

An Agent-Based Ontology to Support Modeling of
Socio-Technical Systems-of-Systems

Jakob Axelsson

Mälardalen University and RISE Research Institutes of Sweden

PO Box 883, SE-721 23 Västerås, Sweden

jakob.axelsson@mdu.se

Copyright © 2024 by Jakob Axelsson. Permission granted to INCOSE to publish and use.

Abstract. Systems-of-systems are characterized by the independence of their constituent elements.

Such an element is usually socio-technical, comprising technology, humans, or organizations. To

capture its independence, it needs to be viewed as an intelligent agent that relies on an internal

model of the world for its decision-making. Hence, a system-of-systems model will include mul-

tiple agents that inside themselves contain different models of the same system-of-systems. De-

scribing these overlapping subjective models and their usage by the agents is essential to properly

understand the resulting behavior of the overall system-of-systems. Current modeling practices are

not well suited for dealing with this, and the paper therefore outlines an ontology that makes the

agents and their internal models more explicit. The paper also discusses the implications such

models have on systems engineering practices and how they address known system-of-systems

engineering pain points.

Keywords. Systems-of-systems, modeling, analysis, agents, ontology.

Introduction

A system-of-systems (SoS) is a situation where the elements of a larger system are themselves

complex entities with their proper objectives. An SoS element is called a constituent system (CS),

and it is characterized by having both operational and managerial independence vis-à-vis the SoS

(Maier 1996). The CS of an SoS choose to interact by exchanging information to create capabilities

they cannot achieve on their own (ISO/IEC/IEEE, 2019). The CS are normally socio-technical,

where the social elements provide managerial independence that allows the SoS to evolve contin-

uously by adapting to circumstances.

It has long been understood that SoS engineering (SoSE) has particular challenges or “pain points”

that set them apart from SE for integrated systems (Dahmann 2014). Underlying these challenges

is a lack of proper nomenclature for describing SoS. However, as Baxter & Sommerville (2011)

argue, current modeling techniques are not adequate for socio-technical systems. Given the socio-

technical nature of SoS and the key role played by CS independence, it is essential to improve SoS

modeling practices to deal explicitly with these concerns.

The nature of CS independence is not well articulated in much of the work on SoS, but it must lie

in the ability of CS to make decisions on their own (Axelsson & Svenson, 2022). These decisions

mailto:jakob.axelsson@mdh.se

2

are based on their subjective understanding of value, enabling them to evaluate and choose indi-

vidually among alternative courses of action. A reasonable hypothesis is that making the nature of

CS independence explicit in SoS models will open roads for dealing with several of the pain points

and socio-technical challenges.

In this paper, I will use the term agent as an abstract concept that describes an entity with agency,

i.e., that can take actions and choose what actions to take. The ability to choose actions means that

agents need to contain advanced internal world models, allowing them to exhibit the value-driven

decision-making ability that is at the core of being independent. In situations where several agents

are present and collaborating, there is also a need for them to exchange model information, which

puts requirements on their ability to communicate and understand each other.

The abstract agent concept can be applied to various concrete entities that exhibit agency, such as

humans, technical systems, and organizations. It can also be applied to the CS of an SoS, and hence

be used to capture the nature of CS independence. I use the abstract term agent when the concrete

nature is not essential to the discussion, and use more concrete terms when discussing specific

aspects that do not apply to agents in general.

The contribution of this essay is to suggest a conceptualization that covers the nature of independ-

ent agents and to analyze some of the implications it has. This turns out to require a deeper under-

standing of what models and systems are. Such an ontology will be a useful basis both for address-

ing the SoS pain points through research as well as aiding practitioners who need to find appropri-

ate models of concrete SoS situations here and now.

The remainder of the paper is structured as follows. First, some fundamental concepts in systems

theory and modeling are revisited, that are essential for SoS applications. Then, the suggested

ontology is introduced, starting with a foundation that covers general systems, followed by an

extension elaborating on agent concepts. The implications for practitioners and researchers are

subsequently discussed, together with some remarks on how the ontology addresses the SoS pain

points. Finally, the conclusions are summarized.

