
Fast and Tight Response-Times for Tasks with Offsets
Extended version∗

Jukka Mäki-Turja Mikael Nolin
Mälardalen Research and Technology Centre (MRTC)

Västerås, Sweden
jukka.maki-turja@mdh.se

MRTC report no. 173, March 2005

Abstract
In previous work, we presented a tight approximate response-time analysis for tasks with offsets.

While providing a tight bound on response times, the tight analysis exhibits similarly long execution
times as does the traditional methods for calculating response-times for tasks with offsets. The existing
method for fast analysis of tasks with offsets is not applicable to the tight analysis.

In this paper we extend the fast analysis to handle the distinguishing trait of the tight analysis;
continuously increasing interference functions. Furthermore, we provide another speedup; by intro-
ducing pessimism in the modelling of interference at certain points, we speed up the convergence of
the numerical solving for response-times without increasing the pessimism of the resulting response-
times.

The presented fast-and-tight analysis is guaranteed to calculate the same response-times as the
tight analysis, and in a simulation study we obtain speedups of more than two orders of magnitude
for realistically sized tasks sets compared to the tight analysis. We also demonstrate that the fast-and-
tight analysis has comparable execution time to that of the fast analysis. Hence, we conclude that the
fast-and-tight analysis is the preferred analysis technique when tight estimates of response-times are
needed, and that we do not need to sacrifice tightness for analysis speed; both are obtained with the
fast-and-tight analysis.

1 Introduction

Response-Time Analysis (RTA) [1] is a powerful and well established schedulability analysis tech-
nique. RTA is a method to calculate upper bounds on response-times for tasks in hard real-time
systems. In essence RTA is used to perform a schedulability test, i.e., checking whether or not tasks in
the system will satisfy their deadlines. RTA is applicable for, e.g., systems where tasks are scheduled
in priority order which is the predominant scheduling technique used in real-time operating systems
today.

Fast RTA has several practical implications, e.g., facilitating the use of response time calculations in
an iterative workflow including automatic priority assignment and/or task allocation, or for admission

∗This is an extended version of the paper that will appear in the proceedings of 17th Euromicro Conference on Real-
Time Systems (ECRTS 05). It is extended by complete RTA formulae and formal proof of Theorem 2 in Appendix A and B
respectively.

1

control in on-line scheduling algorithms. Tighter response time allow for more efficient hardware
utilization. Consequently, analysis speed and tight response time are desirable features in engineering
resource constrained real-time systems.

To be able to calculate less pessimistic response times in systems where tasks may have depen-
dencies in their release times, Tindell introduced RTA for a task model with offsets [10]. Palencia
and Harbour formalized and extended the work of Tindell in [6]. In [5] we have shown that the RTA
for task with offset presented in their work calculates unnecessarily pessimistic response-times. As a
remedy, we presented our tight analysis. The main source for this improvement comes from more ac-
curate modelling of inter-task interference. In [6, 10] the interference only increases at discrete points
in time, whereas in our tight analysis the interference can increase continuously over time. There
is, however, a slight price to pay for this accuracy, slower fix-point convergence which can result in
longer analysis time.

In this paper we extend our previous fast analysis for tasks with offsets [4] to enable its application
to the tight analysis, providing a new method that calculates tight response times at fast analysis speed.
The fast analysis has been shown to achieve two orders of magnitude speedup for realistically sized
task sets [4]. The essence of this approach is to statically store the discrete points in time during the
first period where the interference increases, and during equation solving use a simple and fast table
lookup.

However, the approach taken in [4] is not directly applicable to the tight analysis since it uses a
more accurate interference model where interference does not increase at discrete points in time. As a
consequence, this introduces an additional problem; the interference does no longer exhibit a simple
periodic pattern. Hence, the basic assumption of the fast analysis does not hold for the interference
model of the tight analysis. One of the main contributions of this paper is to extend the fast analysis
to cope with these traits of the tight analysis, enabling a fast-and-tight analysis.

Another main contribution is that we introduce, for the tight analysis, a method to speed up the nu-
merical convergence during equation solving when calculating response-times. The method is based
upon the insight that response-time equations cannot have solutions at arbitrary points in time (which
we formally prove). At such points we modify the interference functions in such a way that numerical
convergence is accelerated. Since the modifications are done only at times where no response-time
solutions exist, they do not affect the final calculated response-time. Hence, the resulting analysis will
calculate exactly the same response-times as does the tight analysis. This method is incorporated into
the fast-and-tight analysis method.

Our third main contribution is a simulation study where we show that applying above methods to
our tight method, the execution times of the resulting fast-and-tight analysis are comparable to those
of the fast analysis. That is, we conclude that one does not have to sacrifice analysis speed to achieve
accuracy, or vice versa, when using fast-and-tight analysis.

Paper Outline: Sec. 2 revisits our tight offset RTA [5]. In Sec. 3 we present our tight and fast
RTA. Sec. 4 presents an evaluation study, followed by conclusions in Sec. 5.

2 Tight offset RTA

This section revisits our existing tight response-time analysis for tasks with offsets [5] and illus-
trates the intuition behind the analysis and the formulae.

2

2.1 System model

The system model used is as follows: The system, Γ, consists of a set of k transactions Γ1, . . . ,Γk.
Each transaction Γi is activated by a periodic sequence of events with period Ti (For non-periodic
events Ti denotes the minimum inter-arrival time between two consecutive events). The activating
events are considered mutually independent, i.e., phasing between them are arbitrary. A transaction Γi

contains |Γi| number of tasks, and each task is activated (released for execution) when a relative time,
offset, elapses after the arrival of the external event.

