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ABSTRACT
Passports are part of critical infrastructure for a very long time.
They also have been pieces of automatically processable informa-
tion devices, more recently through the ISO/IEC 14443 (Near-Field
Communication – NFC) protocol. For obvious reasons, it is crucial
that the information stored on devices are sufficiently protected.
The International Civil Aviation Organization (ICAO) specifies ex-
actly what information should be stored on electronic passports
(also Machine Readable Travel Documents – MRTDs) and how
and under which conditions they can be accessed. We propose
a model-based approach for checking the conformance with this
specification in an automated and very comprehensive manner:
we use automata learning to learn a full model of passport doc-
uments and use trace equivalence and primitive model checking
techniques to check the conformance with an automaton modeled
after the ICAO standard. Since the full behavior is underspecified
in the standard, we compare a part of the learned model and apply
a primitive checking ruleset to assure proper authentication. The
result is an automated (non-interactive), yet very thorough test for
compliance, despite the underspecification. This approach can also
be used with other applications for which a specification automaton
can be modeled and is therefore broadly applicable.

CCS CONCEPTS
• Security and privacy → Systems security; Penetration test-
ing; • Software and its engineering→ Software verification
and validation.
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1 INTRODUCTION
Passports are among critical infrastructure and subject to forgery
for a very long time. This has been aggravated by the fact – it is even
mandatory for member states of the International Civil Aviation Or-
ganization (ICAO) that all documents that are not machine-readable
travel documents (MRTDs) are expired since 20151. More recently,
passports have opened up for wireless reading via Near-Field Com-
munication (NFC). The NFC communication protocol specified in
the ISO/IEC 14443 standard series (most prominently in ISO/IEC
14443-4 [9] for data communications), while the respective com-
mands for interacting with integrated-circuit identification cards
are defined in ISO/IEC 7816-4 [10]. The ICAO Doc 9303 series speci-
fies a logical data structure and further details regarding commands,
as well as rule sets for accessing the data inside the defined struc-
ture for MRTDs [16]. To sum it up, we use automata learning with
SELECT, READ, UPDATE and AUTHENTICATE (implementing
Basic Access Control - BAC [7]) symbols from the ISO/IEC 14443-4
protocol to infer an automaton and compare it using trace and
bisimilarity equivalence to an automaton modeled after the ICAO
MRTD specification. The remainder of this paper is structured as
follows: Section 1.1 contains this paper’s additions to the body of
knowledge, Section 2 outlines the necessary prerequisite knowl-
edge, Section 3 describes the learning and conformance checking
setup, Section 4 gives evaluation results, Section 5 gives an overview
of important related work, and Section 6 concludes the paper with
a discussion and an outlook on further research directions.

1.1 Contribution
This paper outlines a process how to very thoroughly analyze
passports and automatically check their conformance with the
ICAOMRTD specifications using formal methods. The contribution
to the body of knowledge is threefold. The paper provides:

• A concise summary of the ICAO MRTD specification – this
information can be used by researchers to build compliance
checking systems.

• A(n incomplete) state machine model of the specification.
• An automata learning setup for ISO/IEC 14443-4, ISO/IEC
7816-4, and ICAO Doc 9303 including an input alphabet
definition and a practical implementation.

1https://www.icao.int/Newsroom/Pages/Last-Week-for-States-to-Ensure-Expiration-
of-Non-Machine-Readable-Passports.aspx
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Figure 1: Overview of the approach. Green are processes and
blue are artifacts.

• A practically implemented method for compliance checking
based on equivalence and primitive model checking for an
underspecified standard.

The approach described in this paper can also be adapted, e.g., by
using the specification parts model (Sections 2.2, 3.3, and 3.4) to
create model-based tests from it (removing the learning part) or by
using the learning part only (Sections 3.1, 3.2, and 4) and creating
rules for a model checker to check the model for desired properties
(removing the equivalence checking part). Figure 1 provides an
overview of this approach and its parts.