Models and Systems

The notion of a system traces its roots back to Aristotle’s Metaphysics (Section 8.6), stating that

the whole is other than the parts. The essence is that a system can be seen as a set of interrelated

parts, and the interaction between the parts gives rise to properties of the whole. As simple as this

is, many deep questions hide underneath the surface. In this section, I will explore a few of these

questions since they give an important foundation for the ontology to be presented later.

System Worldviews

The basic definition of a system allows several different interpretations. The system worldviews

held by SE practitioners are discussed in detail by Dori et al. (2019). Some of these, such as the

“constructivist” and “mode of description” views, consider systems to appear in a model of the

mosaic of the real world, rather than being something that physically exists. It is thus in the mind

of an observer that systems appear, as elements in a cognitive model.

3

This is not a question of whether a physical reality exists or not (I assume it does), but rather that

there are no uniquely given boundaries between parts of reality. This means that if one wants to

describe the world as systems composed of parts, there are choices to be made on exactly what

elements of reality correspond to those systems and parts.

This constructivist worldview is well-established in soft systems (Checkland, 1993; Reynolds &

Holwell, 2010, p. 7), where it is essential to capture that socio-technical agents view the world

differently. They act based on their world models, and hence understanding their actions requires

understanding their world models. Since an SoS consists of CS that retain some independence, an

SoS displays important characteristics of soft systems, and the differences in world models among

agents are equally important here. Therefore, the constructivist worldview is adopted throughout

this paper.

Characteristics of Models

The worldview that systems exist in a description inside an agent, not in the real world, brings the

notion of models to the foreground. Minsky (1965) defines models as follows: “To an observer B,

an object A* is a model of an object A to the extent that B can use A* to answer questions that

interest him about A.” Stachowiach (1973), in his General Model Theory, gave three essential

characteristics of models (see also Figure 1):

• Mapping: A model is a representation of some original, which could be natural or artificial.

• Reduction: A model does not include all properties of the original, but it is a simplification.

• Pragmatism: The model is intended to work as a replacement for the original, with a par-

ticular purpose for its user.

Apostel (1960) makes the presence of the observer even more explicit, stating that a model should

be understood from its relationship to its user, its purpose, and the original. Rothenberg (1989)

mentions cost-effectiveness as a model characteristic. Essentially, this is a restatement of the prin-

ciple of parsimony, or “Occam’s razor.”

Figure 1. Key elements of modeling, based on Stachowiach (1973) and Apostel (1960).

4

As famously pointed out by Box (1976), “all models are wrong, but some are useful.” If two mod-

els always lead to the same answers to the questions of interest, parsimony requires that the simpler

one is chosen. However, if the purpose is to choose among alternative actions, there is also a lower

limit on how simple the model could be. As stated in Ashby’s (1956) first law of cybernetics, the

model must contain at least as much information as the number of relevant actions the user agent

can choose between.

Several of the sources above use the term “observer” to denote the agent that creates the model.

This highlights that the agent uses its perception of the original in creating its simplified represen-

tation. However, it does not mean that a model can only contain observable elements. On the con-

trary, many models include hypothetical elements that cannot be observed, but adding them can

simplify the model without reducing its explanatory power. The history of science is full of exam-

ples where such unobserved elements were introduced into scientific laws, and only much later

validated when new measurement techniques appeared. Another case is in the engineering of new

products. These products cannot be observed since they do not yet exist, but their models can still

be constructed by agents. The purpose is not to explain observations, but rather to predict proper-

ties and guide product development. Apostel (1960) discusses no less than ten different modeling

use cases in empirical sciences, and most of these are highly relevant in engineering too.

Basic Ontology for System Models

Having established that systems can be seen as entities in a model created by a certain agent, it is

necessary to detail some other types of entities that are present too. The INCOSE systems defini-

tion (Sillitto et al., 2019) contains several such concepts (that I have marked with underlining):

”an arrangement of parts or elements that together exhibit behavior or meaning that the individual

constituents do not. [...] The system’s properties (as a whole) result, or emerge from: the parts or

elements and their individual properties; AND the relationships and interactions between and

among the parts, the system, and its environment”.

