
A Service-Oriented Digital Twin Framework for
Dynamic and Robust Distributed Systems

Rong Gu1, Tiberiu Seceleanu1, Ning Xiong1, Muhammad Naeem1

1 Mälardalen University, Västerås, Sweden
{rong.gu, tiberiu.seceleanu, ning.xiong, muhammad.naeem}@mdu.se

Abstract—Digital Twins (DTs) are virtual representations of
physical products in many dimensions, such as geometry and
behaviour. As a backbone of Industry 4.0, DTs help interpret
and even predict the behaviour of physical processes, provide
a virtual testbed for maintenance and upgrade, and enable
automatic decision-making supported by artificial intelligence.
Despite the promising future, challenges exist, such as the
absence of a framework that facilitates the development and
application of DTs in industrial contexts. We propose a service-
oriented architecture (SOA) DT framework for dynamic and
robust distributed systems. The framework contains two types
of services. One includes the services provided to the users and
is supported by an orchestration mechanism to ensure a quality
of service (QoS). The other one refers to the common functions
of all DTs. Further, we describe the DT-based decision-making
enabled by our QoS-oriented learning of the framework and a
Hoare-logic-based verification of QoS.

Index Terms—Digital Twins, SOA, System design, Machine
learning, Formal verification.

I. INTRODUCTION

As the essential step towards Industry 4.0 (I4.0), digital-
ization in industries is largely involved in various scenarios,
such as automation, data exchange, cloud computing, robotics,
Artificial Intelligence (AI) / machine learning (ML), and
cyber-physical systems. However, it is very challenging for
the modern industry to adapt to I4.0 contexts, which cover the
whole lifecycle of products. For example, in the inclusion of
legacy systems and technologies, finding optimal deployment
solutions, and achieving overall performance and robustness
of complex systems, problems regarding the enormous amount
of data generated and decision-making in crucial yet complex
situations hinder the development of digitalization.

One possible solution to address those challenges is the
virtual representation of physical products, which is also
known as Digital Twins (DTs) [1]. Hence, DTs now bear the
promise of enabling I4.0 initiatives and have been applied in
many fields as conceptual models for I4.0, such as smart cities
[2] and healthcare [3]. Essentially, DTs simulate a real system
of interest (SoI) digitally in multiple dimensions, e.g., geom-
etry and behaviour, such that they capture the attributes and
functions of the SoI accurately enough for specific purposes,
e.g., communication, system interpretation and maintenance.
Hence, fidelity is a crucial property of DTs, which requires
techniques for verification and validation (V&V) of DTs.
However, the inherent complexity of DTs makes the V&V
of such models extremely difficult and thus brings a usability

barrier in the industry [4]. One of the obstacles to realizing
verifiable DTs is the “barely emerging” standards of DTs [5].

Previously [6], a 3-layered approach to an intended do-
main agnostic framework for the creation, development and
operation of DT systems was proposed, called D-RODS (A
Digital Twin Framework for Dynamic and Robust Distributed
Systems). D-RODS addresses problems related to system in-
tegration, performance, organization, data volume and quality,
and challenges of distributed system automation: integration
and compatibility of legacy systems, continuous improvement,
lack of skilled labour, etc. D-RODS aims to advance the
level of digitalization towards autonomous operations, vali-
dated via use cases coming from major Swedish companies
in the domains of industrial automation, transportation and
telecommunication.

In this paper, we progress by proposing a Service-Oriented
Architecture (SOA) framework for D-RODS. The reason for
adopting SOA is twofold. Firstly, DTs are often provided
alongside the actual system of a product, such as the wind
turbines of ABB or the base radio stations of Ericsson. When
a complex system or a system of systems is composed of
products from different manufacturers, having DTs of the
sub-systems as services offers a clear separation between the
service providers and consumers, thus creating a separation
of concerns. This advantage of SOA is highly demanded for
I4.0. Moreover, one of our goals is to provide complex DT
systems composed of a potentially large number of sub-system
DTs. The SOA approach comes, as intended and proven along
years of development and employment, as the best solution.
Secondly, auxiliary functions, e.g., monitors of the DTs, may
not necessarily run consistently throughout the life-cycle of
DTs. Therefore, it is efficient and environmentally friendly
to have these functions as services that are invoked only
when needed. Additionally, some support functions for DT
operation, such as the verification module, can be reused with
various DTs and thus not attaching them to particular DTs is
a wise design choice.

