
Predicting Cache Behaviour of Concurrent
Applications

Abstract—Modern digital solutions are built around a variety
of applications. The continuous integration of these applications
brings advancements in technology. Therefore, it is essential to
understand how these applications will behave when they run
together. However, this can be challenging to interpret due to
the increasing complexity of the execution details. One such
fundamental detail is the utilization of shared cache as it goes
hand in hand with the computation capacity of computer systems.
Since cache utilization behavior is not simple enough to translate
with few assumptions we have investigated if this complex
behavior can be predicted with the help of machine learning.
We trained the deep neural network with enough examples that
represent the cache behavior when applications were running
alone and when they were running concurrently on the same
core. The Long Short-Term Memory (LSTM) network learns
the entire execution period of each application in the training
set. As a result, without running two applications together in
reality, provided with the L1 cache misses of two applications
(running alone), it can predict how the cache will look like if
two applications wish to run together. The model returns a time
series that reflects the cache behavior in concurrency.

Index Terms—Performance monitoring counters, L1 Cache,
Long Short-Term Memory Network, Machine Learning

I. INTRODUCTION

Regardless of the technical complexities introduced by the
integration of more applications, industries seek modern and
real-time solutions to satisfy their operational needs and to
improve the user experience. This continuous integration of
applications is driving the need for a thorough understanding
of how they will influence each other if they share computa-
tional resources. In general, there are more tasks to run to get
a job done and it is not always possible to find a free separate
core for each application. So concurrency is always the case
and one needs to understand how the two applications will
impact each other’s execution if they wish to run on the same
CPU core at the same point in time.

To achieve better performance levels, there is plenty of work
around algorithm improvements and code optimization [1] but
resource contention can still happen when multiple applica-
tions are competing for the shared resource(s). In concurrency,
it can be experienced at the L1 cache level as applications
are running on the same core. That being the case, resource
contention at L1 cache level would cause more cache pol-
lution than contention at the Last Level Cache (LLC) level.
Consequently, it has a leading impact on cache management
techniques such as cache partitioning [2] and cache-aware
scheduling [3]. Therefore, we aim to predict the behavior of

Acknowledgements: This work was supported by the Knowledge Founda-
tion in Sweden through the projects ACICS and XPRES.

L1 cache misses which indicates either the requested data
was not already loaded or it has been polluted by the other
applications. One way to capture the L1 cache misses is
through Performance Monitoring Counters (PMCs), and we
use them in this study. However, understanding this behavior
is not that straightforward due to continuous advancements
and resource sharing.

Concurrent applications share the execution resources such
as processing unit, registers, L1 cache and in some models
even the L2 cache (in particular, we are interested in L1 cache).
In principle, the operating system (OS) is responsible for
memory management and it cannot just statically allocate the
demanded memory to one application, at once at startup [4].
Here, OS ensures the demand optimization as per the system
and task model. Since tasks may block and sleep their elapsed
time and memory utilization behavior can vary depending
on the scheduling technique and hardware specifications. If
the scheduled time slot (quantum) is large, an application
would have lower elapsed time and fewer cache misses. Also,
if there are more tasks to run the quantum will be shared
accordingly among all. Not to forget, instructions for only
one of the concurrent applications are processed at a time.
Here, performance remains a metric of interest which is highly
sensitive to the number and type of applications running simul-
taneously. Despite all the considerations, performance easily
gets affected by the way applications are programmed, the
environment in which they are running, multithreading, out-of-
order execution and resource contention due to the hierarchical
cache subsystems (also shown in Figure 1). The way forward
is to adopt resource optimization strategies. However with
optimization techniques, the execution behavior of applications
can easily be affected by numerous factors such as workload,
hardware specification, application characteristics, compiler
optimization techniques, scheduling algorithms and operating
system policies. Therefore, to avoid performance degradation,
industrial applications are tested before deployment in terms of
computational cost and memory requirements. Yet it is highly
unlikely to include and quantify all described factors (among
others) even by the experts.

