
Towards public understanding of software through modeling
Robbert Jongeling

robbert.jongeling@mdu.se
Mälardalen University
Västerås, Sweden

ABSTRACT
We consider the public understanding of software and its engineer-
ing to be imperative for citizens in the rapidly digitizing world.
In this vision paper, we explore the possibilities of using software
and systems engineering models for communicating quality as-
pects of software-intensive systems to their users. We provide a
scope, vision, and research challenges in this direction, aiming to
facilitate transparency about design choices and relevant quality
attributes in areas such as safety, security, and privacy. Ultimately,
we envision that these efforts can contribute to an improved public
understanding of software systems.

CCS CONCEPTS
• Human-centered computing → Collaborative content cre-
ation; • Software and its engineering→Maintaining software;
System modeling languages.

KEYWORDS
Transparency, Explainability, Public understanding of software and
software engineering, Software and systems modeling
ACM Reference Format:
Robbert Jongeling. 2024. Towards public understanding of software through
modeling. In ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems (MODELS Companion ’24), Septem-
ber 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3652620.3688560

1 INTRODUCTION
When we buy a bar of chocolate, we may find different kinds of
information on it to help us make an informed decision about
whether or not we want to buy and eat it. For example, we may
see the list of ingredients, nutrition information, a health label,
the best-before date, and perhaps even quality labels indicating,
e.g., the source of the cacao. Moreover, we may find information
on where to turn in case something is wrong, such as the contact
information of the manufacturer. Users of software or software-
intensive systems1, on the other hand, typically have none or only
very limited information to help them make an informed decision
about whether or not they want to use the particular software. For
example, users may not be aware of how the software ensures their
1In the remainder of this paper we refer to either of these simply as “software"

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688560

privacy, how the software ensures security, how the software is
tested, when the software was last maintained (if at all), who is
responsible for the creation and maintenance of the software, or
who were involved in gathering the requirements for the software.

We believe understanding software is imperative to prevent un-
intended outcomes due to e.g. limited consideration for minority
groups due to their inability to affect the requirements for devel-
oped software, misplaced trust in software, or misinterpretation of
the output of software systems. Moreover, understanding software
becomes vital to allow people to participate in an increasingly digi-
tized society,. To prevent these unintended outcomes, we assert it is
vital for software systems to be transparent about their properties,
and for users to be able to properly interpret this information.

We know that users are interested in software quality aspects, as
they have reported so, e.g., in reviews of mobile applications [6, 9].
We argue for an improved transparency of software to empower
users to critically assess it, which also requires some understand-
ing of software engineering activities. In this paper, we provide
a vision on how we can utilize models to support improving the
public understanding of particular software systems, and the public
understanding of software engineering in general.

Finkelstein already raised the issue of public understanding of
software engineering almost thirty years ago, and argued for ten
general aspects of software engineering that need to be understood
before more technical aspects of particular software can be un-
derstood [7]. Not much more is detailed in the literature about
how this shall be achieved, although both the ACM and IEEE make
mention of public understanding in their ethical codes. The ACM
code of ethics and professional conduct encourages computing
professionals to contribute to improving the public understanding
of computing (explicitly in Section 2.7 and indirectly, in 3.6) [4].
Members of the IEEE commit among other things “to improve the
understanding by individuals and society of the capabilities and
societal implications of conventional and emerging technologies,
including intelligent systems” [10].

Public understanding becomes increasingly more important, for
two main reasons. Firstly, software is ubiquitous and its complexity
is increasing, due to increased functionality and due to increased
interactions with other systems. Secondly, we put increasingly high
expectations on users to engage in the creation, maintenance, or
customization of software. For example with the further develop-
ment of low-code and no-code environments, Citizen Developers are
expected to engage in the development of software. Initially, Citi-
zen Developers were considered domain experts without specific
programming expertise but with high affinity with technology [1].
Pushing this idea even further, some visions of a future Software
Engineering 2.0 envision an even broader range of citizens involved
in development and collaborating with AI agents such as LLMs

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-1863-3987
https://doi.org/10.1145/3652620.3688560
https://doi.org/10.1145/3652620.3688560
https://doi.org/10.1145/3652620.3688560
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3688560&domain=pdf&date_stamp=2024-10-31


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jongeling

to develop software [13]. While these agents may support activi-
ties in requirements, programming, testing, and others, there are
fundamental aspects that make software engineering an engineer-
ing discipline that require knowledge and understanding beyond
technical skills to be able to judge the consequences of engineering
choices.

