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Abstract
Model-Driven Engineering (MDE) has been widely adopted across various industrial sectors due to its ability to manage the
complexity of modern engineering products. However, traditional modeling languages and tools are often limited to a single,
specific concrete syntax, which poses challenges for the diverse stakeholders involved in the modeling process.. To address
these limitations, the emerging field of blended modeling introduces the use of multiple concrete syntaxes, and in some cases,
even multiple abstract syntaxes, for representing the same information. In this expert perspective, we present generalized,
technology-agnostic concepts developed within a European research and development project focused on blended modeling.
Specifically, we contribute a standardized terminology and ontology for blended modeling, along with a methodology for
creating blended modeling environments. These concepts were developed through collaboration between academic and
industrial partners, who aligned on the motivations and benefits of this approach. The insights gained from this project are
not only relevant to blended MDE but also can be applied to traditional MDE practices.

Keywords Model-Driven Engineering · Blended modeling · Terminologies · Ontologies ·Methodologies

1 Introduction

Model-Driven Engineering (MDE) has been widely adopted
in industry as an effective approach to manage the com-
plexity of systems across various sectors, as demonstrated
by empirical studies (e.g., [21, 25]). By using abstractions
formalized in modeling languages, MDE allows domain
experts to describe complex functions in a more abstract and
human-centric way than traditional programming languages
or specification documents in systems engineering.

Modeling languages formalize the communication
between engineers at the level of general-purpose or domain-
specific concepts. The application of such languages requires
significant customization of tools, often involving exten-
sions or combinations of modeling languages, to align with
the specific requirements of development domains and con-
texts [30]. Moreover, modeling tools must support various
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means of representation (e.g., textual and graphical) to meet
the needs of different development phases, stakeholder roles,
and application domains.

However, traditional modeling tools typically focus on
a single editing notation—either graphical or textual—
though they may provide multiple notations for visualization
purposes [14]. This approach restricts communication, par-
ticularly across disciplines, as a notation that is well under-
stood in one field may not be easily grasped by experts in
another. Additionally, stakeholders within the same or differ-
ent disciplines may have different preferences for notation,
and failing to support multiple notations can hinder collabo-
ration and reduce efficiency. Relying on a single notation also
limits the availability of tools for model manipulation. For
example, graphical notations restrict the use of text-based
tools like diff/merge, which are essential for collaborative
work. Conversely, using only textual notations can impair
model comprehension and communication.

For larger systemswith heterogeneous components, involv-
ing multiple disciplines and stakeholders, the restriction to
one type of notation undermines many of the benefits MDE
can offer. Efficient collaboration in large-scale industrial
projects requires tools that enable stakeholders to work on
shared models using different notations.
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Blended modeling, as defined in [11], addresses these
challenges by allowing seamless interaction with one or
more models (i.e., abstract syntax) through multiple nota-
tions (i.e., concrete syntaxes). This approach aims to (1)
reduce the cognitive load required to maintain effective and
efficient modeling workflows, (2) offer stakeholders diverse
formalisms and notations for collaborative development, and
(3) support computer-aided mechanisms essential for han-
dling the increasing complexity of modern systems [19].

From November 2019 to June 2023, an international con-
sortiumof 22 partners—including 18 industrial companies—
across four European countries conducted an industrial
research and development (R&D) project called ’Blended
Modeling for Enhanced Software and Systems Engineer-
ing’ (BUMBLE)[5] under the Eureka Cluster for software
innovation[17] (ITEA4). The primary goal of BUMBLEwas
to provide reference solutions for creating and managing
comprehensive blended modeling environments to support
the development of complex, heterogeneous systems through
seamless textual and graphical collaborative modeling.

The BUMBLE consortium developed a shared terminol-
ogy and ontology to guide the planning, execution, and
validation of the R&D work on blended modeling, as docu-
mented in a project deliverable [6]. Additionally, the project
produced a methodology for realizing blended modeling
environments, which are technologically more complex than
those focusing on a single notation.

In this expert voice paper, we offer a retrospective on
these efforts, presenting both the results and the reasoning
behind the development of the ontology and methodology
for blended modeling environments. We also discuss the
implications of these contributions for future R&D activi-
ties. While the ontology and methodology were developed
specifically for use within the BUMBLE project, we share
them with the broader MDE community to foster further dis-
cussion and consensus building.

