. Initially, we note that all robots know the
initial position and disposition of all robots, defined by the
centralized plan in Sec. V-A. Particles are propagated along
the tour provided by the centralized planning algorithm.
Given that all robots follow an empathy particle during
exploration, we next present our strategy to update the
epistemic state if changes occur at runtime.

D. Epistemic Replanning
Robots follow the centralized plan initially, but if opera-

tions do not go as planned and a robot experiences a failure or
other robots communicate changes to the system, a rational
belief update must occur. We formulate a belief update for
this application as: (i) A robot updates its own belief given
it cannot operate as expected; (ii) a robot updates its belief
about another robot, given it is not traveling according to
a previously expected belief; (iii) a robot communicates a
belief update about a disconnected robot to a subset of
connected robots within the communication range. In all
these scenarios, a robot can update its execution policy of
tasks in the environment, given its new belief about the MRS
to complete all tasks in the environment, which is equivalent
to satisfying the common goal γ from Sec. III-B. However,
belief updates can have cascading effects across the MRS if
new information is not communicated efficiently and on time.
Therefore, we introduce a hierarchical framework to update
allocations at runtime and when failures or disturbances
occur and robots can no longer follow the original plan.

1) Epistemic Updates: Establishing a mechanism for log-
ical updates is important to determine when or if a robot
should find or communicate with other members of its team
and how to reach a consensus on disconnected team members
within a locally connected team. A dynamic epistemic logic
(DEL) framework allows a robot i to succinctly share beliefs
and update a robot’s perspective si on the epistemic state s.
There are two cases where updates can occur: i) when con-
nected to all robots and ii) when expecting to connect with
another robot. From the established semantics in Sec. III-
B, we know A = {percieve(ϕ), announce(ϕ), complete(ϕ)}
The action complete represents a robot completing a task,

perceive symbolizes a robot observing a generic proposition
ϕ about the MRS, and announce constitutes communication
with a locally connected team. The set Ψ = {track} is
functionally interpreted for Bi track(pi j,b) as the robot i
knows that the robot j is tracking the belief particle b.

First, we address a belief update when robots are within
communication range. We assume that because robots are
cooperative, all belief updates are accepted and are only
outdated if an event occurs, such as system failures or
disturbances. These updates are announced such that the
epistemic state from robot i’s perspective is:

si⊗announce(Ω) = s′i |= KiV(Ωi)
∧
j∈A

KiK jV(Ω j) ∀i ∈ C. (9)

where announce(Ω) is an action symbolizing the announce-
ment of all robots’ dispositions, Ω. The notation models
robot i’s knowledge of the dispositions of all robots, and
the function V(Ωi) maps the dispositions of the robot i to
atomic propositions in the set AP. The set C ⊆ A represents
the set of robots within robot i’s communication range. The
belief particles are updated from the announcement of all
states to the MRS such that

pi j,b ← Ω
j, ∀(i, j) ∈ A2, ∀b ∈ B. (10)

Since beliefs are shared according to (9), the particles
in this set are propagated according to the dispositions of
each robot. For example, in a three-robot team, if robot 1
communicates with robots 2 and 3 that it will execute robot
3’s tasks, all robots would propagate a belief particle that
moves robot 1 according to its assigned tasks.

The perceive action causes a robot to change his belief in
the epistemic world. If robot i perceives that robot j is not at
its believed location, it updates its epistemic state with the
epistemic action percieve:

si⊗ i : perceive(¬track(pi j,b)) |= V(Ω j, Bi¬track(pi j,b)) (11)

where the function V takes two arguments, mapping robot
i’s updated belief about robot j to an atomic proposition
in AP and robot i’s new epistemic state is evaluated as
the epistemic product after perceive has been enacted. The
particle propagation does not change in this case since robots
may seek out other robots without knowledge of this belief
update. In the event of a malfunction or fault of a robot, the
robot updates its belief in the same way with j = i and tracks
respective empathy particle pii,b+1.

