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A B S T R A C T

A hybrid cloud is an efficient solution to deal with the problem of insufficient resources of a private
cloud when computing demands increase beyond its resource capacities. Cost-efficient workflow scheduling,
considering security requirements and data dependency among tasks, is a prominent issue in the hybrid
cloud. To address this problem, we propose a mathematical model that minimizes the monetary cost of
executing a workflow and satisfies the security requirements of tasks under a deadline. The proposed model
fulfills data dependency among tasks, and data transmission time is formulated with exact mathematical
expressions. The derived model is a Mixed-integer linear programming problem. We evaluate the proposed
model with real-world workflows over changes in the input variables of the model, such as the deadline and
security requirements. This paper also presents a post-optimality analysis that investigates the stability of the
assignment problem. The experimental results show that the proposed model minimizes the cost by decreasing
inter-cloud communications for dependent tasks. However, the optimal solutions are affected by the limitations
that are imposed by the problem constraints.
1. Introduction

Cloud computing has received considerable attention in the business
and research communities because it offers many advantages, including
the provision of pay-per-use, reliable, and elastic resources [1]. From
the deployment perspective, cloud computing models are classified as
public cloud, private cloud, hybrid cloud, community cloud [2,3] and
multi-cloud [4]. A public cloud (e.g., Amazon EC2, GoGrid, Microsoft
Azure, etc.) provides virtually unlimited resources that any subscriber
can access. A private cloud provides an infrastructure that is owned
by an organization with more security and privacy concerns, and its
services are accessible only to its dedicated users.

The hybrid cloud model utilizes resources from both private and
public clouds to address the problem of insufficient resources in a
private cloud when it deals with the peak demand of its users’ re-
quests. Although using hybrid resources of a private cloud and a public
cloud imposes some challenges, such as traffic routes, communication
latency, etc, hybrid clouds offer the cost and scale benefits of public
clouds, with the security and control of private clouds. With a hybrid
cloud, organizations can scale to the public cloud and use the additional
computing power when needed, resulting in cost savings [2,5–10].
Indeed, when a private cloud cannot satisfy the quality of service
(QoS) requirements of tasks, such as a deadline, outsourcing tasks to

∗ Corresponding author.
E-mail addresses: somayeh.abdi@mdu.se (S. Abdi), Mohammad.ashjaei@mdu.se (M. Ashjaei), saad.mubeen@mdu.se (S. Mubeen).

a public cloud is an efficient solution to achieve the desired QoS and
provide scalable services. Since security is commonly the main concern
of an enterprise, using a hybrid cloud, tasks with high-security concerns
execute in the private cloud, whereas tasks with low-security concerns
execute in the public cloud.

Different applications in both scientific and industrial domains can
be modeled as workflows [11]. A workflow refers to a set of dependent
tasks that perform a dedicated function. Workflow scheduling is one of
the prominent issues in cloud computing. It is a well-known NP-hard
problem [12] and it aims to optimize resource allocation to complete
tasks considering the data dependency between them and satisfying
QoS requirements, such as a deadline or security constraints. Allocating
proper resources for workflow execution, particularly, in a hybrid cloud
has been a challenge. Such resource allocation has a significant impact
on meeting QoS requirements and minimizing the monetary cost of
workflow execution. This paper proposes a mathematical programming
model to address the problem of security-aware workflow scheduling in
a hybrid cloud model. The main objective is to minimize the monetary
cost of executing a workflow under deadline and security constraints.
The derived model is a Mixed-Integer Linear Programming (MILP)
problem. Since both the objective and the constraints of the model are
linear, it can be solved by efficient algorithms in a reasonable time
[13].
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With the improvements in parallelization and computing power, the
application of mathematical programming models has gained consider-
able attention in scientific and engineering fields to solve optimization
problems [14,15]. Mathematical optimization is capable of generating
a globally optimal solution to many real-world business problems [16–
19]. With mathematical optimization, we can capture the key features,
i.e., decision variables, constraints, and the objective function of our
problems in an optimization model. Once an optimization model is
formulated, it can be solved using optimization solvers, such as CPLEX1

nd Gurobi.2 Mathematical solvers are used in many fields to solve
omplex optimization problems and make data-driven decisions. Their
apability to find globally optimal solutions makes them powerful tools
n modern problem-solving, providing the basis for optimal decisions.
n addition, with a mathematical model, it is very easy to determine the
nfeasibility of an optimization problem. Solving a problem is deemed
easible if all constraints of the problem can be satisfied.

To propose and evaluate the mathematical model, we define the
bjective function and constraints of the model. Moreover, we per-
orm a post-optimality analysis to study the behavior of the proposed
odel. Post-optimality analysis is a technique used in mathematical
rogramming to study the sensitivity of the optimal solution to changes
n the input variable of the model after the optimal solution has been
btained.

The main contributions of this paper are as follows.

• We formulate the workflow scheduling problem in a hybrid cloud
model as an MILP problem. The proposed model considers both
the execution and data transfer costs of a workflow and fulfills
constraints related to the data dependency among tasks, the
workflow deadline, and security requirements.

• We solve the proposed mathematical model using the CPLEX
solver and develop it with OPL,3 which is an algebraic modeling
language.

• We evaluate the solution on several real-world workflows with
respect to changes in input variables of the model such as the
workflow deadline and security requirements. Moreover, we per-
form a post-optimality analysis to determine whether the optimal
solution remains stable or changes significantly with the changes
in the input variables of the model. Experimental results demon-
strate that the proposed MILP model generally performs better
than the three existing algorithms to optimize monetary costs and
find feasible solutions.

The rest of this paper is organized as follows. Section 2, reviews
he related works in the area of workflow scheduling in cloud com-
uting. Section 3 introduces the system model of the hybrid cloud and
orkflow model. Section 4 presents the proposed mathematical model

or the workflow scheduling problem. The experimental results of the
odel are reported in Section 5, and finally, Section 6 concludes the
aper.

. Related work

Workflow scheduling has been extensively studied in cloud comput-
ng. Optimizing makespan [20] and monetary cost [21] are the regular
bjectives of this research. Minimizing the monetary cost is a critical
equirement in the cloud environment. Therefore, real-world workflows
equire scheduling that minimizes the monetary cost while meeting the
oS requirements. Various QoS requirements, such as deadline [22],

ecurity [23], budget [24], and reliability [25] are addressed in the

1 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-
ptimizer

2 https://www.gurobi.com/solutions/gurobi-optimizer, which produce the
ptimal solution.
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related works. In this section, we review some related works that con-
sider the deadline and security requirements for workflow scheduling
in cloud computing.

Meeting the deadline of a workflow with a cost-optimization objec-
tive has been a challenge. To tackle this problem, deadline distribution
is one of the methods that have been widely used. The work in [26]
introduces the concept of prioritizing tasks in the workflow and as-
signing resources to the tasks based on their priorities. The main idea
of this method is to propose an algorithm that ranks tasks in the
workflow based on the minimum execution time and the longest path
from the first task in the workflow. In the task assignment phase, it
assigns each task to a node that allows completing the task at the
earliest time. This work proposes two algorithms which are called the
Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-
Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the
task with the highest upward rank value, while the CPOP algorithm
uses the summation of upward and downward rank values for prioritiz-
ing tasks. The work in [27] uses the concept of the deadline distribution
method to schedule a deadline-constrained workflow in a hybrid cloud
with the objective of cost minimization. It makes the initial schedule
in the private cloud using the HEFT algorithm and checks whether the
makespan is within the deadline of the workflow. If the makespan is
higher than the deadline, it uses rescheduling policies and based on
that schedules some tasks in the public cloud by finding the minimum
monetary cost VMs that complete the execution of the tasks within
their sub-deadlines. The work in [28] uses the deadline distribution
method based on task prioritization. it proposes an algorithm that
ranks tasks in the workflow based on the minimum execution time
and the longest path from the first task in the workflow. Then, the
workflow deadline is distributed to a sub-deadline for each task based
on its rank. In the resource selection step, each task is assigned to
the resource that meets its sub-deadline and minimizes the cost. The
work in [22] proposes a deadline-constrained workflow scheduling in
a single cloud based on the deadline distribution method. It proposes an
ant colony algorithm that distributes the deadline to a sub-deadline for
each task and selects a computation resource for each task. Generally,
the efficiency of the deadline distribution methods depends on accurate
deadline estimates for each task. Therefore, inaccurate estimates can
lead to missed deadlines and reduced efficiency in the scheduling
algorithm, which is a potential drawback of this method.

In addition to the deadline distribution method, meta-heuristic al-
gorithms are also applied to address the workflow scheduling problem.
These algorithms find an approximation of solutions in a reasonable
time, but they do not guarantee to find the optimal solution. Further-
more, they cannot infer whether an optimization problem is infeasible,
nor do they guarantee to find a solution if one exists. The work in [29]
uses a genetic algorithm to schedule a workflow in a hybrid cloud.
The proposed algorithm schedules a workflow under a specific deadline
and a budget. It finds solutions that satisfy the workflow deadline and
minimize the cost to meet the budget. The work in [30] proposes a
genetic algorithm that allocates resources of a hybrid cloud to tasks in
a workflow to minimize costs. It assumes each task of the workflow
has a deadline. In the first phase of this algorithm, resources of the
private cloud are selected for executing tasks to reduce task offloading
to the public clouds. Then the tasks that cannot be scheduled in the
private cloud are re-allocated to the public cloud. The work in [31]
also uses the same idea for scheduling a workflow in the hybrid cloud
with a cost-minimization objective. It makes an initial schedule in the
private cloud using path clustering Heuristic algorithm [32] and creates
clusters of tasks that are on the same path in the DAG. If the deadline of
the workflow cannot be met, it selects a cluster of tasks in the workflow
and assigns them to the more powerful VMs in the public cloud to
satisfy the workflow deadline.

The work in [33] presents a combination of particle swarm op-
timization and genetic algorithm that reduces the data transmission

for executing a workflow in the hybrid cloud. It considers security
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Fig. 1. Overview of the system model.
requirements for datasets, and the private dataset should be located
in a private cloud data center. However, it does not consider workflow
scheduling and how it could be cost-effective when combined with its
approach. The work in [23] formulates the problem of task scheduling
in a hybrid cloud as a non-linear programming model. It proposes a
heuristic scheduling method that concerns the deadline and security
requirements in a hybrid cloud. It assumes that each task has a dead-
line. The proposed algorithm maximizes the number of tasks that meet
their deadlines and minimizes the cost with the basic idea of assigning
tasks to VMs of the public cloud with the best price/performance ratio
when the private cloud has insufficient resources. However, this work
does not consider data dependency among tasks.