The remainder of the paper is organized as follows. In the
subsequent section, we characterize blended modeling com-
pared with multi-view modeling. Section 3 presents related
work. In Sect. 4, we summarize and characterize technol-
ogy use cases that were realized in the BUMBLE R&D
project. Subsequently, we present the terminology and ontol-
ogy (Sect. 6) aswell as themethodology for realizing blended
modeling environments (Sect. 7). Finally, we provide a dis-
cussion of these aspects in Sect. 8 and summarize in Sect. 9.

2 Blendedmodeling andmulti-view
modeling

Blended modeling, as introduced by Ciccozzi et al. [11],
emphasizes the use ofmultiple concrete syntaxes to represent
a shared set of abstract syntax concepts. This approach allows

different notations to be applied based on specific model-
ing needs. One of the main advantages of blended modeling
is the ability to seamlessly switch between graphical and
textual notations during the modeling process. This flexibil-
ity empowers stakeholders to choose the most appropriate
notation according to their expertise and the task at hand.
By integrating both graphical and textual notations, blended
modeling enables simultaneous visualization and editing of
information across synchronized notations, enhancing the
separation of concerns, improving interdisciplinary commu-
nication, and accelerating the overall modeling process.

In the MDE landscape, there are also several multi-
view modeling approaches that focus on creating viewpoints
and views, with mechanisms to manage consistency across
them [10, 40]. However, blended modeling addresses a dif-
ferent challenge: providing multiple concrete syntaxes for
a common set of abstract syntax concepts, regardless of
whether the underlying modeling approach is multi-view or
not. Instead of defining viewpoints and views, blended mod-
eling emphasizes offering diverse notations for editing and
visualizing the same concepts.

Blendedmodeling andmulti-viewmodeling are two com-
plementary yet distinct approaches within the MDE domain.
While multi-view modeling focuses on managing multiple
perspectives through viewpoints and views, blended model-
ing enhances interaction by offering multiple notations for
the same set of concepts. Together, these approaches provide
a more comprehensive solution to the challenges of modern
modeling.

3 Related work

In this section, we discuss related work on MDE terminol-
ogy and terminology organization schemes as well as outline
related work on approaches for the provisioning of blended
modeling.

3.1 MDE terminology and organization schemes

Due to the way the Model-Driven Engineering (MDE) com-
munity has grown There is a wide range of definitions for
various MDE concepts. Many of these definitions, partic-
ularly for the term ’model,’ tend to be highly conceptual,
often overlooking important technical aspects. One of the
earliest conceptual definitions comes from Stachowiak [49],
who argues that a model must homomorphically reflect real-
ity, abstract from it by reducing information, and serve a
specific purpose. This definition has influenced others, such
as those by Ludewig [36] and Kühne [33]. Other conceptual
definitions have been provided by Bézivin and Gerbé [3] and
Seidewitz [46].
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However, as highlighted in our survey on model-based
traceability terminology [23], such conceptual definitions
do not help clarify what constitutes a machine-processable
model. Favre [18] brings attention to this issue by humor-
ously pointing out that, according to these conceptual defini-
tions, even his paper on MDE could be considered a model.
In response, Favre advocates for a more technical definition,
such as theoneproposedbyKleppe et al. [31],whichdefines a
model as a descriptionof a system (or part of a system)written
in a well-defined language with clear syntax and semantics.
However, this definition introduces aspects like syntax and
semantics, which we prefer to address separately.

Paige et al. [44] similarly observe the lack of a standard-
izedMDE terminology and offer mathematical definitions of
models, metamodels, and their relationships. However, fur-
therMDE concepts like syntax, views, etc. as well as blended
modeling concepts are missing.

Standards in systems and software engineering also
provide definitions related to MDE. For example, the
ISO/IEC/IEEE vocabulary for systems and software engi-
neering [27] offers a definition of ‘model,’ but it merely com-
piles a range of conflicting definitions from other standards.
Similarly, the ISO/IEC/IEEE standard onMDEmethods and
tools [28] defines ‘model’ and ‘metamodel.’Whereas its def-
inition of ‘metamodel’ is adequate, the broad and somewhat
weakened definition of ‘model’ is further diluted by numer-
ous supplementary notes.