In this way, the knowledge of disconnected robots is
not affected, nor does the robot i update its belief that a
disconnected robot would know the updated information.
With our epistemic states and actions defined, we now
describe how these concepts can be used for planning. As
stated in Sec. III-B, a planning task for the MRS is defined
by the tuple Π = (s, A, γ) where γ is a goal formula. In plain
language, the goal formula is to complete all tasks. We define
the epistemic update associated with a robot who completes
an assigned task ν ∈ V as:

si ⊗ i : complete(ν) |= V(Ωi, B jcomplete(ν)) ∀ j ∈ A. (12)

The variable Ωi is also updated to represent the new dispo-
sition of robot i. Given that other robots are also tracking

the believed location of robot i, belief updates occur without
communication, although these beliefs may be incorrect if a
failure has occurred. Thus, an augmented policy that allows
the MRS to achieve the common goal must be enacted.

In the event of a malfunction, we introduce two new
types of tasks that allow operational robots to gather the
necessary information about the system’s condition and
complete any unfinished tasks. These types of tasks are
called gossiping and finding. Given robot i’s belief and the
planned interactions with other robots according to the mTSP
solution (7), a robot should communicate before any planned
interaction. Ensuring the completion of communication tasks
(gossiping) and promptly identifying malfunctioning robots
are vital steps to facilitate accurate information exchange and
prevent the spread of misinformation within the system. The
estimation of the interaction point can be determined using
the time-based trajectory of the belief state and the reachable
set of the robot involved, as depicted in Fig. 4(a). The
position of robot j’s belief state at a specific time t is denoted
as pi j,b(t). To find the point where robot i’s communication
range intersects with the communication range of robot j’s
predicted location, we find the minimum timestep tr that
satisfies the equation:

∥xi(tr) − pi j,b(tr)∥ − R(tr) > rc (13)

where ∥xi(tr) − pi j,b(tr)∥ represents the distance between the
location components of the robot’s position, xi and robot i’s
belief about robot j, pi j,b. The reachable set, R, for robot i
expands at every timestep based on the robot’s velocity. If
all belief states have been checked for a deprecated robot
j, a robot i backtracks along the previously established path
until robot j is located. An example is shown in Fig. 4(b),
where a blue robot routes backward along the green robot’s
path to communicate and reallocate any remaining tasks.

𝑡 = 𝑡 + 1

𝑡 = 𝑡 + 2

𝑡 = 𝑡 + 3 Simplified
Reachable Set

(a) Planning for a dynamic task

Belief
State

Fault

(b) Finding at an unknown location

Fig. 4. Examples of tasks generated as a result of belief updates

2) Balanced Workload Partitioning: Given the limited
nature of communication in this application, robots first
assign new tasks to connected robots before optimizing their
path [19] so that robots do not need to maintain a connection
while optimizing routes to new tasks. Robots instead partition
tasks based on a balanced workload and accounting for any
belief updates. For example, suppose two robots, i and j,
are connected, and robot k is not within the communication
range. In that case, robot i might believe that robot k is
functioning according to the initial state, s0, but robot j did
not perceive robot k at its respective belief state pik,b. So
robot j announces its belief to robot i. Robots i and j then
bid on the new task, which is to find robot k. We letVc be the
set of tasks the connected robots must complete, and the cost

function for allocating a task to a robot is user-defined (e.g.,
distance, time). Algorithm 1 presents the bidding mechanism
used in this paper, noting that this is only instigated if a
belief update about the MRS functionality has occurred (i.e.,
a fault or disturbance). Once the task allocations have been
determined, the next step is to find the optimal tour.