Nevertheless, applications get their execution done not just
randomly but they are served as per the predefined rules and
systematic procedures of the operating system. This implies
that there is an underlying execution pattern. That being the
case, machine learning (ML) can identify these patterns by
learning from past experiences. Finding these patterns through
traditional methods requires manual analysis and explicit pro-

In 29th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2021), September 10–13, 2024, Padova, Italy

gramming for various factors which is time-consuming yet
uncertain. In contrast, machine learning can predict patterns
that may not be easily apparent otherwise. So, our main
contribution is to use ML to predict the L1 cache misses of
two applications if they run concurrently. The model trains
itself on the data that was collected when the applications
were running alone and when they were running concurrently
on the same core.

In this paper, we start by presenting a technical background
in Section II for a better reading experience and to understand
the contribution made through this work. Next, we present
the predictive modeling approach in Section III describing the
method used to achieve the goal of the study. The implemen-
tation details and the experimental details are then outlined
in Section IV. Following the implementation details, results
are discussed in Section V. The state-of-the-art and related
work to our study is then presented in Section VI. Finally, the
anticipated future work followed by the conclusion wraps up
the paper in Section VII.

II. BACKGROUND

We use the Performance Monitoring Counters (PMCs) to
measure the L1 cache misses by the applications. The ultimate
L1 cache behavior is predicted using the deep neural network
called the Long Short-Term Memory (LSTM) network.

A. Performance Monitoring Counters

The processor is one of the main information sources
for observing the performance of computing devices. There
are tools for performance monitoring such as perf for Intel,
CodeXL for AMD and DS-5 Development Studio fro ARM.
These tools provide insights into CPU utilization and cache
behavior by using Performance Monitoring Counters (PMCs).
PMCs are special-purpose, hard-wired registers present at the
core of PMU [5, 6, 7]. They can record hardware events (also
known as PMU events) such as instructions retired, cache
misses, branch missprediction and many more. However, the
number of these registers is limited because they are fast and
expensive memory components. PMCs are not just used by
developers and systems administrators, they are used by the
OS itself and task scheduling algorithms for their operations.

PMCs and PMU events are limited and vendor-specific.
Vendors design their PMU differently so the availability of
PMU events is also varied across different platforms. However
common events are available on each platform. L1 cache
misses is one such PMU event. The naming convention is
not standard so the same event can be present under two
different names on two platforms. An effort has been made by
the developer of the Performance Application Programming
Interface (PAPI) to standardize the events names [8]. PAPI
allows the collection of platform-specific events hence we
use PAPI to measure L1 cache misses caused by the test
application.

B. Memory Hierarchy

To perform any operation, data needs to be in the working
memory. However, due to storage capacity limitations, it is not
possible to load all the data at once at startup. Therefore to

achieve the desired goal, memory is structured in a hierarchical
manner which ensures the availability of required data as
per the need [9, 10]. The hierarchy is maintained under the
principle of locality. It says that if a memory location is
referenced once, it is more likely it will be referenced again in
the near future or it is expected that the adjacent memory will
be referenced shortly i.e., temporal locality and spatial locality
respectively [4]. Therefore, multiple levels of hierarchy are
maintained from slowest and least expensive (at the bottom)
to fastest and most expensive (at the top, near CPU), also
shown in Figure 1.

Fig. 1. Example of the memory hierarchy in a dual-core system.

The registers are located inside the CPU to hold the instruc-
tion and data on which the processor is currently working.
Moving one level up is cache which itself has three levels
as L1 cache, L2 cache and Last Level Cache (LLC or L3).
When a processor does not find the required information at
one level, the request is made to the next level (from top to
bottom). Each reference to cache is either cache hit, miss or
a prefetch. Starting from L1 to L3, the L1 cache is closest to
registers and it is usually shared among core(s) whether it is
a uni-core system or a multi-core system.