Where standards lack detail, Bodies of Knowledge, such
as the SWEBOK [50] and SEBOK [26], attempt to comple-
ment them. However, as noted in a community survey by
Burgueño et al. [7], these Bodies of Knowledge do not suffi-
ciently address foundational modeling concepts, particularly
MDE terminology, and naturally do not cover newer concepts
like blended modeling. To address this gap, Burgueño et al.
propose the development of a dedicated Body of Knowledge
for MDE.

Favre [18] also attempts to formalize the relationships
between MDE components through a ‘megamodel’ based
on set theory and language theory. However, this model is
limited in scope, heavily centered on the outdated Model-
Driven Architecture (MDA) [41], and does not account for
recent advancements such as blended modeling.

Czarnecki and Helsen [13], along with Mens and Van
Gorp [38], developed partially overlapping taxonomies of
model transformations, which emerged from discussions at
a Dagstuhl seminar on Language Engineering for Model-
Driven Software Development. However, these taxonomies
focus exclusively on model transformations and overlook
other important aspects of MDE, including blended mod-
eling.

In summary, despite the many seminal papers that have
laid the groundwork for MDE, the community has yet to
converge on a unified terminology. This is especially evi-

dent when considering organizational schemes that define
the relationships between core MDE concepts.

3.2 Blendedmodelling and synchronization

Several methods and tools offer various forms of blended
modeling capabilities. However, many of these tools, such
as FXDiagram 1, MetaUML 2, and PlantUML 3, primarily
rely on textual notation formodel interaction, using graphical
notation only for visualization. Some tools, like QuickDBD 4

and DBDiagrams 5, offer limited editing capabilities within
their graphical editors.While a few tools support interactions
through both textual and graphical notations, they are typi-
cally restricted to specificmodeling languages, often tailored
for UML and its extensions [1, 9, 37].

To facilitate the transition between graphical and textual
syntaxes, two approaches have been proposed for transform-
ing models that combine both elements. The first approach,
Grammarware [51], exports a mixed model as text, while
the second, Modelware [51], transforms such models into
fully graphical representations. These transformations are
performed on demand rather than in real time, and neither
approach supports concurrent editing. Mixed textual and
graphical modeling is also achievable with Qt [45], which
embeds textual editors within a graphical environment;
however, this process typically requires manual implemen-
tation by engineers of domain-specific modeling languages
(DSMLs). JetBrains MPS [29] supports mixed notations
and allows seamless switching between them for non-UML
DSMLs, using projectional editing as its underlying princi-
ple.

A comprehensive analysis of these and other tools can
be found in our systematic literature review on blended
modeling within commercial and open-source model-driven
software engineering tools [14].

In BUMBLE, we explored and developed solutions based
on both projective approaches, such as those in JetBrains
MPS, and transformative approaches. The latter involved
higher-order transformations for the automatic generation
of synchronization, migration, and co-evolution transforma-
tions to support collaborative blended modeling.

1 https://jankoehnlein.github.io/FXDiagram/
2 https://github.com/ogheorghies/MetaUML
3 https://plantuml.com
4 https://www.quickdatabasediagrams.com/
5 https://dbdiagram.io/d
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4 Application of blendedmodeling in
different technology use cases

In the BUMBLE R&D project, the consortium planned and
implemented 13 technology use cases [4]. These use cases
applied different components of the overall BUMBLE tech-
nology, primarily in industrial settings. “Primarily industrial”
refers to the fact that 12 of the use cases were initiated by
industrial partners, with the final use case initiated by an aca-
demic partner. The industrial use cases were either executed
solely by the initiating partner or collaboratively with one or
more academic partners.