In this vision paper, we propose an approach to reuse software
and systems engineering models, such as software design mod-
els (e.g. UML class diagrams and sequence diagrams), and system
models (e.g. in SysML), by transforming them into models to be
used for communicating aspects of software to users. By indicating
their information needs, the users can participate in the creation of
these models, specifically aiming to enhance their ability to gather
information they need to make informed decisions about using the
software or not.

The remainder of this paper is organized as follows. Section 2
provides more background on transparency, public understanding,
collaborative modeling and related work on modelling for the gen-
eral public. Section 3 details the proposal forming this vision paper.
Section 4 discusses relevant aspects, generalization, and limitations
of these ideas. Section 5 concludes.

2 BACKGROUND AND RELATED WORK
Software transparency does not stand on its own but is contributed
to by activities that all help to bring it about: accessibility, usabil-
ity, informativeness, understandability and auditability [11]. The
notion of transparency can refer to digital processes and public
information provision, as well as to software. Transparency is also
desired by users, surveys have shown this fact in particular in the
context of AI systems [5]. These findings are in majority from the
requirements engineering community. Although it is mentioned
that modeling with non-experts such as users requires an increased
transparency [18], it remains an interesting aspect to bridge be-
tween the modeling and requirements engineering communities.

It has been argued that decision making about software is made
more difficult by the scale and complexity of modern software, that
often even exceeds experts’ ability to deal with [3]. Moreover, the
authors (of [3]) argue that this complexity should not be hidden to
the general public but that instead the general public shall be able
to make decisions related to software. In our view, that would first
require public understanding of software engineering and insight
into aspects of specific software systems.

Collaborative modeling activities have been proposed in which
a broad set of stakeholders are involved in creating engineering
models [8, 16]. These approaches are typically focused on engi-
neering activities and do not involve users. Similar approaches,
but with even broader sets of roles among involved people and
developed artefacts are within crowdsourcing, which includes first
steps towards involving the general public in software engineer-
ing activities. For example, there have been works involving users
in eliciting requirements, scaping UI design, testing the software
and reporting bugs, and even to a limited extent in architecture
and implementation tasks [14]. For the more technical tasks such
as implementation, the crowd from which is sourced consists of
people already familiar with programming. In our work, we are not

directly aiming for general public participation in these processes,
although it could be one of the future outcomes.

Discussions at a recent Dagstuhl seminar resulted in some ac-
tion points on research on collaboration in MDE, including the
question why models are not more used for communication across
boundaries of specific fields [12]. In our vision, the question of this
range can be extended to reach even to the general public. Indeed,
models bring an opportunity to provide some insight into impor-
tant aspects of the software under development. They are used in
our field for many engineering tasks and in fact one very common
use of models and diagrams is for the communication between
stakeholders [17]. Therefore, we aim to explore if models can also
be used to communicate quality aspects of the software to users
in which they are interested. For example in app reviews, users
have mentioned the following quality aspects: usability, reliabil-
ity, portability, compatibility, performance efficiency, security, and
functional suitability [9].

A relevant question is then what type of information needs to
be conveyed to users. A recent study has surveyed users to find
out their needs for explanations about software they encounter in
their everyday use [6]. Understandably, most concerns are about
the interactions with the software and its behaviour, that is, under-
standing how to perform certain tasks or expressing frustrations
with encountered behaviour of the software. Given the focus of
the survey on the most recently used software by the respondents,
these are in majority consumer-oriented software such as commu-
nication apps. When considering other types of software, such as
safety-critical systems, the concerns may be different. Nevertheless,
the survey [6] also contains some concerns by users on privacy
and security concerns. Although we are interested in explaining
software to users, we are not focusing solely on explainability of AI
algorithms, which is concerned with understanding why opaque
algorithms arrive at certain suggestions.

3 PUBLIC UNDERSTANDING OF SOFTWARE
In this section, we outline the scope and requirements for our
proposal, and the research challenges that need to be bridged to
achieve the vision.