We use τij to denote a task. The first subscript denotes which transaction the task belongs to, and
the second subscript denotes the number of the task within the transaction. A task, τij , is defined by
a worst case execution time (Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum
blocking from lower priority tasks (Bij), and a priority (Pij). The system model is formally expressed
as:

Γ :={Γ1, . . . , Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, e.g., they can each be either smaller
or greater than the period. In [6] dynamic offsets are introduced, however they are modelled with the
static offset and jitter parameters, and therefore the analysis technique presented here also straightfor-
wardly applies to tasks with dynamic offsets. We assume that the load of the system, and each of the
transactions, is less than 100%.1

Parameters for an example transaction (Γi) with two tasks (τi1, τi2) are depicted in Fig. 1. The offset
denotes the earliest release time of a task relative to the start of its transaction and jitter (illustrated by
the shaded region) denotes the variability in the release of the task. The upward arrows denote earliest
possible release of a task and the size of the arrow corresponds to the released tasks execution time.

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 1. Example transaction

2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system by calculating an
upper bound on its worst case response-time. We use τua (task a, belonging to transaction Γu) to
denote the task under analysis, i.e., the task whose response time we are currently calculating.

In the classical RTA (without offsets) the critical instant for τua is when it is released at the same
time as all higher (or equal) priority tasks [2, 3]. In a task model with offsets this assumption yields

1This can easily be tested, and if not fulfilled some response-times may be infinite; rendering the system unschedulable.

3

pessimistic response-times since some tasks can not be released simultaneously due to offset relations.
Therefore, Tindell [10] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at the critical instant. (Only tasks
with priority higher or equal to τua are considered.)

Since it is not known which task coincides with (is released at) the critical instant, every task in a
transaction must be treated as a candidate to coincide with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among all transactions in the
system. This, however, becomes computationally intractable for anything but small task sets. There-
fore Tindell provided an approximate RTA that still gives good results but uses a single approximation
function for each transaction. Palencia Gutierrez et al. [6] formalized and generalized Tindell’s work.

2.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task (τij) causes the task
under analysis (τua) during an interval of time t (where t = 0 at the critical instant). Since a task
can interfere with τua multiple times during t we have to consider interference from possibly several
instances. The interfering instances of τij can be classified into two sets:
Set1 Activations that occur before or at the critical instant and that can be delayed by jitter so that

they coincide with the critical instant.

Set2 Activations that occur after the critical instant
When studying the interference from an entire transaction Γi, we will consider each task, τic ∈ Γi, as
a candidate for coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental theorems:

1. The worst case interference a task τij causes τua is when Set1 activations are delayed by an
amount of jitter such that they all occur at the critical instant and the activations in Set2 have
zero jitter.

2. The task of Γi that coincide with the critical instant (denoted τic), will do so after experiencing
its worst case jitter delay.

The phasing between a task, τij , and a critical instant candidate, τic, becomes:

Φijc = (Oij − (Oic + Jic)) mod Ti (1)

This definition implies that the first instance of a task τij in Set2 will be released at time t = Φijc,
and subsequent releases will occur periodically every Ti.

Fig. 2 illustrates the four different Φijc-s that are possible for our example transaction of Fig. 1.
The upward arrows denote task releases (the height of the corresponding arrow denotes amount of
execution released, i.e., Ci1 or Ci2 respectively). Fig. 2(a) the case that τi1 coincides with the critical
instant, where the phasing to τi1 is 2 and to τi2 is 5. Fig. 2(b) shows the corresponding situation when
τi2 is the candidate to coincide with the critical instant.

Given the two sets of task instances (Set1 and Set2) and the corresponding phase relative to the
critical instant (Φijc), the worst-case interference during a time-interval t caused by task τij can be
divided into two parts:

1. The part caused by instances in Set1 (which is independent of the time interval t), ISet1
ijc .

4

1 2 3 4 5 6 7 8 90 10

2iτ1iτ1iτ
211 =Φ i

521 =Φi

t

(a) τic = τi1

1 2 3 4 5 6 7 8 90 10

612 =Φi

922 =Φi

1iτ
2iτ 1iτ

2iτ t

(b) τic = τi2

Figure 2. Φ-s for the two candidates in Γi

2. The part caused by instances in Set2 (which is a function of the time interval t), ISet2
ijc (t).

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋
Cij

ISet2
ijc (t) =

⌈
t∗

Ti

⌉
Cij − x

t∗ =t− Φijc

x =

{
Cij − (t∗ mod Ti) if t∗ > 0 ∧ (

0 < t∗ mod Ti < Cij

)

0 otherwise

(2)

Note that, ISet2
ijc (t) is redefined compared to [6], resulting in lower (but still safe) response times. For

more details and correctness proofs see [5].
The total interference transaction Γi imposes on τua, during a time interval t, when candidate τic

coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(3)

Where hpi(τua) denotes tasks belonging to transaction Γi, with priority higher or equal to the priority
of τua.

2.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides with the critical instant,
the exact analysis tries every possible combination [10, 6]. However, since this is computationally
intractable for anything but very small task sets the approximate analysis defines one single, upward
approximated, function for the interference caused by transaction Γi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (4)

5

W ∗
i (τua, t) simply takes the maximum of each interference function (one for each candidate τic). As

an example consider again transaction Γi depicted in Fig. 1. Fig. 3 shows the interference function for
the two candidates (Wi1 and Wi2), and it shows how W ∗

i is derived from them by taking the maximum
of the two functions at every t.

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iWicW

tt

2iW
1iW

Figure 3. Wic(τua, t) and W ∗
i (τua, t) functions for example transaction

Given the interference (W ∗
i) each transaction causes the task under analysis (τua), during a time

interval of length t, its response time (Rua) can be calculated. The complete response time formulas
provided by [6] can also be found in appendix A.

3 Fast and Tight Analysis

When calculating response times, the function W ∗
i (τua, t) in Eq. 4 will be evaluated repeatedly.