In a nutshell, in this paper, we report the current progress
and envision a SOA framework of D-RODS. We also intend
to answer to a few research questions that we consider critical
in our approach, identified as follows.
• To what extent is it possible to build a DT system that
correctly matches the original?
• What solutions can be employed to alleviate the inherent
inexact predictions of ML algorithms?

66

2024 IEEE International Conference on Software Services Engineering (SSE)

979-8-3503-6851-2/24/$31.00 ©2024 IEEE
DOI 10.1109/SSE62657.2024.00021

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Se
rv

ic
es

 E
ng

in
ee

rin
g

(S
SE

) |
 9

79
-8

-3
50

3-
68

51
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SS
E6

26
57

.2
02

4.
00

02
1

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

Our path towards finding answers to the above questions
starts with the proposal of a service orchestration mechanism
that is aware of the quality of service (QoS) demanded by the
users. Further, we explore how ML and formal verification can
be adopted for generating and verifying QoS-aware service
orchestration, respectively.

The remainder of this paper is organized as follows. Section
II gives the necessary background knowledge for reading this
paper. Section III gives the related studies that inspired our
research. Section IV presents the challenges of developing a
DT framework before Section V describes our current status
and a roadmap for developing methods that overcome those
challenges. Section VI show the use case where we apply our
methods. Section VII discusses the current limits that we have
observed in D-RODS. Section VIII concludes that paper and
envisions the future work.

II. PRELIMINARIES

A. Digital Twins

DTs are cutting-edge technology revolutionizing industries
worldwide [7]. They are virtual representations of physical
objects, processes, or systems that enable real-time monitor-
ing, analysis, and optimization. By seamlessly integrating the
physical and virtual realms, DTs provide a powerful platform
for simulation, decision-making, and control. Their practical
applications span industries such as manufacturing, healthcare,
transportation, and energy, showcasing their transformative
potential yet to be fully explored.

DTs are rooted in the convergence of advanced technologies
like IoT, sensor tech, big data analytics, and simulation tools.
They consist of five key dimensions: the physical entity, the
virtual entity, services for both, and interconnections among
components [8]. However, the data, the core element, truly fu-
els insights and innovation, driving efficiency and productivity
enhancements in engineered systems.

While DTs have a relatively short history, significant ad-
vancements since the last decade have propelled them to
widespread adoption and application across industries [7]. As
they evolve rapidly, addressing challenges such as unified
modelling methods and cyber-physical fusion is essential to
fully harness their practical utility and benefits in various
sectors.

B. Service-Oriented Architecture

Service-oriented architecture (SOA) is defined as a
paradigm for the realization and maintenance of processes that
span large distributed systems [9]. There are three major con-
cepts in SOA, namely services, interoperability, and loose cou-
pling. A service is a self-contained function/act that is provided
by one party to another. The function/act might be connected
to a physical process but the service essentially refers to an
intangible performance. Interoperability is a characteristic of
a product whose interface is completely understandable and
accessible by other products without any restrictions. Loose
coupling is simple as its name indicates, a means of component
composition that requires low dependency on each other.

In this paper, we propose two types of services, namely,
services supported by DTs and services for DTs. The former
are functions provided to users of D-RODS and supported by
DTs via an orchestration mechanism, which adaptively invokes
different DTs or physical processes to guarantee a desired
level of quality of service (QoS). The latter are common
functions that can be invoked by DTs, such as verification
and validation of DTs. We aim to design an SOA framework
for our DTs, where DTs communicate with each other via
an infrastructure such that they can be easily configured and
replaced throughout the life cycle of D-RODS. The frame-
work supports verifying the QoS of D-RODS under various
assumptions and offering suggestions for system operation
when changes occur.