In this section, an ontology is introduced that covers these commonly agreed-upon systems con-

cepts. An ontology is here understood as a list of concepts defined in terms of each other. For an

introduction to ontology development, as well as foundational concepts of the systems domain,

see Rousseau et al. (2018). The essential concepts of the proposed systems ontology and their

interrelations are illustrated informally in Figure 2 and are elaborated upon in the remainder of this

section.

Structure

A model is a set of elements and relations. Relations exist between pairs of elements, and they are

in general directed so that one element may be related to another but not necessarily vice versa.

An element can have different properties, that are mappings from elements to some value spaces.

Since relations are directed, they can be represented as special properties of an element indicating

which other elements it is related to.

A special type of relation is composition which indicates that one element is a part of another

element, where the larger element is called a system. An element may be part of several systems

simultaneously, such as a CS having roles in multiple SoS.

5

A system can exist in an environment, which is all the elements in the model that are not parts,

directly or indirectly, of that system.

Behavior

At any point in time, each property of an element takes on a certain value, and an element’s state

is captured by its properties at that time. The whole model’s state is the combination of all ele-

ments’ states.

By regarding relations as element properties, the relations also become dynamic and can be seen

as parts of the model state. This applies equally to composition relations between systems and

parts. For instance, a CS may join or leave an SoS.

The state of the model changes over time and the transition between states is captured in its tran-

sition function. The term behavior denotes a sequence of state transitions of a model or an element.

The transition function is defined on model states, and not on individual element states. Therefore,

it is possible that the new state of an element not only depends on the prior state of that same

element but also on the states of other elements. However, this can only happen if there is a relation

between the elements, which captures that behavior depends on both individual elements and their

relations.

Trans-ordinal Relations and Emergence

A system is, as explained above, composed of several interrelated parts. Therefore, it is possible

to describe characteristics on the system level (capturing the nature of the whole) or on the part

level (capturing the nature of the parts and their relations). Since a description on the system level

will not contain a description of the parts, it has fewer details than a description on the part level,

and can thus be seen as a description on a higher level of abstraction. Typically other properties

are more relevant to the system than to the parts.

Figure 2. Informal and partial representation of key concepts in the basic system ontology.

6

At the same time, the system and the set of parts are just two model representations of the same

thing, and hence there should be some correspondence between behaviors expressed at the two

levels. This correspondence is called trans-ordinal since it spans orders of abstraction. The prop-

erties and behavior of the system are thus emergent from the properties and behavior of the parts

(Axelsson, 2022). The transition function of the system is related to the transition functions of its

parts and the relations between them. The system behavior may depend on the parts’ behaviors

(upward causation) or the parts may depend on the system (downward causation).

Remarks on the Basic System Ontology

Before turning to the core part of this paper, namely the agent ontology, a few final remarks are

needed about the choices made in the basic ontology. The starting point was INCOSE’s definition

of systems. However, there are several ways in which that definition can be interpreted.

One choice was the directional and dynamic nature of relations. This is not so emphasized in mod-

els of purely technical systems such as integrated products. Often, a physical relation is naturally

bidirectional, and an integrated system mostly contains static relations. However, for socio-tech-

nical systems, a more general formulation is essential. One person may be able to observe another

person, but not vice versa, and personal acquaintances come and go.

The description of the ontology above does not put requirements on model qualities, e.g., coher-

ence, completeness, or soundness. Most definitions of the system concept would have such re-

quirements, such as stating that all the parts of the system should be directly or indirectly related

to each other (e.g., Ackoff, 1971). It is easy to agree on this, but I still choose to let the modeler

decide on this issue of well-formedness. Ultimately, anything can be included or excluded from

the model description as long as the purpose is fulfilled.

A model does not necessarily have to be explicit on how the emergence is created. As always, it

is up to the modeler whether it suits the current purpose better to describe the behavior as relations

between properties at the system level, or to describe the parts level relations and then define the

trans-ordinal mapping from part properties to system properties.

