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Abstract—The capability to accurately simulate the
behavior of a racing car is paramount in modern-
day racing competitions to quickly find a good base
setup to kick-start the work on track. Typically, a
professional driver is employed to drive the simulated
race car and provide feedback. However, this operation
is expensive and time-consuming, as capable human
drivers quickly become a bottleneck. In conjunction
with highly accurate simulations of the physical car’s
behavior, a capable virtual driver could thus accelerate
the car setup and development to a great extent. In this
paper, we propose to apply a data-driven predictive
control approach called Data-enabled Predictive Con-
trol to model a racing driver by tracking a pre-defined
trajectory. We compare our proposed approach with an
industrial first-choice Proportional-Integral-Derivative
controller and state-of-the-art Model Predictive Con-
trol controller, finding that the approach is feasible, and
it can provide significant improvements over the state-
of-the-art, especially for trajectories whose feasibility
is at the edge of the car’s capabilities.

Index Terms—Machine Learning, Model Predic-
tive Control, Autonomous Racing, DeePC, Trajectory
Tracking, Racecar Simulation

I. Introduction
The relevance of simulation is motorsport racing has

been growing steadily over the years, with teams investing
millions of dollars to get ahead of their competitors1, as
better simulation infrastructures and a high correlation
between the simulator and track can lead to significant
gains: the base car setup can be found early, shrinking the

This work is supported by the project “Ottimizzazione com-
putazione di un modello di simulazione dinamica del veicolo” funded
by the European Union - NextGenerationEU and Dallara Automobili
S.p.A. through the Italian “National Recovery and Resilience Plan”
(PNRR) Mission 4, Component 2, Investment 3.3 (DM 352/2022) -
CUP J33C22001400009 and the Swedish Research Council (VR) with
the PSI project (No. #2020-05094)

1AMG Petronas Formula One Team—How Does F1 Simulation
Work? https://archive.is/mrNjx, archived on 2024-04-02

search space and thus more effectively exploiting the free
practice sessions to refine details. Simulation at a profes-
sional level can be distinguished into two main categories:
1) Driver-in-Loop (DiL) simulators, where a human driver
sits in a cockpit and drives the car; and 2) Virtual driver
simulators, where the car is driven by a computer program.

a) Problem statement: in this work, we focus on the
virtual driver simulator case and, specifically, on the con-
struction of a control system capable of tracking an ideal
trajectory (e.g., coming from a real-world lap), for which
we propose a data-driven predictive control approach.
We do not consider the problem of generating the ideal
trajectory provided the track limits and the car data. We
compare our proposed approach with the current state
of the practice (a Proportional-Integral-Derivative (PID)
controller) and with Model Predictive Control (MPC).

b) Contribution: we 1) investigate the applicability
of a data-driven, learning-based variant of MPC to the
problem of trajectory tracking for race car simulation,
showing that it is viable; 2) provide an implementation
of such controller; and 3) compare it to a PID controller
and a “classic” MPC controller on a real-world trajectory,
showing competitive performance, especially when the
trajectory is hard to follow.

II. Related Work
The problem of tracking a reference trajectory is a com-

mon control challenge, requiring the design of a suitable
control algorithm to compute automatically the control
inputs necessary to minimize the discrepancy between
the optimal trajectory and the actual trajectory of the
vehicle. Specifically, the control algorithm relies on feed-
back mechanisms to adjust the vehicle inputs in real-
time. A standard approach to trajectory tracking in virtual
driver simulations and autonomous driving leverages PID
controllers [1]. However,they do not consider the impact

https://archive.is/mrNjx


of current decisions on the immediate future as a human
operator would instead.

Instead, MPC approaches can anticipate future states
based on a model of the system dynamics [2], and they
are increasingly being used in autonomous driving [3], re-
sulting in smoother, more efficient driving performance [4]
at the cost of increased computational complexity, as MPC
requires a detailed model of the system dynamics to make
informed predictions, whose construction and calibration
can be time-consuming and resource-intensive [5].

To address these limitations, some approaches try to
learn the underlying system implicitly from data, using
statistical models (e.g., NARX [6]) or deep neural net-
works [7]. Data-enabled Predictive Control (DeePC) [8] is
part of this family. DeePC has shown promising results,
particularly in handling the nonlinear dynamics (inherent
in racing environments) [9] and, with sufficiently large
datasets in adapting to complex and dynamic scenar-
ios [10].