C. Concurrency

Concurrency is managing multiple tasks that are ready
to be executed simultaneously, i.e., without waiting for a
task to complete starting the other one. This is particularly
required for quick response time in the case of real-time
systems. Effective management of applications ensures system
performance and user satisfaction. If concurrency does not
involve shared resources, then it is true parallelism in time,
and requested resources are promptly assigned to the appli-
cation that is requesting. In comparison, when applications
require shared resources, the operating system manages them
through time-slicing or preemptive techniques. The scheduler,
an operating system component, divides CPU time between
the concurrent applications through context-switching. Context
switching is preempting the CPU from the running application
to the other. Understanding memory hierarchy is not only
important in hardware design and software development, it
influences performance management and even the decision-
making process.

D. Cache Pollution

Concurrent tasks overlap in time to share resources so we
need better management of applications. It can cost energy,
grow complexity, increase programming efforts, limit scala-
bility and cause cache pollution. In cache pollution, when an
application is sharing time, valuable cache space is already
overwritten by the other application which leads to more cache
misses [11]. Therefore, the processor has to spend more cycles
waiting for the data to be fetched from the higher memory
levels. Consequently, this undermines the cache efficiency and
the elapsed time of applications is also expands due to context
switching.

Not just the cache pollution, resource contention can also
happen. Resource contention is a battle for the shared re-
sources such as for processor, registers and L1 cache which
means interference [1].

E. Prediction Using Machine Learning

Prediction is a process of projecting the unseen using ma-
chine learning models. A machine learning model learns from
the past examples. It identifies patterns using statistical meth-
ods, algorithms and computational techniques. A ’statistical
method’ analyzes the statistical properties of data such as con-
tinuous outcome (regression), categorical value (classification)
or probability (bayesian). The algorithms provide rules for
making a decision such as Support Vector Machines (SVM),
Decision Trees, Ensemble Methods, and Neural Networks.
Furthermore, Computational techniques contribute to artificial
intelligence (AI) by training on a large data set. In this study,
we aim for regression using the deep neural network. A
deep neural network computes patterns and dependencies in
a large training set by applying many layers of computation
iteratively [12, 13].

Machine learning models have features and hyperparame-
ters. Features come from data whereas hyperparameters are
configuration variables for the model. There are two types
of parameters; model parameters and hyperparameters. Model
parameters are estimated from the data (like a Sigmoid co-
efficient, which is not assigned by the scientist) but hyper-
parameters are to be set before running an algorithm (such
as the number of neurons in a deep learning model which
can affect the accuracy of the model). Hyperparameters are
estimated before training the model and the process is called
hyperparameter tuning.

Predictions are inherently probabilistic however higher con-
fidence can be achieved by training on high-quality data
and tuning the hyperparameters and architecture of the AI
model. For behavior analysis, getting the right measurements
for training & evaluation is a foundation for a trustworthy
prediction model. This means that the targeted behavior should
be available in the training data of the model.

F. Long Short-Term Memory Networks (LSTM)

LSTM is a specialized form of recurrent neural network
(RNN) to capture long-range dependencies in a sequence
of data. LSTMs are not just feedforward networks but they
can flow back and have long-term memory [12, 13]. Its

sophisticated nature for remembering past data is suitable
for recognizing complex patterns that might otherwise be
overlooked in a long duration. Hence makes it ideal in the
case of predicting L1 cache misses which evolves over time.

LSTM controls information by using gates. These gates
allow us to learn long-term relationships in the data [12].
Lower time gaps in data points enable better predictions. A
typical LSTM block, also shown in Figure 2, has a memory
cell to carry the relevant information, an input gate to update
the memory cell using activation function(s), an output gate
to carry forward the information for the next memory cell and
a forget gate to decide which information to discard from the
memory cell. Each gate involves several neurons which are
the computational units responsible for managing cell state
and gate functionalities.

Fig. 2. Architecture of LSTM block at point t [12].

III. PREDICTION APPROACH

A shared cache can reduce the performance, so we aimed to
predict L1 cache misses to avoid degraded response time and
to improve the performance. We set up the experiment to see,
without actually running two applications on a given hardware,
if we can predict cache behavior when two applications wish
to run together. Figure 3 shows the captured cache behavior in
each scenario. Our target is to predict Figure 3c. The following
sections present the learning architecture and prediction model.

