
Syntax-Directed Control Dependence Analysis:
Eliminating Graph Overhead

Husni Khanfar

School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Väster̊as, Sweden
husni.khanfar@mdu.se

Abstract. State-of-practice techniques in static program analysis mainly depend on con-
structing intermediate data structures, primarily graphs, to facilitate various analyses.
However, these structures introduce significant computational overhead in terms of time
and space. One key static analysis technique is the computation of control dependencies,
which plays a crucial role in optimizing compilers, program slicing, debugging, and paral-
lelization by determining the execution order of statements based on conditional branches.

In this paper, we present an improved technique for computing control dependencies with-
out requiring any intermediate graph-based representations. Our approach eliminates un-
necessary computations, significantly reducing resource consumption while maintaining
accuracy. Experimental evaluations demonstrate that our method not only outperforms
classical techniques in terms of execution speed but also exhibits superior scalability and
stability when applied to large-scale programs. These findings suggest that our approach
is a viable alternative to conventional methods, offering a more efficient solution for static
program analysis in modern software engineering.

Keywords: Program Analysis, Control Dependence, Syntax-Directed.

1 Introduction

Control dependencies define the relationship between the predicates of conditional statements
and the execution of dependent statements in a program. A statement S is control dependent
on a predicate P if the execution of S depends on the outcome of P. This concept is essential
in various fields, including optimizing compilers, program slicing, program testing, and software
verification.

All state-of-the-art approaches compute control dependencies by constructing three layers
of intermediate data structures called graphs, each representing a specific aspect of the source
code, and each building on the previous one. First, they represent the source code as an Abstract
Syntax Tree (AST), which captures the hierarchical structure of the program. From the AST, a
Control Flow Graph (CFG) is generated to represent the program’s execution flow and to group
consecutive statements into basic blocks as nodes. A basic block is a sequence of consecutive
statements with a single entry point and a single exit point. Using the CFG, a post-dominator
tree is computed, where a node post-dominates another if every path to the exit node passes
through it. Control dependencies are derived from this post-domination information.

MRTC Report, Mälardalen Real-Time Research Centre - Mälardalen University - Sweden
ISRN: MDH-MRTC-354/2025-1-SE
Received in 27-Feb-2025 Accepted in 14-March-2025

1

Husni Khanfar

The most major approaches for computing control dependencies rely on intermediate data
structures, or graphs, but there are some variations. Ottensien et al.[1] and Ferrante et al.[2] com-
pute standard control dependencies but shift to a more graph-theoretic approach. Their method
relies on post-dominance relations in the Control Flow Graph (CFG), where control dependen-
cies are derived from dominance frontiers in a Postdominator Tree. This representation improves
accuracy but struggles with irreducible flow graphs, requiring graph transformations to recover
accurate control dependence information. Ramalingam [3] refines Ferrante’s method by focus-
ing on optimizing control dependence computation in irreducible graphs. His technique remains
within the standard framework of CFG and Postdominator Trees but introduces a transformation
mechanism to improve performance in non-structured control flows. Pingali and Bilardi [4] pro-
posed an Augmented Postdominator Tree (APT) as an alternative representation for the Control
Dependence Graph, describing the relationships among three types of control dependencies.

Havlak [5] introduces the Loop Nesting Tree for better dependency extraction and utilizes the
Control Flow Graph (CFG) for this purpose. Johnson et al. [6] proposed the Program Structure
Tree (PST) as a hierarchical approach to control dependence analysis. Ball and Horwitz [8], as
well as Choi and Ferrante [7], introduced the Augmented CFG (ACFG) to handle goto statements
by treating them as predicates.

The works presented above are some of the main contributions in this field, but many other
studies follow the same paradigm, employing different or enhanced types of intermediate data
structures. However, some researchers [10,11,12,13] have highlighted the high time and space costs
required to construct intermediate data structures for computing data and control dependencies.
As an alternative, they proposed methods that attempt to compute control and data dependencies
directly from the Abstract Syntax Tree (AST) without relying on the construction of a Control
Flow Graph (CFG), Postdominator Tree (PDT), or any other graph-based representation. The
first three works [10,11,12] cover both structured and unstructured programs1 , but they fail
to provide accurate results for both types. The most recent work [13] is limited to handling
subprograms containing continue and break statements but does not address return or exit
statements.

Historically, all approaches for computing control dependencies have shared the common
goal of identifying control dependencies in both structured and unstructured programs. This
research dates back to the early 1980s, when many programming languages heavily relied on
goto statements, and the risks of ”spaghetti code” were not well understood.