Beyond the naturally diverse development processes of
the participating industrial partners, the use cases spanned
several heterogeneous dimensions, covering a broad range
of MDE-related aspects:

Industry sectors. The industrial partners who initiated
use cases were active in various sectors, including auto-
motive, printing, telecommunications, space and innova-
tion, and application software.
MDE frameworks. The use cases were built on two
primaryMDE frameworks: the EclipseModeling Frame-
work (EMF)[16] and JetBrains Meta Programming Sys-
tem (MPS)[29], which the consortium referred to as
"technology spaces" following the terminology in [2, 32].
Purposes and MDE applications. The use cases served
different purposes, resulting in a variety of MDE appli-
cations. Some aimed to demonstrate blended modeling
with state machine modeling languages or automotive
architecture description languages. Others focused on
integrating cross-disciplinary models or modeling work-
benches, while some explored analytical aspects such as
consistency checking and design rule verification.
Modeling languages. Depending on the context and
purpose, the use cases involved a wide range of model-
ing languages. This included numerous domain-specific
modeling languages (some of which were company- or
department-specific) as well as established standard lan-
guages like SysML [42], EAST-ADL [15], and UML-RT
state machines [47, 48].

In summary, the BUMBLE project did not produce a sin-
gle unified technology that could be applied universally. This
is largely due to the diverse nature of the use cases and their
underlying dimensions. However, this diversity enabled the
project to cover a wide array of MDE aspects. In the follow-
ing sections, we will generalize and document these aspects
using a generic example, as well as the ontology andmethod-
ology developed throughout the project.

5 Generic example

In this section, we present the results of the BUMBLE R&D
project and the implemented technology use cases using a
generic example. This approach provides easier access to our
subsequent discussion on the project’s ontology andmethod-
ology.We have intentionally chosen a generic example rather
than one based on a specific use case, as BUMBLE did not
produce a single unified technology. Instead, it addressed
various aspects of blended modeling through different use
cases.

Blended modeling can be achieved by applying general
modeling and transformation principles in specific ways. To
maintain consistencywithmodel-driven practices, we adhere
to the de facto standard terminology and approaches as much
as possible. In this paper, we distinguish between the follow-
ing:

– The definition of modeling languages (metamodel level
M2), created by the modeling language engineer.

– The definition of models (metamodel level M1), created
by the modeling language user, which conform to the
M2-level modeling languages.

We recognize that the concept of meta-levels is rela-
tive, and that language specifications are themselves models.
Therefore, anM(x)-levelmodel conforms to anM(x+1)-level
model. However, for the sake of clarity in this paper, we focus
on distinguishing between the M2 and M1 levels. Moving
forward, when we refer to a “model” we mean an M1-level
model. In other cases, we will use more specific terms such
as “metamodel” or “transformation specification” to clarify
the purpose of M2- or M3-level models.

Figure 1 shows the functional parts that blend and syn-
chronize models at level M1. Figure2 shows the functional
parts that define the languages and their transformations
at level M2. The figures show how models (M1) relate to
the languages and transformations (M2). Beyond that, Fig. 2
also shows that blending and synchronization functionality
(M1) is derived from the language and transformation spec-
ifications (M2) by means of generators. The examples are
presented as graphs, with nodes and edges belonging to a
limited set of types. These types align with the terminology
defined in the following section.

Figure1 illustrates two client environments participating
in a collaborative session, where the modeling languages
(and potentially the MDSE technologies) differ between
the environments. In both, blended modeling is employed,
using different concrete syntaxes for the same underlying
model. The synchronization happens in two ways: immedi-
ate synchronization through amodel persistency service, and
deferred synchronization via a version control system.
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Fig. 1 M1 example

This example combines various elements of blending and
collaboration across multiple syntaxes. It is intentionally
complex and not intended to represent a typical modeling
scenario. Instead, it demonstrates how the proposed building
blocks can be used to create any desired modeling solution,
whether simple or intricate.

Several transformations are running across both client
environments and services. Remote synchronization between
the two environments is managed by model distribution
servers, which exchange changes for synchronized models.
Note that remote synchronization only occurs between mod-
els that conform to the same metamodel, meaning they are
instances of the same language.

The example highlights that all models and transforma-
tions adhere to their respective metamodels and transforma-
tion specifications, while the views/editors conform to their
concrete syntax specifications. A transformation can occur
between two models or between a model and a view/editor.
Although transformations between two views/editors are

possible, it is preferable to define two separate transformation
specifications that each map their distinct concrete syntax to
a shared abstract syntax.