III. RELATED WORK

Digital twins and Service-Oriented Architectures are natu-
rally good partners as the data captured by DTs can be pre-
sented, analysed, and visualized by services or microservices
with adaptability. The combination of DTs and SOAs has been
carried out in three ways: i) DTs separated from services [10],
ii) DTs and services are integrated [11], [12], and iii) hybrid,
meaning the services can be either provided by DTs or SOAs
[13] [14].

When DTs and services are separated, DTs are constructed
individually and services are functions that are provided to
the users of the DTs via a dashboard. If these functions are
closely coupled with DTs, then the separated DTs and services
introduce overhead, and thus an integrated combination is
proposed, where services are contained in the DTs such that
they share the memory and resources and the QoS is supposed
to be increased. However, the integrated DTs and services
bring high maintenance costs as an update or upgrade of
DTs would result in a significant change in the services that
are exposed to the users, which are unnecessary in some
cases, such as general services that mostly require data or
resources outside DTs. Hence, the hybrid way of combining
DTs and SOAs is proposed. Our method belongs to the hybrid
combination as we have services exposed to users (i.e., the user
interface in Figure 2) and services that are common functions
among DTs. Additionally, our method provides QoS and the
ability of real-time operation, which are not considered in any
of the current frameworks.

IV. CHALLENGES

We have faced several challenges while trying to improve
the performance of our service-oriented DT system. We in-
terpret here the DT performance, as the accuracy with which
the execution of the DT system follows the execution of the
actual system, in terms of event sequence and respective signal
values. A certain tolerance is thought to be observed.

The following identified challenges are unique to our con-
text but provide valuable insights into the broader considera-
tions in developing and deploying DT systems.

67

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

A. Aggregation with separated data records

DT systems often accumulate records representing diverse
operational conditions, resulting in fragmented data sets. These
records are generated from sequential executions under vary-
ing conditions and do not form a continuous time series.
Instead, they manifest as distinct groups of individual time
series. This fragmented nature of data presents a significant
obstacle to precise model construction, requiring innovative
approaches for data aggregation. One possible approach to
overcome this challenge is sequential model learning using
data records generated from successive system executions.
However, this method has a downside: it introduces the risk
of overwriting valuable data from prior executions while
accommodating new data.

B. Regression with Sparse Target Values

Regression tasks involve building models for predicting
system behaviour using neural network architectures, which
are expected to implement a nonlinear, continuous and smooth
mapping between inputs and outputs. However, achieving
smooth behaviour in regression models becomes challenging
when the training data are limited by only containing sparse
target values. The lack of sufficient target values makes it
difficult to find model parameters that can accurately capture
the underlying behavior patterns under a variety of situations.

C. Determining Optimal Time Delays

A time delay refers to the number of sampling periods that
one traces back when predicting process outputs. Setting the
appropriate values for inputs and outputs in DT models is
essential to ensure effective learning. However, determining
this can be hard, since assuming a short delay may cause
the model to miss crucial previous information while using
excessively long delays can introduce irrelevant information
and unnecessarily complicat the model. Overcoming this chal-
lenge requires a comprehensive understanding of the system’s

dynamics and domain expertise to identify the optimal time
delays that will facilitate effective model learning.

D. Heterogeneous Digital Twins

DTs of a system of systems, such as those considered
in D-RODS, are heterogeneous because they have different
dynamics and interfaces, and are even manufactured by dif-
ferent companies. Composing these DTs into one system and
maintaining them regularly is a taunting task as a change in
one component could influence other components and thus
change the entire system’s behaviour. One solution is to treat
DTs as services and loosely couple them via an infrastructure
as what it is in D-RODS. However, the overhead caused by
the coupling and communication among services may drop the
quality of service and a suitable orchestration mechanism is
needed in a service-oriented DT framework.

Next, we propose the D-RODS approach to overcome these
challenges. Note that the approach is still under development.
Therefore, some innovations are conceptual. However, we
present the ideas here to describe the research roadmap and
inspire researchers who are facing similar challenges.