1.2 Limitations
Since the ICAO specification is not strict enough to build a feasible
specification automaton (through many optionalities, there could
be many automata that represent a valid model of the specification),
the behavioral equivalence only covers a part of the conformance
checking. For other parts (namely, files should not be read and/or
writable if certain conditions are not met), we impose model checks.
These are, however, pretty primitive and might be improved. Also,
with the lack of a Password Authenticated Connection Establish-
ment (PACE) and Terminal Authentication implementation, we do
not check for these types of authentication 2. Lastly, the case study
is limited, as only Austrian passports were available as examination
objects.

2 PRELIMINARIES
This section outlines the fundamentals of the NFC protocol fam-
ily, the ICAO MRTD specifications and the concepts of automata
learning.

2.1 Near Field Communication
Near Field Communication (NFC), standardized in the ISO/IEC
14443 series, is a wireless communications protocol that allows for
reader devices (proximity coupling devices - PCDs) to communi-
cate completely passive, powerless devices (proximity integrated
circuit cards - PICCs) at low data rates (up to 424 kbits/s). The
PICCs are therby powered via an inductive field that also trans-
ports the data. After a handshake [8], which is out of scope of

2A German passport was available, but supported PACE only. We could not include it
in the evaluation for the reason stated above.

this paper, communications is standardized in ISO/IEC 14443-4 [9],
which defines basic types of messages for data transmission (in-
formation or I blocks), signaling (supervisory or S blocks), and
acknowledgements (receive-ready or R blocks), along with protocol
mechanisms like block numbering, chaining, error correction, etc.
The actual data interchange format is defined in ISO/IEC 7814-4
[10], including commands for data selection, data manipulation and
security functions. In general, data on NFC cards is segmented into
different applications (dedicated files - DFs), which are comparable
to directories on file systems, that contain data files (elementary
files - EFs) as actual data storages. Both types are selected using
the SELECT command with different parameters. The standard also
defines manipulation operators that can be applied on EFs. One fla-
vor are the READ/WRITE/UPDATE/APPEND/SEARCH/ERASE/COM-
PARE BINARY commands. These are for manipulating Data Units,
which can inside the EF be controlled by using offsets. Another
set is the READ/WRITE/UPDATE/APPEND/SEARCH/ERASE/ACT-
IVATE/DEACTIVATE RECORD commands for manipulating Records,
that can be addressed by record identifiers instead of raw binary
offsets. Under records reside Data objects (DOs), which can be ad-
dressed with the GET/PUT/UPDATE/COMPARE DATA commands.
Apart from that, the standard defines security functions like the
GETCHALLENGE and different forms of AUTHENTICATE and veri-
fication commands. These commands build the base of the input
alphabet for learning NFC models, the rest of the commands in-
side an abstraction layer will be defined by respective identifiers
defining the content.

The respective answers to these commands could consist of
data (which can be encrypted as well), but in any case contains
two status bytes (as defined in ISO/IEC 7816-4). These bytes are
set to have a scheme distinguishing between a completed process
with normal processing (9000 and 61XX - the latter means that
are data bytes left to transmit) or warning processing (62XX and
63XX ), as well as aborted processing with execution error (64XX
and 66XX ) or checking eroor (67XX and 6FXX ). The most common
codes encountered when working with passports are (empirical :

• 9000 - OK
• 6300 - No information given (seen at authentication attempts
with wrong credentials)

• 6700 - Error with no information given (when trying to per-
form write operations without authentication)

• 6982 - Security status not satisified (i.e., lack of authentica-
tion)

• 6985 - Conditions of use not satisfied (when trying to au-
thenticate without an application selected)

• 6986 - Command not allowed (when trying to read without
a file selected)

• 6988 - Insecure messaging DOs (when encrypting data with
a wrong key)

• 6A82 - File not found
• 6D00 - Instruction code not supported or invalid (when send-
ing malformed commands)



Mining and Checking MRTD Models ARES 2024, July 30-August 2, 2024, Vienna, Austria

2.2 Machine Readable Travel Document
Specification

The International Civil Aviation Organization’s (ICAO) Doc 9303 se-
ries specifies the appearance and behavior of passports andmachine
readable travel documents (MRTDs). Particularly Part 10 [16] spec-
ifies the logical data structure (LDS) of MRTDs and defines access
rights (i.e. what authentication is necessary to read or manipulate)
for data.