III. Proposed approach
In this work, we compare DeePC and “classic” MPC

with the current state-of-the-practice PID controller to
control a simulated racing vehicle. The main issue with
PID controllers is that they are reactive and not predictive;
thus, they cannot adjust in advance based on a future
expectation of the car state. On the other hand, “classic”
MPC approaches require a detailed model of the system
dynamics, which, in many cases, can be hugely complex
(due to their implementation using internally Finite ele-
ment model (FEM), Multibody dynamics (MBD), etc).
With DeePC, instead, the model is learned based on
experience, relieving the designer from the daunting task
of building it. Additionally, the approach can be valuable
where an unknown reality gap exists, which is a common
situation in high-performance racing cars2.

A. DeePC
DeePC is a data-driven variation of MPC where the

explicit model is substituted by a dataset. The intuition
behind DeePC is that a linear combination of past realiza-
tions(trajectories) of the system could be used to match
the current conditions and forecast future behavior. The
algorithm can be configured with two key parameters.
The first is the size of the dataset N . We expect larger
datasets to provide faster convergence and better overall
performance at the expense of increased computational
complexity. A second important parameter is the pre-
diction horizon ph, which determines how far into the
future the controller should look, and it is equivalent
to the length of future input and output traces. The

2It is often referred to as “correlation” between simulated and
real-world data and it is paramount in modern high-level racing
competitions. See, for instance: hhttps://archive.is/2E4QK, https:
//archive.is/zTLpj, and https://archive.is/hy34O(archived 2024-05-
24).

selection of an appropriate prediction horizon is important
for the performance of the controller, as we expect it to be
unable to predict enough far in the future for very short
horizons and to slowly degrade its performance for very
long horizons, as the learned behavior will slowly drift
away from reality.

B. DeePC for simulated racing car control
In this section, we introduce an instance of DeePC

applied to the control of a simulated racing car.
a) Throttle and brake: Acceleration control ranges

from -1 (maximum breaking) to 1 (full throttle). Combined
brake/throttle actions and gearshift are not captured;
although they can be included straightforwardly in an
extended model, as the input and output spaces are not
constrained by DeePC.

1) Steering: Steering is modeled as the angle between
the centerline of the vehicle and centerline of the front
wheels, ranging in [−15◦, +15◦].

2) Outputs: The model outputs are: (i) the horizontal
and (ii) vertical coordinates of vehicle’s center of mass
with respect to a global reference point (m) (iii) the speed
(m/s) and (iv) the heading angle with respect to a global
coordinate directed towards east (rad).

3) Dataset generation: DeePC requires a dataset of past
realizations of the system to be able to make predictions.
Thus, we run multiple random instances of the racecar
model changing the seed, and record the car’s responses
to inputs.

IV. Experimental evaluation
In this section, we investigate how DeePC compares to

“classic” MPC and traditional PID controllers in terms
of tracking performance. Our experiment is meant to
compare the performance on a real-world trajectory of a
race car to gather evidence of whether the approach can
be applied to realistic scenarios.

A. Experimental setup
To determine how accurately a vehicle follows a prede-

termined path using a specific control system, we mea-
sure the Residual Sum of Squares (RSS) of the distances
between the reference trajectory and the actual path
taken by the vehicle. To push the control algorithms to
their limit, we make the lap increasingly more difficult to
follow by varying the peak friction coefficient of the tires,
emulating the effect of an increasingly slippery track3. We
analyze conditions that range from a slippery track in
which the target lap is plainly not achievable (DRF = 0.8),
to conditions of extremely high grip (DRF = 1.6).

3Track conditions impact significantly the grip available to the car
in real-world racing. Even if the track remains dry, the rubber laid
down by the cars can make it more or less slippery, and the track
temperature can also affect the grip. Moreover, the tire compound
can be chosen to be more or less grippy, typically presenting a trade-
off between peak performance and durability.

hhttps://archive.is/2E4QK
https://archive.is/zTLpj
https://archive.is/zTLpj
https://archive.is/hy34O
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Fig. 1. Trajectory tracking in the Yas Marina circuit in Abu
Dhabi. The dashed line defines the target trajectory, solid lines the
trajectories as followed by the controllers.

TABLE I
Parameters of the racecar model

Parameter Description Value

DRF
Peak value of the friction
coefficient (Pacejika D) 1.0

CRF
Shape factor of the friction

coefficient (Pacejika C) 1.1

BRF
Stiffness factor of the friction

coefficient (Pacejika B) 25.0

m Racecar mass 896 kg
Iz Moment of inertia 1500 kg · m2

lRF
Distance from Center of mass

(CM) of Rear/Front wheel 1.125 m

ρ Air density 1.225 kg/m3

A Cross sectional area
CD Drag coefficient CDA = 1.35m2

CL Downforce lift coefficient CLA = 4.31m2

P Motor power 620 hp

1) Reference trajectory: We test our algorithms on a
real-world trajectory of an open-wheel racecar featur-
ing high- and low-speed corners, straights, and chicanes,
namely, the Yas Marina circuit in Abu Dhabi, a depiction
of which can be seen in Figure 1, where several major
racing championships take place, including Formula 1.