For each task and transaction pair (τua and Γi) many different time-values, t, will be used during the
fix-point calculations. For the traditional response-times analysis for tasks with offsets, a repetitive
and periodic pattern for W ∗

i (τua, t) can easily be found, and a lot of computational effort is saved by
representing the interference function statically, and during response-time calculations using a simple
lookup function to obtain its value [4].

However, since the tight analysis has continuously increasing interference functions and does not
exhibit a simple periodicity, the framework in [4] is not directly applicable to the tight analysis. This
section shows how to find, calculate and store the periodic interference information for the tight RTA
method. We also present how the function W ∗

i (τua, t) changes using such pre-computed information.
Furthermore, the continuous nature of interference in the tight analysis gives the tight analysis a

computational disadvantage compared to the original analysis [6, 10]. In this section we will show
how to remove this computational disadvantage by replacing the continuous interference functions
with discretely increasing functions without introducing any pessimism in resulting response times.

3.1 The Periodicity of the Interference

The fundamental pre-requisite to statically represent the interference for a transaction, is that a
repetitive pattern can be found (such that it suffices to store that pattern and use it to calculate the
amount of interference for any time interval t). In our previous fast analysis [4], the full interference
of each task within the transaction occurs within the first period (each task is released exactly once
during each period). Hence, we could straight-forwardly represent the interference during the first
period and reuse it for later periods.

However, in the tight analysis, the imposed interference of a task released towards the end of the
period may not be fully included within the period. Even though the task is released within the period,

6

the slanted interference function causes some of the interference to occur in the subsequent period.
Fig. 4 shows an example critical instant candidate where the interference from task z spills into next
period.

2 4 6 8 10 12
t

20 2214 16 24

T i=10

3226 28 3018

2

4

Task C ij Φ ijc

x 1 2
y 1 5
z 2 9

∑)(2 tI Set
ijc

10

8

6

Figure 4. Interference spilling into the next period

As seen in Fig. 4, the interference for the first period differs from that of later periods. Obviously,
there can be no spill during the first period, since tasks arriving before the critical instant (i.e. when
t < 0) are accounted for in ISet1

ijc . For subsequent periods, however, the effect of a task spilling
over period boundaries will be identical. This means that for t > Ti the interference is repetitive
(with period = Ti) and allows for a static representation. The consequence of this is that we have to
represent the interference for the first and subsequent periods separately.

3.2 Preliminaries

To prepare for subsequent calculations, we define three operations (order, merge, and split) that will
be performed for each critical instant candidate before we proceed with calculation of a transactions’
interference pattern. These transformations will not change the load or the timingbehavior of the
interference, they only help us to restructure the information within a transaction.

Operation: Order Tasks are enumerated according to their first activation after the critical instant,
i.e., according to increasing Φijc values.

Operation: Merge Each task j′ that is released before a previous task j has a chance to finish its
execution, i.e. (Φijc + Cij) mod Ti ≥ Φij′c, are merged into one task with execution time Cij + Cij′

and offset of Φijc. This operation is performed until all possible tasks have been merged (and since
the load of a transaction is less than 100% the process is guaranteed to converge).

Operation: Split When splitting a task, we define spill of a task j, belonging to transaction Γi for
the critical instant candidate task c (c ∈ Γi), denoted Sijc, as the amount of execution time that “spills
over” into the next period. Since task j is released at time Φijc, the amount of spill is:

Sijc =

{
0 if Φijc + Cij ≤ Ti

Φijc + Cij − Ti otherwise
(5)

7

To make the spill explicit, we split each task j with a positive spill into 2 new tasks, denoted j′

and j′′. j′ represents the amount of interference of task j that occurs within and at the end of the
current period. j′′ is called a spill task and represents the amount of interference that occurs at the
beginning of the subsequent period. The definitions are:

Cij′ = Cij − Sijc Cij′′ = Sijc

Φij′c = Φijc Φij′′c = 0
(6)

3.3 Jitter and time induced interference

The key to make a static representation of W ∗
i (τua, t) is to recognisee that it contains two parts:

• A jitter induced part, denoted J ind
i (τua). This part corresponds to task instances belonging to

Set1. Note that this interference is not dependent on t.

• A time induced part, denoted T ind
i (τua, t). This corresponds to task instances of Set2. With

exception for the first period, the time induced part has a cyclic pattern that repeats itself every
Ti (as proved below).

We redefine Eq. 4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (7)

This partitioning of W ∗
i (τua, t) is visualized in Fig. 5. J ind

i (τua) is the maximum starting value of
each of the Wic(τua, t) functions (i.e. max of Wic(τua, 0), see Eq. 3) which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (8)

1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

tt

ind
iTind

iJ

Figure 5. W ∗
i (τua, t), J ind

i (τua), and T ind
i (τua, t)

The time induced part, T ind
i (τua, t), represents the maximum interference, during t, from tasks

activated after the critical instant. Algebraically T ind
i (τua, t) is defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (9)

where
W+

ic (τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)− J ind

i (τua) (10)

The correctness of our method requires that our new definition of W ∗
i (τua, t) in Eq. 7 is functionally

equivalent to the definition in Eq. 4.

8

Theorem 1 W ∗
i (τua, t) as defined in Eq. 4 and W ∗

i (τua, t) as defined in Eq. 7 are equivalent.

Proof reference By syntactic equivalence to Theorem 1 and corresponding proof in [4].

Further, in order to be able to make a static representation of W ∗
i (τua, t), we need to ensure that

we store enough information to correctly reproduce W ∗
i (τua, t) for arbitrary large values of t. Since

T ind
i (τua, t) is the only part of W ∗

i (τua, t) that is dependent on t, the following theorem gives that a
periodicity of Ti exists in the interference:

Theorem 2 Assume spill tasks are accounted for, and t = k∗Ti +t′ (where k ∈ N and 0 ≤ t′ < Ti),
then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t

′)

Proof reference The theorem is proved by algebraic equivalence in Appendix B.