The standard defines four applications, referenced by dedicated
files:

• eMRTD (ID A0 00 00 02 47 10 01)
• Travel records (ID A0 00 00 02 47 20 01)
• Visa records (A0 00 00 02 47 20 02)
• Additional biometrics (A0 00 00 02 47 20 03)

The first (following the LDS1) is mandatory, while the latter three
(follwing the LDS2) are optional. The eMRTD application contains
all of the data that is normally on the main page of a passport
(like number, name, birth date, expiration date, etc.) plus additional
data including electronic photos, finger and iris scans. This applica-
tion contains data that should be immutable in the document and
readable with authentication, namely with the older Basic Access
Control (BAC) or the newer Password Authenticated Connection
Establishment (PACE), with sensitive biometrics (fingerprints and
iris scan) additionally needs a terminal authentication to deter-
mine the reader is authorized. Due to this is mandatory and the
other applications are not implemented in many (including EU)
passports3, we concentrate on this part. The other applications
contain potentially mutable records, and certificates stored within
the application to display authenticity against a reader – assuring
that visa and electronic travel stamps are genuine. The applications
require different levels of authentication (see Section 2.2). Figure 2
gives an overview of the layout and the different applications and
Table 1 gives an overview of the defined EFs with their IDs, DFs,
requisiteness, and access requirements.

2.2.1 Electronic Machine Readable Travel Document Application.
Concentrating on the Electronic Machine Readable Travel Docu-
ment (eMRTD) application, ICAO Doc 9303 Part 10 defines various
EFs that contain personal and document data, along with access
requirements. In particular it defines

• Common (EF.COM): containing metadata (version, encoding,
etc.) of the application

• Data Group 1 (EF.DG 1): containing the machine readable
zone.

• Data Group 2 (EF.DG 2): containing the holder’s face image.
• Data Group 3 (EF.DG 3): containing the holder’s fingerprints
image.

• Data Group 4 (EF.DG 4): containing the holder’s iris image.
• Data Group 5 (EF.DG 5): containing holders displayed por-
trait(s).

• Data Group 6 (EF.DG 6): is reserved for future use.
• Data Group 7 (EF.DG 7): containing the holder’s displayed
signature.

3We also concretely tested an expired Austrian and a valid Austrian and German
passport for these applications. The answer was unanimously the status code 6A82 for
File or application not found.

• Data Group 8 (EF.DG 8): containing data features.
• Data Group 9 (EF.DG 9): containing structure features.
• Data Group 10 (EF.DG10): containing substance features.
• Data Group 11 (EF.DG11): containing additional personal
details (e.g., localized name, place-of-birth).

• Data Group 12 (EF.DG12): containing additional document
details (e.g., issuing authority, date-of-issue).

• Data Group 13 (EF.DG13): containing optional details.
• Data Group 14 (EF.DG14): containing data elements.
• Data Group 15 (EF.DG15): containing the public key info for
active authentication.

• Data Group 16 (EF.DG16): containing persons to notify.
• Document Security Object (EF.SOD): containing hash values
of the data group for integrity checking.

• Country Verifying Certification Authorities (EF.CVCA): con-
taining public keys of CVCA for teminal authentication (see
Section 2.2.2).