V. THE D-RODS APPROACH

A. Approach Description

D-RODS aims to provide verified and verifiable AI-based
approaches for constructing DTs. The approaches must be
adapted to the size and features of system instances, continu-
ously evolving through the operational stages, and improving
with respect to their targeted goals. The architecture of D-
RODS is organized on several contexts or layers, as depicted
in Figure 1 A., and briefly described as follows.
Context: Physical (CP). This layer corresponds to the phys-
ical world (Figure 1 B.a), containing the plant and especially
focusing on the processes within the system controlling it.
Context: Learning (CL). This layer (Figure 1 B.b) focuses
on the creation of the DT models corresponding to the relevant
parts of the other layers. Unsupervised learning, validated

Figure 1. The D-RODS approach.

68

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

by suitable methods for verification and validation (V&V)
extracts a filtered data set from a long data history. Our goal
is to have the learning process and results transparent, ex-
plainable, and understandable, which would make the solution
trustworthy for the industry. Based on domain expertise and
models from libraries, this layer creates the set of DT models
to be employed in other contexts introduced in the following
paragraph. Once a complete version of the models is accepted,
the CL goes offline, for a reduction in energy consumption.
Context: Functionality (CF) and Context: Infrastructure
(CI). These two layers are similar (Figure 1 B.c) as they
both contain an AI and a V&V block, which control and
enhance the functionality of a complex DT (models from
CL). A collection of AI algorithms and V&V procedures su-
pervises the DT execution. Continuous learning, optimization
and behaviour evaluation are in place. Focusing on machine-
learning methods, D-RODS is set to refine system performance
prediction and resource utilization optimization.

Apparently, D-RODS is a complex system of systems,
in which sub-systems are coupled loosely and communicate
asynchronously. The purpose of DTs is to provide various
functions to users at the endpoint, such as monitoring and
diagnosing the system of interest (SoI). Hence, we design a
SOA framework that provides those functions as services to
the users of D-RODS and treat modules in DTs as services
such that they can communicate in various manners and be
reused by multiple DTs. In the next section, we introduce the
SOA framework in detail.

B. A SOA Framework of D-RODS

Figure 2 depicts the SOA framework of D-RODS, where
functions at the user interface and common functions at the
backend are implemented as services. Note that we only
enumerate a part of the services as our framework allows an
extension of services at any point in its life cycle. First, we
go through the modules of the framework.

• User interface: an interface to users that contains services
supported by the DTs, such as monitoring the SoI via
DTs, reports of system execution, diagnosis of the SoI,
and decision-making based on the status of DTs.

• Digital twins: virtual representation of real products,
which are constructed by CL of D-RODS.

• Common functions: services for DTs including the CF
and CI of D-RODS.

• Plant: The real products including the physical processes.
• Orchestrator 1: A module that performs the execution

and coordination of services. It adapts the usage of DTs
and the plant such that the framework guarantees users
a quality of service (QoS) even when the plant is shut
down for a period.

• Orchestrator 2: A module that coordinates the functions
for training, verifying, and monitoring DTs.

QoS is levelled and adaptive as the orchestration adapts
based on the statuses of the plant and DTs. For example, when
a service has no restrictive end-to-end deadline but requires
high data accuracy, the orchestrator requests data directly from

Figure 2. The SOA frame work of D-RODS. Blue boxes are services.

the plant. When the request for service needs to be responded
to within a time frame, i.e., a hard deadline, the orchestrator
turns to the corresponding DTs, which offer the demanded data
much faster than the plant because the former simulates the
result instead of running the actual physical process. However,
the data accuracy would drop, which should be informed to the
users. In this example, we mention two dimensions of QoS,
i.e., response time and data accuracy. QoS has many other
dimensions, such as the rate of packet loss. Given different
situations and priorities, QoS is adjusted and informed to the
users such that they can make a decision on their own, or rely
on the decision-making service of D-RODS.

The orchestration within the DT contexts (implemented by
e.g. Orchestrator 2 in Figure 2) is (additionally) meant to
support various communication and data exchange policies
between connected DTs, where such policies are allowed
by time constraints of the system. We exemplify such a
communication further down, within our use case description.