Extending the Basic Ontology with Agents

The ontology introduced above provides a general language for describing systems. In this section,

it is extended with concepts that describe elements having agency. Such agents can to some extent

control their behavior by choosing what actions to take. The notion of agents used here has simi-

larities with how they are defined in the field of agent-based modeling and simulation (see, e.g.,

Macal & North, 2005). However, I use concepts more closely aligned with common terminology

in the systems and SE fields when defining the internals of agents.

The abstract concept of agents can model many types of concrete entities, such as humans, auto-

mated technical systems, and organizations. The reader should bear in mind that the concrete ele-

ments modeled as agents are not necessarily structured as I will suggest in reality. As with all

models, this is a simplified representation that hopefully contributes to a certain purpose. The pur-

pose for including agents in this paper is that I have found the concept essential when modeling

SoS applications in various domains since it captures the independent nature of CS.

7

Agents

Agents are considered a type of element in the system ontology, and hence they have properties,

states, relations, and behavior. The main aspect that distinguishes agents from other model ele-

ments is that they can choose their actions. To capture this, an agent needs a representation of the

world around it. The agent uses this representation to reason about what actions to take, which

makes them independent. An overview of an agent’s internal structure is given in Figure 3, and

the remainder of this section will provide more details about the various elements and relations in

it.

World Model and its Underlying Ontology

At the heart of the agent is its world model which contains the information the agent keeps about

its environment and about itself. The world model is derived from observations and is used to

decide actions. It is thus a foundation for the agent’s situation awareness.

The world model is a model exactly in the sense described previously: it is created by a particular

agent; it represents some external entity; it is derived based on observations; it has a purpose; it is

a simplification of the represented entity; and it can be expressed using the language of the basic

ontology or some extension of it. Since the agent can interact with other agents, it needs to have

models of those agents to reason about their actions and potential interaction.

Methods and Value

The purpose of the agent’s world model is to decide on what actions to perform. This decision-

making requires two additional elements, namely a notion of value and a decision-making method.

Figure 3. Structure of agent model elements.

8

The value function evaluates different states of the world that can result from various actions. It

should be noted that those states need to be observable since the agent cannot possibly see a value

in something it is unaware of.

The methods can be quite simple, such as feedback control that just decides on the next action

based on observations of the current state. However, the agent could also look far into the future,

and this requires deriving a plan of action that can be the basis for feed-forward control. The plan-

ning will involve an evaluation of many alternative behaviors of the agent and require simulation

methods running faster than real-time to compare them. This would make the agent an anticipatory

system as defined by Rosen (Louie, 2010).

The value function and method are properties in the world model, rather than fixed functions, to

allow the agent to learn. It can thus adapt both its value function and its methods over time, due to

changing circumstances in the environment and for self-improvement. This adaptative ability can

be seen as a higher-level capability of the agent (Axelsson & Eriksson, 2023).

Computation

To decide what actions to take, the agent needs a reasoning capability. I will view this as a general

computation capability, which takes as input all the information held by the agent, including ob-

servations, the world model, previous actions taken, as well as method and value function. The

outputs are what actions to take next, and what updates are needed in the world model as part of

the agent’s learning.

The view that the agent contains a general computation capability has important implications. One

such implication is that agents are physical. This is a consequence of Landauer’s principle (Lan-

dauer, 1961) which states that all computation requires energy, and hence must be physical. It also

implies that software on its own cannot be an agent, since the software is just instructions to a

physical hardware that performs the computations.

In many cases, there will be limited time for the agent to make decisions. This is because the world

changes while decisions are made and if the agent acts too late, it will not get the intended value.

The available physical power limits what computation the agent can perform within the available

time, hence the agent may exhibit bounded rationality (Simon, 1956) in its decision-making.