• Key files for authentication (see Section 2.2.2).
All of these files can be mandatory (DG1, DG2), optional (DGs 3-5,
7-13, and 16), or conditional (DG14 - if PACE is implemented, DG15
- if AA is implemented) and can be read if authenticated (via BAC or
PACE), except for DGs 3 and 4, which require additional terminal
authentication (see Section 2.2.2) - none of these files should be
manipulated (no write/append access). Table 1 gives an overview
of these files, along with those from the LDS2 applications.

2.2.2 Authentication. Since passports can considered critical in-
frastructure devices, authentication is crucial. The ICAO defines
two mechanisms for access to the MRTD chips in its Doc 9303-11
standard [7]:

• Basic Access Control (BAC) and
• Password Authenticated Connection Establishment (PACE).

BAC is the older one, it had known privacy issues [2, 5] and may
become deprecated in future. Currently an MRTD must implement
one or both mechanisms. Additionally LDS2 applications must and
additional biometrics, LDS1 data groups 3 (fingerprints) and 4 (iris),
may be secured by a terminal authentication procedure.

Since we have a BAC, but not a PACE implementation available
and our available devices-under-test (see Section 4) all support BAC
but only partially PACE, we use BAC only for modeling and eval-
uation. BAC uses is challenge-response by encrypting a received
nonce (via a GETCHALLENGE command) with a key derived from
three components[7]: the passport number, the expiration date and
the holder’s birth date. These can be obtained from the machine
readable zone or the main page of the passport. The encrypted
nonce is subsequently sent through an EXTERNAL AUTHENTI-
CATE command to finish the authentication. The authentication
answer contains additional key material for establishing session
keys. All instructions (and respective responses) operating on data
protected by this particular BAC are encrypted using these session
keys. The rationale is to prevent unnoticed wireless data extraction
from an MRTD.

2.3 Automata Learning
Automata learning is a method to infer state machine models (orig-
inally deterministic finite acceptors - DFAs) from a system using a
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Name ID DF Mandatory SELECT READ WRITE APPEND
EF.ATR/INFO 2F01 Master No1 ALWAYS ALWAYS NEVER NEVER

EF.DIR 2F00 Master No1 ALWAYS ALWAYS NEVER NEVER
EF.CardAccess 011C Master No2 ALWAYS ALWAYS NEVER NEVER
EF.CardSecurity 011D Master No2 PACE PACE NEVER NEVER

EF.DG1,2 0101,02 LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.DG3,4 0103,04 LDS1.eMRTD No BAC/PACE+TA BAC/PACE+TA NEVER NEVER

EF.DG5,7-13,16 0105,07-D,10 LDS1.eMRTD No BAC/PACE BAC/PACE NEVER NEVER
EF.DG6 (RfFU) 0106 LDS1.eMRTD No - - - -

EF.DG14 010E LDS1.eMRTD No2 BAC/PACE BAC/PACE NEVER NEVER
EF.DG15 010F LDS1.eMRTD No3 BAC/PACE BAC/PACE NEVER NEVER

EF.COMMON 011E LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.SOD 011D LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER
EF.CVCA 011C LDS1.eMRTD Yes BAC/PACE BAC/PACE NEVER NEVER

EF.Certificates 011A All LDS2 No PACE+TA PACE+TA NEVER PACE+TA
EF.ExitRecords 0102 LDS2.Travel Records No PACE+TA PACE+TA NEVER PACE+TA
EF.EntryRecords 0101 LDS2.Travel Records No PACE+TA PACE+TA NEVER PACE+TA
EF.VisaRecords 0103 LDS2.Visa Records No PACE+TA PACE+TA NEVER PACE+TA

EF.Biometrics1-64 0201-0240 LDS2.Add. Biometrics No PACE+TA PACE+TA NEVER NEVER
Table 1: Files from ICAO Doc 9303-10 with their names, IDs, application, requisiteness and access requirements.
1Conditional - required if LDS2 files are present.
2Conditional - required if PACE is implemented.
3Conditional - required if active authentication is implemented.