Considering the complexity of the SOA framework of D-
RODS, balancing the dimensions of QoS is nontrivial. One
obstacle is that DTs are often provided alongside their corre-
sponding real products manufactured by different companies.
The lack of documentation and standards of DTs would make
the orchestration mechanism exponentially complex as sub-
systems increase. Moreover, we can only treat those sub-
systems and their DTs as black boxes, which means analysis
of the system for QoS guarantee is extremely difficult.
QoS-aware Service Orchestration. Inspired by the concept
of responsibility-sensitive safety (RSS) [15], a rule-based
approach for autonomous driving safety, we propose a QoS-
aware mechanism of service orchestration. Essentially, a level
of QoS is expected to be fulfilled if and only if its constraints
on the framework are satisfied. When the constraints are
partially violated, the orchestration mechanism must adapt the

69

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

services accordingly and give the users options combining
the dimensions of QoS differently. Let us explain how this
mechanism works with an example.
Real time aspects. Over the large body of literature, SOA
approaches have been pronounced capable of real-time opera-
tions, however, mostly relating to exchanges at the Orches-
trator 1 (Figure 2) levels. This goes along with accepting
a “relaxed” interpretation of real-time, mostly understood as
soft real-time considerations. The selection of suitable proto-
col(s), of suitable communication pattern(s), etc. are additional
tweaking aspects to be considered for answering real-time
responses of a SOA-based system. Potentially, a transition into
microservices may also provide good responses, at the cost
of finer granularity of the composing services (and hence, an
increase of the system size in terms of component numbers).
QoS-oriented Learning. Machine learning is crucial to moni-
tor and predict the quality of services and dynamically control
the orchestration and resource utilization to meet complex re-
quirements in various applications. We envisage the following
learning issues to be investigated in the development of our
service-oriented digital twin framework:
a) Anomaly detection: to support the identification of any
anomaly or degraded performance in real-time monitoring of
the service system. The particular focus of the research will
be learning the model for detection in an unsupervised manner
using unlabelled data. Self-supervised learning algorithms
need to be developed to autonomously distinguish normal and
anomalous status with minimization of both false negative and
false positive rates.
b) Service quality prediction is required to find the optimal
orchestration of services in the design stage to achieve the
QoS that best satisfies all customers. Robust machine learning
will be a crucial issue here to ensure accurate and reliable
prediction results that are scarcely affected by the condition
deviating from what is anticipated in the design stage.
c) Distributed learning: to support the distributed architecture
of our service-oriented digital twin framework. The whole
system comprises many DTs that can collect local data and
then build models based on the local data. It is desired
that these individual DTs communicate with each other to
share information and enhance performance. Distributed and
federated learning provides a powerful means for the DTs to
augment their capability by building an aggregated knowledge
model while without requiring data transfer.
d) Reinforcement learning of mitigation policy: to acquire
the optimal policy of reallocating computing and networking
services when a failure occurs in the infrastructure or there is a
drop in the quality of service. Offline learning of the mitigation
policy will utilize the model for service quality prediction as
stated in b). The learning can be subject to two objectives. On
one hand, we aim to shift to a new allocation or orchestration
optimizing the quality of services. On the other hand, we also
desire to minimize the energy and computing resources in the
updated allocation scheme.
Verification of QoS. In line with the QoS-aware service
orchestration, we propose a Hoare-logic-based verification of

the levelled QoS. Intuitively, constraints are modelled as logic
expressions, which serve as the preconditions (denoted as P)
of the services (denoted as S). Each level of QoS is modelled
as a logic expression, which are the postconditions (denoted as
Q) of services. Now, services of D-RODS can be expressed by
the well-known Hoare triple: {P}S{Q}, and we use axioms
and inference rules to demonstrate the level of QoS.
DT development flow. Collecting the aspects we discussed
above, a generic development flow of DTs is illustrated in Fig-
ure 3. We identify a “usual” development path, based on tools
of choice, grouped under the SotA “path”, which produces
the Functional DT(s), and an additional path implementing
a (formal) V&V approach, providing the Formal DT(s) of
the system. In our developments, we used Simulink1 - for
collecting (simulation) data, SIMPPAAL [16] - a proprietary
tool performing the necessary translation into UPPAAL [17]
models - the tool we use for V&V. We employed various
machine learning algorithms and architectures to obtain the DT
models on the “SotA” path, while specific support is provided
by formal verifications of the machine-learning process and
result (a.k.a. formal DTs) on the V&V path.