2) Racecar model: For this initial study, we use a
simplified model of a racecar based on the well-known
“single-track model”, in which the car is approximated
as a two-wheeled vehicle with a fixed wheelbase and the
motion is described in terms of a few key parameters
summarized in Table I. In the model, we consider nonlinear
tire forces based on a simplified Pacejka model [11]. For
the experiments, we set the parameters of the car model
to mimic the race car the original trajectory was recorded
from4.

B. Baselines
We compare DeePC with two baselines: 1) a PID con-

troller, and 2) a “classic” MPC controller.

4The parameters have been extrapolated with the help of domain
experts from the data available at https://archive.fo/3erTM
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Fig. 2. PID controller scheme.

As PID controller, we employ the cascade scheme of
four proportional controllers depicted in Figure 2. The
inner loops are responsible for controlling the steering and
throttle based on the reference speed and heading. The
outer loops integrate these inner loops and are responsible
for direction and distance control. The parameters for
these controllers have been found using a Random search
optimization [12] process, balancing stability and tracking
performance.

The MPC controller, instead, is based on a simpler
kinematic model of the car, which does not consider
friction. This way, we replicate the imperfect correlation
between the real world and its simulated model5. We set
the prediction horizon to 60ms for both MPC and DeePC.

1) Reproducibility: The implementation of DeePC has
been open sourced6 for reuse and reproducibility. An
archival copy is also available at Zenodo [13]. The tra-
jectory could not be included in the repository as it is
proprietary.

C. Results

The experiment results are depicted in Figure 4, and
show that with complex trajectories featuring slow and
fast turns, DeePC outperforms both baselines significantly.
In fact, the simplified kinematic model of MPC is not
capable to accurately predict the car’s behavior in many
conditions, while the data-based model internal to DeePC
can produce more accurate predictions. Moreover, we
found that the classic MPC approach is more sensitive
to the precision of the numerical solver than DeePC: we
encountered cases in which the behavior resulting from the
MPC control is unstable, while DeePC, instead, is capable
to follow the same trajectory. An example is shown in Fig-
ure 3, in which MPC accelerates too early and loses control
of the car after a classic “pendulum” effect. Although the
PID controller can achieve good performance for “very
simple” trajectories (namely, with extremely grippy tires),
it cannot compete in the most relevant conditions, those
in which the car is close to its performance limits.

5Feeding MPC the same model of the car used for the evaluation
would have produce perfect control, as if the controller were able to
behave as an oracle. In reality (and in our experiments), the model
is never perfect.

6https://github.com/Crylab/DeePC

https://archive.fo/3erTM
https://github.com/Crylab/DeePC
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Fig. 3. ∞-shaped trajectory tracking with unstable MPC
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Fig. 4. Error with increasingly higher peak tyre friction in the Yas
Marina circuit. DeePC outperforms both the baselines. Solid lines
are averaged over 30 repetitions, colored shades areas depict ± one
standard deviation.

V. Conclusion and future work
In this paper, we investigated the applicability of DeePC

to the problem of trajectory tracking in the context of
race car simulation, comparing it with a traditional PID
controller and a “classic” MPC controller on a real-world
trajectory tracking problem.

We have found that the approach is viable, and that it
can outperform traditional controllers, especially in the
most interesting conditions, namely, on complex tracks
and with lap times that are on the verge of the car’s
capabilities. Additionally, its data-driven nature makes it
suitable for problems where building an accurate model
of the real world is difficult: no matter how complex
the control object is, if the dataset is rich enough and
the prediction horizon is balanced in such a way that
predictions are sufficiently long without losing too much
accuracy, then DeePC can be a viable solution.

In future work, we plan to study how the prediction
horizon and the dataset size of DeePC influence its per-
formance. Then, we will apply the approach to a state-
of-the-art car model, including multibody dynamics, fi-
nite element models of tires, and precise aerodynamic
effects. Moreover, we expect that a more sophisticated

dataset generation process could generate better results
with smaller datasets compared to the random control
excitation from random initial conditions used in this
work. From the point of view of the control algorithm,
DeePC uses a linear combination of the trajectories in
the dataset to produce predictions. In principle, other
strategies, including non-linear combinations, could be in-
vestigated. Finally, tackling the whole problem of building
a virtual driver requires the ability to generate trajectories
based on the characteristics of the track and the car, an
issue orthogonal to trajectory tracking, which we plan to
address in future work.
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