Figure 2: Locical Data Structure of Machine Readable Travel
Documents.
Amber is the master file (MF), Cyan are dedicated files (DF),
Blue are Elementary Files (EF), and Green are key files. Solid
frames means mandatory files, dashed ones optional files.
Solid boxes donate the LDS contexts, dashed black boxes re-
quirements, and dashed red boxes necessary authentication.

learner-teacher framework [1]. The learner may ask two kinds of
questions: Membership queries and Equivalence queries. The former
is used to determine if an input (specifically an input word, which
is a combination of input symbols) is well-formed i.e., if it is a valid
word inside this language. The answer to this query is a yes or a
no from the teacher. The latter type of queries is to determine the
correctness of a learned automaton. The teacher answers with yes
if a hypothesis (inferred after a sufficient amount of membership
queries) is correct or gives a counter example the learner could use
to improve the hypothesis until it is correct. To apply this to real-
world reactive systems (mostly software or cyber-physical systems),
we use Mealy machines (formally 𝑀 = (𝑄, Σ,Ω, 𝛿, 𝜆, 𝑞0), with 𝑄

being a set of states, Σ an input alphabet, Ω an output alphabet,
𝛿 a transition function (𝛿 : 𝑄 × Σ → 𝑄), 𝜆 an output function
(𝜆 : 𝑄 × Σ → Ω) and 𝑞0 an initial state. This alters the framework
in the sense that the membership queries yield a Mealy output
instead of a binary answer. In practice, the teacher is implemented
in a way that the membership queries deliver the (abstracted - see
Section 3.1) result directly obtained from the reactive system and
the equivalence queries are realized as set of conformance tests
that deliver a positive answer or a counterexample in the form of
a failed test’s input. The respective systems can also be viewed as
labeled transition systems (LTS) [14]. We can therefore use trace
equivalence (𝑇𝑟𝑎𝑐𝑒𝑠 (𝐿𝑇𝑆1) = 𝑇𝑟𝑎𝑐𝑒𝑠 (𝐿𝑇𝑆2)) to check the behav-
ioral equivalence with a specification automaton [3].

3 LEARNING SETUP
We use the widely used Java library LearnLib [12] to mine (Mealy
type) state machine models of passports. This library provides
classes for developing adapters to a system-under-learning (SUL),
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as well as various learning algorithms (L* [1] and variants thereof
[17], KV [13], DHC [15] and TTT [11]).

The SUL classes interact with a C++ program that serves as an
interface for a Proxmark3 NFC adapter device [6], which allows
for sending arbitrary NFC commands to a device and process the
respective responses. This program also contains an abstraction
layer (see Section 3.1).

3.1 Abstraction
Since, in principle, any combination of bytes can be sent to a SUL,
the input space is very large (only bounded by the maximum trans-
mission units for NFC). To keep the learning within a feasible time
frame, the input must be limited to sensible set of discrete instruc-
tions i.e., the input alphabet for a Mealy machine. The C++ adapter
translates input symbols to data to be send. Similarly, we abstract
the output of the operations. This is a necessity, since some of the
commands yield a different output every time (e.g., through random
cryptographic nonces, session keys, etc.). However, conviently all of
the answer messages contain a status code (see Section 2.1), which
is even in clear text for encrypted messages. Also, the status code
already contains the relevant information for checking ICAO con-
formance, since it determines whether a file could be successfully
read or manipulated. We therefore use the answer status codes as
abstracted outputs.