Algorithm 1 Balanced Workload Partitioning
1: tours ≡ ∅ ∀s ∈ C
2: for each ν ∈ Vc do
3: for each s ∈ C do
4: bids = cost(tours ∪ ν)
5: winner = arg min

s∈C
(bids)

6: tourwinner ← tourwinner ⊕ ν

3) Monte Carlo Tree Search: As mentioned in Sec. I, we
combine Monte Carlo Tree Search (MCTS) with a DEL to
implicitly coordinate plans when the system does not operate
as originally intended. Referring to Sec. V-C, to limit the
policy search space, each robot’s state consists of believing
that a robot j is following one of the particles represented
in robot i’s set of particles Pi. MCTS is applied to complex
games such as chess or Go to find the next best move, even
in real-time [20]. To model the solution space effectively, we
use the current epistemic state from a robot i’s perspective
si. The MCTS algorithm simulates changes to the epistemic
state when an action is taken and is represented as s′i ∼
si ⊗ a. Robots add gossiping or finding tasks based on local
observations, as discussed in Sec. V-D.1 when 1) a robot
experiences a fault or disturbance, or 2) a robot i observes
that its epistemic belief about the state of robot j is incorrect.

In this work, the search tree is generated by repeating
the four steps – selection, expansion, simulation, and back-
propagation – until a certain termination condition is met,
which in this approach is a certain number of simulations.
In the selection stage, a leaf node that has not yet been
fully expanded is selected. We employ the upper confidence
bound applied to trees (UCT) technique, which is typical in
MCTS, to decide which vertex to simulate from the root
node. Specifically, UTC was chosen because it has been
shown to strike a good balance between exploration and
exploitation [20]. Expansion occurs by randomly applying
a random action or, in this case, adding a random task to
a robot’s route. The simulation then performs a random
remaining route until termination (i.e., all of the robots’
allocated tasks are performed) and then backpropagates the
reward, applying the estimated value to the expanded node
in the expansion step. The MCTS seeks to maximize the
negative time it takes for a robot to complete all its assigned
tasks, estimating the time to find and gossip with robots using
the methods in Fig. 4. We summarize the MCTS simulation
applied in this approach in Algorithm 2. The tour with the
lowest estimated cost is the chosen execution policy, π for
all the robots in the system that will satisfy γ.

To aid the reader in understanding, the proposed approach
is implemented on the toy example shown in Fig. 5. We show
the trivial solution to the mTSP in Fig. 5(a) and the modified
mTSP solution considering the interaction reward from (5)
in Fig. 5(b). In Fig. 6, we show a subset of frames from

Algorithm 2 MCTS - Simulate
1: tour = child.tour(child rollout)
2: cost = 0
3: for each c ∈ tour do
4: if type(c) = “Static Robot” then
5: path =reverse(particle(c).tasks)
6: else if type(c) = “Dynamic Robot” then
7: path = find intersect point(particle(c).tasks)
8: else
9: path = task location(c)

10: cost += time to traverse(path)
11: reward = −cost

the approach in which the blue robot realizes that the purple
robot is deprecated in Fig. 6(a), gossips the information to the
red and green robots who reallocate remaining tasks while
the blue robot is charged with finding the purple robot in
Fig. 6(b). In Fig. 6(c), the blue robot has communicated
with the purple robot and routes to the remaining task in
the environment before returning to the home base.

Tasks

(a) Ideal: 61m makespan (b) Ours: 69m makespan
Fig. 5. Ideal mTSP allocation for 4 robots is shown in (a) and (b) is the
solution with our proposed method.

Completed
 Tasks

Gossip

(a)

Reallocate

Find

(b)

R

R

R

D

All Tasks
Assigned

(c)
Fig. 6. Our approach on a toy example, where the purple robot fails, and
the blue robot realizes that the purple robot is not where expected.

VI. Simulations

This section showcases the outcomes obtained through
MATLAB simulations of our method executed by teams of
two to five robots. The square environment used for the
simulations has dimensions of 30× 30, 30× 30, 90× 90, and
150 × 150 [m], and for each scenario, a total of 10, 10, 30,
and 50 tasks were generated. The locations of the tasks were
randomly generated for each scenario.