Models are always finite since they are created by agents with limited actions and computational

capabilities. Functions that are infinite mappings, such as transition functions of an infinite state

space, must have a finite representation using a mathematical formula or a computer program. In

general, the agent’s computation capability must be Turing equivalent. Since the method is part of

the agent’s state and can change over time, it can be thought of as the agent’s equivalent of “soft-

ware” that operates on the “data” in the world model.

Physical State and Communication

Since the agent is physical, it has a physical state. This physical state can interact with the states

of other entities in the agent’s environment. The world model of the agent contains information,

which must also have a physical representation. However, it is considered internal to the agent and

not directly accessible to other elements. Therefore, it is separated from the physical state and the

exact mechanisms for its physical information representation are abstracted away from this model.

9

This mimics Minsky’s (1965) observation that it is sometimes difficult to exactly identify where a

model resides.

A consequence of hiding the world model is that one agent can never directly observe the internal

world model of another agent. To share information about one’s world model, communication is

needed. This is an essential part of SoS since the geographical distribution of CS means that they

are mainly related through information exchange (Maier, 1996). Communication can be modeled

in the ontology using the Shannon-Weaver approach (Shannon, 1948): The sending agent actuates

its observable physical state to encode a message. These state changes influence the physical state

of another agent (possibly indirectly, through some channel). The recipient agent perceives, or

decodes, those state changes resulting in observations.

However, for communication to work, additional information is needed in the world models to

capture semantics, pragmatics, and other higher-order concerns of interoperability (Axelsson,

2020). These are essential issues in an SoS and thus fundamental to represent in the model of CS.

It is insufficient to think about communication as arbitrary state changes observable by others. The

sending agent needs to have a purpose of communication, in the sense of an intended effect on the

recipient agent. According to basic cybernetics (Ashby, 1956), this requires the sender to have a

model of the recipient, which the sender uses to determine how to bring forward the message.

Perception and Actuation

To bridge the gap between the agent’s physical state and its internal world model, two additional

functions are needed. Perception maps the physical state to observations, and actuation changes

the physical state based on the actions decided by the agent. Since these functions act as transla-

tions between the physical world and the model representation, they need to be aware of the onto-

logical concepts underlying the world model, and the observations and actions need to be ex-

pressed in terms of those concepts.

Perception is based on the agent’s own physical state, which means it can potentially also observe

its own “health”. For instance, an agent may be in a deteriorated physical state that affects its

capabilities. Being able to observe this may prompt the agent to try to restore the health before

proceeding to other objectives. This self-consciousness is essential when planning a complex se-

ries of actions, which requires that the agent understands its capabilities and what effects they can

generate.

Remarks on the Agent Ontology

Before proceeding to a discussion on the practical uses of this ontology, some final remarks are

necessary about the agent representation.

It is important to emphasize the general nature of agents. I do not make any specific assumption

as to whether they represent humans or technology, but the notion allows both possibilities. An

agent can also be a system in itself whose elements are other agents, as it would be in a socio-

technical organization consisting of humans and technology. In that case, the behavior of the agent

system is emergent from the constituent agents.

An agent is an element in the basic ontology, and it can be viewed from the outside as a “black

box” with a transition function. However, an atomic transition function would in many situations

10

be very hard to predict and explain, which is why it makes sense to view it as a composition of

some internal functions and a hidden information state. In this model, the transition function is

(hypothetically) broken down into a composition of computation, perception, and actuation, to

better explain the behavior.

The inclusion of computation in the agent model relates to Crutchfield’s (1994) work on emer-

gence. He discusses system complexity in relation to different classes of computational complex-

ity. This provides a basis for classifying models and agents which could potentially give a more

stringent understanding of the complexity of SoS and the appropriate models for reasoning about

them.

It is interesting to note some parallels between the agent ontology and well-established typologies

of knowledge, that again go back to Aristotle. The world model corresponds to episteme, that is

knowledge about the world. The methods relate to techne in being procedural knowledge or skills.

The value function, finally, can be thought of as a part of phronesis, or wisdom.

Ontologies and Models in Systems Engineering Practice

The ontology presented in this paper is intended as a foundation for building models that support

SE and in particular SoSE, and I will now discuss its relation to SE practices.