A. Learning Architecture

Given two applications p1 , p2 , performance event e is
defined as a measure of performance. For an e under ob-
servation, a time-ordered series m is collected at frequency,
f . Here m(p1) and m(p2) represent the behavior when p1
and p2 , respectively, were running alone on a CPU core c.
In contrast, m(p1 , p2) presents the behavior when p1 and p2
were running concurrently on c. In particular, regardless of the
case for running the applications, alone or together, identical
core c affinity is ensured for each measurement.

Corresponding to the observed behavior, it is rare
to find |m(p1)| = |m(p2)| = |m(p1 , p2)|. In fact,
|m(p1 , p2)| > |m(p1)| and |m(p1 , p2)| > |m(p2)| are
always the case due to cache sharing and context switching
between concurrent applications on c. Context switching
extends the elapsed time of concurrent applications due to
the overhead and time involved while preempting resources
from each other.

(a) SIFT (running alone) (b) FAST (running alone) (c) SIFT and FAST (running Concurrently)

Fig. 3. Cache behavior of two applications when they were running alone and when they were running concurrently

B. Prediction Model
Providing the known behavior of applications running alone,

the criteria for evaluation is the ability to predict the be-
havior if they execute concurrently. Let x1 and x2 be the
indicators to target Y when x1 = m(p1), x2 = m(p2) and
Y = m(p1 , p2).

This becomes a case for sequence-to-sequence regression
modeling. However, there may not be enough data points
in sequence x1 and x2 , as explained in Section III-A.
This discrepancy is handled by truncating each sequence to
min(|x1 |, |x2 |). There are two arguments to support this strat-
egy. First, in observation formulation, if there is no information
exists, training with fabricated data will not supply trustworthy
forecasting. Especially in the case of a short application run-
ning concurrently with a long application, excessive padding
can obscure the detection of genuine patterns since there will
be more padded data points than actual data points. Second,
within a batch, observations come from various applications of
different execution lengths. If padded to the highest sequence
length instead of truncated to the shortest sequence length,
data will go through another cycle of padding to have batches
of same-length observations. Besides, sorting observations as
per their sequence length is also a good precedence to control
unnecessary padding at the batch level.

Furthermore, applying zero mean and unit variance stan-
dardizes the data. This kind of standardization maintains
balance in analysis and is represented as N (µ, σ2) such that
µ = 0 and σ2 = 1. Once the data is normalized, the regression
equation representing each observation will be:

Y = β0 + β1x1 + β2x2 + ϵ (1)

Here β0 is intercept term, a constant to adjust the line of best
fit. β1 and β2 are slope coefficients to represent the change in
the dependant (target) variable Y . x1 and x2 are independent
(indicators) variables to predict Y . Lastly, ϵ is the error term.

The observations are sorted, as described already, in de-
scending order before splitting into the training and test sets.
The sorting also gives an advantage in defining the batch size
for the deep neural network.

Following the data preparation, neural network architecture
is defined as the Input layer, LSTM layer, fully connected
layer, dropout layer, output layer and regression layer. The

Input layer does not perform any computation and just takes
x1 and x2 as input features. The LSTM layer defines the most
important information and is responsible for computation. It
defines the number of neurons (the computational units in the
LSTM block as described in Section II-F) and provides output
as a sequence using the activation function. An activation
function is used to identify the complex patterns in data. Then
the fully connected layer defines the number of neurons whose
each neuron connects with all the outputs. It is recommended
to add neurons in the form of 2n where n is positive integer,
such as 64 or 128 or 256 . Before moving to the output
layer a penalty is also applied through the dropout layer to
prevent overfitting. And finally, the regression layer provides
the predicted sequence. The architecture is also shown in
Figure 4.

Fig. 4. LSTM Prediction Model for L1 Cache Misses.

To get the best-fit model, hyperparameter tuning is per-
formed which is custom to the requirements and the problem
to be solved. To name a few, a suitable batch size and learning
speed are important for designing a good prediction model. We
present those details in Section IV.

IV. IMPLEMENTATION AND EXPERIMENTS

Experiments are performed in two steps; data collection and
analysis. We present the implementation details of the set up.