In our proposed approach, each robot propagates three
particles. The initial maximum speed of each vehicle is 5
[m/s], and the second and third particles travel at a linear
speed that is 80% and 60% of the vehicle’s maximum

speed, respectively. The maximum communication range is
5 [m] from the center of the robot. In our simulations, we
implemented one fault for teams of two to five robots and
two for teams of three to five robots, randomly occurring
to any robot, causing the affected robot to track its second
or third empathy particle or fail (i.e., zero velocity). Our
approach was compared to a baseline heuristic in which
the routes are determined by minimizing their makespan
from (2) and backtracking to find team members who do not
arrive at the depot when expected. We let δ equal 30% to
increase the number of interactions between robots from (8)
such that the makespan of our solution can be up to 30%
longer than the baseline heuristic solution. We compare with
this baseline to determine whether increased interactions and
epistemic replanning truly improved the outcome. As shown
in Fig. 7, our approach outperforms the baseline heuristic
by a significant margin in all scenarios, and we note that the
margin increases as the number of failures increases between
Fig. 7(a) and Fig. 7(b).

(a) Scenarios with 1 failure (b) Scenarios with 2 failures

Fig. 7. Comparison of a baseline heuristic and the proposed approach.

Discussion – We emphasize that the margin of improvement
is smaller as the teams become larger because information
sharing becomes more inefficient as interactions between all
robots become sparse. This introduces an interesting expan-
sion outside the scope of this work for introducing optimal
sub-teaming to create more efficient information sharing for
static or dynamic teams during operations. In addition, not all
vehicles are equally likely to fail. As vehicles age, they may
become less reliable, requiring more dependable vehicles to
take over or pick up additional tasks if a vehicle’s operating
capacity is deprecated during operations [21].

VII. Experiments

Our approach was validated through several laboratory
experiments with a multi-robot team. The team consists of
several Bitcraze Crazyflies that used a Vicon motion capture
system for localization. Vehicles start within the communi-
cation range to complete all tasks in the environment. The
experiments were carried out in a 4 × 5.5 [m] space with a
sensing and communication range of 0.5 [m] for each robot.
The results of a sample experiment with ten tasks and three
Crazyflies are shown in Fig. 8.

As shown in the figure, each robot is assigned a subset of
tasks in Fig. 8(a). After disconnection, the blue robot fails
and the green robot observes that the blue robot is not where
expected in Fig. 8(b); the green robot backtracks along the
blue robot’s path and finds the blue robot in Fig. 8(c). In
Fig. 8(d), the green robot also observes that the red robot
is not where expected. The green robot backtracks along the

(a) (b) (c) (d) (e) (f)
Fig. 8. Snapshots and results of an experimental case study.

path of the red robot and finds the red robot in Fig. 8(e). The
green robot then replans all remaining tasks before ending
at the depot in Fig. 8(f).

VIII. Conclusion

This paper presents a novel framework for multi-robot
systems to use a modified centralized planning method to
assign tasks, accounting for intermittent interactions. These
interactions enable the system to use epistemic planning,
which adapts to faults and disturbances by reassigning tasks
based on a robot’s reasoning about the system while dis-
connected. This method allows an MRS to disconnect and
cooperatively plan based on a set of belief and empathy states
if the system does not function as intended. The generalized
task allocation algorithm uses these belief states to assign
tasks while considering the potential need to communicate
with disconnected robots, facilitating dynamic task allocation
without constant communication. We show the improvement
of our framework compared to a baseline heuristic over
several scenarios and apply our framework to real-world ex-
periments. Future research includes addressing the challenges
of improving strategies for more complex environments. Ad-
ditionally, we would like to reduce the computation time for
task allocation and optimize the necessary belief propagation
and interactions for a larger multi-robot system by dividing
the team into sub-teams. Outdoor experiments are also on
our agenda.

IX. Acknowledgements

This work is based on research sponsored by: Northrop
Grumman through the University Basic Research Program,
the Swedish Research Council (VR) with the PSI project No.
#2020-05094, and the Knowledge Foundation (KKS) with
the MARC project No. #20240011.

References

[1] L. Bramblett, S. Gao, and N. Bezzo, “Epistemic prediction and plan-
ning with implicit coordination for multi-robot teams in communica-
tion restricted environments,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 5744–5750.

[2] L. Bramblett and N. Bezzo, “Epistemic planning for multi-robot sys-
tems in communication-restricted environments,” Frontiers in Robotics
and AI, vol. 10, p. 1149439, 2023.