Applications of mathematical programming have already been of
great importance in solving optimization problems. With the increase in
computing power and the development of efficient algorithms used by
solvers, the conditions for applying mathematical programming models
have improved significantly. In this paper, the problem of workflow
scheduling is formulated as an MILP model which can be solved in a
reasonable time. The model fulfills data dependency among tasks in the
workflow under a deadline. All possible cases for data transfer time
among dependent tasks, in a hybrid cloud, are explicitly considered.
In addition, the proposed model considers the execution cost of a
workflow according to the common public cloud billing policies.

3. System model

The proposed hybrid-cloud model is depicted in Fig. 1, which
comprises a private cloud and a public cloud. The public cloud provides
virtually unlimited computing and storage resources and the private
cloud provides limited resources. In this model, it is assumed that the
scheduling algorithm is run on the cloud scheduler that resides in the
private cloud. Workflows are submitted to the cloud scheduler and
it decides to execute the tasks in a workflow on the private or the
public cloud to optimize the objective function and satisfy the problem
constraints. This decision is based on the workflow’s requirements and
the characteristics of available resources in the hybrid cloud.

In this section, the resource and workflow models are explained.
The resource model describes the specification of virtual machine (VM)
instances provided by the clouds. The workflow model describes the
structure of a workflow and its requirements. Notations used in the
system model are described in Table 1.
3

3.1. Resource model

Consider a hybrid cloud comprising a private cloud and a public
cloud, we assume that our resource model is similar to Amazon’s
Elastic Compute Cloud (EC2)4 and each cloud provides instance types
with different prices and performance levels. Specifications of cloud
providers and instance types are described in Table 1. A hybrid cloud
at least consists of one private cloud and one public cloud. The number
of clouds within the hybrid cloud is represented by 𝑚, and in Fig. 1, m
is equal to 2. The notation 𝐶𝑃 indicates the set of cloud providers, and
𝐶𝑃 = {𝐶𝑃𝑝𝑢 ∪ 𝐶𝑃𝑝𝑟}, where 𝐶𝑃𝑘 denotes cloud 𝑘. Thus, the notation
𝐶𝑃𝑝𝑢 indicates the public cloud and 𝐶𝑃𝑝𝑟 indicates the private cloud.
Since we propose a security-aware task scheduling model, we consider
a security tag for each cloud provider. In this paper, two security
tags are considered; public security tag (𝑆𝑝𝑢) and private security tag
(𝑆𝑝𝑟). The notation 𝑅𝑆𝑘 ∈ {𝑆𝑝𝑢, 𝑆𝑝𝑟} indicates the security tag of cloud
𝑘. Moreover, 𝐶𝑃𝑘 provides a set of instance types 𝐽𝑘 with different
specifications. Here, all VMs of the public cloud are considered public
VMs, and all VMs of the private cloud are considered private VMs.
The notation 𝐼𝑘𝑗 (𝑗 ∈ 𝐽𝑘) indicates instance type 𝑗 on cloud 𝑘. 𝐶𝑃𝑘
provides a pool of 𝑝 VMs for instance type 𝑗 indicated by the notation
𝐿𝑗 ⟹ {1, 2,… , 𝑝}. VMs of the same instance type are provisioned
with the same characteristics. The notation 𝑣𝑚𝑘𝑗𝑙 indicates 𝑙th VM of
instance type 𝐼𝑘𝑗 . Specification of instance type 𝐼𝑘𝑗 is as follows:

𝐼𝑘𝑗 = ⟨𝑝𝑟𝑘𝑗 , 𝑟𝑎𝑚𝑘𝑗 , 𝑏𝑤𝑘𝑗 , 𝑝𝑓𝑘𝑗 , 𝑐𝑜𝑟𝑒𝑘𝑗⟩

The notation 𝑝𝑟𝑘𝑗 denotes the price of running a VM of instance
type 𝐼𝑘𝑗 per unit of time (hour). In this paper, we consider the cost of
running VMs based on the common pricing model in cloud computing,
called ‘pay-as-you-go’. In this pricing model, the price of running an
instance type is fixed, and it is billed by the hour. For instance, if a
VM has been allocated to the tasks for less than one hour, it must be
paid for the whole hour. The notation 𝑟𝑎𝑚𝑘𝑗 denotes the RAM capacity
of 𝐼𝑘𝑗 . The intra-cloud communication bandwidth of a VM of instance
type 𝐼𝑘𝑗 is denoted by 𝑏𝑤𝑘𝑗 . Instance type 𝐼𝑘𝑗 has 𝑐𝑜𝑟𝑒𝑘𝑗 cores and
the performance of its core(s) is denoted by 𝑝𝑓𝑘𝑗 . The performance of
an instance type can be quantified with several optional performance
metrics, such as FLOPS, MIPS, CCU,5 etc. In this work, we use the CCU
metric as the assessment metric, and our proposed model is compatible

4 https://aws.amazon.com/ec2/instance-types/
5 Cloud Harmony Compute Unit (CCU)

https://aws.amazon.com/ec2/instance-types/
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Fig. 2. A sample DAG representing a workflow.

with other performance metrics. CCU metric was developed by Cloud-
Harmony6 to provide a uniform metric for performance evaluation of
instance types belonging to different cloud providers. A value of 1 CCU
is approximately equal to 1 ECU7 (e.g. 1 ECU = 1.0–1.2 GHz 2007
Xeon).

The notation 𝑏𝑤𝑐 indicates the communication bandwidth between
the private and the public clouds. Moreover, it is assumed that the data
transfer between VMs of the same cloud is free, and only data transfer
between the private and the public cloud is charged. The notation 𝑑𝑡𝑐
indicates the cost of transferring data per unit data size, between the
private and the public clouds.

3.2. Workflow model

Applications in different fields are usually composed of dependent
tasks [34]. These applications are called workflows and their structure
can be modeled as a DAG (direct acyclic graph) 𝑊 = (𝑇 ,𝐸), depicted
in Fig. 2. Workflows of different problems such as tomographic recon-
struction [35], image analysis and processing [36], video analysis [37],
and some scientific workflows, e.g., Epigenome, Montage, CyberShake,
and LIGO [38,39] have a bag of tasks (BoT) model. Research on the
real-world characteristics of parallel workloads indicates that between
34% and 89% of applications running on parallel systems have a BoT
model [40,41]. Thus, in this work, we consider BoT workflows. A BoT
workflow contains BoT stages in which each bag consists of parallel
homogeneous tasks. The sample workflow contains five BoT stages,
depicted in Fig. 2 by dashed boxes.

Since different workflows of wide-ranging domains are frequently
executed by different research groups or companies on cluster or cloud
systems, their characteristics (e.g., structure, task execution time, data
dependencies, memory, input/output data size) are known before-
hand [37,39,42,43]. For instance, the work in [39] developed a set of
workflow profiling tools called wfprof to provide detailed information
about the various computational tasks present in a workflow. This work
provides the characteristics of workflows from diverse scientific appli-
cations, such as astronomy and bioinformatics. Moreover, information
about different workflows from a wide range of domains, such as image
processing, physics, astronomy, and bioinformatics, are available from
the Pegasus workflow generator.8

The characteristics of a workflow are described in Table 1. It is
assumed that workflow 𝑊 consists of 𝑛 BoTs, 𝑇 = {𝜏1, 𝜏2,… 𝜏𝑛}. The
workflow has a deadline of 𝐷𝑙 and all BoTs in the workflow should
meet this deadline. Specification of BoT 𝜏𝑖 is as follows:

𝐵𝑜𝑇 𝜏𝑖 = ⟨𝜇𝑖, 𝐶𝑆𝑖, 𝑇 𝑆𝑖, 𝑚𝑒𝑚𝑖, 𝑝𝑟𝑒𝑖⟩

6 https://blog.cloudharmony.com/what-is-ecu-cpu-benchmarking-in-the-
cloud/

7 EC2 Compute Unit (ECU) is a unit that Amazon created to measure the
relative CPU performance of an instance type.

8 https://pegasus.isi.edu/
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The notation 𝜇𝑖 indicates the number of tasks contained in BoT
𝜏𝑖. If 𝜇𝑖 = 1, BoT 𝜏𝑖 contains a single task; otherwise it contains 𝜇𝑖
parallel homogeneous tasks that can be executed at the same time,
i.e., no data dependencies among them exist. In this work, we assume
that when a task runs on a VM, it will finish without any interruption,
i.e., there is no preemption enabled for the tasks. The computation
size of BoT 𝜏𝑖, denoted by 𝐶𝑆𝑖 indicates its execution time on a VM
with the performance of 1 CCU. Tasks in a bag have the same security
requirements considering they are homogeneous. Therefore, each BoT
𝜏𝑖 has a security requirement that is indicated by 𝑇𝑆𝑖 ∈ {𝑆𝑝𝑢, 𝑆𝑝𝑟}. Here,
𝑆𝑝𝑢 indicates a public security tag, and 𝑆𝑝𝑟 indicates a private security
tag. If 𝑇𝑆𝑖 = 𝑆𝑝𝑢, BoT 𝜏𝑖 can be executed on VMs of the private or
the public cloud. If 𝑇𝑆𝑖 = 𝑆𝑝𝑟, BoT 𝜏𝑖 can only be executed on VMs of
the private cloud. The minimum required ram for executing BoT 𝜏𝑖 is
denoted by 𝑚𝑒𝑚𝑖.

The data dependencies among BoTs are indicated by a dependency
matrix 𝐷 ∈ R

|𝑇 |×|𝑇 |. 𝐷 is an upper triangular matrix and all elements in
the diagonal are zero. Element 𝑑𝑖𝑗 (𝑖 < 𝑗) represents data dependency
between BoTs 𝜏𝑖, 𝜏𝑗 . If 𝑑𝑖𝑗 = 0, there is no data dependency between
𝜏𝑖, 𝜏𝑗 . Otherwise, 𝑑𝑖𝑗 indicates the size of data that must be transferred
from BoT 𝜏𝑖 to 𝜏𝑗 , and BoT 𝜏𝑗 can start after BoT 𝜏𝑖 transmits its output
data to it. Here, BoTs 𝜏𝑖 and 𝜏𝑗 are called parent (predecessor) and
child (successor) BoTs, respectively. Based on the dependency matrix
𝐷, we identify the predecessor BoTs of each BoT, and the notation 𝑝𝑟𝑒𝑖
indicates the predecessor BoTs of BoT 𝜏𝑖. BoT 𝜏1 is the first BoT of the
workflow, and it does not have any predecessor BoT. The notation 𝑖𝑑𝑠1
indicates its input data size. The last BoT of the workflow does not
have any successor BoT, and the notation 𝑜𝑑𝑠𝑛 denotes its output data
size. Furthermore, it is assumed that the input data for 𝜏1 is stored in
the distributed file system (DFS) on the private cloud, and after the
completion of the last BoT the output data will be stored on DFS.