3.2 Input Alphabet
The input alphabet in our case consists of a combination of instruc-
tions from ISO/IEC 7816-4 (select DF, select EF, GETCHALLENGE,
EXTERNAL AUTHENTICATION, READ BINARY, and UPDATE
BINARY) and the file structure with the DF and EFs outlined in
Section 2.2. Except for the BAC, all instructions are used in two
forms: unencrypted and encrypted. The rationale is to check if
after a successful authentication insecure access might become
possible. We use READ BINARY as representative for all reading
operations and UPDATE BINARY as representative for writing op-
erations. As stated above we concentrate on the LDS1 application,
making this the only select DF instruction. The codes for card ac-
cess (CA) and (CVCA), as well as for card security (CS) and the
document security object (SOD) are identical (only executed in dif-
ferent context) yielding to only one encrypted and unecrypted input
symbol for each. The BAC is abstracted in to one input symbol (com-
bining the GETCHALLENGE and EXTERNAL AUTHENTICATE
instructions along with all necessary key calculations). The com-
pelete input alphabet is therfore <SEL_EF.CA>, <SEL_DF.LDS1>,
<SEL_EF.CM>, <SEL_EF.DG1>, <SEL_EF.DG2>, <SEL_EF.DG3>,
<SEL_EF.DG4>, <SEL_EF.DG5>, <SEL_EF.DG6>, <SEL_EF.DG7>,
<SEL_EF.DG8>, <SEL_EF.DG9>, <SEL_EF.DG10>, <SEL_EF.DG11>,
<SEL_EF.DG12>, <SEL_EF.DG13>, <SEL_EF.DG14>, <SEL_EF.DG15>,
<SEL_EF.DG16>, <SEL_EF.SOD>, <SEL_EF.ATR>, <SEL_EF.DIR>,
<RD_BIN>, <BAC>, <SSEL_EF.CA>, <SSEL_DF.LDS1>, <SSEL_EF.CM>,
<SSEL_EF.DG1>, <SSEL_EF.DG2>, <SSEL_EF.DG3>, <SSEL_EF.DG4>,
<SSEL_EF.DG5>, <SSEL_EF.DG6>, <SSEL_EF.DG7>, <SSEL_EF.DG8>,
<SSEL_EF.DG9>, <SSEL_EF.DG10>, <SSEL_EF.DG11>, <SSEL_EF.DG12>,
<SSEL_EF.DG13>, <SSEL_EF.DG14>, <SSEL_EF.DG15>, <SSEL_EF.DG16>,
<SSEL_EF.SOD>, <SSEL_EF.ATR>, <SSEL_EF.DIR>, <SRD_BIN>.

Figure 3: Graph of the specification automaton. The diagram
was simplified for better readability.

Using this alphabet in the abstracted learner yields models of pass-
ports (see Section 4). This model can be used to compare with a
specification automaton or to use with model checking.

3.3 Specification Automaton
Following the specification, we modeled a minimal automaton that
is able to behave a required by ICAO specification Doc 9303-10.
This is not straight-forward, since, compared with the possible
NFC command alphabets, the ICAO document is under-specified.
Additional behavior is specified in Doc 9303-11 (particularly that
the LDS1.eMRTD application must be selected before performing
BAC authentication). Since much of the behavior is not defined by
ICAO (e.g., behavior on multiple authentications and selections),
we modeled the bare functional minimum. The automaton contains
5 states, which, for better comprehensiveness, we label according to
already happened events: the initial state (𝜀), a state with a valid EF
from the Master DF (𝐸𝐹 ), the LDS1 application selected (𝐷𝐹 ), the
LDS1 application selected and authenticated with BAC (𝐷𝐹𝐴𝑈𝑇𝐻 ),
and the LDS1 application selected, authenticated with BAC and
a valid EF from the LDS1 application selected 𝐷𝐹𝐴𝑈𝑇𝐻𝐸𝐹 . Since
some files are optional we also leave out the selection transitions
in the state where they could be successfully accessed, since the
respective transitions could have a positive (9000) or negative (6a82)
output. Figure 3 show a graph of the specification automaton. Note
that the automaton is not a complete one, as not every input has a
defined output and target state in the output and transition relations,
respectively. This yields a specification automaton that can be used
for either a learning and behavior comparison approach as described
in this paper, or to create model-based tests.