3.1 Scope of this proposal
Finkelstein argued that understanding specifics of software requires
an understanding of the underlying challenges and limitations of
software engineering activities [7]. While models could be used for
either of these activities, in this work, we limit our scope to the
understanding of software. Within that scope, still we can distin-
guish several activities, for example understanding how a particular
software operates, having insight into quality aspects of particular
software, or understanding interactions between various software
systems. In this paper, we focus in particular on how models can
be used to communicate quality aspects to users. Figure 1 shows an
overview of the scope of this work, as a small part within bigger
shells.

We are in particular focussing on cyber-physical software-intensive
systems. The focus on these systems is motivated by their impact
through e.g. safety and security concerns that require these sys-
tems to attain various certifications such as compliance with the



Towards public understanding of software through modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Public understanding of software
and software engineering

Public understanding of software-
intensive systems

Communication of
quality aspects to

users

Figure 1: The scope of the research road-map proposed in
this work is within the smallest circle

ISO-26262 standard. This standard is quite general and prescribes
activities to be contained in the development process, but does not
define how these shall be implemented.

Failures of this type of systems may have a large impact that gen-
eral public shall be protected against, which is why they commonly
need to be certified to achieve e.g. a certain safety integrity level
(SIL). However, in our view, certification alone is not sufficient to
prevent unintended effects from software, especially since we are
expecting increasingly much autonomy from citizens in their inter-
actions with software. Therefore, we need to promote transparency
and improve understanding of these systems by their users.

When we discuss quality aspects of software, we consider for
example questions about the system from the user’s perspective. Ex-
trapolating from the previously discussed results of [6], we imagine
questions such as and not limited to the following:

• How do I know my data is secure?
• How do I know the software is properly tested?
• Who is responsible for maintaining this software?
• How do I know what the software updates do?
• Where can I report any failures of the software?
• Who were involved in establishing the requirements for this
software?

• How do I know the requirements treat me equally?
• How do I know that the software will act in the correct way
in my particular situation?

These questions are thus broader than the transparency of AI
algorithms and extend to other opaque information about software.
The proposed questions are an initial illustration of what could be
relevant for users to know, which is an area of ongoing and future
research.

3.2 What is required for such “user
communication” models

In this section, we consider what the requirements of using models
for communicating aspects of software to users should be. We refer
to such models as communication models.

Personalized and dynamic. From considering science communi-
cation literature, we know it is relevant to consider pre-existing
“mental models” of persons [2]. That is, people place newly gained
knowledge within the context of what they already know and this
has consequences for how to best present new information to them.
In our view, we imagine that considering a mental-models approach
may create the need for personalized explanations. Fortunately,
we are in the software domain and so we have the possibility to
customize explanations based on input from the user, when that
includes the user’s prior knowledge and current information needs.

Figure 2 illustrates our considerations for the inputs of communi-
cation models: the user’s knowledge, the user’s information needs,
and the state of the system. Communication models cannot be static
entities but rather need to be updated frequently, given that the
input elements (in circles in Figure 2) are subject to change. In-
deed, the software itself is typically subject to evolution. Moreover,
with the user learning from previous explanations, both their prior
knowledge and their information needs change over time. There-
fore, it is relevant to understand how to personalize and update
these communication models.

Input and output forms for users. Before anything else, users have
an information need about the software that they want answered.
At these input and output ends of the approach, we thus need to
consider the question how users can input their “questions” and
how the answer should be formatted. After the input, we knowwhat
those models shall contain, but we do not yet know in what form
the models are best understandable for users. We should not expect
the general public to learn UML or other modeling languages, so it
is a future research effort to determine a suitable format for these
communication models. These do not need to be diagrammatic and
may instead consist of natural language text.

One option is to reuse other models used for communicating
to the general public. Consider for example a standardized “label”
such as we see on the chocolate bar, or such as energy labels that
are commonly seen on packages of household appliances. These
energy labels are standardized by the European Union2 and regulate
exactly what information must be captured on the label, and what
values of the measured energy usage warrants what label value. We
can imagine a similar scale for various aspects of software systems,
where we could e.g. consider an A-G scale of cybersecurity of a
particular product. While such scales can be defined, the reality is
that we need to consider rather many quality items, with each their
own label.