3.3. An illustrative example

To explain the resource model and workflow model, we present an
illustrative example in this section. It is assumed that a public cloud
(𝐶𝑃𝑝𝑢) and a private cloud (𝐶𝑃𝑝𝑟) participate in the hybrid cloud.
The security tags of the clouds are 𝑅𝑆𝑝𝑟 = 𝑆𝑝𝑟 and 𝑅𝑆𝑝𝑢 = 𝑆𝑝𝑢. We
assume that the private cloud provides two different instance types:
𝐽𝑝𝑟 = {𝐼1, 𝐼2}, and the public cloud provides two different instance
types 𝐽𝑝𝑢 = {𝐼1, 𝐼2}. Each instance type has its specification as follows:

𝐼𝑝𝑟1 = ⟨𝑝𝑟𝑝𝑟1, 𝑟𝑎𝑚𝑝𝑟1, 𝑏𝑤𝑝𝑟1, 𝑝𝑓𝑝𝑟1, 𝑐𝑜𝑟𝑒𝑝𝑟1⟩

𝐼𝑝𝑟2 = ⟨𝑝𝑟𝑝𝑟2, 𝑟𝑎𝑚𝑝𝑟2, 𝑏𝑤𝑝𝑟2, 𝑝𝑓𝑝𝑟2, 𝑐𝑜𝑟𝑒𝑝𝑟2⟩

𝐼𝑝𝑢1 = ⟨𝑝𝑟𝑝𝑢1, 𝑟𝑎𝑚𝑝𝑢1, 𝑏𝑤𝑝𝑢1, 𝑝𝑓𝑝𝑢1, 𝑐𝑜𝑟𝑒𝑝𝑢1⟩

𝐼𝑝𝑢2 = ⟨𝑝𝑟𝑝𝑢2, 𝑟𝑎𝑚𝑝𝑢2, 𝑏𝑤𝑝𝑢2, 𝑝𝑓𝑝𝑢2, 𝑐𝑜𝑟𝑒𝑝𝑢2⟩

For instance, the notation 𝑣𝑚𝑝𝑟1 indicates instance type 1th of the
private cloud (𝐶𝑃𝑝𝑟). The notation 𝑝𝑟𝑝𝑟1 indicates the price of 𝐼𝑝𝑟1, and
𝑟𝑎𝑚𝑝𝑟1 indicates its memory capacity. The notations 𝑏𝑤𝑝𝑟1, 𝑝𝑓𝑝𝑟1, and
𝑐𝑜𝑟𝑒𝑝𝑟1 indicate the communication bandwidth, performance, and the
number of cores of 𝐼𝑝𝑟1, respectively.

Moreover, the sample workflow, shown in Fig. 2, contains five BoTs,
𝑇 = {𝜏1, 𝜏2,… , 𝜏5}. Each BoT has its specifications as follows:

𝐵𝑜𝑇 𝜏1 = ⟨𝜇1, 𝐶𝑆1, 𝑇 𝑆1, 𝑚𝑒𝑚1, 𝑝𝑟𝑒1⟩

𝐵𝑜𝑇 𝜏2 = ⟨𝜇2, 𝐶𝑆2, 𝑇 𝑆2, 𝑚𝑒𝑚2, 𝑝𝑟𝑒2⟩

𝐵𝑜𝑇 𝜏3 = ⟨𝜇3, 𝐶𝑆3, 𝑇 𝑆3, 𝑚𝑒𝑚3, 𝑝𝑟𝑒3⟩

𝐵𝑜𝑇 𝜏 = ⟨𝜇 , 𝐶𝑆 , 𝑇𝑆 ,𝑚𝑒𝑚 , 𝑝𝑟𝑒 ⟩
4 4 4 4 4 4

https://blog.cloudharmony.com/what-is-ecu-cpu-benchmarking-in-the-cloud/
https://blog.cloudharmony.com/what-is-ecu-cpu-benchmarking-in-the-cloud/
https://pegasus.isi.edu/
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Table 1
Model parameters and their description.
Notation Description

Notations of a workflow

𝑊 Workflow 𝑊 .
𝑇 = {𝜏1 , 𝜏2 ,… 𝜏𝑛} A set of n BoTs in workflow 𝑊 .
𝐷 ∈ R

|𝑇 |×|𝑇 | Element 𝑑𝑖𝑗 in dependency matrix 𝐷 indicates the data size that must be transferred from BoT 𝜏𝑖 to 𝜏𝑗 .
𝜇𝑖 Number of tasks contained in BoT 𝑖.
𝑖𝑑𝑠1 Input data size of BoT 𝜏1 in data unit size.
𝑜𝑑𝑠𝑛 Output data size of BoT 𝜏𝑛 in data unit size.
𝑝𝑟𝑒𝑖 Set of predecessor BoT(s) of BoT 𝜏𝑖.
𝑇𝑆𝑖 ∈ {𝑆𝑝𝑢 , 𝑆𝑝𝑟} Security tag of BoT 𝜏𝑖; 𝑆𝑝𝑢 indicates public security tag and 𝑆𝑝𝑟 indicates private security tag.
𝐶𝑆𝑖 The execution time of task(s) of BoT 𝜏𝑖 on a VM with performance of 1 CCU.
𝑚𝑒𝑚𝑖 The minimum required RAM for executing task(s) of BoT 𝜏𝑖.
𝐷𝑙 Deadline of the workflow.

Notation of cloud resources

𝑚 The number of participating clouds in the hybrid cloud.
𝐶𝑃 = {𝐶𝑃𝑝𝑢 ∪ 𝐶𝑃𝑝𝑟} A set of cloud providers including the public cloud and the private cloud which participate in the hybrid cloud.
𝑅𝑆𝑘 ∈ {𝑆𝑝𝑢 , 𝑆𝑝𝑟} Security tag of cloud 𝑘 ; 𝑆𝑝𝑢 indicates public security tag and 𝑆𝑝𝑟 indicates private security tag.
𝐽𝑘 The set of instance types provided by 𝐶𝑃𝑘.
𝐼𝑘𝑗 𝑗th instance type provided by 𝐶𝑃𝑘.
𝐿𝑗 The set of VMs provided for 𝑗th instance type.
𝑝𝑟𝑘𝑗 The fee of running a VM of instance type 𝐼𝑘𝑗 in dollar per hour.
𝑐𝑜𝑟𝑒𝑘𝑗 Number of computing cores of 𝐼𝑘𝑗 .
𝑝𝑓𝑘𝑗 The performance of each core of 𝐼𝑘𝑗 in CCU metric.
𝑏𝑤𝑘𝑗 Communication bandwidth of 𝐼𝑘𝑗 .
𝑟𝑎𝑚𝑘𝑗 The memory capacity (RAM) of 𝐼𝑘𝑗 .
𝑏𝑤𝑐 The communication bandwidth between the private and the public clouds.
𝑑𝑡𝑐 The price of data transfer between the private and the public clouds.
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𝑦

𝐵𝑜𝑇 𝜏5 = ⟨𝜇5, 𝐶𝑆5, 𝑇 𝑆5, 𝑚𝑒𝑚5, 𝑝𝑟𝑒5⟩

For instance, the notation 𝜇1 denotes the number of tasks contained
n BoT 𝜏1, and the notation 𝐶𝑆1 indicates the computation size of
oT 𝜏1. The notation 𝑇𝑆1 denotes the security tag of BoT 𝜏1, and

𝑚𝑒𝑚1 indicates the minimum required RAM for executing BoT 𝜏1. The
notation 𝑝𝑟𝑒1 indicates the set of predecessor BoT(s) of BoT 𝜏1.

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑑12 0 0 0
0 0 𝑑23 0 0
0 0 0 𝑑34 𝑑35
0 0 0 0 𝑑45
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(1)

Dependency matrix 𝐷, in Relation , indicates the data dependencies
mong BoTs in the sample workflow, shown in Fig. 2. Since this
orkflow has 5 BoTs, 𝐷 ∈ R

|5|×|5| . Each element 𝑑𝑡𝑖 ≠ 0 indicates data
ependency between BoT 𝜏𝑡, 𝜏𝑖. For instance, element 𝑑12 indicates that

there is data dependency between BoT 𝜏1 and 𝜏2. Indeed, 𝑑12 indicates
he data size that must be transferred from BoT 𝜏1 to 𝜏2. Generally, the
irst BoT does not have any predecessor BoT, thus 𝑝𝑟𝑒1 = {}. Based
n this matrix, the predecessor BoT(s) of each BoT are identified as
ollows:

𝑝𝑟𝑒2 = {𝜏1}, 𝑝𝑟𝑒3 = {𝜏2}, 𝑝𝑟𝑒4 = {𝜏3}, 𝑝𝑟𝑒5 = {𝜏3, 𝜏4}

For instance, 𝑝𝑟𝑒2 = {𝜏1} means that BoT 𝜏1 is predecessor of BoT
2.

. Proposed mixed-integer linear programming (MILP) model

Mathematical programming has been widely used to solve decision-
aking problems. It is the process of finding the optimal solution

o a problem within a set of constraints, where the solution is ex-
ressed in mathematical expressions. Mathematical programming mod-
ls have four main elements: objective function, constraints, decision
ariables, and input data. The objective function is a mathematical
xpression that describes the goal of the optimization problem, which
s either maximizing or minimizing some quantity. Constraints of a
athematical programming model represent the practical or physical
5

equirements of the problem and they limit the values that the decision
ariables can take. In a decision-making problem, decision variables
ndicate the quantities that the decision-makers would like to deter-
ine such as doing some assignments. Values of decision variables are
nknown in an optimization problem, and they are computed during
he problem-solving procedure. The purpose of solving a mathematical
rogramming model is to find values for decision variables that satisfy
ll constraints and optimize a specific objective function [14].

In this paper, we formulate the problem of workflow scheduling
n a hybrid cloud as a mixed-integer linear programming model. It
s assumed that workflow 𝑊 is submitted to the cloud scheduler.
s shown in Fig. 1, a scheduling algorithm is executed in the cloud
cheduler, and it selects appropriate instance types from the hybrid
loud to execute the workflow. The proposed mathematical model
ulfills constraints related to the workflow requirements. These re-
uirements include considering data dependency among BoTs, security
equirements of BoTs, required memory for executing BoTs, and the
eadline of the workflow. Based on these constraints, the cloud sched-
ler selects proper instance types for BoTs to minimize the monetary
ost of executing the workflow. The proposed model considers both the
xecution and data transfer costs of the workflow. Since the decision
ariables of the proposed model contain binary, non-negative integers,
nd real variables, the proposed model is an MILP model. Notations
nd descriptions of decision variables used in the proposed model are
hown in Table 2. Moreover, input data for the mathematical model are
escribed in Table 1. In this section, the formulation of the constraints
nd the objective function of the proposed mathematical model are
resented in detail.