The goal of theBUMBLEprojectwas to develop solutions
for blending across different MDE technologies, ensuring
compatibilitywith all possiblemodeling languages.Whereas
MDE technologies already offer generic functionality for
defining modeling languages, we needed to extend this
functionality to support transformations between them. The
specific approach for realizing this depends heavily on the
MDE technology involved.

Figure2 demonstrates how the blending of different syn-
taxes is achieved within a modeling environment that is
partially generated from language and transformation spec-
ifications. These M2-level models are also developed in a
modeling environment (shown in yellow in Fig. 2), and a gen-
erator (represented by the yellow arrow) produces parts of the
M1 modeling environment (shown in purple). The methods
and solutions required to define and execute these transfor-
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Fig. 2 M2 and M1 relation example

mations within the BUMBLE project depend significantly
on the MDE technology used, such as the JetBrains Meta
Programming System (MPS) [29] or the Eclipse Modeling
Framework (EMF) [16].

6 A terminology and ontology for blended
modeling

During the BUMBLE project, our consortium encountered
communication challenges, particularly when discussing
the implementation of the various technology use cases
(cf. Sect. 4). Cabré [8] notes that ambiguous terminology
can hinder communication among specialists, which we also
observed in our project. To address this, both our BUM-
BLE consortium and the broader scientific community need
a shared, clear terminology to facilitate effective communi-
cation and research collaboration.

Introducing approaches like blended modeling into the
MDE community requires expanding the existing termi-
nology. In response, the BUMBLE consortium developed,
discussed, and aligned on a terminology that extends the
established MDE concepts (cf. Sect. 3.1) to incorporate ele-
ments specific to blended modeling. To formalize and visu-
alize the relationships between these concepts, we enhanced
the terminology with an ontology, represented as a UML
class model [43].

Figure 3 illustrates this ontology, and we define the indi-
vidual terms and relationships in the following sections.

Model A model represents an aspect of a system
under development captured in a specific instance of
a machine-processable modeling language, where the
model serves a purpose within the development lifecycle
(based on [23]). For example, Fig. 1 depicts the models
model 1,model 2, and model 3.
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Fig. 3 Ontology for blended modeling

Modeling language A modeling language defines the
syntax andwell-formedness rules of models. The syntax
defines the concepts and rules to be used and conformed
to, for any model to be a well-formed instance of that
modeling language.
Syntax The syntax defines how to read and write (either
by humans or by computers) models of a specific mod-
eling language. The syntax is defined by and has to
conform to a syntax specification, which is part of a
modeling language. A syntax can be an abstract syn-
tax or a concrete syntax.
Syntax specification A syntax specification defines a
syntax for a modeling language.

Abstract syntax The abstract syntax defines the con-
cepts and rules by which models shall be constructed to
conform to a specific modeling language. The abstract
syntax is mainly useful for addressing the static semantic
aspects of models. The abstract syntax is defined by and
has to conform to an abstract syntax specification (i.e.,
a metamodel), which is part of a modeling language.
Metamodel (abstract syntax specification) A meta-
model defines the abstract syntax of a modeling
language. For example, Fig. 1 depicts the metamod-
els metamodel 1, metamodel 2, and metamodel 3,
with their correspondingmodels conforming to them and
therefore being instances of modeling languages.
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Concrete syntax The concrete syntax defines how
humans and computers interact withmodels of a specific
modeling language. The concrete syntax is defined by
and has to conform to a concrete syntax specification.
Concrete syntax specification A concrete syntax spec-
ification defines a concrete syntax for a modeling
language. For example, Fig. 1 depictsdiagram language
2 (with diagram 2 conforming to it) and textual syntax
2 (with text 2 and text 2’ conforming to it).
Metalanguage A metalanguage is a language that pro-
vides means for defining an aspect (metamodel, con-
crete syntax specification, static semantics, etc.) of a
modeling language.
Remote synchronizationAsynchronizationmechanism
that keeps twoormoremodels of the samemodeling lan-
guage edited bydifferent views/editors the sameacross a
network. Changes in onemodel are propagated to equiv-
alent changes in the other model. For example, Fig. 1
depictsmodel 1 in client environment 1,model 1’ in the
model persistency service, and model 1” in the model
transformation service. All three models are synchro-
nized via the model distribution server 1 and conform
tometamodel 1.
Transformation A transformation is a manipulation of
a pair of one model and another model or a view that
preserves the relation between them according to a trans-
formation specification for the two syntaxes involved.
Transformation specification A transformation spec-
ification is a specification of a transformation type.
Transformation types map two syntaxes; therefore,
transformation specifications relate two syntax specifi-
cations. For example, Fig. 1 depicts the transformation
specification 1 (mapping two distinct abstract syntax
specifications) and the transformation specification 2
(mapping an abstract and a concrete syntax specifica-
tion).
Transformation typeAtransformation type is ameaning-
preserving relation between two syntaxes. A syntax can
be an abstract syntax or a concrete syntax. The trans-
formation type is defined by and has to conform to a
transformation specification. We distinguish a trans-
formation type from its specification. A transformation
type is an artifact that executes the transformations. A
transformation specification is only the definition of a
transformation type. A transformation type can be auto-
matically or manually derived from its specification.
Migration specification A migration specification is
a transformation specification that specifies a trans-
formation type mapping a metamodel to an evolved
metamodel, which is a new version of the first meta-
model.
View/editor typeAview/editor typedefines rules accord-
ing to which views/editors of the respective type are