A first usage is quite informal. Defining a set of relevant concepts for SoSE modeling creates a

guideline for what information should be captured. Some questions an analyst should be asking

when confronted with a complex socio-technical SoS situation are directly derivable from the con-

cepts in the ontology: What CS exist (the agent concept in the ontology)? What are the character-

istics of the CS (element properties, states, relations in the ontology)? How can they change over

time (transition functions)? What actions can a CS take (actuation)? What information does it have

about the world (observations, world model)? What objectives does it have (value function)? What

information do CS need to exchange to be interoperable (differences in agent ontologies)? These

questions can be used for a structured approach to deriving, e.g., a Concept of Operations (Con-

Ops) document, and for discussions among stakeholders (who are themselves agents).

The ontology can be refined into a formal metamodel for implementation in tools for model-based

engineering, as proposed by Yang et al. (2019), and Lu et al. (2022). The suggested agent ontology

highlights the need for including socio-technical features that are not captured efficiently in con-

temporary modeling languages such as SysML. This is essential in SoSE, but also helpful in SE in

general. Making the modeling agent and its purpose explicit supplies valuable information about

the scope of the model and what kind of questions it was designed to answer. It can also capture

important properties of the engineers that carry out SE (Axelsson, 2002).

A system model is the basis for analysis, so having appropriate ways of modeling SoSE is essential

for effective design decisions. The distinguishing factor between SoS and other systems is CS

independence, which is driven by the value function that portrays the individual objectives. The

ontology provides the information necessary for game theory-based analysis. This is important in

understanding SoS from the point of view of incentives (Axelsson, 2019). The extension of tradi-

tional game theory to hypergames is particularly relevant (Kovach et al., 2015). It captures that

agents can have different perceptions of the situation in a similar way as in the proposed ontology.

11

Other kinds of dynamic analyses, such as simulations, are also possible from the information in

the ontology.

A key part of SE is design space exploration. This can be seen as a sequence of model transfor-

mations, and the ontology gives guidance to what transformations are possible. The two key types

of transformations are elaborations, where information is added to the model, and abstractions,

where information is removed. Important elaborations are to add elements, properties, or relations;

refine elements by turning them into systems with parts; and expand the value range of a property.

Abstraction transformations are the inverse of these.

The basic system ontology and the agent extension clarify some differences between general SE

and SoSE. In the development of integrated systems, the agents that create models (e.g., the engi-

neers) are typically outside the system-of-interest which means that agent models are not essential.

The engineers have strong incentives to align their models since the result is to be one integrated

system. Therefore, model differences tend to be small, and the system can be taken as an objective

reality with less need to separate models from what they represent. In SoSE, all these aspects are

different. The CS are agents that are part of the SoS; they have individual purposes for their models

with sometimes weak incentives to align; and separating models from reality is essential in under-

standing the SoS behavior. Building on the discussion of Jackson & Keys (1984), it is thus possible

to see SE as a special case of the more general SoSE.

Addressing System-of-Systems Engineering Challenges

As mentioned in the introduction, a list of SoSE pain points was identified a decade ago (Dahmann,

2014). I will now revisit these to see how the proposed ontology can contribute to progress in the

field:

• SoS Authorities. An SoS has multiple authorities, which makes decision-making and con-

trol much more complex. The ontology addresses this by making authorities explicit as

agents. Therefore, their drivers and views of the world can be elicited and reasoned about

to better understand the ensuing dynamics.

• Leadership. The development of an SoS is cross-organizational and hampered by differ-

ences in objectives, culture, and cognitive biases. The ontology makes it possible to artic-

ulate these differences in world models and reason about how to adapt leadership and com-

munication practices to the particular SoS situation at hand.

• CS perspective. Many SoS include already existing systems, that are adapted to become

CS. A key concern is how to design the SoS to simplify CS adaptation, thereby increasing

the attractiveness of joining the SoS. The ontology makes it possible to describe the initial

status of the system, and the transformations needed to make it into a CS, hence providing

an improved understanding of SoS-level design decisions.