.1. Task assignment

In this model, each BoT 𝜏𝑖 is assigned to a VM that is provided by
he public or the private cloud in the hybrid cloud system. To formulate
his constraint, we define decision variable 𝑦𝑖𝑘𝑗𝑙 ∈ {0, 1} as follows:

𝑖𝑘𝑗𝑙 =

{

1 𝑖𝑓 𝐵𝑜𝑇 𝜏𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑣𝑚𝑘𝑗𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

The value of decision variable 𝑦𝑖𝑘𝑗𝑙 is delineated by Eq. (3) as

follows:
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Table 2
Decision variables and their description.
Notation Description

𝑦𝑖𝑘𝑗𝑙 ∈ {0, 1} 1 iff BoT 𝜏𝑖 is assigned to 𝑣𝑚𝑘𝑗𝑙 .
𝑧𝑖𝑘𝑗 ∈ {0, 1} 1 iff BoT 𝜏𝑖 is assigned to a VM of instance type 𝐼𝑘𝑗 .
𝑥𝑖𝑘 ∈ {0, 1} 1 iff BoT 𝜏𝑖 is assigned to cloud 𝑘.
𝑤𝑖𝑡𝑘𝑗𝑙 ∈ {0, 1} 1 iff BoTs 𝜏𝑖 and 𝜏𝑡 are assigned to 𝑣𝑚𝑘𝑗𝑙 ; otherwise 0.
𝑣𝑖𝑡 ∈ {0, 1} 0 iff BoTs 𝜏𝑖 and 𝜏𝑡 are assigned to the same VM; otherwise 1.
𝑢𝑖𝑡𝑘 ∈ {0, 1} 1 iff BoTs 𝜏𝑖 and 𝜏𝑡 are assigned to cloud 𝑘; otherwise 0.
𝑐𝑖𝑡 ∈ {0, 1} 0 iff BoTs 𝜏𝑖 and 𝜏𝑡 are assigned to the same cloud; otherwise 1.
𝜃𝑖𝑡 ∈ {0, 1} 1 iff BoTs 𝜏𝑖 and 𝜏𝑡 run on different VMs in the same cloud ; otherwise 0.
𝛾𝑖𝑡𝑘𝑗 ∈ {0, 1} 1 iff 𝜃𝑖𝑡 = 1 and 𝑧𝑖𝑘𝑗 = 1; otherwise 0.
𝑆𝑇𝑖 ∈ R+ The start time of BoT 𝜏𝑖.
𝑅𝑇𝑖 ∈ R+ The run time of BoT 𝜏𝑖.
𝑀𝑖 ∈ R+ The completion time of BoT 𝜏𝑖.
𝐷𝑇𝑇𝑡𝑖 ∈ R+ Data transfer time between BoTs 𝜏𝑡 and 𝜏𝑖.
𝑉 𝑆𝑘𝑗𝑙 ∈ R+ The start-timestap of running 𝑣𝑚𝑘𝑗𝑙 .
𝑉 𝐹𝑘𝑗𝑙 ∈ R+ The finish-timestap of running 𝑣𝑚𝑘𝑗𝑙 .
𝑇𝑃𝑘𝑗𝑙 ∈ Z+ The period of running 𝑣𝑚𝑘𝑗𝑙 in unit time.
∑

𝑘∈𝐶𝑃

∑

𝑗∈𝐽𝑘

∑

𝑙∈𝐿𝑗

𝑦𝑖𝑘𝑗𝑙 = 1 ∀𝑖 ∈ 𝑇 (3)

Eq. (3) states that each BoT can only be assigned to exactly one VM.
If BoT 𝜏𝑖 is assigned to 𝑣𝑚𝑘𝑗𝑙 then decision variable 𝑦𝑖𝑘𝑗𝑙 takes value 1;
otherwise, it is set to 0.

4.2. Minimum required RAM for executing tasks

Satisfying the minimum required RAM for executing BoTs is one
of the constraints in our model. To formulate this constraint, decision
variable 𝑧𝑖𝑘𝑗 ∈ {0, 1} is defined as follows:

𝑧𝑖𝑘𝑗 =

{

1 𝑖𝑓 𝐵𝑜𝑇 𝜏𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎 𝑉𝑀 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑦𝑝𝑒 𝐼𝑘𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

The value of decision variable 𝑧𝑖𝑘𝑗 is delineated by Eq. (5). In this
equation, the expression ∑

𝑙∈𝐿𝑗
𝑦𝑖𝑘𝑗𝑙 = 1, if BoT 𝜏𝑖 is assigned to a

VM of instance type 𝐼𝑘𝑗 . Conversely, when this summation equals 0, it
indicates that BoT 𝜏𝑖 is not assigned to any VM of instance type 𝐼𝑘𝑗 . As
a direct consequence of this constraint, if ∑𝑙∈𝐿𝑗

𝑦𝑖𝑘𝑗𝑙 = 1, the decision
variable 𝑧𝑖𝑘𝑗 takes a value of 1; otherwise, it is set to 0.

𝑧𝑖𝑘𝑗 =
∑

𝑙∈𝐿𝑗

𝑦𝑖𝑘𝑗𝑙 ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘 (5)

This constraint encapsulates the relationship between the decision
variable 𝑧𝑖𝑘𝑗 and the assignment of BoT 𝜏𝑖 to VMs of different instance
types. Eq. (6) ensures that BoT 𝜏𝑖 is assigned to an instance type that
satisfies the minimum required RAM for executing its task(s).

𝑧𝑖𝑘𝑗 ⋅ 𝑚𝑒𝑚𝑖 ≤ 𝑟𝑎𝑚𝑘𝑗 ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘 (6)

4.3. Security requirements

Since we propose a security-aware task scheduling model in the
hybrid cloud, security tags are considered for BoTs and cloud resources.
As mentioned in Section 3.1, we consider two security tags; public
security tag (𝑆𝑝𝑢) and private security tag (𝑆𝑝𝑟), and 𝑆𝑝𝑟 < 𝑆𝑝𝑢, where
smaller security tag indicates that the BoT or cloud resource has higher
security concern. Thus, we consider 𝑆𝑝𝑟 = 1, 𝑆𝑝𝑢 = 2, where 𝑆𝑝𝑟 < 𝑆𝑝𝑢.
To formulate the security constraint, we define decision variable 𝑥𝑖𝑘 ∈
{0, 1} as follows:

𝑥𝑖𝑘 =

{

1 𝑖𝑓 𝐵𝑜𝑇 𝜏𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑜𝑢𝑑 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

The value of decision variable 𝑥𝑖𝑘 is delineated by Eq. (8). In this
equation, the expression ∑

𝑗∈𝐽𝑘
∑

𝑙∈𝐿𝑗
𝑦𝑖𝑘𝑗𝑙 = 1 if BoT 𝜏𝑖 is assigned

to a VM in cloud 𝑘. Conversely, if this summation equals 0, it indi-
cates that BoT 𝜏 is not assigned to any VM in cloud 𝑘. Therefore, if
6

𝑖

∑

𝑗∈𝐽𝑘
∑

𝑙∈𝐿𝑗
𝑦𝑖𝑘𝑗𝑙 = 1, the decision variable 𝑥𝑖𝑘 is set to 1. This indicates

that BoT 𝜏𝑖 is assigned to cloud 𝑘; otherwise, 𝑥𝑖𝑘 is set to 0, indicating
that BoT 𝜏𝑖 is not assigned to cloud 𝑘.

𝑥𝑖𝑘 =
∑

𝑗∈𝐽𝑘

∑

𝑙∈𝐿𝑗

𝑦𝑖𝑘𝑗𝑙 ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 (8)

This constraint encapsulates the relationship between the decision
variable 𝑥𝑖𝑘 and the allocation of BoT 𝜏𝑖 to the 𝑘th cloud. Eq. (9) ensures
that the security requirement of BoTs is satisfied. Accordingly, BoTs
with a public security tag can be executed in the public cloud or the
private cloud, whereas private BoTs can only be executed in the private
cloud.

𝑥𝑖𝑘 ⋅ 𝑅𝑆𝑘 ≤ 𝑇𝑆𝑖 ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 (9)

If BoT 𝜏𝑖 is private then 𝑇𝑆𝑖 = 1, and according to Eq. (9), inequality
𝑥𝑖𝑘 ⋅ 𝑅𝑆𝑘 ≤ 1 should be satisfied. Considering 𝑅𝑆𝑝𝑟 = 1, 𝑅𝑆𝑝𝑢 = 2, only
𝑥𝑖𝑝𝑟 can take value 1, and it means that BoT 𝜏𝑖 can only be assigned
to the private cloud. If BoT 𝜏𝑖 is public then 𝑇𝑆𝑖 = 2, and inequality
𝑥𝑖𝑘 ⋅ 𝑅𝑆𝑘 ≤ 2 should be satisfied. In this case, either 𝑥𝑖𝑝𝑟, or 𝑥𝑖𝑝𝑢 can
take value 1 and it means that BoT 𝜏𝑖 can be assigned to either the
public or the private cloud.

4.4. Data dependency among BoTs

As mentioned in Section 3.2, we consider a workflow consisting of
𝑛 BoTs. There are data dependencies among BoTs, and the notation 𝑝𝑟𝑒𝑖
indicates the predecessor BoT(s) of BoT 𝜏𝑖. To fulfill data dependency
among BoTs in a workflow, each BoT starts only when all its predeces-
sor BoTs have been completed and their output data have been sent to
it. Eqs. (10)–(11) state the data dependencies among BoTs as follows:

𝑆𝑇1 = 0 (10)

𝑆𝑇𝑖 = max(𝑀𝑡 +𝐷𝑇𝑇𝑡𝑖) ∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖 (11)

Since the first BoT in the workflow does not have any predecessor
BoT(s), according to Eq. (10), the start time of the first BoT is zero,
i.e., 𝑆𝑇1 = 0. For other BoTs, a BoT can only start after it has received
all the input data from its predecessor BoTs, according to Eq. (11). In
this equation, the decision variable 𝑀𝑡 indicates the completion time of
BoT 𝜏𝑡, and the decision variable 𝐷𝑇𝑇𝑡𝑖 indicates the data transfer time
from BoT 𝜏𝑡 to 𝜏𝑖. Eq. (12) determines the value of decision variable 𝑀𝑖
as follows:

𝑀𝑖 ≥ 𝑆𝑇𝑖 + 𝑅𝑇𝑖 ∀𝑖 ∈ 𝑇 (12)

In this equation, the decision variable 𝑆𝑇𝑖 indicates the start time
of BoT 𝜏𝑖 and the decision variable 𝑅𝑇𝑖 denotes the run time of BoT 𝜏𝑖.

To compute the run time of BoT 𝜏𝑖, it is assumed that its run time on
a VM with performance 1 CCU is known in advance, and it is denoted
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by 𝐶𝑆𝑖 in Table 1. Eq. (13) determines the run time of BoT 𝜏𝑖 on a VM
of instance type 𝐼𝑘𝑗 .