created based on the concrete syntax and thereby its
concrete syntax specification of a modeling language.
It defines the set of metaclasses whose instances a
view[/editor] can display and be edited. A view/editor
type can be graphical, textual, tree-based, form-based,
etc. (extended from definition in [20]).
View/editorA view/editor is the actual set of objects and
their relations (i.e., the elements of a model) displayed
using a certain representation and layout and providing
the allowed editing commands. A view/editor resembles
the application of a view/editor type on the [...] models.
A view/editor can therefore be considered an instance of
a view/editor type (extended from definition in [20]).
For example, Fig. 1 depicts the particular views/editors
as part of client environment 1 and client environment
2.

Highlights

� Defining the terminology and building the ontology required
addressing potential ambiguity, polysemy, deciding on gran-
ularity and abstraction, and mitigating subjectivity of the
researchers involved.

� Our terminology andontologybrought clarity, improved com-
munication, supported automation, and played a crucial role
in improving decision-making in the consortium, driving
innovation, and ensuring consistency across domains and col-
laborators.

7 Methodology on creating/evolving
blendedmodeling environments

Similar to the reasoning behind developing the BUMBLE
ontology, our project consortium eventually realized that we
were following similar procedures for implementing var-
ious technology use cases (cf. Sect. 4). However, in the
early phases of the project, we found that these procedures
lacked systematization, and themodeling language engineers
expressed a need for more structured guidance and lessons
learned in the later stages.

To address this, the consortium reverse-engineered the
procedures used in earlier technology use cases and gen-
eralized them into the methodology described below. This
methodology was continuously refined as we gained new
insights from subsequent use cases.

In this section, we focus on the creation of blended mod-
eling environments for domain-specific modeling languages
(DSMLs). Unlike general-purposemodeling languages (e.g.,
UML and SysML), which have fixed abstract and concrete
syntaxes defined by standardization bodies like the Object
Management Group, there are numerous proprietary tools
that already implement these syntaxes. In contrast, most of
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BUMBLE’s technology use cases involved DSMLs, which
required creating new modeling environments or extending
existing ones to support blended modeling. For these DSML
environments, wewent through the entire process of defining
both the abstract and concrete syntaxes.

Figure 4 illustrates our idealized workflow for initially
creating or evolving a Blended Modeling Environment,
independent of specific technology platforms like EMF or
MPS. The workflow primarily reflects the perspective of a
DSML Engineer. We have intentionally left the DSML User
workflow unspecified, as this process depends heavily on the
particularDSML in question,whichwe abstract fromhere. In
the remainder of this section, we detail the specific activities
within the workflow.