Hardware and Tools Specification: We collect data from
an Intel processor running Linux OS Ubuntu 4.13.0-21-generic
and g++ 7.2.0, detailed hardware specifications are listed
in Table I. Performance profiling tool PAPI library version
5.7.0.0 was used to measure the L1 cache misses. To restrict
and control the CPU affinity of the applications we use taskset
utility, available in Linux. Since it is a command line utility, we

secure the simultaneous execution of two applications on the
same core using the shell script. The scheduler responsible for
the execution multiple tasks is Completely Default Scheduler
(CFS) [14]. Instead of even share of CPU time between all
processes CFS allocates the CPU time between concurrent
based on processes’ priority and amount of time they have
already consumed. Overall, for prediction, visualization and
analysis purposes we use Matlab version R2024a which has
advanced deep learning packages for extensive analysis.

TABLE I
HARDWARE SPECIFICATIONS INTEL® CORETM I5 7200U

Feature Hardware Component
Core 2xIntel® CoreTM i5-7200U CPU (Kaby Lake) 2.5 GHz
L1cache 8 KB 8-way set assoc. I-cache/core +

8 KB 8-way set assoc. D-cache/core
L2cache 128 KB 4-way set assoc. cache/core
L3cache 3 MB 12-way set assoc. Inter-core shared cache

Test Applications: Here, we characterize 5 applications
namely 2×2 matrix multiplication, SUSAN (an image pro-
cessor to find corners), SIFT (a complex feature detection
algorithm to detects objects rather than just corners), FAST (a
corner detection algorithm in images)and SORT (an insertion
sort with average O(n2) quadratic complexity). We targeted
these applications not only because they are commonly used in
industry but also because, depending on the workload (such as
image size or length of input), their execution can significantly
vary. So, by changing the load we can replicate various re-
source utilization demands. For example, for image processing
applications we run them with load varying from 64KB
image (normal load) to 8MB images (huge load). In short,
these applications satisfy the requirements for experiments by
affecting system performance in terms of computational and
memory.

Measurements: For this study, our measurement approach
is inspired by the method proposed in [15]. As we target only
L1 cache misses so multiplexing is not required to capture
more performance events. Instead, the work is focused on
characterizing multiple applications. However, with PAPI it
is challenging to record collective L1 cache misses from two
separate processes at once. This is because PAPI attach()
wrapper function captures events for only one process at a
time [16]. Characterizing two applications at different times
does not reflect concurrent behavior. So we programmed a
shell script that runs two applications simultaneously. Char-
acterizing shell script will also include L1 cache misses from
its child processes which in our case are two test applications.
The script also ensures the core affinity by using taskset utility.
This enabled us to sample the PMC that is recording L1
cache misses for each scenario i.e., running alone and running
together. Each measurement collects L1 cache misses until
the application(s) finish execution. It is important for machine
learning models to consider if the data is coming from the
same distribution therefore sampling frequency was 1 ms in
each scenario and experiments were performed on the same
hardware.

Data Preparation: We run test applications 40 times alone

and 40 times with another application, in different combina-
tions. Data is then divided into 50% training data set and 50%
test data sets. The machine learning model learns the pattern
observation by observation within batches. An observation is
composed of x1 , x2 and y . Whereas a batch is a set of
observations. In total, 240 observations of different lengths
(depending on execution time) were supplied, as a result in
total 106885 records each were used for training and test. Test
data was not used during the training to ensure the model’s
ability to generalize new data. This separation is necessary to
avoid overfitting because otherwise, the model will learn the
data very well that it may not be able to perform well when
new data is arriving.

Prediction Model: In the prediction model, we have 2
input features (applications running alone) and 1 output feature
(applications running concurrently). Generally, selecting and
tuning all the hyperparameters is time-consuming. Selection
and tuning of the most effective ones comes from domain
knowledge and expert opinion. Here, we present some impor-
tant ones. First is batch size. Sorting performed on observation
as per their sequence length (response time) not only reduced
the amount of padding, it enabled us to find an optimal batch
size. Next is hidden nodes(neurons), quite a few were tested
during the hyperparameter tuning and the model performed
well with 70 neurons. Learning rate was also tuned and the
final model is working well at 0 .01 learning rate.