𝑇𝑖 ≥ 𝑧𝑖𝑘𝑗 ⋅
𝐶𝑆𝑖

𝑝𝑓𝑘𝑗 ⋅ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑐𝑜𝑟𝑒𝑘𝑗 , 𝜇𝑖)
∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘 (13)

The formula involves the division of the computation size of BoT 𝜏𝑖,
.e., 𝐶𝑆𝑖 by the product of the performance factor associated with the
nstance type 𝐼𝑘𝑗 , i.e., 𝑝𝑓𝑘𝑗 and the number of tasks that can be executed
n parallel on a VM of instance type 𝐼𝑘𝑗 , i.e., 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑐𝑜𝑟𝑒𝑘𝑗 , 𝜇𝑖). It
hould be noted that BoT 𝜏𝑖 contains 𝜇𝑖 homogeneous parallel tasks
nd instance type 𝐼𝑘𝑗 has 𝑐𝑜𝑟𝑒𝑘𝑗 which 𝑝𝑓𝑘𝑗 indicates the performance
f each core of the instance type 𝐼𝑘𝑗 . If the number of cores of instance
ype 𝐼𝑘𝑗 is less than the number of parallel tasks in BoT 𝜏𝑖 then 𝑐𝑜𝑟𝑒𝑘𝑗
asks can be executed in parallel on a VM of the instance type 𝐼𝑘𝑗 .
onversely, when the number of tasks in BoT 𝜏𝑖 is less than the number
f core then 𝜇𝑖 tasks can be executed in parallel on a VM of instance
ype 𝐼𝑘𝑗 . Therefore, the expression 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑐𝑜𝑟𝑒𝑘𝑗 , 𝜇𝑖) in the formula
ndicates the number of tasks in BoT 𝜏𝑖 that can be executed in parallel
n a VM of instance type 𝐼𝑘𝑗 . This constraint imposes a positive run
ime of BoT 𝜏𝑖, i.e., 𝑅𝑇𝑖, if and only if BoT 𝜏𝑖 is assigned to a VM of
nstance type 𝐼𝑘𝑗 , i.e., 𝑧𝑖𝑘𝑗 = 1.

Although the use of a hybrid cloud presents some challenges, such
s traffic routing and DNS changes, we do not model the impact of
hese technical aspects and only model the data transfer time between
ependent BoTs. To formulate data transfer time between BoT 𝜏𝑖 and
ts predecessor BoT 𝜏𝑡, we consider three possible cases in Eq. (14). If
oT 𝜏𝑖 and 𝜏𝑡 run on the same VM then 𝐷𝑇𝑇𝑡𝑖 = 0. In the case that
oTs 𝜏𝑖 and 𝜏𝑡 run on the same cloud but different VMs, data transfer
ime is computed by considering the data transfer bandwidth of 𝐼𝑘𝑗 that
oT 𝜏𝑡 is assigned to it, and 𝐷𝑇𝑇𝑡𝑖 = 𝑧𝑡𝑘𝑗 ⋅ (𝑑𝑡𝑖∕𝑏𝑤𝑘𝑗 ). Here, 𝑑𝑡𝑖 indicates
he output data size of BoT 𝜏𝑡 that must be transferred to 𝜏𝑖. If BoTs
𝑖 and 𝜏𝑡 run on different clouds, 𝐷𝑇𝑇𝑡𝑖 = 𝑑𝑡𝑖∕𝑏𝑤𝑐 , where 𝑏𝑤𝑐 denotes
ommunication bandwidth between the private and public clouds.

𝑇𝑇𝑡𝑖 =

⎧

⎪

⎨

⎪

⎩

0 𝑣𝑖𝑡 = 0
𝑧𝑡𝑘𝑗 ⋅ (𝑑𝑡𝑖∕𝑏𝑤𝑘𝑗 ) 𝜃𝑖𝑡 = 1
𝑑𝑡𝑖∕𝑏𝑤𝑐 𝑐𝑖𝑡 = 1

(14)

To formulate 𝐷𝑇𝑇𝑡𝑖, we define decision variables 𝜈𝑖𝑡, 𝑐𝑖𝑡 and 𝜃𝑖𝑡.
ecision variable 𝜈𝑖𝑡 ∈ {0, 1} indicates whether BoTs 𝜏𝑖 and 𝜏𝑡 are
ssigned to the same VM or not as follows:

𝑖𝑡 =

{

0 𝑖𝑓 𝐵𝑜𝑇 𝑠 𝜏𝑖 𝑎𝑛𝑑 𝜏𝑡 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑉𝑀
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15)

Eq. (16) determines the value of decision variable 𝜈𝑖𝑡. If BoTs 𝜏𝑖 and
𝑡 are assigned to 𝑙th VM of instance type 𝐼𝑘𝑗 then 𝑦𝑖𝑘𝑗𝑙 = 1, 𝑦𝑡𝑘𝑗𝑙 = 1,
nd according to this constraint 𝑣𝑖𝑡 takes value 0; otherwise 𝑣𝑖𝑡 = 1.

𝑖𝑡 = 1 −
∑

𝑘∈𝐶𝑃

∑

𝑗∈𝐽𝑘

∑

𝑙∈𝐿𝑗

𝑦𝑖𝑘𝑗𝑙 ⋅ 𝑦𝑡𝑘𝑗𝑙 ∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖 (16)

Due to the quadratic term 𝑦𝑖𝑘𝑗𝑙 ⋅ 𝑦𝑡𝑘𝑗𝑙, this constraint is non-linear.
he use of non-linear constraints increases the computational complex-

ty of the optimization model and the time required to solve it. Many
on-linear problems cannot be solved in a reasonable time with existing
olvers. Therefore, transformation and linearization techniques are used
o replace certain non-linear equations or functions with an exact
quivalent linear programming formulation to create valid inequalities.
t should be noted that the linearization of the problem does not change
he result of the problem, but only reduces the time required to solve
t [44,45]. Therefore, we linearize non-linear constraints using common
ransformation and linearization techniques [44]. To linearize the non-
inear constraint in Eqs. (16), we can use a binary variable 𝑤𝑖𝑡𝑘𝑗𝑙 to
eplace 𝑦𝑖𝑘𝑗𝑙 ⋅ 𝑦𝑡𝑘𝑗𝑙, where 𝑤𝑖𝑡𝑘𝑗𝑙 = 1 if and only if BoTs 𝜏𝑖 and 𝜏𝑡 are
ssigned to the same VM on a cloud. Eqs. (17)–(18) determine the value
f decision variable 𝑤𝑖𝑡𝑘𝑗𝑙, and Eq. (19) which is a linear constraint
etermines the value of decision variable 𝜈𝑖𝑡.
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𝑖𝑡𝑘𝑗𝑙 ≥ 𝑦𝑖𝑘𝑗𝑙 + 𝑦𝑡𝑘𝑗𝑙 − 1 (17)
𝑖𝑡𝑘𝑗𝑙 ≤
1
2
⋅ (𝑦𝑖𝑘𝑗𝑙 + 𝑦𝑡𝑘𝑗𝑙) (18)

∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖, ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘, ∀𝑙 ∈ 𝐿𝑗

𝑣𝑖𝑡 = 1 −
∑

𝑘∈𝐶𝑃

∑

𝑗∈𝐽𝑘

∑

𝑙∈𝐿𝑗

𝑤𝑖𝑡𝑘𝑗𝑙 ∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖 (19)

Decision variable 𝑐𝑖𝑡 ∈ {0, 1} indicates whether BoTs 𝜏𝑖 and 𝜏𝑡 run
on the same cloud or not as follows:

𝑐𝑖𝑡 =

{

0 𝑖𝑓 𝐵𝑜𝑇 𝑠 𝜏𝑖 𝑎𝑛𝑑 𝜏𝑡 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑜𝑢𝑑
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)

Eq. (21) determines the value of decision variable 𝑐𝑖𝑡. If BoTs 𝜏𝑖 and
𝑡 are assigned to cloud 𝑘 then 𝑥𝑖𝑘 = 1, 𝑥𝑡𝑘 = 1, and according to this
onstraint 𝑐𝑖𝑡 takes value 0; otherwise 𝑐𝑖𝑡 = 1.

𝑖𝑡 = 1 −
∑

𝑘∈𝐶𝑃
𝑥𝑖𝑘 ⋅ 𝑥𝑡𝑘 ∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖 (21)

To linearize non-linear constraint in Eqs. (21), we can use a binary
ariable 𝑢𝑖𝑡𝑘 to replace 𝑥𝑖𝑘 ⋅ 𝑥𝑡𝑘, where 𝑢𝑖𝑡𝑘 = 1 if and only if BoTs 𝜏𝑖

and 𝜏𝑡 are assigned to the same cloud. Eqs. (22)–(23) determine the
value of decision variable 𝑢𝑖𝑡𝑘, and Eq. (24) which is a linear constraint
determines the value of decision variable 𝑐𝑖𝑡.

𝑢𝑖𝑡𝑘 ≥ 𝑥𝑖𝑘 + 𝑥𝑡𝑘 − 1 (22)

𝑢𝑖𝑡𝑘 ≤ 1
2
⋅ (𝑥𝑖𝑘 + 𝑥𝑡𝑘) (23)

∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖, ∀𝑘 ∈ 𝐶𝑃

𝑐𝑖𝑡 = 1 −
∑

𝑘∈𝐶𝑃
𝑢𝑖𝑡𝑘 ∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖 (24)

We also define decision variable 𝜃𝑖𝑡 ∈ {0, 1} as follows:

𝜃𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

1 𝑖𝑓 𝐵𝑜𝑇 𝑠 𝜏𝑖 𝑎𝑛𝑑 𝜏𝑡 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑉 𝑀𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑜𝑢𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(25)

Eq. (26) determines the value of decision variable 𝜃𝑖𝑡. 𝜃𝑖𝑡 = 1 if and
only if BoTs 𝜏𝑖 and 𝜏𝑡 run on different VMs in the same cloud. In this
case, decision variable 𝜈𝑖𝑡 = 1 and 𝑐𝑖𝑡 = 0 and decision variable 𝜃𝑖𝑡 takes
value 1; otherwise it sets to 0.

𝑖𝑡 = 𝜈𝑖𝑡 − 𝑐𝑖𝑡 (26)
∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖

Eq. (27) that is a non-linear constraint indicates data transfer time
etween BoT 𝜏𝑖 and its predecessor BoT 𝜏𝑡. Based on the defined

constraints, if 𝜏𝑖 and 𝜏𝑡 run on the same VM then values of decision
variables 𝜃𝑖𝑡 and 𝑐𝑖𝑡 attain 0, and 𝐷𝑇𝑇𝑡𝑖 = 0. In the case that 𝜏𝑖 and
𝑡 run on different clouds then decision variables 𝜃𝑖𝑡 = 0, 𝑐𝑖𝑡 = 1 and
𝐷𝑇𝑇𝑡𝑖 = 𝑑𝑡𝑖∕𝑏𝑤𝑐 . If 𝜏𝑖 and 𝜏𝑡 run on different VMs of the same cloud,
decision variables 𝜃𝑖𝑡 = 1, 𝑐𝑖𝑡 = 0 and 𝐷𝑇𝑇𝑡𝑖 = 𝑧𝑡𝑘𝑗 ⋅ (𝑑𝑡𝑖∕𝑏𝑤𝑘𝑗 ).