Figure 3. The D-RODS development framework.

The V&V approach. Our use case model requires a transla-
tion, from the Simulink into the Uppaal environments. The
tool further identifies the state flow of the execution, and
compares it to the results of the actual execution (Simulink
simulation), as described in Figure 4. In Uppaal, actions, which
are represented by arrows in Figure 4, are categorized as
controllable and uncontrollable. Normally, controllable actions
(solid arrows) are the system’s actions that learning algorithms
(a.k.a., learners) can observe and uncontrollable actions are
the environment’s actions (dashed arrows) that are invisible to
learners. A learner’s goal is to synthesize a controller for the
system to function correctly and safely. However, when we
model the inputs and outputs of a Simulink model as control-
lable actions, and the internal function of the Simulink model
as uncontrollable actions, the internal function is treated as a

1www.mathworks.com

70

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

Figure 4. V&V activities in Uppaal.

Figure 5. DT result from V&V activities.

black box by the learner. After obtaining the respective DT, we
can run exhaustive verification on the Uppaal model against a
liveness property, e.g., A⋄ goal, which means the model must
always reach the goal regardless of how the uncontrollable
actions take place. When running such a verification, we can
verify, for instance, if the DT covers all the branches of the
Uppaal model, including the controllable and uncontrollable
ones. In this way, we can claim the training data has a full
coverage of the target system, i.e., the Simulink model.

VI. USE CASE - THE HEATING SYSTEM

We choose to illustrate our approach with a synthetic use
case of heating various liquids to evaporation. We model a
wood provider delivering combustible to a warehouse, from
where a burner system is fed for raising the temperature of
a boiler supporting cans made from various materials that
contain different liquids. The variants of the system are based
on randomly chosen values for different coefficients related to
the wood-burning efficiency, liquid heating, pot heat transfer,
etc. We also randomly choose values for the initial volumes of
wood and liquid, sizes of wood deliveries, the volume of wood
requests, evaporation temperatures, etc. A high-level depiction
of the system with its functional elements and with some
simple information flow is presented in Figure 6.

We define a system (the System of Interest - SoI) composed
of three sub-systems (the Warehouse - WH, the Burner System
- BuS and the Boiler System - BoS) and an external one (the
Wood Delivery System - WDS). We intend to build digital twins
corresponding to the SoI and some parts of its sub-systems.
We have to note that the WDS is not part of our platform
development, it is considered an environment system; we do
modify its operating conditions (when, and how much wood it
delivers), but we do not create any digital twin based on this.

Figure 6. The heating system.

We build the heating system in Simulink, where (on the
SotA path) we also develop our ML models, trained on 100
simulated executions, with the results collected as time series.
Operation scenarios. The WH delivers requested amounts of
wood, as much as available, to the BuS. Following the dotted
lines in Figure 6, whenever the requested mass of wood is
not available in the WH, a request is sent to the WDS. The
WDS delivers a fixed quantity of wood, repeatedly, following
requests from the WH, which receives and stores the wood.
When the required quantity of wood has been delivered, the
BuS releases the request.

Once the system is started, the wood available within the
BuS helps raise its temperature (with a specific slope). The
temperature range is limited to a maximum given value (e.g.
300), and it starts decreasing (with a different slope) when the
system is off.

The heat is transferred to a pot containing a certain liquid -
both with specific heat transfer coefficients and heat capacities,
respectively. When the liquid reaches its vaporization tempera-
ture, its temperature remains constant, and its mass decreases.
In case this mass of liquid decreases under a specified volume,
the system automatically turns off.
Implementing and executing the use case. The heating
system described above consists mainly of physical modelling
components (the BuS and the BoS). A potential SOA approach
can only be applied between the WDS, the WH and the BuS.
The SOA management of the exchanges across these three
units has been implemented with a distinct block, COMM
(Figure 6) playing the role of the Orchestrator 2 (Figure
2), and along the attached connectors. We observe an asyn-
chronous communication pattern within the sub-system.