[3] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-
scale traveling-salesman problem,” Journal of the operations research
society of America, vol. 2, no. 4, pp. 393–410, 1954.

[4] M. Bellmore and S. Hong, “Transformation of multisalesman problem
to the standard traveling salesman problem,” Journal of the ACM
(JACM), vol. 21, no. 3, pp. 500–504, 1974.

[5] B. Miloradović, B. Çürüklü, M. Ekström, and A. V. Papadopoulos,
“GMP: A genetic mission planner for heterogeneous multirobot system
applications,” IEEE Transactions on Cybernetics, vol. 52, no. 10, pp.
10 627–10 638, 2021.

[6] M. Frasheri, B. Miloradović, L. Esterle, and A. V. Papadopoulos,
“GLocal: A hybrid approach to the multi-agent mission re-planning
problem,” in 2023 IEEE Symposium Series on Computational Intelli-
gence (SSCI), 2023, pp. 1696–1703.

[7] J. Chen, X. Qing, F. Ye, K. Xiao, K. You, and Q. Sun, “Consensus-
based bundle algorithm with local replanning for heterogeneous multi-
uav system in the time-sensitive and dynamic environment,” The
Journal of Supercomputing, vol. 78, no. 2, pp. 1712–1740, 2022.

[8] M. Otte, M. J. Kuhlman, and D. Sofge, “Auctions for multi-robot
task allocation in communication limited environments,” Autonomous
Robots, vol. 44, no. 3, pp. 547–584, 2020.

[9] Y. Gao, Y. Wang, X. Zhong, T. Yang, M. Wang, Z. Xu, Y. Wang,
Y. Lin, C. Xu, and F. Gao, “Meeting-merging-mission: A multi-
robot coordinate framework for large-scale communication-limited
exploration,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 13 700–13 707.

[10] S. Al-Hussaini, J. M. Gregory, and S. K. Gupta, “Generation of
context-dependent policies for robot rescue decision-making in multi-
robot teams,” in 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, 2018, pp. 4317–4324.

[11] H. Van Ditmarsch, W. van Der Hoek, and B. Kooi, Dynamic epistemic
logic. Springer Science & Business Media, 2007, vol. 337.

[12] T. Bolander, L. Dissing, and N. Herrmann, “Del-based epistemic
planning for human-robot collaboration: Theory and implementation,”
in Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, vol. 18, no. 1, 2021, pp.
120–129.

[13] B. Maubert, S. Pinchinat, F. Schwarzentruber, and S. Stranieri, “Con-
current games in dynamic epistemic logic,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
2021, pp. 1877–1883.

[14] D. E. Knuth, “Backus normal form vs. backus naur form,” Communi-
cations of the ACM, vol. 7, no. 12, pp. 735–736, 1964.

[15] R. Necula, M. Raschip, and M. Breaban, “Balancing the subtours
for multiple tsp approached with acs: Clustering-based approaches vs.
minmax formulation,” in EVOLVE-A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation VI. Springer,
2018, pp. 210–223.

[16] L. D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems
and traveling salesmen: The genetic edge recombination operator,” in
ICGA, vol. 89, 1989, pp. 133–40.

[17] M. Jünger, G. Reinelt, and G. Rinaldi, “The traveling salesman
problem,” Handbooks in operations research and management science,
vol. 7, pp. 225–330, 1995.

[18] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, no. 2, pp.
498–516, 1973.

[19] P. Mazdin and B. Rinner, “Distributed and communication-aware
coalition formation and task assignment in multi-robot systems,” IEEE
Access, vol. 9, pp. 35 088–35 100, 2021.

[20] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in European conference on machine learning. Springer, 2006, pp.
282–293.

[21] S. B. Stancliff, J. Dolan, and A. Trebi-Ollennu, “Planning to
fail—reliability needs to be considered a priori in multirobot task
allocation,” in 2009 IEEE International Conference on Systems, Man
and Cybernetics. IEEE, 2009, pp. 2362–2367.