There is a trade-off between these standardized labels and the
provision of personalized explanations. Standardized labels may
increase broad knowledge among the public and be recognized
by many people. The strength of these labels is that they provide
an intuitive insight into relevant aspects of the product. On the
other hand, the labels provide necessarily limited quantitative infor-
mation within a narrow range of possibilities and cannot provide
additional qualitative explanations to the users. Moreover, there
is no room for personalized explanations as we have included in
our vision. Further research is required to understand what type of
information presentation about software systems is best for users.

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02019R2015-
20230930

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02019R2015-20230930
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02019R2015-20230930


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jongeling

User's prior
knowledge

User's
information

needs

Engineering
models

User

System

Generate

Higher-order
transformation

Model
transformation

Communication
model

Figure 2: Conceptual overview of our vision. A user’s infor-
mation needs and prior knowledge are captured in models
that are input to a higher-order transformation, from which
a model transformation is then generated which takes sys-
tem design models and outputs a communication model.

3.3 Towards automated generation of
communication models

Figure 2 summarizes the vision proposed in this paper. The user’s in-
formation needs and prior knowledge could be captured in models.
These models are then used as input to a higher-order transforma-
tion that generates a model transformation to convert engineering
models into communication models suitable for this particular user.
The technical implementation of such transformations can be chal-
lenging, especially given the variety in modeling languages used
for the engineering models that would need to be transformed.
An obvious idea is to use large-language models (LLMs) to play
the role of the transformations in this case, and gather the user’s
information needs and prior knowledge through natural language
input. Furthermore, input and output from users could then be in
the form of natural language texts. Some work in this direction has
been proposed [15], in which the authors propose using an LLM as
the enabler of proving explanations of the functionality of low-code
tools. Other options are also viable and we need further research to
determine which would work best for this type of communication.

For communicating aspects of the software, we propose to use
views on existing software and system engineering models. To
do so, we need user input on their information needs, and then
transformations to create views that remove sensitive or IP-related
information and just show the system aspects with respect to the
information need of the user. The goal is thus to not generate com-
pletely new models, but rather to re-use existing models that are
already used for the development of a particular software. Given
their original purpose as engineering models, these models may
contain (i) more information than is needed for communication and
that should not be made public, but also (ii) not enough information

about the quality aspects that need to be communicated. Therefore,
we see a need for engineers to annotate the models with additional
information and to highlight what can and what cannot be part of
the communication models. Generating the communication model
from the system design models then requires a further transfor-
mation from the model into a format that can be understood by
users.

3.4 Summary of research challenges
From the description in this section, we now summarize the re-
search challenges towards realising the vision of more transparent
and understandable software.

(1) How can we collect user input on both their information
needs and their prior knowledge? And how to keep track of
the changing prior knowledge so that we do not explain to
the user things that they have learned by then?

(2) How can we allow engineers to annotate engineering models
such that they may be re-used for outward communication
without revealing intellectual property? What shall be an-
notated? Is it possible to annotate engineering models with
the required information?

(3) How can we create automated mechanisms to generate the
communication models from existing engineering models?

(4) How can we format output models? Should we customize the
form of communicationmodels for various users tomaximize
their understanding? Or would it instead be better to create
a singular format that can provide consistently information
to all users?

(5) How can we measure success of the communication mod-
els? How can we ensure that the generated communication
models sufficiently improve the understanding of the user?

4 DISCUSSION
In this section, we discuss possible extensions of the scope of our
proposal, and its challenges and limitations.

Relevance of public understanding of software and its engineering
in collaborative and participatory modelling. Beyond the domain
of cyber-physical systems, we can see a broader applicability of
the need for an increased public understanding of software and
software engineering. It is an open question to which extent the
communication models we are proposing in this paper should be
one-way, or if they could include means for the general public to
participate in the development of systems too, by providing their
input using these kinds of models. For now, such participation is not
in the scope of this proposal. The collaborative aspect is most clearly
shown in capturing the user’s prior knowledge and information
needs in models, to establish what type of information from the
engineering models shall be conveyed to the user.