3.4 Simplification and Labeling
To allow for a sensible comparison of the learned model with the
specification, we want to identify the distinct states with a hard def-
inition in the standard in order to separate it from not defined parts,
as not the full behavior but only the access rules and requiredness
of files are prescribed (see Section 2.2). Also, semantically labeled
states are more convenient for both the human reader and elec-
tronic processing. We therefore use a simple algorithm that accesses
mandatory files in a specific order, namely:

• From the initial state, follow the select EF for CardAccess
transition

• If output yields 9000, label this state as EF



ARES 2024, July 30-August 2, 2024, Vienna, Austria Marksteiner, Sirjani, Sjödin

• From the inital state, select the DF for LDS1.eMRTD tansition
• If output yields 9000, label this state as DF
• From DF, follow the BAC transition
• If output yields 9000, lable this state as DF|AUTH
• From DF|AUTH, follow the encrypted select Data Group 1
transition

• If output yields 9000, label this state as DF|AUTH|EF
• From the initial state, select the BAC transition
• If output yields 6985 label the state as FAILAUTH
• From FAILAUTH, follow the select LDS1.eMRTD transition
• If output yields 9000 label the state as FAILAUTH|DF
• From EF, select the BAC transition
• If output yields 6985 label the state as FAILAUTH|EF
• From the DF|AUTH|EF, select the unencrypted READ BI-
NARY transition

• If output yields 6982 label the state as DEAUTH

This names the states after attributed properties: EF for a selected
elementary file,DF for a selected decicated file (i.e. the LDS1.eMRTD
application), AUTH for a successful authentication (i.e., BAC), FAILAUTH
for a failed authentication (mainly happens because no file that
needs authentication was selected beforehand), DEAUTH for a
revoked authentication (which occurs when insecure – i.e., non-
encrypted – commands are executed). This label states where taken
from different Austrian passports.

3.5 Specification Conformance
As stated above, through underspecification there is room for di-
verse behavior patterns. As only the access level and optionality
of files is defined, we created a minimal automaton that modeled
the access rules for present files. This automaton only contains
the 𝜀, DF, DF|AUTH, and DF|AUTH|EF states. File operations (i.e.
READ BINARY should only be possible in the DF|AUTH|EF state.
We therefore abstracted the output into successful operations (9000)
and unsuccessful operations (NOK) for optional files in the other
states. It is, however, not significant for an optional EF if access to it
has been denied because of lack of authentication or because the file
is not present. Since we identified 22 different non-mandatory EFs
(all inside the Master and the eMRTD DFs), that would otherwise
have led to 222 possibilities equalling just as many specification
automata. Inside the DF|AUTH|EF we left the transitions out for
optional files (since, according to the specification, an operation
may or may not successful) and modeled successful read operations
for mandatory ones. For conformance checking, two steps were
necessary: a) positive checking and b) negative checking.

For a) we used a trace equivalence check with the specification
automaton, removing any states and transitions from the learned
one that are not in the specification. The pracical implementation is
realized by removing all transitions from a learned automaton that
lead from or to a state that is not covered within the specification
automaton (which, again is not complete and is missing ambigu-
ous transitions, i.e. such for optional files). For the remainder we
perform a trace equivalence check between the learned and the
specification automata. We realize this by converting the Learn-
Lib output in the Graphviz (.dot) format into the Aldebaran (.aut)
format and feed it into the mCRL2 tool [4] for trace equivalence
checking. However, all non-covered transitions will be removed in

an examined learned automaton as well, so the trace equivalence
shall hold if the SUL conforms.