𝑇𝑇𝑡𝑖 ≥ 𝜃𝑖𝑡 ⋅ 𝑧𝑡𝑘𝑗 ⋅
𝑑𝑡𝑖
𝑏𝑤𝑘𝑗

+ 𝑐𝑖𝑡 ⋅
𝑑𝑡𝑖
𝑏𝑤𝑐

(27)

∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖, ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘

To linearize non-linear constraint in Eqs. (27), we can use a binary
variable 𝛾𝑖𝑡𝑘𝑗 to replace 𝜃𝑖𝑡 ⋅ .𝑧𝑡𝑘𝑗 , where 𝛾𝑖𝑡𝑘𝑗 = 1 if and only if BoTs
𝜏𝑖 and 𝜏𝑡 are assigned to different VMs on the same cloud, and BoT 𝜏𝑡
is assigned to a VM of instance type 𝐼𝑘𝑗 . Eqs. (28)–(29) determine the
value of decision variable 𝛾𝑖𝑡𝑘𝑗 . Eq. (30), a linear constraint, indicates
data transfer time between BoTs 𝜏𝑖 and 𝜏𝑡.

𝛾𝑖𝑡𝑘𝑗 ≥ 𝜃𝑖𝑡 + 𝑧𝑡𝑘𝑗 − 1 (28)

≤ 1
⋅ (𝜃 + 𝑧 ) (29)
𝑖𝑡𝑘𝑗 2 𝑖𝑡 𝑡𝑘𝑗
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Fig. 3. Example of the time interval of running a VM.

𝐷𝑇𝑇𝑡𝑖 ≥ 𝛾𝑖𝑡𝑘𝑗 ⋅
𝑑𝑡𝑖
𝑏𝑤𝑘𝑗

+ 𝑐𝑖𝑡 ⋅
𝑑𝑡𝑖
𝑏𝑤𝑐

(30)

∀𝑖 ∈ 𝑇 − {𝜏1}, ∀𝑡 ∈ 𝑝𝑟𝑒𝑖, ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘

4.5. Deadline of the workflow

Meeting the deadline of a workflow is one of the constraints of
our model. Since a workflow comprises a set of 𝑛 dependent BoTs, the
completion time of the last BoT, BoT 𝜏𝑛, must be less or equal to the
deadline. Eq. (31) guarantees that the completion time of BoT 𝜏𝑛 is less
or equal to the deadline.

𝑀𝑛 ≤ 𝐷𝑙 (31)

4.6. Objective function

The objective function of the proposed model is to minimize the
monetary cost of executing a workflow. This cost includes the cost of
running VMs in dollars per hour and the data transfer costs. Eq. (32)
indicates the objective function.

Cost = minimize (Execution cost+ Data transfer cost) (32)
Subject to:
Constraint set A: (3), (5), (6), (8), (9), (10), (11), (12), (13),

(17), (18), (19), (22), (23), (24), (26), (28), (29),
(30), (31), (37), (38), (39), (40), (41)

where Eq. (33) indicates the cost of running VMs and Eq. (34) denotes
the data transfer cost.

Execution Cost =
∑

𝑘∈𝐶𝑃

∑

𝑗∈𝐽𝑘

∑

𝑙∈𝐿𝑗

𝑇𝑃𝑘𝑗𝑙 ⋅ 𝑝𝑟𝑘𝑗 (33)

Data transfer Cost =
∑

𝑖∈𝑇−{𝑡1}

∑

𝑡∈𝑝𝑟𝑒𝑖

𝑐𝑖𝑡 ⋅ 𝑑𝑡𝑖 ⋅ 𝑑𝑡𝑐 (34)

+ (𝑥1𝑝𝑢 ⋅ 𝑖𝑑𝑠1 + 𝑥𝑛𝑝𝑢 ⋅ 𝑜𝑑𝑠𝑛) ⋅ 𝑑𝑡𝑐

As mentioned in Section 3.1, our model considers the cost of run-
ning VMs based on the ‘pay-as-you-go’ model which is the common
pricing model in cloud computing. According to this pricing model, the
cost of running a VM is charged based on the number of time intervals
(hourly) that it has been allocated to the BoTs.

To compute the cost of running VMs, decision variables 𝑉 𝑆𝑘𝑗𝑙,
𝑉 𝐹𝑘𝑗𝑙, and 𝑇𝑃𝑘𝑗𝑙 are defined. If BoTs in the workflow are assigned to
VM 𝑙th of instance type 𝐼𝑘𝑗 , its running time must be determined. To
this aim, the start-timestamp (𝑉 𝑆𝑘𝑗𝑙) and finish-timestamp (𝑉 𝐹𝑘𝑗𝑙) of
running VMs should be determined. Decision variable 𝑉 𝑆𝑘𝑗𝑙 denotes
the start time of the earliest BoTs that are assigned to the VM and 𝑉 𝐹𝑘𝑗𝑙
denotes the completion time of the latest BoT assigned to the VM. For
instance, we assume that BoT 𝜏1, 𝜏2, 𝜏3 are assigned to 𝑉𝑀1, as shown
in Fig. 3. In this case, the start-timestamp of 𝑉𝑀1 is the start time of
the first BoT that runs on it, 𝑉 𝑆1 ≤ 𝑆𝑇1, and the finish-timestamp of
𝑉𝑀1 is the completion time of the last BoT that runs on it, which is
𝑉 𝐹1 ≥ 𝑀3.

Eqs. (35)–(36) determine the value of these decision variables.

𝑉 𝑆 ≤ 𝑆𝑇 ⋅ 𝑦 (35)
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𝑘𝑗𝑙 𝑖 𝑖𝑘𝑗𝑙
𝑉 𝐹𝑘𝑗𝑙 ≥ 𝑀𝑖 ⋅ 𝑦𝑖𝑘𝑗𝑙 (36)
∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘, ∀𝑙 ∈ 𝐿𝑗

Due to the quadratic terms 𝑆𝑇𝑖 ⋅ 𝑦𝑖𝑘𝑗𝑙 in Eq. (35), and 𝑀𝑖 ⋅ 𝑦𝑖𝑘𝑗𝑙
in Eq. (36), these constraints are non-linear. In these equations, 𝑆𝑇𝑖 and
𝑀𝑖 are continuous variables, and 𝑦𝑖𝑘𝑗𝑙 is a binary variable. It should be
noted that to linearize these constraints, we need to identify an upper
bound for the continuous decision variables 𝑆𝑇𝑖 and 𝑀𝑖. Since the start
time and the completion time of each BoT is less than the deadline of
the workflow, we consider the deadline as the upper bound for these
decision variables; 0 ≤ 𝑆𝑇𝑖 ≤ 𝐷𝑙, 0 ≤ 𝑀𝑖 ≤ 𝐷𝑙. Eqs. (37)–(40), which
are linear constraints determine the value of these decision variables.

𝑉 𝑆𝑘𝑗𝑙 ≤ 𝐷𝑙 ⋅ 𝑦𝑖𝑘𝑗𝑙 (37)

𝑉 𝑆𝑘𝑗𝑙 ≤ 𝑆𝑇𝑖 +𝐷𝑙 ⋅ (1 − 𝑦𝑖𝑘𝑗𝑙) (38)

𝑉 𝐹𝑘𝑗𝑙 ≤ 𝐷𝑙 ⋅ 𝑦𝑖𝑘𝑗𝑙 (39)

𝑉 𝐹𝑘𝑗𝑙 ≥ 𝑀𝑖 +𝐷𝑙 ⋅ (𝑦𝑖𝑘𝑗𝑙 − 1) (40)
∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘, ∀𝑙 ∈ 𝐿𝑗

If VM 𝑙th of instance type 𝐼𝑘𝑗 is not allocated to any BoTs, then
𝑉 𝑆𝑘𝑗𝑙 = 0, 𝑉 𝐹𝑘𝑗𝑙 = 0. Otherwise, any optimal solution will automati-
cally use the largest possible value of 𝑉 𝑆𝑘𝑗𝑙 and the smallest possible
value of 𝑉 𝐹𝑘𝑗𝑙 since the execution cost is a decreasing function of the
time interval of running VMs (𝑉 𝐹𝑘𝑗𝑙−𝑉 𝑆𝑘𝑗𝑙). Therefore, 𝑉 𝑆𝑘𝑗𝑙 indicates
the start time of the first BoT that runs on VM 𝑙 of instance type 𝐼𝑘𝑗 ,
and 𝑉 𝐹𝑘𝑗𝑙 indicates the completion time of the last BoT that runs on
the VM.

Since the cost of running VMs is billed hourly, we need to determine
the number of time intervals (hourly) of running VM 𝑙th of instance
type 𝐼𝑘𝑗 . For instance, if a VM has been allocated to the BoTs in the
workflow for 0.6 h, the time interval must be rounded to 1 h. Thus, we
use an integer variable 𝑇𝑃𝑘𝑗𝑙 to round up the time interval. Eq. (41)
determines the value of this decision variable.

𝑇𝑃𝑘𝑗𝑙 ≥ 𝑉 𝐹𝑘𝑗𝑙 − 𝑉 𝑆𝑘𝑗𝑙 (41)
∀𝑖 ∈ 𝑇 ,∀𝑘 ∈ 𝐶𝑃 , ∀𝑗 ∈ 𝐽𝑘, ∀𝑙 ∈ 𝐿𝑗

Finally, the mathematical expression 𝑝𝑟𝑘𝑗 ⋅ 𝑇𝑃𝑘𝑗𝑙, in Eq. (33), indi-
cates the cost of running VMs in dollars per hour.

Eq. (34) indicates the data transfer cost of the workflow. As men-
tioned in Section 3.1, only data transfer between clouds is charged.
The mathematical expression 𝑐𝑖𝑡 ⋅ 𝑑𝑡𝑖 ⋅ 𝑑𝑡𝑐 in Eq. (34), indicates the data
transfer costs among dependent BoTs. If dependent BoTs are assigned
to VMs of the same cloud, data transfer among them is free. In other
words, if BoT 𝜏𝑖 and its predecessor BoT 𝜏𝑡 run on the same cloud then
𝑐𝑖𝑡 = 0, and data transfer is free of charge; otherwise, 𝑐𝑖𝑡 = 1 and data
transfer between 𝜏𝑡 and 𝜏𝑖 is charged. In this expression, 𝑑𝑡𝑖 indicates the
size of data that must be transferred from BoT 𝜏𝑡 to 𝜏𝑖, and 𝑑𝑡𝑐 denotes
the data transfer cost per unit data size. Furthermore, we consider the
data transfer cost for the first and the last BoTs in the workflow. If the
first BoT in the workflow is assigned to the public cloud, then 𝑥1𝑝𝑢 = 1,
and its data transfer cost is charged, according to Eq. (34). Similarly,
if the last BoT in the workflow is assigned to the public cloud, then
𝑥𝑛𝑝𝑢 = 1, and its data transfer cost is charged.