Create/Evolve Abstract Syntax Specification Like for
a conventional DSML, the basis for a blended DSML is
an abstract syntax specification that defines the DSML
concepts, their relationships, and (parts of) its static
semantics (i.e., the DSML’s abstract syntax). As defined
and explained in Sect. 6, such an abstract syntax specifi-
cation is typically defined by ametamodel (e.g., an Ecore
metamodel or anMPS structure model). In this workflow
activity, the DSML Engineer creates a new Abstract Syn-
tax Specification or evolves an existing one. An abstract
syntax specification can evolve from version A to version
B, where a model that is an instance of version A already
exists. If we want to continue to evolve that model in
version B, and the model does not conform to version B,
we need to transform that model from A to B. In order to
do so, we need a (uni-directional) transformation spec-
ification that relates A and B, which we call migration
specification in this evolution case (cf. Section6). Thus,
the DSML Engineer creates a new Migration Specifica-
tion or evolves an existing one for this purpose.
Create/EvolveConcrete SyntaxSpecificationsLike for
a conventional DSML and as defined in Sect. 6, the con-
crete syntax specification defines the representation of
and interaction possibilities with the DSML abstract syn-
tax elements. For blended DSMLs however, a DSML
engineer typically defines multiple concrete syntax spec-
ifications due to typicallymultiple notations. Thus, based
on the abstract syntax specification, the DSML Engineer
creates new Concrete Syntax Specifications or evolves
existing ones. A concrete syntax specification relates to
an abstract syntax specification. Therefore, we need a
transformation specification to define that relationship.
As defined in Sect. 6, a transformation specification can
relate an abstract syntax to a concrete syntax.
Create/Evolve Transformation SpecificationsThe cre-
ation of transformation specifications is in the heart of
realizing a blended modeling environment. The blend-

ing of languages (abstract and/or concrete) is defined in
transformation specifications. Transformation specifica-
tions can also define the migrations from one version of
an abstract syntax to another version of that abstract syn-
tax.
Realize/Adapt Transformation Types The transforma-
tion types are the artifacts that will drive the actual
transformations of models and views. The DSML Engi-
neer realizes (i.e., automatically generates, manually
handcrafts, or mixture) Transformation Types based on
the Transformation Specifications.
Realize/Adapt View/Editor Types Like for conven-
tional DSMLs and as defined in Sect. 6, a user interacts
with the DSML through view/editors whose type defines
their look and feel. For blended DSMLs however, the
DSML engineer has to create multiple views/editor types
due to typically multiple notations. Thus, based on the
concrete syntax specifications, the DSML Engineer real-
izes (i.e., automatically generates, manually handcrafts,
or mixture) new View/Editor Types or adapts existing
ones.
Realize/AdaptBlendedModelingEnvironment Finally,
the DSML Engineer realizes a new blended modeling
environment or adapts an existing one based on the Trans-
formation Specifications and the View/Editor Types.
That is, the DSML engineer basically configures these
inputs and glues them together. The environment is then
input to the user of the blended DSML.

Several semi-automatic approaches developed by the
BUMBLE consortium for creating and evolving blended
modeling environments are instantiations of this generic
workflow. One approach began with generating and evolving
modeling environments based on documentation metamod-
els for the EAST-ADLmodeling language [22], which aligns
with the first step of the workflow shown in Fig. 4. We later
extended these methods to generate and evolve textual con-
crete syntaxes and corresponding editors for EAST-ADL,
eventually generalizing the approach to support any EMF-
based metamodel [24, 52, 53], covering the remaining steps
of the workflow.

Another approach focused on automating synchroniza-
tion mechanisms across multiple notations, regardless of
whether the abstract syntaxes represent the same or different
languages [34]. This approach initially automated synchro-
nization transformations for multiple notations of the same
EMF-based language, but its broader applicability allows
it to handle synchronization across notations of different
languages as well as co-evolution and migration between
language versions.
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Fig. 4 Workflow for realizing/adapting a blended modeling environment

Highlights

� Creating a common workflow was considered a priority in
combination with the definition of the ontology for the con-
sortium.

� The definition of the workflow was challenging, especially in
terms of aligning stakeholders, understanding our processes,
and choosing the right tools.

� The workflow brought several benefits, including enhanced
efficiency, better communication, consistency, and ultimately
improved decision-making and customer satisfaction.