As the system is small and only the WH interacts with the
other components, we did not implement a service registry or
the related functionality. The communication is conducted via
the network, and the delivery of services (“wood” quantities)

71

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

Figure 7. The heating system execution.

is directly handed to the respective recipient (the WH or the
BuS). We obtain, based on simulation data, several DTs for
the components of interest. For the purpose of this study, we
observe first the original behaviour of the system (top of Figure
7) and the result of an overall DT execution (middle of Figure
7) and we also depict the differences between these at the
bottom of Figure 72. The graphs refer to the variables storing
the mass of water in BoS, the mass of wood in BuS and the
temperature of the BuS.

Please note in the mentioned figure, that, ignoring the initial
system start moments, the maximal error values are kept
within quite suitable tolerance limits. An exception here is
the Wood mass signal. All such errors are due to a certain
time misalignment, for which we had no immediate solution.

Further, we build a specific DT for the COMM system
(DT-COMM) and include it as a replacement for the actual
COMM bloc in the original system. We are interested in how
the important signals are managed by DT-COMM and what
is the effect on the overall execution. For this, we select the
Wood_Request signal, with an original shape as in Figure
8 a). The respective un-processed shape of the DT-COMM
signal is illustrated in Figure 8 b), while Figure 8 c) shows
the corrected execution of the DT-COMM.

Further, the consideration of DT-COMM does not change
the overall DT-based system execution (at least concerning the
selected variables), the simulation presenting indistinguishable
differences to the signals in Figure 7.

VII. DISCUSSION

We’ve shared here several steps ahead towards our goal of
building a DT development and operational framework. We
included SOA aspects and implemented them within our use

2Please note for both Figures 7 and 8, the metrics (e.g. degrees, litres, etc.)
on the y-axis data, plotted against time, are of no relevance; the important
aspect is the shape of the graph and the range of pairwise values.

case. We also identified and applied V&V tools to correct the
“raw” DTs, obtained in an usual manner.

One may observe that the errors identified in the raw DTs
are not fully eliminated by the V&V solutions: our tools
identified the prediction anomaly (and accordingly “filtered”
it out), but the value levels were not corrected. We believe
that, with the current implementation of the system, this may
actually not be possible at all: the Wood_Request signal
is defined with the help of a random assignment, which
may neither be suitably identified by any machine learning
algorithm nor corrected by any V&V method. Therefore, in
future system realisations, we will increase determinism by
assigning a fixed value to define the specified variable. This
will lead to a limited variation of the signal, which, in turn,
may provide either sufficient information for a more accurate
machine learning prediction, or the correction(s) will become
more efficient.

However, to our surprise (however pleasant), the errors
identified in the raw DTs did not have a large impact on the
execution of the use case, considering high-level variables, at
least. At the moment, it is not possible to state if this is a
specific effect only valid given the selected use case, or if this
is a more generic aspect.

The advantages that we see with the SOA solution, partly
implemented in our use case, are the expected ones when
discussing design choices. The modularity of the SOA sub-
system allowed us a “clean” replacement of the original
component with the respective DT, with no additional impact
on the rest of the system. This is one major goal of our targeted
platform [18].

The real-time aspects here were not critical. However, by
measuring the timing in answers, we may still have to recon-
sider the implemented SOA solution for (much) shorter time
requirements. Also, various selections of machine learning
approaches may add to the timed execution. These aspects

72

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

Figure 8. The Wood Request signal.

will be addressed in further developments on our framework.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced here our views on employing DT so-
lutions for (partly) SOA-organized systems. While the results
are encouraging, there are indications that more research is
necessary in order to reach our targeted development and
operational framework for DTs.

We also included a first view on V&V solutions meant to
improve the raw versions of our DTs. Certain corrections are
possible but with some incomplete coverage. Potential other
approaches can also be tested in the context, trying to improve

the results of verification activities. However, the selected
V&V tools provided further insights in the operational aspects
of the DT-based system.
Acknowledgements. The authors are partly supported by
Vinnova’s Advanced digitalization programme in the project
D-RODS (ID: 2023-00244), and by a grant from the Swedish
Knowledge Foundation in project PerFlex (ID: 20180150).