3.4 Representing time induced interference

In this section we show how the interference pattern of T ind
i (τua, t) can be calculated and repre-

sented statically. Since the first period should not account for any spill task, but subsequent periods
should, we divide the presentation into two cases, one where spill task are not accounted for and one
case where they are.

3.4.1 Spill task not accounted for

For each critical instant candidate, τic, tasks are ordered, merged, and split according to Sec. 3.2. Spill
tasks are removed. We define a set of points pic, where each point pic[k] has an x (representing time)
and a y (representing interference) coordinate, describing how the time induced interference grows
over time when τic acts as the critical instant candidate. The points in pic correspond to the convex
corners of W+

ic (τua, t) of Eq. 10. The following equations define the array pic:

pic[1].x = 0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

pic[k].x =Φikc + Cik k ∈ 2 . . . |Γi|
pic[k].y =pic[k − 1].y + Cik k ∈ 2 . . . |Γi|

(11)

pic[1].y gives the initial relation (i.e. vertical distance at time 0) between different critical instant
candidates, and is given by the difference in jitter-induced interference. Furthermore, the time-induced
interference should be zero at time zero (illustrated in Fig. 5) which is achieved by subtracting the
maximum of all jitter-induced interference (stored in J ind

i (τua)) when initializing pic[1].y in Eq. 11.
The W+

i1 and W+
i2 , for our example transaction, are depicted in Fig. 6 and the corresponding pi1

and pi2 sets are illustrated by black and white circles respectively. For this example transaction we get
the following two pic-s:

pi1 = [〈0,−1〉, 〈4, 1〉, 〈6, 2〉] black circles
pi2 = [〈0, 0〉, 〈8, 2〉, 〈10, 3〉] white circles

9

2

4

10

+
2iW

t
5

+
1iW

Figure 6. Visual representation of pic sets

Now, the information generated by all W+
ic (τua, t)-functions is stored in the pic-sets. To obtain

the convex corners of T ind
i (τua, t), we need to extract the points that represent the maximum of all

W+
ic (τua, t)-s. To this end, we calculate the set of points, pi, as the union of all pic-s:

pi =
⋃

τic∈Γi

pic

In order to determine the points in pi corresponding to the convex corners of T ind
i (τua, t), we define

a subsumes relation: A point pi[a] subsumes a point pi[b] (denoted pi[a] Â pi[b]) if the presence of
pi[a] implies that pi[b] is not a convex corner. Fig. 7 illustrates this relation graphically with a shaded
region, and the formal definition is:

pi[a] Â pi[b] iff

pi[a].y ≥ pi[b].y ∧
(
pi[a].x− pi[a].y ≤ pi[b].x− pi[b].y

)

x

y pi[a]

Subsumed

Not subsumed

Figure 7. The subsumes relation

Given the subsumes relation, the convex corners are found by removing all subsumed points:

From pi remove pi[b] if ∃a 6= b : pi[a] Â pi[b]

For our example transaction of Fig. 1 we have:

pi = [〈0, 0〉, 〈4, 1〉, 〈6, 2〉, 〈10, 3〉]

3.4.2 Spill task accounted for

Computing the set of points when accounting for spill tasks, denoted p′i, is analogous to computing pi,
with the following differences:
• Spill tasks from the split operation are not removed. Note that including a spill task might require

an additional merge and order operation.

10

• In Eq. 11 on page 9 pic[1].y defines the initial relation (difference in ISet1
ijc) between different critical

instant candidates. Since p′i represents the time induced interference, T ind
i (τua, t), for t ≥ Ti,

p′ic[1].y should reflect this relation at the end of the first period. The interference for a critical
instant c at the end of the first period is represented by pic[|Γi|].y, consequently we get the following
modification to Eq. 11:2

p′ic[1].y = pic[|Γi|].y −max
x∈Γi

pix[|Γi|].y

3.5 Increasing performance by removing slants

Assume that a set of points pi (with or without spill tasks) has been calculated, representing the
convex corners of the time induced interference function T ind

i (τua, t) during one period Ti. The points
for our example transaction is illustrated in Fig. 8. Note that in the absence of spill tasks, the sets pi

and p′i are identical.

2

4

10
t

5

Figure 8. Remaining points and removal of slants

It can be proven that the fix-point iterative solution to Eq. 28 in [6] (see Appendix A), which is the
equation where the interference function is used, cannot have any solution during the slants.

Theorem 3 Equation 28 in [6] cannot have a solution at a time t where any approximate interfer-
ence function has a derivative greater than or equal to one.

Proof reference The theorem is proved in Appendix C.

No solutions to the response-time equation can exist during the slant of any interference function.
Furthermore, the closest possible solution will be when the derivative of the interference function
becomes zero. Hence, we can remove the slants and replace them with a stepped stair function, as
illustrated by the grey areas of Fig. 8, without introducing any pessimism in the resulting response
times. However, progress in the fix-point iteration is proportionally increased with any overestimation
of the interference. Hence, by adding overestimation in the grey areas of Fig. 8 we will speed up the
fix-point convergence without modifying the calculated response-times.

We will remove the slants by transforming the convex corners to concave corners (illustrated by
crosses in Fig. 83). The rules for finding the concave corners, vi, from a set of convex corners, pi, is
as follows:

2Analogous to Eq. 11, we normalize the points to start at 0, hence we subtract the maximum of all pix[|Γi|].y.
3While the last point in the set does not strictly represent a concave corner, it is still necessary for us to keep track of

the amount of interference at the end of the period, hence that point will be included among the concave corners and is thus
marked with a cross in the figure.