Results: In Figure 5, we present 6 examples of predicted
L1 cache misses for two concurrent applications. The vertical
coordinate shows L1 cache misses and the horizontal coordi-
nate shows samples collected at every 1 millisecond. Without
running two applications together, the model has predicted L1
cache misses, shown as ’.-’ line (in red). The ’–’ line (blue)
shows the actual L1 cache misses when we have been running
two applications in reality. In most of the cases, predicted
behavior is moderately closer to the actual behavior, shown
in Figure 5d and Figure 5f, which shows the model is not
overfitted. But there are cases, when the model’s prediction
was not good i.e., in case of Figure 5e. The goodness of fit
is also presented in Figure 6 with the help of a regression
line. The dotted line labeled ’Y = T’ is a reference line where
predicted values are the same as original.

Evaluation: For regression models, R-squared (R) and Root
Mean Squared Error (RMSE) are considered as metrics of
evaluation. To quantify the accuracy, a lower value of RMSE
is considered good. Our model demonstrated a prediction error
of 0 .5421 (RMSE) and 0 .88766 (R). That means predicted
values are 0 .5421 units away from the actual values and
88 .8% of variability in target can be explained with this
model.

In Figure 6, the data points are close to the regression line
that confirms consistent prediction can be made for a range
of values. We see some points are distant from the regression
line, this is where the model did not perform well, may be
due to higher peaks or outliers.

V. DISCUSSION

As per the main goal of the study, we have seen that by using
the L1 cache misses of individual applications it is possible

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Predicted L1 Cache Misses

Fig. 6. Performance of LSTM Prediction Model for L1 Cache Misses for
SIFT(with 256KB load) and SIFT(with 28KB load).

to predict the L1 cache misses of two applications running at
the same time. When two applications are sharing CPU time
then it is logical to expect increased elapsed time to finish
both. The notion was confirmed during the experiments and is
shown in Figure 3c. Furthermore, the study considers that if
two applications, p1 and p2 , start running together then they
will interfere with each other only during the execution of the
shorter application. Having this in mind, truncating the time
series to the shortest becomes valuable to avoid unnecessary
padding.

Another facet of this approach is generality. It can include
various applications of different lengths and still can accurately
predict the L1 cache misses. Anticipating a sequence without
the need to physically run them on a system enables systems
administrators and developers to simulate their demands.

Having quality data is a foundation for good analysis and
predictive modeling. To supply the right data for the learning
process, the simultaneous release of tasks has been ensured to
maximize the execution interference between them. Besides,
it is not problem to execute applications simultaneously,
challenge is to filter L1 cache misses for two applications,
in particular out of system wide L1 cache misses. The ability
is tool dependant and it is not that straightforward using PAPI.
Nevertheless, using PAPI on top of taskset cleared the obstacle
and enabled us to satisfy the assumptions in the captured
behavior.

With the availability of the right data, the deep neural
network was configured to effectively minimize the prediction
errors. Initially training with 200 neurons gave almost the
same accuracy as with 128 neurons. The reason could be
that the function has already reached the minimum value
(loss) and adding more neurons was not improving prediction

accuracy. Since neurons are the main computational units so
it was inappropriate to add computation cost if there is no
more loss to minimize. Instead, continuous training over new
examples may improve the performance of the model. All in
all, hyperparameter tuning is a fuzzy approach and one need
to see where to stop.

Eventually, the regression analysis shows positive correla-
tions between target and predicted output. Most of the data
points are close to the regression line indicating that on average
the model is valid. Data points distant from the regression
line could be considered outliers but this is not the case for
us because those points are evenly distributed which implies
the fact that the model is not performing well in capturing
the peaks. This can be confirmed with the Figure 5e that the
model has not performed well in that case. Overall, the results
demonstrate model is effectively forecasting L1 cache misses
and in the future, more improvements can be provided.