REFERENCES

[1] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising
the digital twin: A systematic literature review,” CIRP journal of
manufacturing science and technology, vol. 29, pp. 36–52, 2020.

[2] K. Lamb, “Principle-based digital twins: a scoping review,” Centre for
Digital Built Britain: Cambridge, UK, 2019.

[3] R. Lutze, “Digital twins in ehealth–: prospects and challenges focussing
on information management,” in 2019 IEEE International Conference
on Engineering, Technology and Innovation. IEEE, 2019, pp. 1–9.

[4] M. Perno, L. Hvam, and A. Haug, “Implementation of digital twins
in the process industry: A systematic literature review of enablers and
barriers,” Computers in Industry, vol. 134, p. 103558, 2022.

[5] A. Kung, C. Baudoin, and K. Tobich, “Report of twg digital twins:
Landscape of digital twins,” EU Observatory for ICT Standardisation,
2022.

[6] T. Seceleanu, N. Xiong, E. P. Enoiu, and C. Seceleanu, “Building a
digital twin framework for dynamic and robust distributed systems,” in
The 8th International Conference on Engineering of Computer-Based
Systems, Västerås, Sweden, 16-18 October 2023. LNCS, Springer
Science and Business Media Deutschland GmbH, 2024, pp. 254–258.

[7] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on industrial informatics, vol. 15,
no. 4, pp. 2405–2415, 2018.

[8] F. Tao, M. Zhang, J. Cheng, and Q. Qi, “Digital twin workshop: a new
paradigm for future workshop,” Computer Integrated Manufacturing
Systems, vol. 23, no. 1, pp. 1–9, 2017.

[9] N. M. Josuttis, SOA in practice: the art of distributed system design. ”
O’Reilly Media, Inc.”, 2007.

[10] M. Ciavotta, G. D. Maso, D. Rovere, R. Tsvetanov, and S. Menato,
“Towards the digital factory: a microservices-based middleware for real-
to-digital synchronization,” Microservices: Science and Engineering, pp.
273–297, 2020.

[11] B. Pernici, P. Plebani, M. Mecella, F. Leotta, F. Mandreoli, R. Martoglia,
G. Cabri et al., “Agilechains: agile supply chains through smart digital
twins,” in Proceedings of the 30th European Safety and Reliability Con-
ference and the 15th Probabilistic Safety Assessment and Management
Conference, Venice, Italy, 2020, pp. 1–5.

[12] F. Longo, L. Nicoletti, and A. Padovano, “Ubiquitous knowledge em-
powers the smart factory: The impacts of a service-oriented digital twin
on enterprises’ performance,” Annual Reviews in Control, vol. 47, pp.
221–236, 2019.

[13] K. Kruger, C. Human, and A. Basson, “Towards the integration of digital
twins and service-oriented architectures,” in International Workshop
on Service Orientation in Holonic and Multi-Agent Manufacturing.
Springer, 2021, pp. 131–143.

[14] C. Human, A. Basson, and K. Kruger, “A design framework for a
system of digital twins and services,” Computers in Industry, vol. 144,
p. 103796, 2023.

[15] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” arXiv preprint:1708.06374, 2017.

[16] P. Filipovikj, N. Mahmud, R. Marinescu, C. Seceleanu, O. Ljungkrantz,
and H. Lönn, “Simulink to uppaal statistical model checker: Analyzing
automotive industrial systems,” in FM 2016: Formal Methods: 21st
International Symposium, Limassol, Cyprus, November 9-11, 2016,
Proceedings 21. Springer, 2016, pp. 748–756.

[17] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-
national journal on software tools for technology transfer, vol. 1, pp.
134–152, 1997.

[18] R. Gu, T. Barbuceanu, N. Xiong, and T. Seceleanu, “Experiences in
building a digital twin framework: Challenges and possible solutions,”
The 48th IEEE International Conference on Computers, Software, and
Applications, To appear. 2024.

73

Authorized licensed use limited to: Malardalen University. Downloaded on December 09,2024 at 10:08:53 UTC from IEEE Xplore. Restrictions apply.