• Capabilities and requirements. Whereas integrated system development is driven, ide-

ally, by clearly stated requirements, SoS design involves the combination of CS capabilities

described on a higher level of abstraction. A capability can be seen as something a system

can do, and in the agent ontology, this is a result of the actions, which are driven by the

12

world model, value function, and methods. This allows more details to be provided about

what capabilities are available and hence enables a more exact analysis.

• Autonomy, interdependence, and emergence. It is difficult to predict SoS emergent

properties due to the heterogeneity and interdependence of the CS. By providing a richer

ontology that captures key characteristics related to CS independence through the concept

of agents, better models can be created which leads to an improved understanding of the

effects that emerge from SoS composition and dynamics.

• Testing, validation, and learning. SoS continue to evolve while in operation, and it is

difficult to test and validate them beforehand. This is captured in the ontology by the fact

that CS are agents that can evolve and learn through improvements in their world models,

methods, and value functions.

• SoS principles. The final pain point, which is directly addressed by this paper, is the prin-

ciples for SoS thinking. A solid ontology for describing SoS allows the representation of

key characteristics of independent CS and is necessary for any progress in the field.

Underlying many of the pain points is the higher complexity attributed to SoS. Complexity is often

seen as an inherent property of a system, but as I have shown in this paper, systems exist in the

model domain. Since models are created by an agent for a certain purpose, complexity should be

regarded as subjective, and not an objective fact (see also Jackson & Keys, 1984). By making the

system-of-interest a part of a model, we can apply objective measurements of complexity to the

system description, based on known metrics for computational and information complexity. The

complexity is thus not in reality but chosen and in the eye of the beholder.

One of the reasons that SoS are often perceived as complex is the fact that SoS models need to

contain CS agents with their internal models. To fully understand some aspects of the SoS, it is

necessary to take the feedback loops among these alternative models into account. A single model,

based on, e.g., known first principles of physics, does not suffice in socio-technical problems. In

the terminology of Jackson & Keys (1984), SoS problems are in general systemic-pluralist and

thus require soft systems methods.

Conclusions

In this essay, I have discussed the fundamental concepts needed to model systems-of-systems,

master their complexity, and make informed design decisions. The factor that differentiates an SoS

from an integrated system is the independence of its CS. This was captured in the proposed ontol-

ogy as agents, who can choose actions to maximize their value.

A key insight is that agents themselves need to have models, so a model of an agent contains a

model that may contain elements that represent other agents and their internal models. This nesting

and intertwining of models may seem to result in an insurmountable complexity, but it is never-

theless a necessity to fully understand the resulting behavior of an SoS. There is no point in sweep-

ing essential characteristics under the rug, but they must instead be embraced and techniques for

handling them must be sought.

13

A basic ontology is a first step towards better SoSE practices, and it has been argued in the paper

that this addresses many of the known SoSE pain points. The ambition of the ontology presented

in the paper is to be a tool to explain the key ideas herein. To take the ontology into practical use,

further refinements in its details are most likely required. Tools and techniques that manage the

information effectively remain to be developed, and on top of these, analysis techniques are needed

that can predict key characteristics as a basis for design decisions.

Acknowledgments

This research was funded by the Knowledge Foundation (KKS) under grant no. 2020-0230.

References

Ackoff, R. L. (1971). Towards a System of Systems Concepts. Management Science, 17(11),

661–671.

Apostel, L. (1960). Towards the formal study of models in the non-formal sciences. Synthese,

12(2), 125–161.

Ashby, W. R. (1956). An Introduction to Cybernetics. London: Chapman & Hall Ltd.

Axelsson, J. (2002). Towards an Improved Understanding of Humans as the Components that

Implement Systems Engineering. INCOSE International Symposium, 1137–1142.

Axelsson, J. (2019). Game theory applications in systems-of-systems engineering: A literature

review and synthesis. 17th Annual Conference on Systems Engineering Research

(CSER), 154–165.

Axelsson, J. (2020). Achieving System-of-Systems Interoperability Levels Using Linked Data

and Ontologies. INCOSE International Symposium, 651–665.