After solving the proposed mathematical model and determining
the values of the decision variables, the optimal assignment of BoTs to
VMs is obtained. Algorithm 1 shows the procedure for implementing
the proposed mathematical model and using the results obtained from
the model to schedule a workflow. The parameters and data defined in
Table 1 are the input data of the algorithm. The first step is to define the
decision variables of the problem, which are listed in Table 2. Then the
objective function and constraints of the problem are defined according
to Eq. (32) and constraint set A, which are stated in Section 4.6.
After solving the optimization problem, the optimal values of decision
variables are determined. To schedule the workflow 𝑊 , the value of the
decision variable 𝑦 is used, so that if 𝑦 = 1, then the BoT 𝜏 is assigned
𝑖𝑘𝑗𝑙 𝑖
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Algorithm 1 :Workflow scheduling algorithm
1: Input: Defined parameters for Workflow 𝑊 = (𝑇 ,𝐷) and cloud

resources in Table 1
2: Output: The schedule 𝑆𝑐ℎ
3: Define the matrix of decision variables according to Table 2
4: Define the objective function according to Equation (32)
5: Define the 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑠𝑒𝑡 𝐴 stated in Section 4.6
6: Solve the model
7: 𝑆𝑐ℎ = ∅
8: for all 𝑖 ∈ 𝑇 , 𝑘 ∈ 𝐶𝑃 , 𝑗 ∈ 𝐽𝑘, 𝑙 ∈ 𝐿𝑗 do
9: if 𝑦𝑖𝑘𝑗𝑙 == 1 then

10: Assign BoT 𝜏𝑖 to 𝑣𝑚𝑘𝑗𝑙 at start time 𝑆𝑇𝑖
11: 𝑆𝑐ℎ=𝑆𝑐ℎ ∪ < 𝜏𝑖, 𝑣𝑚𝑘𝑗𝑙 , 𝑆𝑇𝑖,𝑀𝑖 >
12: end if
13: end for

Table 3
Instance types specifications provided by the hybrid cloud.

Cloud Instance type Price ($/hour) CCU Core(s) Memory

Type1 0.169 2.2 4 4
Type2 0.338 2 4 8

Public Cloud Type3 0.676 3 8 16
Type4 1.352 3.5 16 32
Type5 2.704 5 32 64
Type6 3.186 6.5 36 72
Type7 4.056 7.5 48 96
Type8 5.408 8.5 64 128
Type9 8.112 9 96 192
Type10 11.328 10 128 256
Type11 7.9 8 64 512
Type12 9.576 8 64 768

Private Cloud Type1 0.15 1.5 2 8
Type2 0.45 2.5 8 32
Type3 0.75 2.7 16 64
Type4 3.7 4 32 192
Type5 6.3 8 32 256
Type6 7.1 8 32 512

to 𝑣𝑚𝑘𝑗𝑙. The value of the decision variable 𝑆𝑇𝑖 and 𝑀𝑖 indicate the
start time and completion time of BoT 𝜏𝑖 on the allocated VM. Thus,
the assignment of BoT 𝜏𝑖 is represented as ⟨𝜏𝑖, 𝑣𝑚𝑘𝑗𝑙 , 𝑆𝑇𝑖,𝑀𝑖⟩, and a
schedule 𝑆𝑐ℎ contains the assignments of all BoTs in the workflow 𝑊 .

5. Experimental results

To evaluate the performance of the proposed mathematical model,
we use the CPLEX solver and implement the model as an OPL project
in IBM ILOG CPLEX Optimization Studio version 22.1 with default
settings. Specifically, experiments are performed on a PC with Intel
Core i7 2.3 GHz, 32 GB RAM, and Windows 10 operating system. The
average running time for solving the model is about 10 s.

5.1. Experimental settings

In the experiments, we use the specifications of compute-optimized
instance types of Amazon EC2, and their specifications are listed in
Table 3. Since there are costs associated with providing services to a
private cloud, such as electricity and maintenance costs, it is assumed
that running VMs of the private cloud is not completely free [46].
To investigate the behavior of the proposed mathematical model, we
evaluate the optimal cost over changes in the input variables of the
model such as the computation size of tasks, the data size of tasks,
security requirements, and the workflow deadline.
9

Fig. 4. The structure of some real-world workflows.

In the experiments, we use the structure of real-world workflows.
The structures of these workflows are indicated in Fig. 4. These work-
flows have different structures, data-intensive (e.g. video analysis) and
compute-intensive (e.g. image processing via CNNs9) characteristics.
Since the workflows have various attributes, we normalized the ex-
ecution cost of a workflow by dividing its actual execution cost by
𝑐𝑜𝑠𝑡𝑏.

5.2. Post-optimality analysis

To fully analyze how the optimal solution of the proposed model
is affected by the changes in the input variables, we perform a post-
optimality analysis. This analysis indicates how sensitive the optimal
solution is to changes in the input parameters or constraints. This is
called sensitivity analysis. Sensitivity analysis in mathematical pro-
gramming is a technique used to assess the stability of the optimal
solution of a mathematical model with respect to changes in the model
parameters. It helps to understand how changes in the model’s input
parameters affect the optimal value of the objective function [47]. In
this paper, we use an Elasticity formula to perform sensitivity analysis.
Elasticity indicates the percentage change in the optimal value of the
objective function (e.g., 𝑦) on the percentage change in the input
variable of the model (e.g., 𝑥) under a given set of assumptions [48],
and it is expressed as follows:

𝐸𝑦,𝑥 =
𝛥𝑦
𝑦
𝛥𝑥
𝑥

=
𝑑𝑦
𝑑𝑥

⋅
𝑥
𝑦

(42)

Overall, sensitivity analysis in mathematical programming is used
to study the impact of variations in the model’s parameters on the
solution.

9 Convolutional neural networks.
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Fig. 6. Normalized cost and its elasticity over changes in the deadline and the data sizes (DS) for Navigator workflow.
Fig. 7. Normalized cost and its elasticity over changes in the deadline and computation size (CS) for cognitive assistance workflow.
.3. Results

Figs. 5(a)–5(b) indicate the normalized cost and its sensitivity over
hanges in the deadline for an image processing workflow, respectively.
his workflow is compute-intensive and its structure is depicted in
ig. 4(a). In a large-scale image processing workflow, there are some
10
BoT stages for various operations such as resizing, cropping, filtering,
and enhancement of images. The input data of this workflow is an
image that is processed by the tasks in the workflow. To efficiently
evaluate the performance of the proposed model, we fix the computa-
tion size of BoTs to 0.5 (hour) and increase the deadline from 0.1 to 1
(hour) with a step of 0.1. The image size is used as the input size of data



Future Generation Computer Systems 162 (2025) 107466S. Abdi et al.

f
f
i
i
t
w
w
i
=
c

w
=
t
t

d
f
0
f
t
e
d
t
t
c
i
s

m
c
s
t
a
t
=

Fig. 8. Normalized cost and elasticity over changes in the data size (DS) and security factor for OpenALPR workflow.
or the BoTs and we performed the experiments with different values
or the image size, namely DS = {0.01, 0.1, 0.5, 1} MB. As it is shown
n Fig. 5(a), generally the normalized cost decreases as the deadline
ncreases. Since the BoTs in this workflow are compute-intensive, for
ight deadlines, the model selects instance types from the public cloud
hich are more powerful and expensive to meet the deadline of the
orkflow. As the deadline increases, the model selects cost-efficient

nstance types that meet the deadline. For deadlines greater than Dl
0.6, the model selects the most cost-efficient instance types and the

ost does not change over changes in the deadline for different DS.
Moreover, we can observe that the costs vary for different data sizes

hen the deadline is tight, and the problem is not feasible for deadline
0.1 (hour) when DS = 1 MB. When DS increases, the data transfer

ime increases. Therefore, the model selects more powerful instance
ypes to meet the deadline of the workflow.

Fig. 5(b) depicts the sensitivity of the optimal cost to changes in the
eadline for the image processing workflow. We perform this analysis
or different DS for feasible deadlines [0.2,… , 1] (hour) with a step of
.1. As this figure indicates, the value of elasticity changes significantly
or tight deadlines. These changes in the elasticity, with increasing
he deadline, indicate situations in which the model selects more cost-
fficient instance types for the workflow. Moreover, when Dl = 0.6, the
eadline is extended enough to select the most cost-efficient instance
ypes from the private cloud. Thus, for deadlines greater than Dl = 0.6,
he cost is not sensitive to the changes in the deadline. This analysis
an help determine whether the optimal solution is stable to changes
n the input variables, and it can also identify critical constraints that
hould be monitored.

To evaluate how the proposed model considers inter-cloud com-
unications, we performed experiments for navigator workflow over

hanges in the deadline. This workflow is compute-intensive, and its
tructure is depicted in Fig. 4(b). This workflow processes a map and
he map size can be different. The map is the output data of BoT 𝜏3
nd input data for BoTs 𝜏4 and 𝜏5, depicted in Fig. 4(b). We performed
he experiments with different values for the map size, namely DS
{25, 50, 100, 500} MB. Figs. 6(a)–6(b) illustrate the normalized cost and
11
its elasticity over changes in the deadline and DS for this workflow.
As Fig. 6(a) indicates, overall, the normalized cost decreases when
the deadline increases. For tight deadlines, powerful instance types
from the public cloud which are more expensive are selected. For long
deadlines, instance types from the private cloud that minimize the cost
and meet the deadline are selected. However, the feasible deadlines
and costs do not vary for different map sizes (DS). This is due to that
our model submits dependent data-intensive BoTs to the same cloud to
decrease the data transfer time and cost. In other words, our model de-
creases inter-cloud communications for dependent data-intensive BoTs.
Fig. 6(b) shows that the optimal cost is sensitive to the deadline and, for
long deadlines, the optimal solution is stable. Moreover, this analysis
confirms that the optimal solution is not affected by the changes in the
data size of inter-mediate BoTs.

Figs. 7(a)–7(c) show the normalized cost and its elasticity over
changes in the deadline for cognitive assistance workflow. This work-
flow is compute-intensive and its structure is depicted in Fig. 4(c). We
performed experiments with different values for the computation size
of BoTs. As mentioned in Section 5.1, the computation size of a BoT
indicates its execution time on a VM with 1 CCU performance in unit
time (hour). In this experiment, we fix the input data size of BoTs to
0.1 MB and increase the computation size from 0.1 to 1 (hour) with a
step of 0.1.