11

vi[k].y =pi[1].y

vi[k].x =

{
pi[k + 1].x− (pi[k + 1].y − pi[k].y) if k < |pi|
pi[k].x if k = |pi|

k ∈1 . . . |pi|

The interpretation of vi is as follows: For t ≤ Ti, vi[k].y represents the maximum amount of
time induced interference Γi will impose on a lower priority task during interval lengths up to vi[k].x
(k ∈ 1 . . . |vi|). For our example transaction of Fig. 1, vi becomes (indicated by crosses in Fig. 8 on
the previous page):

vi = [〈3, 0〉, 〈5, 1〉, 〈9, 2〉, 〈10, 3〉]
Note, especially that the final point (denoted vi[|vi|]) contains the sum of all interference during the
period Ti.

In the special case that some task τij has Φijc = 0 (e.g. in the case for spill tasks), vi[1].x will not
be zero. However, since T ind

i (0) = 0 (follows from Eq. 9), the first element of vi needs to have x-
value that is zero. In such cases we add the point 〈0, 0〉 to vi (stating that there will be 0 time induced
interference for any time interval of length up to 0).

Discussion: Removal of slants

By removing the slants, we essentially revert to the stepped-stair interference functions used in the
original analysis [6, 10]. This could seem surprising, since the tight analysis is based on the insight
that stepped-stair interference functions are overly pessimistic. However, as theorem 3 states, there
could be no response-time solutions during a slant. Hence, using slants during fix-point equation
solving does not increase the precision of the analysis.4

However, when deriving the interference function it is imperative to use a faithful model (using
slants) for the different sources of interference. Hence, once we have derived the interference function
(as done when creating the point set pi), we no longer need to represent the slants and can revert to a
stepped-stair interference function.

An analogy could be made to calculations using floating-point values. If rounding values up before
each calculation step, the resulting error will be greater than if the calculation is done using floating-
point values, and only the final result is rounded up.

3.6 T ind
i (τua, t) using lookup

Since we need to represent the interference for the two first periods separately we will calculate
the two point sets pi (first period) and p′i (second period) according to Sec. 3.4. Next we will remove
the slants for both these point sets as described in Sec. 3.5 and store the new points in vi and v′i
respectively.

Using the point sets vi and v′i we can calculate the interference from Γi for an arbitrary time t. For
the first period the interference in vi is used, and when t > Ti we will start using the interference in
v′i. Using these point sets T ind

i (τua, t) can be reduced to fast lookup function, as follows:

4This is why the original response-time analysis [2] and exact analysis for tasks with offsets [6, 10] does not overestimate
response times.

12

T ind
i (τua, t) =

{
v[n].y if k < 1
V if k ≥ 1

V =vi[|vi|].y + (k − 1) ∗ v′i[|v′i|].y + v′i[n
′].y

k =t div Ti

t∗ =t rem Ti

n =min{m : t∗ ≤ vi[m].x}
n′ =min{m : t∗ ≤ v′i[m].x}

(12)

where k represents the number of whole periods (Ti) in t, and t∗ is the part of t that extends into
the final period. It could be noted that vi[|vi|].y contains the sum of all interference during the first
period, and v′i[|v′i|].y contains the sum of all interference during the length of one period for subsequent
periods.

3.7 Space and Time Complexity

The number of points to calculate (pi) is quadratic with respect to the number of tasks in the
transaction Γi (2|Γi| points for each of the |Γi| candidate tasks). Thus, storing vi and v′i results in
a quadratic space complexity since, theoretically, no points from the pic sets will be removed when
calculating pi.

The method presented in this paper divides the calculation of W ∗
i into a pre-calculation and a fix-

point iteration phase. A naive implementation of the removal procedure in Eq. 12 requires comparison
of each pair of points; resulting in cubic time-complexity (O(|Γi|3)) for pre-calculating vi and v′i.

5

During the fix-point iteration phase, a binary search through a quadratically sized array is performed
(either vi or v′i in Eq. 12), resulting in O(log |Γi|2) time complexity for calculating W ∗

i according to
Eq. 7. The original complexity for calculating W ∗

i according to Eq. 4 is O(|Γi|2).
In a complete comparison of complexity, the calculation of W ∗

i (τua, t) must be placed in its proper
context (see the response time formulas in appendix A). Assume X denotes number of fix-point iter-
ations needed, then the overall complexity for the original approach (Eq. 4) is (O(X|Γi|2)), whereas
our method (Eq. 7 & Eq. 12) yields (O(|Γi|3 + X log |Γi|2)). Typically the size of a transaction
(|Γi|) is small (less than 100) and the number of fix-point iterations (X) is large (tens or hundreds of
thousands), hence our method results in a significant reduction in complexity.

4 Evaluation

In order to evaluate and quantify the efficiency (with respect to execution time of RTA) of our
proposed method, we have implemented a set of approximate response-time techniques, using the
complete set of response-times equations in appendix A. We use these implementations to perform an
extensive simulation study. We compare five RTA methods:

• fast-tight, presented in this paper and is the method that is optimized the farthest with respect to
both analysis speed and tightness. The goal of this simulation study is to quantify its efficiency
with respect to execution time of the analysis.

5In Sec. 4 we use an O(|Γi|2log|Γi|) implementation based on sorting the points and making a single pass through the
sorted set.

13

• fast-slanted, presented in this paper but without removing the slants (see Sec. 3.5). The reason
for including it in the analysis is to investigate the impact of reverting back to a stepped stair
interference function during response time calculations.

• tight, presented in Sec. 2 and [5]. It is only optimized towards tightness. These three methods
all produce the exact same tight response times.

• orig, presented by Palencia Gutierrez et al. [6], which is not optimized either for tightness nor
for analysis speed. It is included in the evaluation to see if the relative performance degradation
of tight, compared to orig, remains in fast-tight when compared to fast-orig.