For b) we performed a primitive form of model checking using a
simple rule set:
(i) Since for all mandatory files reside in the LDS1.eMRTD appli-
cation and authentication is required for access, a READ BINARY
must be secured (SRD_BIN ) and executed for from the DF|AUTH|EF
state) to yield a positive result (9000).
(ii) For DF|AUTH|EF to be in a guaranteed authenticated state, every
transition targeting that state must come from DF|AUTH or come
through a successful authentication (BAC / 9000) transition4. This
enables for efficient, automatic conformance checking that is as
comprehensive as the specification allows.

4 EVALUATION
We put the methodology to test at two different passports from the
Republic of Austria: one current and one expired 5 years ago. We
were able to infer models of these passports and observed subtle
differences, particularly that the elder one obviously does not sup-
port PACE (missing the respective CardAccess and CardSecurity
files in the master record). Figure 4 shows a diagram of the automa-
ton of the current passport, which is simplified for readability but
a full model in the sense that it is not the reduced version used
for conformance checking as outlined in Section 3.5. The model
shows additional states as compared to the (partial) specification,
namely a de-authenticated state, as well as failed authentications
and combinations of this new and the other states. Concretely, the
additional states are EF (a selected Elementary File in the Master
file), FAILAUTH, FAILAUTH|EF, FAILAUTH|DF, and DEAUTH (a de-
authentication after a wrongly selected EF in the DF|AUTH|EF state.
The main task for a checker is to make sure that no illegal operation
(i.e., reading or manipulation operation) occurs in these states. Both
examined objects passed the conformation tests (equivalence and
simple model checking) as outlined in Section 3.5.

5 RELATEDWORK
We used the approach of using equivalence checking (bisimula-
tion and trace equivalence) with NFC before, particularly for an
automatic compliance checker for the ISO/IEC 14443-3 (the NFC
handshake) protocol [14]). Apart from that, usage of similar ap-
proaches for compliance checking is sparse. For Mealy Machines,
Tappler et al. [19] used bisimulation for comparison and there is
work for a similar approach checking an embedded control software
for its correctness [18].

6 CONCLUSION
In this paper, we demonstrated the usage of automata learning to
infer models of passports and checkwhether they comply to interna-
tional machine readable travel document specification.We therefore
distilled the relevant information to create a specification automa-
ton out of the relevant documents and modeled a labeled transition
system out of it, which contains the standard-compliant behavior.
Since many of the files are not mandatory, we abstracted the output

4While other possibilities are possible in principle, they cannot be guaranteed to be con-
form with the standard; as a de-authentication might have occurred, the authentication
can not be take for granted.
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Figure 4: Learned and labeled model of an Austrian passport. The diagram was simplified for better readability.

for the comparison of optional files outside the state where a file
was selected and authentication successful. We therefore coped
with an underspecified standard using incomplete automata. This
system was compared with a learned model of an actual passport,
using the input alphabet described in Section 3.2. Since the models
displayed equivalent behavior, evidence for conformance with the
ICAO standard was provided.

6.1 Discussion
The current implementation is not complete and has therefore some
limitations. Most prominently, no other authentication mechanisms
than BAC was implemented, therefore parts of the specification
(particularly PACE-related) could not be tested – this also ruled
out some newer passports, e.g., current German ones, as systems-
under-test, as BAC can be completely abandoned as authentication
mechanism in favor of PACE. Also, no systems containing LDS2
applications were available, so these could also not be tested.

6.2 Outlook
The methods in this paper provide principally a very thorough
method of NFC-based data systems (particularly passports). This
method can easily adapted to be used with other systems and proto-
cols, once provided with an adequate specification, learner adapter
and input alphabet. Another direction to move forward is to test

more specifically: instead of checking equivalent behavior with a
specification automaton, specific rules can be applied for a model
checker to check the system for certain properties (particularly,
security properties). Looking in another direction, the specification
models are created manually so far. To further automate the process
techniques like Natural Language Processing (NLP) using small or
large language models can be used to create specifications automata
from standards or specification documents. This also facilitates the
use case of Original Equipment Manufacturers (OEMs) being able
to very thoroughly examine the
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