As it can be seen in Fig. 7(a), the feasible deadlines vary for different
CSs. For example, the problem is not feasible for deadlines less than
Dl = 0.6 (hour) when CS = 1 (hour). Moreover, the cost decreases
as the deadline increases, but the difference between normalized costs
for small and large values of CSs, particularly for tight deadlines, is
considerable. To examine how the normalized cost is dispersed for
different values of CS, the results for deadline interval [0.6,… , 2] (hour)
are indicated in Fig. 7(b). This boxchart indicates that the median of
the normalized cost increases with the increase of CS. It is due to that
when BoTs are more compute-intensive, more powerful instance types
from the public cloud are allocated to the BoTs to meet the deadline.
In contrast, for less compute-intensive BoTs, instance types from the
private cloud are selected which leads to decreasing the execution and
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data transfer costs. In Fig. 7(c), the elasticity of the optimal cost for
small and large values of CS is compared. This comparison depicts that
for compute-intensive BoTs, the elasticity fluctuates with the changes
in the deadline. The significant changes in elasticity, with the increase
of the deadline, indicate the situations in which the model selects
more cost-efficient instance types to meet the deadline. When the
computation size of BoTs is small, the optimal cost does not change
over changes in the deadline, and the optimal solution is stable.

Figs. 8(a)–8(b) show the normalized cost and its elasticity over
changes in the deadline and the data size for a vide analysis work-
flow, such as OpenALRP. A video analytics workflow typically involves
processing and analyzing video content to extract useful information,
and includes various stages of tasks such as frame Extraction, object
detection, tracking, classification and recognition. This workflow is
data-intensive and its structure is depicted in Fig. 4(d). We performed
experiments for this workflow over changes in the data size, namely DS
= {1, 2,… , 10} MB and we fixed the computation size of BoTs to 0.1 h.
It can be seen from Fig. 8(a), when the deadline is too tight, only the
problem is feasible for smaller values of DS. For example, when the
deadline is Dl = 0.1 (hour), the problem is only feasible for executing
the workflow with DS = 1 MB and DS = 2 MB. For tight deadlines, the
model selects powerful instance types from the public cloud to meet
the deadline. But as DS increases, due to increasing the data transfer
time, the deadline cannot be met even though the model selects the
most powerful instance types. As the deadline increases the problem is
feasible for larger values of DS, and when Dl = 0.3 (hour) the problem
is feasible for all considered DS. However, the normalized costs vary
for different DS. For deadlines greater than Dl = 0.5 (hour), the cost
does not change over changes in DS, because instance types from the
private cloud are allocated to BoTs and the cost is not affected by
data transmission. Moreover, we compared the elasticity of the model
for Dl = 0.3 (hour) and Dl = 0.5 (hour) over changes in DS. When
Dl = 0.3 (hour), the problem is feasible for all DS but the workflow
is executed in the public cloud. When Dl = 0.5 (hour), the deadline
is extended enough to execute the workflow in the private cloud. As
expected, Fig. 8(b) indicates that when the workflow is executed in the
private cloud, the cost is not affected by the changes in the data size,
in contrast to executing the workflow in the public cloud.

We evaluated the impact of security requirements on the optimal
cost for OpenALRP workflow. As mentioned in Section 4.3, when a BoT
is private, it can only be executed in the private cloud. However, a
public BoT can be executed on the private or public cloud. To perform
this experiment, we considered two scenarios. In one scenario, all
BoTs in the workflow can be executed in the private cloud, called
Spr scenario. In the second scenario, the workflow is more compute-
intensive and executing all BoTs in the workflow in the private cloud
is not feasible to meet the deadline, and the model outsources some or
all BoTs to the public cloud to meet the deadline, called Spu scenario.
The normalized costs over changes in the security factor (𝛼) for Spr
and Spu scenarios are shown in Fig. 8(c). In this experiment, when
the security factor 𝛼 = 0, all the BoTs are private while the security
factor 𝛼 = 1 indicates that all BoTs are public, and for example, 𝛼 = 0.1
indicates that 10 percent of BoTs are public. As depicted in Fig. 8(c),
in Spr scenario, the normalized cost is not affected by changes in the
security factor 𝛼. Since in this scenario executing all the BoTs in the
private cloud is feasible, the model selects appropriate instance types
from the private cloud to execute the workflow. As mentioned, in Spu
scenario, executing all BoTs in the private is not feasible. Therefore,
when 𝛼 = 0, the normalized cost is not shown. In this scenario, the
optimal cost is affected by the changes in the security factor, and with
the increase of 𝛼, the cost decreases so that when all the BoTs are
public, 𝛼 = 1, the optimal cost is minimum. Because, when 𝛼 < 1,
instance types from both public and private clouds are rented to meet
the security requirements of tasks. Moreover, the data transfer cost
among dependent BoTs increases the monetary cost of executing the
workflow. When 𝛼 = 1, the model selects appropriate instance types
from the public cloud to meet the deadline and minimizes the data
12

transfer cost among dependent BoTs.
Fig. 9. The structure of some scientific workflows [39].

5.4. Cost comparison

In this section, we compare the performance of the proposed math-
ematical programming model (MILP) with CO-HEFT [27], HGA [29],
and HCOC [31] approaches. We selected these algorithms since they
schedule a deadline-constraint workflow with a cost-minimization ob-
jective in cloud computing. In the following, the algorithms CO-HEFT,
HCOC, and HGA are briefly described.

• CO-HEFT uses the deadline distribution method to schedule a
workflow in a hybrid cloud. It creates the initial schedule in the
private cloud using the HEFT [26] algorithm and checks that the
makespan is within the workflow deadline. If the makespan is
greater than the deadline, it iteratively selects a task with the
maximum missed deadline time and reschedules it to a VM in the
public cloud that meets its sub-deadline.

• HCOC intends to schedule deadline-based workflows in a hybrid
environment to minimize cost. It makes an initial schedule in the
private cloud and creates clusters of tasks that are on the same
path in the DAG. If the deadline of the workflow cannot be met,
it selects a cluster of tasks in the workflow and assigns them to
the more powerful VMs in the public cloud to satisfy the workflow
deadline.

• HGA uses a genetic algorithm to schedule a workflow in a cloud
environment. The proposed algorithm schedules a workflow un-
der a specific deadline and a budget. It finds solutions that satisfy
the workflow deadline and minimize the cost to meet the budget.
However, we ignore the budget constraint since our problem
focuses on cost minimization. We extended the genetic algorithm
to schedule a workflow in a hybrid cloud.

For the comparison fairly, for all approaches, we assume that both VMs
of the public and private clouds are charged and only the data transfer
between clouds is charged. Since HGA and HCOC approaches evaluated
their algorithms on scientific workflows, in the experiments, we used
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Fig. 10. Normalized cost over changes in the deadline of a workflow.
he information of some scientific workflows that have the BoTs model,
hown in Fig. 9. The specifications of these scientific workflows are
vailable on the Pegasus workflow generator.10

The Epigenome is a compute-intensive scientific workflow used to
ap the epigenetic state of human cells on a genome-wide scale. This
orkflow contains several BoT stages to analyze the sequencing, align-

ng, and mapping of DNA, shown in Fig. 9(a). The LIGO is a compute-
ntensive scientific workflow used in the field of gravitational wave
etection. This workflow contains six BoT stages for data preprocessing,
ignal search, parameter estimation, statistical significance assessment,
ollow-up observations, and data archiving [49], as shown in Fig. 9(b).
he CyberShake is a data-intensive workflow used by the Southern
alifornia Earthquake Center (SCEC) to characterize earthquake haz-
rds in a region. The Montage is a data-intensive workflow used in
he field of astronomy and most tasks in it are not compute-intensive.
n the experiments, we considered LIGo, CyberShake, Epigenome, and
ontage workflows with 500 tasks.

Fig. 10 shows the cost achieved by the MILP, HGA, CO-HEFT, and
COC approaches for the scientific workflows over changes in the
eadline. To efficiently evaluate the cost comparison, we increase the
eadline of workflows from 0.1 to 1 (hour) with a step of 0.1. As shown
n Fig. 10, the normalized costs generally decrease as the deadline
f the workflows increases. For tight deadlines, all approaches select
nstance types that are more powerful and expensive to meet the work-
low deadline. When the deadline is extended, the solutions obtained
y the different approaches give results that are almost close to each
ther. In general, MILP outperforms the other algorithms, especially
or tighter deadlines, because it finds globally optimal solutions and
inimizes both the cost of renting VMs and the cost of data transfer

etween dependent BoTs. HGA achieves the lowest cost after MILP
nd outperforms HCOC. CO-HEFT achieves the highest execution costs
ecause it distributes the deadline of a workflow to sub-deadlines for
asks and it aims for a fast schedule that meets the tasks’ sub-deadlines.
owever, due to the different workflow structures and characteristics,

he execution costs of the workflows by the mentioned approaches are

10 https://pegasus.isi.edu/
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different. For Epigenome and LIGO, all the mentioned approaches find
feasible solutions with different deadlines. By contrast, for Montage and
CyberShake, only the proposed MILP model obtains feasible solutions
when the deadline is very tight. For example, for CyberShake workflow,
the problem is feasible for deadlines greater than 0.3 h, and when the
deadline is 0.3 h, only MILP finds a feasible solution. Therefore, we
can see that MILP performs better than the other approaches in terms
of monetary cost reduction and finding feasible solutions.

6. Conclusion

This paper studies the problem of resource allocation in the hy-
brid cloud, in which BoTs in a workflow are assigned to instance
types with the cost-minimizing objective. The main contribution of
this paper is proposing a mixed-integer linear programming model
for the assignment problem. The proposed model is formulated with
three key insights: (1) considering QoS requirements including the
workflow deadline and security requirements of BoTs; (2) formulating
data transfer time and cost among dependent BoTs which leads to
reducing inter-cloud and inter-VM communications; (3) considering
the cost of workflow execution based on the common pricing model
in cloud computing. The proposed model was solved with the CPLEX
solver and the sensitivity analysis was performed to study the behavior
of the model over changes in the input variables such as the security
requirements, and the workflow deadline. Experimental results show
that the proposed model can efficiently deal with the data dependency
among BoTs, and applying the Elasticity formula as a stability criterion
shows that the optimal decisions in the private cloud are more stable
than those in the public cloud. The experimental results show that
the proposed MILP model outperforms the three existing algorithms
for workflow scheduling in hybrid clouds in terms of monetary cost
reduction and finding feasible solutions.

For future work, we are going to extend our model to consider
workflow scheduling in edge-cloud computing, in which a computing
continuum from edge servers to a hybrid cloud is combined to satisfy
the QoS requirements of tasks. Moreover, optimization problems with
inexact data can be used to consider variability in the parameters of

workflows and virtual machines.

https://pegasus.isi.edu/
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