8 Lessons learned and discussion

Ontology as a communication enabler. In the BUMBLE
project consortium, establishing a unified terminology signif-
icantly improved communication. Formalizing this terminol-
ogy as an ontology further clarified the relationships between
terms by providing an explicit semantic context. This ontol-
ogy is not only beneficial for blended MDE but also for
non-blended MDE, as stakeholders uninterested in blended
aspects can simply disregard them. For instance, the first
author of this paper is currently using a simplified version of
the ontology in a company training on modeling fundamen-
tals. We believe this ontology will be valuable to the broader
MDE community, enhancing communication and alignment
across various modeling efforts.

Methodology for systematization and guidance. The explicit
definition of the methodology as a workflow provided the
consortium with greater guidance and a more systematic
approach when implementing later technology use cases.
Moreover, this formalized methodology led to new insights
that enhanced parts of the ontology. The methodology can
also be adapted for non-blended modeling environments,
with theDSMLengineer skipping specific steps or artifacts as
needed. Like the ontology, we aim to share this methodology
with the MDE community to promote a structured approach
for developing both blended and non-blendedmodeling envi-
ronments.
Emphasis on model transformations. Our ontology and
methodology place a strong focus on model transformations,
which we also apply to map between abstract and concrete
syntaxes. This transformation-centric approach makes the
relationships between various artifacts explicit. While the
initial effort required to develop model transformations is
higher, our experience shows that this is outweighed by the
long-term benefits in terms of maintainability. This aligns
with the findings of Mohagheghi and Dehlen [39], who
emphasize the importance of focusing on model transfor-
mations in MDE-based development processes.
Model transformations for multiple purposes. In our project,
model transformations served multiple purposes, includ-
ing relating abstract and concrete syntaxes. Specifically, we
defined higher-order transformations (HOT) that, based on a
manually defined mapping model [34] and two Ecore-based
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metamodels, could automatically generate model transfor-
mations. These transformations can be used for synchro-
nization between notations with disjoint abstract syntaxes
or for migration between different versions of the same
abstract syntax. Furthermore, we engineered transforma-
tions to bridge between languages and technologies, such
as between EMF and MPS [35].
Extensive use of DSMLs by industrial partners The major-
ity of BUMBLE’s industrial partners used domain-specific
modeling languages (DSMLs) rather than general-purpose
modeling languages (cf. Sect. 4). This is likely due to these
partners joining the consortium to leverage their expertise in
developing DSML environments (as described in Sect. 7),
which naturally led to a greater focus on DSMLs.

An interesting observation is that some of the DSMLs in
the BUMBLE consortium were just as complex as general-
purposemodeling languages, despite the commonperception
that DSMLs are simpler due to their domain-specific abstrac-
tions. In fact, several DSMLs were highly specialized,
tailored to specific companies or even departments. This
demonstrates the significant effort these companies invested
to develop modeling environments that are custom-tailored
to their stakeholders, countering the notion that DSMLs
are inherently simpler than general-purpose modeling lan-
guages.

9 Conclusion

In this expert’s voice paper, we present key findings from the
European R&D project BUMBLE. Unlike previous BUM-
BLE publications that focus on technical, solution-specific
aspects, this paper discusses broader, technology-agnostic
concepts related to (blended) Model-Driven Engineering
(MDE). Specifically, we introduce a terminology and ontol-
ogy for blendedmodeling, alongwith a genericmethodology
for creating blended modeling environments. Additionally,
we explore the rationale behind these contributions and the
benefits they bring to the project and the wider MDE com-
munity.

Throughout the BUMBLE project, as we developed these
initial contributions and further explored related work while
drafting this paper, we identified a general consensus on
MDE terminology andmethodologies for realizing (blended)
modeling environments. This aligns with recent reflections
on MDE conceptual foundations, such as the SoSyM edito-
rial by Combemale et al.[12], which revisits Stachowiak’s
definitions [49]. However, we found a notable gap: Whereas
MDE terminology and methodologies are widely discussed,
they are not yet condensed or standardized across the MDE
community (as highlighted by the ongoing discourse on the
MBEBOK [7]).

With this paper, we aim to provide a stepping stone to fill
this gap by offering insights from our R&D project, and we
hope to spark further efforts toward developing a cohesive
and aligned Body of Knowledge for (blended) MDE.
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