VI. RELATED WORK

Recent advancements in predictive modeling have focused
on enhanced memory management techniques. Predictive
modeling for cache has been used for many purposes such
as for enhanced application performance [17], dynamic re-
sources allocation, energy management [18], prefetching [18],
cache sizing, fault detection, security monitoring [19] and
real-time system performance [20]. Many researchers have
studied interference caused by the applications using shared
resources. A similar study with a similar focus was performed
by researchers in [17]. They studied the applications that
cause cache pollution when they are running in the same
environment. The proposed mechanism was able to improve
the application performance by taming the unused instructions
responsible for cache management. This memory management
technique did improve the performance through application
classification and by utilizing non-temporal memory accesses.

As mismanagement of the cache can significantly degrade
the performance, a proactive approach can improve the situa-
tion. Jalili has also proposed a cache-level predictions method
to enhance the prefetching [18] of data which is one of the
indicators for cache misses. They complemented the prefetcher
with memory load information so that memory is loaded ear-
lier than required. But a load can be subject to cache flushes.
In those situations cache preemption delay significantly affects
scheduling schemes [3]. Including cache-related preemptive
delays for fixed-priority schedulers can avoid missing the
deadlines. Another study focused on memory hierarchy and
the impact of concurrent applications on memory behavior
in [21]. They successfully showed how the performance can be
optimized by predicting an accurate cache miss rate. Whereas,
its been also investigated that there is a lack of performance
models to predict L2 cache misses due to cache sharing
between threads [22]. Regardless of the use case, most of the
studies have mainly focused on higher levels of memory such
as L3 and DRAM. It is good to mention that these traditional
methods are time-consuming, explicit programming dependant
and require a lot of effort and domain knowledge.

Compared to approaches developed around collecting low-
level supportive details, modern approaches like machine

learning got more attention. Advanced approaches empower
efficient solutions and reduce effort. One such case is for cache
prediction. The field is advancing with predictive tools and
machine learning algorithms [23]. A study has explored cache
behavior by using performance monitoring counters since they
provide real-time insights into system usage and performance.
Not only that, studies have been performed to detect side-
channel attacks through the prediction of cache [19]. By apply-
ing various cache configurations and partitioning techniques
machine learning can help in saving time for static profiling of
caches [24]. This saves energy and improves performance. An
additional strength of deep neural networks for sequence-to-
sequence prediction has been proven effective in [25]. Inspired
by the approach, we aim to target L1 cache misses.

In general, a fair amount of work has been around L3 cache
usage and prediction, the unique challenge of predicting the
L1 cache behavior of concurrent applications is been addressed
less frequently.

VII. CONCLUSION AND FUTURE WORK

Memory management is a complex task and many factors
can impact system performance. The complexity is increased
due to memory hierarchy, cache-sharing techniques and OS
policies during resource management. Despite all these facts,
the study has provided a predictive model for L1 cache misses
such that without the need to run the applications on a system.
It can visualize how the L1 cache misses will be affected for
a length of period in a shared environment. A deep neural
network, LSTM, is trained on various applications of different
lengths and types. This method ensures that our predictions
remain accurate and relevant to the actual usage scenario.
The deep neural model can predict a time series with RMSE,
= 0 .5421 , and R, = 88 .8%.

In the future, studying complex scenarios involving more
sources (such as memory bus, prefetches, stalls) can be
performed to understand interference between more than 2
applications. It can help target high-tech infrastructures. The
idea is to build a model that can predict the behavior of
applications when they run together without the need to know
the details of the hardware.

REFERENCES

[1] S. Eyerman and L. Eeckhout, “System-level performance met-
rics for multiprogram workloads,” in IEEE micro, vol. 28, no. 3,
2008, pp. 42–53.

[2] J. Danielsson, “Automatic Characterization and Mitigation of
Shared-Resource Contention in Multi-core Systems,” Ph.D.
dissertation, Mälardalen University, 2021.

[3] R. J. Bril, S. Altmeyer, M. M. van den Heuvel, R. I. Davis,
and M. Behnam, “Integrating cache-related pre-emption delays
into analysis of fixed priority scheduling with pre-emption
thresholds,” in Real-Time Systems Symposium. IEEE, 2014,
pp. 161–172.