• fast-orig, our speed-up method of orig presented in [4]. It is the fastest known RTA for tasks
with offsets. It yields the same response times as orig. It is included to see if the performance
gain of fast-tight is comparable to those of fast-orig

4.1 Description of Simulation Setup

In our simulator, we generate task sets that are used as input to the different RTA implementations.
The generated task-sets have the following characteristics:
• Total system load is 90%.
• The number of transactions is 10.
• Jitter (Jij) for each task is 20% of its transaction period.
• Blocking (Bij) is zero.
• The number of tasks/transaction is a variable parameter.
• The priorities are assigned in rate monotonic order.
• Transaction periods (Ti) are randomly distributed in the range 1,000 to 1,000,000 time units (uni-

form distr.).
• Each offset (Oij) is randomly distributed within the transaction period (uniform distribution).
• The execution times (Cij) are chosen as a fraction of the time between two consecutive offsets in

the transaction. The fraction is the same throughout one transaction. The fraction is selected so that
the transaction load of 9%.
The execution time for performing the RTA in Sec. 4.2 have been obtained by taking the mean

value from 50 generated task-sets for each point in each graph. We have measured the execution time
on a Pentium 4 laptop. The execution times are plotted with 95% confidence interval for the mean
values. Note that, for fast-orig, fast-slanted, and fast-tight the execution times also include the time
to perform the pre-calculations presented in Sects. 3.4 and 3.5.

4.2 Simulation Results

Fig. 9(a) shows how the execution time of the five (although the 3 fast methods are indistinguish-
able) RTA analysis varies with varying tasks/transaction (all methods are listed in decreasing execution
time order). When the number of tasks/transaction is 20, tight takes about 86 seconds whereas fast-
tight takes around 0.63 seconds, which is a speed up of well over two orders of magnitude. Note also
that, tight has a slight penalty to pay, compared to orig, due to more accurate interference modelling.

Zooming in on the three fast analysis methods in Fig. 9(b), we see that fast-tight and fast-orig
are quite comparable in execution times. There are two, mutually opposing, factors that affect their
relative timing: The fast-tight method shortens its execution time since it sometimes calculates lower

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

No. of tasks/transaction

Comparing analysis time of all 5 methods

tight
orig

fast-slanted
fast-tight
fast-orig

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Zooming in on analysis time of the 3 fast methods

fast-slanted
fast-tight
fast-orig

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Comparing pre-calculations

fast-tight & fast-slanted pre
fast-orig pre

(a) (b) (c)

Figure 9. Simulation Results

response-times than the fast-orig method (and hence terminate in fewer fix-point iterations). On the
other hand the fast-tight method has to spend more time performing pre-calculations and also perform
lookup in two different arrays during each fix-point iteration. In Fig. 9(b) we see that fast-tight has
consistently slightly longer execution time.

In Fig. 9(b) we also see that fast-slanted pays a price of slower fix-point convergence due to the
slanted interference function as did tight over orig. We conclude from Fig. 9(a) and 9(b) that the main
contribution of speeding up the response times comes from static representation and lookup, but that
reverting back to a stepped stair function gives an additional speedup of over 20%.

In Fig. 9(c) we compare the pre-calculations of the three fast methods. Here we can see that
the pre-calculations of fast-tight and fast-slanted is approximately twice that of fast-orig. This is
expected since they calculate two sets of arrays as opposed to a single set in fast-orig. Comparing
with Fig. 9(b) one can see that the pre-calculations constitute less than 1% of the total analysis time.
One can also discern the complexity of the pre-calculations, and the slope is less steep than what
would be expected of a naive implementation with worst-case complexity of O(|Γi|3), this is partly
due to our (sorting based) O(|Γi|2log|Γi|) implementation of the pre-calculations, and partly because
the worst (theoretical) case, with |Γi|2 elements in the pre-calculated arrays, never occurs.

We have also simulated an admission control situation. In an admission control situation, a sin-
gle (low priority) task is added to an (otherwise schedulable) set of already admitted tasks, and its
response-time is calculated and compared with its deadline (to decide if the task can be admitted to
the system or not). In the admission control the pre-calculation of the already admitted tasks is not
included in the execution time. In these simulations, for 20 tasks/transaction, the tight method takes
about 92 milliseconds whereas the fast-tight takes 0.19 milliseconds, which is a speedup with a factor
of almost 500. When performing admission control, the speed up in our method is isolated due to two
factors: (1) pre-calculations are already done, and (2) no interference from other tasks in the same
transaction needs to be accounted for. As can be seen in appendix A, the exact interference-function
is used to account for interference from tasks in the same transaction. Since fast-tight only improves
the approximate interference-function, we isolate our improvement by not needing to account for
interference from tasks in the same transaction.

This evaluation shows that combining fast and tight methods for response time analysis, one gets
the best of two worlds; a response time analysis method that is both fast and tight, outperforming
previous methods by several orders of magnitude.

15

5 Conclusions

In this paper we have presented a novel method that calculates approximate worst-case response
times for tasks with offsets. Distinguishing feature of the method is that it calculates tight response
times in a short analysis time. We have successfully extended our framework of fast RTA [4] to be
able to apply it to our tight method [5]. Our improvements are orthogonal and complementary to other
proposed extensions to the original offset analysis such as [7, 8].

The main effort in performing RTA for tasks with offsets is to calculate how higher priority tasks
interfere with a task under analysis. The essence to calculate fast response times is to find a repetitive
pattern and store that pattern statically, and during response time calculations (fix-point iteration),
use a simple table lookup. Our tight analysis [5] exploits the fact that the interference imposed by
higher priority tasks is overestimated in traditional RTA. By removing this overestimation, signifi-
cantly tighter response-times can be calculated. The fast-and-tight analysis presented in this paper
successfully does both, resulting in a fast and tight RTA.