Is public understanding of software engineering a prerequisite?
Properly interpreting the uncertainty coming from statements
about quality aspects of software requires an insight into how
software engineering works and why creating software is so com-
plicated, maintenance is necessary, and failures unavoidable. Indeed,
in his argument, Finkelstein states such knowledge as a prerequisite
for understanding software systems [7]. In our work, we envision



Towards public understanding of software through modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

that we can aim to bring the understanding in both of these cate-
gories simultaneously, by both including explanations of software
systems, and by doing so educating the people of the limitations
and uncertainties of summarized values for quality aspects. Any
communication of quality aspects of software shall also include
explanations of the scale at which these are measured and the limi-
tations of any such measurements. We must thus in parallel explain
that there are always unknown unknowns in software implemen-
tations and that it is impossible to completely check all possible
states the software can be in to ensure that no unintended things
can ever happen.

Public understanding of modeling? In this paper, we consider
using models to improve the public understanding of software.
Closely related to that, one may consider the public understanding
of modeling itself. This could require, e.g., understanding of abstrac-
tion and notations. Alternatively, simple analogies may convey a
sufficient explanation. For example, we expect that the general pub-
lic knows about blueprints and understands that these are models
of to-be-constructed buildings.

Moreover, the users will never have access to confidential engi-
neering models directly, so to further public understanding it is not
primarily important to teach the general public modeling in the
model-driven engineering sense. Nevertheless, we can and do ask
the question: what and how can we communicate using models?
So, this work becomes more towards the suitability of models as
a vessel for communication to the general public. This is relevant,
especially when we consider the type of modeling in this work as a
participatory activity in which we ask the members of the general
public for their input in order to create the communication models.

Feasibility and limitations of this proposal. The proposal in this
paper is necessarily abstract and mostly consists of a vision of
future research directions. Consequently, also the feasibility of the
general proposal as seen in Figure 2 is not evaluated. In general,
we see a clear motivation for this work and the potential to address
it with model-based technologies, but further research is needed to
work out this vision in detail.

Already, we can imagine some limitations of the proposal. For
example, the idea relies on engineering models to contain to some
extent the relevant information that the user may ask for. This is
not always in place. Moreover, it might not be relevant for engi-
neers to add this information if the only purpose is this outward
transparency. This touches also a next possible limitation: adop-
tion by industry. Without further regulating software transparency,
companies may not be so motivated to adopt these measures, even
though it could make them look good (if they are working with the
quality aspects in a good way).

5 CONCLUSION
We see an important responsibility for the research community to
contribute to the public understanding of software and software en-
gineering. In this work, we consider how the software and systems
modeling domain can support one aspect of this broader scope,
namely communicating quality aspects of software systems to their
users. This paper presents a high-level proposal to achieve this goal
and highlights several early challenges in this direction. We believe

existing engineering models can be central in providing users in-
sight into quality aspects of software systems, and in keeping these
insights updated throughout the further maintenance and update
life-cycle of software.

We look forward to discussing this topic with the community
and collaboratively take steps towards improving the public under-
standing of software and its engineering.

REFERENCES
[1] Björn Binzer and Till J Winkler. 2022. Democratizing software development: a

systematic multivocal literature review and research agenda on citizen develop-
ment. In International Conference on Software Business. Springer International
Publishing, Cham, 244–259. https://doi.org/10.1007/978-3-031-20706-8_17

[2] Wändi Bruine de Bruin and Ann Bostrom. 2013. Assessing what to address in
science communication. Proceedings of the National Academy of Sciences 110,
supplement_3 (2013), 14062–14068. https://doi.org/10.1073/pnas.1212729110

[3] Magiel Bruntink and Jurgen Vinju. 2014. Looking Towards A Future Where
Software Is Controlled By The Public and Not The Other Way Round. ERCIM
News 99 (2014), 1. https://inria.hal.science/hal-01110831

[4] ACM Code 2018 Task Force: Executive Committee. 2018. ACM code of ethics
and professional conduct. https://www.acm.org/code-of-ethics.

[5] Karolina Drobotowicz, Marjo Kauppinen, and Sari Kujala. 2021. Trustworthy AI
services in the public sector: what are citizens saying about it?. In Requirements
Engineering: Foundation for Software Quality: 27th International Working Con-
ference, REFSQ 2021, Essen, Germany, April 12–15, 2021, Proceedings 27. Springer,
99–115. https://doi.org/10.1007/978-3-030-73128-1_7

[6] Jakob Droste, Hannah Deters, Martin Obaidi, and Kurt Schneider. 2024. Expla-
nations in Everyday Software Systems: Towards a Taxonomy for Explainability
Needs. In 2024 IEEE 32nd international requirements engineering conference (RE).