[4] M. Jägemar, “Utilizing Hardware Monitoring to Improve the
Quality of Service and Performance of Industrial Systems,”
Ph.D. dissertation, Mälardalen University, 2018.

[5] Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” 2022.

[6] AMD, “Open-Source Register Reference For AMD Family 17h
Processors Models 00h-2Fh,” 2018.

[7] ARM, “ARM Architecture Reference Manual - ARMv8, for
ARMv8-A architecture profile,” 2017.

[8] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proceedings of
the department of defense HPCMP users group conference, vol.
710, 1999.

[9] S. Manegold, “Memory Hierarchy,” in Encyclopedia of
Database Systems, L. Liu and M. T. Özsu, Eds. New York,
NY: Springer, 2018.

[10] T. Kilburn, D. B. Edwards, M. J. Lanigan, and F. H. Sumner,
“One-level storage system,” in IRE Transactions on Electronic
Computers 2, 1962, pp. 223–235.

[11] S. Noll, J. Teubner, N. May, and A. Böhm, “Accelerating
concurrent workloads with CPU cache partitioning,” in IEEE
34th International Conference on Data Engineering (ICDE).
IEEE, 2018, pp. 437–448.

[12] Matlab, “Long Short-Term Memory (LSTM),” 2024. [Online].
Available: https://se.mathworks.com/discovery/lstm.html

[13] R. DiPietro and G. D. Hager, “Deep learning: Rnns and lstm,” in
Handbook of Medical Image Computing and Computer Assisted
Intervention. Academic Press, 2020, pp. 503–519.

[14] J. Corbet. (2007) The CFS scheduler. Accessed on: 2024-05-03.
[Online]. Available: https://lwn.net/Articles/230574/

[15] S. Imtiaz, J. Danielsson, M. Behnam, G. Capannini, J. Carlson,
and M. Jägemar, “Automatic Platform-Independent Monitoring
and Ranking of Hardware Resource Utilization,” in 26th IEEE
International Conference on Emerging Technologies and Fac-
tory Automation (ETFA). IEEE, 2021, pp. 1–8.

[16] Linux man pages. (2024) papi attach. [Online]. Available:
https://linux.die.net/man/3/papi attach

[17] A. Sandberg, D. Eklöv, and E. Hagersten, “Reducing cache pol-
lution through detection and elimination of non-temporal mem-
ory accesses,” in SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2010, pp. 1–11.

[18] M. Jalili and M. Erez, “Reducing load latency with cache
level prediction,” in IEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2022, pp.
648–661.

[19] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-
time detection for cache side channel attack using performance
counter monitor,” Applied Sciences, vol. 10, no. 3, p. 984, 2020.

[20] F. Marković, J. Carlson, and R. Dobrin, “Cache-aware response
time analysis for real-time tasks with fixed preemption points,”
in 2020 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2020, pp. 30–42.

[21] A. M. Mohamed, N. Mubark, and S. Zagloul, “Performance
aware shared memory hierarchy model for multicore proces-
sors,” Scientific Reports, pp. 7313–7313, 2023.

[22] D. Chandra, G. Fei, S. Kim, and S. Yan, “Predicting inter-
thread cache contention on a chip multi-processor architecture,”
in 1th International Symposium on High-Performance Computer
Architecture. IEEE, 2005, pp. 340–351.

[23] H. Choi and S. Park, “A survey of machine learning-based
system performance optimization techniques,” Applied Sciences,
vol. 11, no. 7, p. 3235, 2021.

[24] A. Ahmed, Y. Huang, and P. Mishra, “Cache reconfiguration
using machine learning for vulnerability-aware energy optimiza-
tion,” in ACM Transactions on Embedded Computing Systems
(TECS). ACM, 2019, pp. 1–24.

[25] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage
propagation modeling for aircraft engine run-to-failure simu-
lation,” in International conference on prognostics and health
management. IEEE, 2008, pp. 1–9.