Axelsson, J. (2022). What Systems Engineers Should Know About Emergence. INCOSE

International Symposium, 1070–1084.

Axelsson, J., & Eriksson, P. (2023). Higher-Level Capabilities of System-of-Systems

Constituents: A Case of Industrial Ecosystems. 18th Annual System of Systems

Engineering Conference.

Axelsson, J., & Svenson, P. (2022). On the Concepts of Capability and Constituent System

Independence in Systems-of-Systems.17th Annual System of Systems Engineering

Conference, 247–252.

Baxter, G., & Sommerville, I. (2011). Socio-technical systems: From design methods to systems

engineering. Interacting with Computers, 23(1), 4–17.

Box, G. E. P. (1976). Science and Statistics. Journal of the American Statistical Association,

71(356), 791–799.

Checkland, P. (1993). Systems thinking, systems practice. Chichester, England: John Wiley &

Sons.

Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction.

Physica D: Nonlinear Phenomena, 75(1), 11–54.

Dahmann, J. (2014). System of Systems Pain Points. Proc. INCOSE International Symposium,

108–121.

Dori, D., et al. (2020). System Definition, System Worldviews, and Systemness Characteristics.

IEEE Systems Journal, 14(2), 1538–1548.

ISO/IEC/IEEE. (2019). Standard 21841 Systems and software engineering—Taxonomies of

systems-of-systems. ISO/IEC/IEEE.

14

Jackson, M. C., & Keys, P. (1984). Towards a System of Systems Methodologies. Journal of the

Operational Research Society, 35(6), 473–486.

Kovach, N. S., Gibson, A. S., & Lamont, G. B. (2015). Hypergame Theory: A Model for

Conflict, Misperception, and Deception. Game Theory.

Landauer, R. (1961). Irreversibility and Heat Generation in the Computing Process. IBM Journal

of Research and Development, 5(3), 183–191.

Louie, A. H. (2010). Robert Rosen’s anticipatory systems. Foresight, 12(3), 18–29.

Lu, J., Ma, J., Zheng, X., Wang, G., Li, H., & Kiritsis, D. (2022). Design Ontology Supporting

Model-Based Systems Engineering Formalisms. IEEE Systems Journal, 16(4), 5465–

5476.

Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modeling and simulation.

Proceedings of the Winter Simulation Conference, 2–15. IEEE.

Maier, M. W. (1996). Architecting Principles for Systems-of-Systems. INCOSE International

Symposium, 565–573.

Minsky, M. L. (1965). Matter, Mind and Models. Proc. International Federation of Information

Processing Congress, Vol. 1, 45–49.

Reynolds, M., & Holwell, S. (Eds.). (2010). Systems Approaches to Managing Change: A

Practical Guide. London: Springer.

Rothenberg, J. (1989). The Nature of Modeling. In AI, Simulation and Modeling, 75–92. John

Wiley & Sons, Inc.

Rousseau, D., Billingham, J., & Calvo-Amodio, J. (2018). Systemic Semantics: A Systems

Approach to Building Ontologies and Concept Maps. Systems, 6(3).

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical

Journal, 27(3), 379–423.

Sillitto, H., et al. (2019). Systems Engineering and System Definition. INCOSE.

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of

Economics, 69(1), 99–118.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer-Verlag.

Yang, L., Cormican, K., & Yu, M. (2019). Ontology-based systems engineering: A state-of-the-

art review. Computers in Industry, 111, 148–171.

Biography

Jakob Axelsson received an MSc in computer science in 1993, followed by

a Ph.D. in computer systems in 1997, both from Linköping University, Swe-

den. He was in the automotive industry with the Volvo Group and Volvo

Cars from 1997-2010. He is now a full professor of computer science at Mä-

lardalen University, Sweden, and a senior research leader in systems-of-sys-

tems at RISE Research Institutes of Sweden. His research interests include

all aspects of systems-of-systems engineering. Prof. Axelsson is a member

of INCOSE and has served as chairman of the Swedish chapter.