[7] Anthony Finkelstein. 1996. Improving public understanding of software engi-
neering. https://discovery.ucl.ac.uk/id/eprint/1136. IEEE Software 13, 6 (1996),
20–21.

[8] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. 2017.
Collaborative model-driven software engineering: a classification framework
and a research map. IEEE Transactions on Software Engineering 44, 12 (2017),
1146–1175. https://doi.org/10.1109/TSE.2017.2755039

[9] Eduard C Groen, Sylwia Kopczyńska, Marc P Hauer, Tobias D Krafft, and Joerg
Doerr. 2017. Users—the hidden software product quality experts?: A study on how
app users report quality aspects in online reviews. In 2017 IEEE 25th international
requirements engineering conference (RE). IEEE, 80–89. https://doi.org/10.1109/
RE.2017.73

[10] IEEE. 2020. IEEE Code of Ethics. https://www.ieee.org/about/corporate/
governance/p7-8.html.

[11] Julio Cesar Sampaio do Prado Leite and Claudia Cappelli. 2010. Software
transparency. Business & Information Systems Engineering 2 (2010), 127–139.
https://doi.org/10.1007/s12599-010-0102-z

[12] Grischa Liebel, Jil Klünder, Regina Hebig, et al. 2024. Human factors in model-
driven engineering: future research goals and initiatives for MDE. Software and
Systems Modeling (2024). https://doi.org/10.1007/s10270-024-01188-8

[13] David Lo. 2023. Trustworthy and synergistic artificial intelligence for software
engineering: Vision and roadmaps. In 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE). IEEE, 69–85.
https://doi.org/10.1109/ICSE-FoSE59343.2023.00010

[14] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of
crowdsourcing in software engineering. Journal of Systems and Software 126
(2017), 57–84. https://doi.org/10.1016/j.jss.2016.09.015

[15] Francisco Martínez-Lasaca, Pablo Díez, Esther Guerra, and Juan de Lara. 2024.
LowcoBot: Towards Chatting With Low-Code Platforms. https://fmlasaca.dev/
pubs/lowcobot.pdf. In LLM4MDE Workshop at STAF.

[16] Michiel Renger, Gwendolyn L Kolfschoten, and Gert-Jan De Vreede. 2008. Chal-
lenges in collaborative modelling: a literature review and research agenda. In-
ternational Journal of Simulation and Process Modelling 4, 3-4 (2008), 248–263.
https://doi.org/10.1504/IJSPM.2008.023686

[17] Harald Störrle. 2017. How are conceptual models used in industrial soft-
ware development? a descriptive survey. In Proceedings of the 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineering. 160–169.
https://doi.org/10.1145/3084226.3084256

[18] Charlotte Verbruggen and Monique Snoeck. 2023. Practitioners’ experiences
with model-driven engineering: a meta-review. Software and Systems Modeling
22, 1 (2023), 111–129. https://doi.org/10.1007/s10270-022-01020-1

https://doi.org/10.1007/978-3-031-20706-8_17
https://doi.org/10.1073/pnas.1212729110
https://inria.hal.science/hal-01110831
https://www.acm.org/code-of-ethics
https://doi.org/10.1007/978-3-030-73128-1_7
https://discovery.ucl.ac.uk/id/eprint/1136
https://doi.org/10.1109/TSE.2017.2755039
https://doi.org/10.1109/RE.2017.73
https://doi.org/10.1109/RE.2017.73
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://doi.org/10.1007/s12599-010-0102-z
https://doi.org/10.1007/s10270-024-01188-8
https://doi.org/10.1109/ICSE-FoSE59343.2023.00010
https://doi.org/10.1016/j.jss.2016.09.015
https://fmlasaca.dev/pubs/lowcobot.pdf
https://fmlasaca.dev/pubs/lowcobot.pdf
https://doi.org/10.1504/IJSPM.2008.023686
https://doi.org/10.1145/3084226.3084256
https://doi.org/10.1007/s10270-022-01020-1

	Abstract
	1 Introduction
	2 Background and related work
	3 Public understanding of software
	3.1 Scope of this proposal
	3.2 What is required for such ``user communication'' models
	3.3 Towards automated generation of communication models
	3.4 Summary of research challenges

	4 Discussion
	5 Conclusion
	References