Faster RTA has several positive practical implications: (1) Engineering tools (such as those for
task allocation and priority assignment) can feasibly rely on RTA and use the task model with offsets,
and (2) on-line scheduling algorithms, e.g., those performing admission control, can use accurate
on-line schedulability tests based on RTA. Tighter RTA has the practical implications to allow more
efficient hardware utilization. Either more functions can be fitted into the same amount of hardware,
or less powerful (cheaper) hardware can be used for the existing functions. Hence, our fast-and-tight
analysis is a very attractive choice to include in engineering tools and/or admission control software
for resource constrained embedded real-time systems.

In a simulation study we see that our novel analysis has very similar computational requirements to
that of the fast analysis. Especially we notice that the computational disadvantage of the tight analysis
(compared to the original analysis) is completely removed when comparing the fast-and-tight with the
fast analysis. Example benchmarks include a speedup of over 100 times for response-time analysis of
entire task-sets and a speedup of almost 500 times for single tasks, e.g., corresponding to an admission
control situation.

16

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed Priority Pre-Emptive Scheduling: An
Historical Perspective. Real-Time Systems, 8(2/3):173–198, 1995.

[2] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer Journal,
29(5):390–395, 1986.

[3] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM, 20(1):46–61, 1973.

[4] J. Mäki-Turja and M. Nolin. Faster Response Time Analysis of Tasks With Offsets. In Proc. 10th IEEE
Real-Time Technology and Applications Symposium (RTAS), May 2004.

[5] J. Mäki-Turja and M. Nolin. Tighter Response-Times for Tasks with Offsets. In Proc. of the 10th Inter-
national conference on Real-Time Computing Systems and Applications (RTCSA’04), August 2004.

[6] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability Analysis for Tasks with Static and Dy-
namic Offsets. In Proc. 19th IEEE Real-Time Systems Symposium (RTSS), December 1998.

[7] J. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting Precedence Relations in the Schedulability
Analysis of Distributed Real-Time Systems. In Proc. 20th IEEE Real-Time Systems Symposium (RTSS),
pages 328–339, December 1999.

[8] O. Redell. Accounting for Precedence Constraints in the Analysis of Tree-Shaped Transactions in Dis-
tributed Real-Time Systems. Technical Report TRITA-MMK 2003:4, Dept. of Machine Design, KTH,
2003.

[9] M. Sjödin and H. Hansson. Improved Response-Time Calculations. In Proc. 19th IEEE Real-Time Systems
Symposium (RTSS), December 1998. URL: http://www.docs.uu.se/~mic/papers.html.

[10] K. Tindell. Using Offset Information to Analyse Static Priority Pre-emptively Scheduled Task Sets. Tech-
nical Report YCS-182, Dept. of Computer Science, University of York, England, 1992.

17

A Complete RTA formulae

In this appendix we complete the set of formulas to calculate the worst case response time, Rua,
for a task under analysis, τua, as presented in Palencia Gutierrez et al. [6].

The length of a busy period, for τua, assuming τuc is the candidate critical instant, is defined as
(Note that the approximation function is not used for Γu):

Luac =Bua + (pL,uac − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W ∗
i (τua, Luac) (30 in [6])

where p0,uac denotes the first, and pL,uac the last, task instance, of τua, activated within the busy
period. They are defined as:

p0,uac = −
⌊

Jua + Φuac

Tu

⌋
+ 1 (29 in [6])

and

pL,uac =
⌈

Luac − Φuac

Tu

⌉
(31 in [6])

In order to get the worst case response time for τua, we need to check the response time for every
instance, p ∈ p0,uac . . . pL,uac, in the busy period. Completion time of the p’th instance is given by:

wuac(p) =Bua + (p− p0,uac + 1)Cua

+ Wuc(τua, wuac(p)) +
∑

∀i6=u

W ∗
i (τua, wuac(p)) (28 in [6])

The corresponding response time (for instance p) is then:

Ruac(p) = wuac(p)− Φuac − (p− 1)Tu + Oua (32 in [6])

To obtain the worst case response time, Rua, for τua, we need to consider every candidate critical
instant ,τuc (including τua itself), and for each such candidate every possible instance, p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [6])

18

B Proof of Theorem 2

We will perform the proof by algebraic manipulation and use braces to highlight the expression that
is manipulated in each step. We also annotate braces with the equations, properties, lemmas, or
assumptions referred to when performing some manipulations.

When performing the manipulations we will, e.g., rely on the following properties:
(max) — The maxv operator allows terms that are constant with respect to the maximisation variable

(v) to be moved outside the maximisation operation:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) — Summation over a set of terms can be divided into two separate summations:
∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) — When taking the ceiling (d e) of a set of terms, terms that are known to be integers can be
moved outside of the ceiling expression:

X ∈ N⇒ dX + Y e = X + dY e

In prooving theorem 2 we will use some lemmas.

Lemma 1 Assume spill tasks are accounted for, then regardless of candidate critical instant c: ISet2
ijc (Ti) =

Cij

Proof of Lemma 1 For a given critical instant c, perform split according to Eq. 6.
For an unsplit task τij then Φijc + Cij ≤ Ti (Eq. 5). For each task τij′ and τij′′ that is the result of

splitting then Φij′c + Cij′ ≤ Ti and Φij′′c + Cij′′ ≤ Ti (Eq. 6)
For any task τij where Φijc + Cij ≤ Ti then

ISet2
ijc (Ti)︸ ︷︷ ︸

Eq.2

=
⌈

Ti − Φijc

Ti

⌉

︸ ︷︷ ︸
0 ≤ Φijc < Ti (Eq.1)

Cij − x︸︷︷︸
Ti − Φijc mod Ti ≥ Cij

= 1Cij − 0 = Cij

Hence, for an unsplit task τij then ISet2
ijc (Ti) = Cij . For each task τij that is split to τij′ and τij′′ ,

then ISet2
ijc (Ti) = Cij′ + Cij′′ = Cij

Since this holds for each critical instant c, the lemma holds. ¤

Lemma 2 Assume spill tasks are accounted for, and t = k ∗ Ti + t′ (where k ∈ N and 0 ≤ t′ < Ti),
then ISet2

ijc (t) = k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′)

19

Proof of Lemma 2

ISet2
ijc (t)︸ ︷︷ ︸

Eq.2

=
⌈

t− Φijc

Ti

⌉

︸ ︷︷ ︸
Assumption

Cij − x =

⌈
k ∗ Ti + t′ − Φijc

Ti

⌉

︸ ︷︷ ︸
Cij − x =

⌈
k ∗ Ti

Ti
+

t′ − Φijc

Ti

⌉

︸ ︷︷ ︸
(ceil)∧k ∈ N

Cij − x =

(
k +

⌈
t′ − Φijc

Ti

⌉)
Cij

︸ ︷︷ ︸
−x =

k Cij︸︷︷︸
Lem.1

+
⌈

t′ − Φijc

Ti

⌉
Cij − x

︸ ︷︷ ︸
Eq.2

=

k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′) ¤

Lemma 3 Assume spill tasks are accounted for from t = 0, then T ind
i (τua, Ti) =

∑

∀j∈hpi(τua)

Cij

Proof of Lemma 3

T ind
i (τua, Ti)︸ ︷︷ ︸

Eq.9

= max
∀c∈hpi(τua)

W+
ic (τua, Ti)︸ ︷︷ ︸

Eq.10

=

max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (Ti)
)

︸ ︷︷ ︸
(sum)

−J ind
i (τua)

)
=

max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

ISet1
ijc +

∑
∀j∈hpi(τua)

ISet2
ijc (Ti)︸ ︷︷ ︸

Lem.1

−J ind
i (τua)

)
=

max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

ISet1
ijc +

∑
∀j∈hpi(τua)

Cij − J ind
i (τua)

)

︸ ︷︷ ︸
(max)

=

∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

ISet1
ijc

︸ ︷︷ ︸
Eq.8

−J ind
i (τua) =

∑

∀j∈hpi(τua)

Cij + J ind
i (τua)− J ind

i (τua)︸ ︷︷ ︸ =
∑

∀j∈hpi(τua)

Cij ¤

Theorem 2 Assume spill tasks are accounted for, and t = k∗Ti +t′ (where k ∈ N and 0 ≤ t′ < Ti),
then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t

′)

20

Proof of Theorem 2

T ind
i (τua, t)︸ ︷︷ ︸

Eq.9

= W+
ic (τua, t)︸ ︷︷ ︸

Eq.10

=

max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)︸ ︷︷ ︸
Lem.2

)− J ind
i (τua) =

max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + k ∗ ISet2

ijc (Ti)︸ ︷︷ ︸
Lem.1

+ISet2
ijc (t′)

)−

J ind
i (τua) =

max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + kCij + ISet2

ijc (t′)
)− J ind

i (τua)

︸ ︷︷ ︸
(sum)

=

max
∀c∈hpi(τua)(∑

∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)− J ind

i (τua)
)

︸ ︷︷ ︸
(max)

=

∑
∀j∈hpi(τua)

kCij

︸ ︷︷ ︸
+ max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)− J ind

i (τua) =

k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸
Lem.3

+ max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)−

J ind
i (τua) =

k ∗ T ind
i (τua, Ti)+

max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)− J ind

i (τua)

︸ ︷︷ ︸
Eq.10

=

k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)
W+

ic (τua, t
′)

︸ ︷︷ ︸
Eq.9

=

k ∗ T ind
i (τua, Ti) + T ind

i (τua, t
′)

¤

21

C Proof of Theorem 3
In proving theorem 3, we will use eq. 28 in [6] (see Appendix A), definition of wuac(p), the worst

case response time of τua with τuc as the one coinciding with the critical instant, simplified and
rewritten as a function of time, f(t):

f(t) = K1 + Wuc(τua, t) +
∑

∀i6=u

W ∗
i (τua, t) (28’)

where K1 is some constant value. We note that a solution to eq. 28’ exists, and fix-point convergence
is reached, when f(t) = t, for some t. Since both exact (Wuc) and approximate (W ∗

i) interference
functions are monotonically increasing, we conclude that f(t) is also monotonically increasing.

Lemma 4 The smallest solution to eq. 28’, denoted s, cannot exist where f(t) has a derivative greater
than or equal to 1 (i.e. where f ′(t) ≥ 1).

t

y

y=t

f(s)=s

p

f(p)

y=f(t)

s

Figure 10. Fix-Point Iteration when f ′(t) ≥ 1

Proof of Lemma 4 From [9] we know that:

1. For any monotonically increasing response-time equation, for any p < s, f(p) > p holds.

2. We can start fix-point iteration from any point p < s and still find the smallest fix-point s.

3. At a point p < s where f ′(p) ≥ 1, consider Fig. 10, the line y = f(p) cannot be converging
with line y = p (which has a derivative of 1).

Assume that s is a point where f ′(t) ≥ 1 then (by the continuousness of f(t)) there exists a point
p = s − ε (for some small ε) where f ′(p) ≥ 1. Then by 1 f(p) > p, and by 3 the lines will not be
converging. However, by 2 it should be possible to start fix-point iteration at p and converge into s.

A contradiction has been reached and the assumption does not hold. Hence the lemma holds. ¤

22

Theorem 3 Equation 28 in [6] cannot have a solution at a time t where any approximate interfer-
ence function has a derivative greater than or equal to one.

Proof of Theorem 3 None of the terms in f(t) has a negative derivative. Hence, if for time t any of
the approximate interference functions W ∗

i (τua, t) has a derivative of one6, then the function f(t) has
a derivative greater than or equal to one. Then, by lemma 4, the theorem holds. ¤

6The derivative of an approximation function W ∗
i (τua, t) is either one (for a slant) or zero (for a stair).

23