Modern programming languages such as Python, Java, Kotlin, Rust, and Go implement
control flow constructs similar to those in C and C++—including conditional statements, loops,
and control transfer statements like break, continue, and return—but they disallow goto state-
ments. In contrast, C and C++ still support goto, though many industry coding standards, such
as MISRA-C and CERT C, strongly discourage its use due to its potential to create unstructured
and difficult-to-maintain code.

This work introduces the first approach capable of accurately computing control dependencies
for structured source code in O(N) time, ensuring each statement is processed only once. Unlike
existing methods, it does not require transforming the source code into an intermediate repre-
sentation, such as an Abstract Syntax Tree (AST) or a Control Flow Graph (CFG). Instead,
it directly reads and analyzes the source code, achieving highly efficient control dependency
computation.

1 A structured program is one that follows a clear control flow hierarchy using loops (e.g., while, for)
and conditional statements (e.g., if-else) without arbitrary jumps. These programs are typically
easier to analyze and optimize. In contrast, an unstructured program contains non-sequential control
flows, such as goto statements or indirect jumps, making them harder to analyze due to complex
execution paths.

2

Syntax-Directed Control Dependence Analysis

In this work, the sections are organized as follows: Section 4 introduces the relevant con-
cepts and presents the necessary definitions for our work. Section 5 establishes the theoretical
foundations underlying our approach. Section 7 presents the algorithms and demonstrates their
connection to the theoretical framework introduced in the previous section. Section 9 provides an
empirical evaluation of our approach, comparing its performance with state-of-the-practice tech-
niques. Section 10 reviews and summarizes closely related work. Finally, Section 11 concludes the
paper by summarizing our findings, discussing broader implications, and suggesting directions
for future research.

This work introduces the first approach capable of accurately computing control dependencies
for structured source code without requiring transforming the source code into an intermediate
representation, such as AST or CFG. As a result, getting speed outperformas the classical method
that relying on intermedite datastructure. the speedup varying from 2 to 50.

One of the key considerations we took into account in this work is facilitating the reader’s
understanding by providing numerous examples—more than 25 in total.

This work has been tested on over 3 million input cases, and we plan to scale the evaluation
to 20 million to further ensure correctness.

In this work, the sections are organized as follows: Section 2 summarizes the basic methodol-
ogy of the state-of-the-art approach. Section 3 informally introduces the new approach proposed
in this work. Section 4 presents the relevant background concepts, while Section 5 establishes
the theoretical foundations. Section 6 introduces the primary goals of the new datasets used in
this work, and also presents the event–action relationships. Section 7 describes the algorithms
in detail. Section 8 focuses on the if..else statement as a special case requiring dedicated
handling. Section 9 provides the experimental evaluations. Finally, Section 10 discusses related
work, and Section 11 concludes the paper.

2 Foundations and Insights from Prior Work

This section summarizes the theoretical foundations of relevant classical works that utilize graph-
based representations and analytical techniques.

2.1 Control Dependencies and Post-Domination Facts

The classical approach computes control dependencies based on post-domination facts. A state-
ment X post-dominates statement S if every path from S to End includes X. For example, in
Code 1, f2() (Label 10) post-dominates Label 1, whereas Label 10 does not post-dominate Label
1 in Code 2.

Control dependency analysis based on post-domination facts is defined as follows: a predicate
m controls the execution of n (denoted as n → m) if and only if the following two properties
hold.

– Property A: There exists a path from a successor of m to n, where n post-dominates all labels
along this path.

– Property B : Another path exists from the second successor of m to End, excluding n.

Note: Property A of control dependencies is referenced in this context as Def. 6-A, while
Property B is Def. 6-B.

code 1: while(b1){if(b12)continue3;f()4;if(b25)break6;f1()7;if(b38)continue9;}
f2()10;

3

Husni Khanfar

2.2 Example 1

If we check whether Predicate 2 in Code 1 controls Labels 4 and 5, we begin with the following
observations. The two successors of Label 2 are Labels 3 and 4. The only path from Label 3 is
[3,1,10,End], which reaches End without including Labels 4 and 5. Therefore, Def. 6-B is satisfied.

Next, we examine the two paths originating from the second successor of Predicate 2, which
is Label 4: [4,5,6,7,8,9,1,10,End] and [4,5,7,8,9,1,10,End]. In both paths, Labels 4 and 5 post-
dominate Label 4, satisfying Def. 6-A .

Based on this, Predicate 2 controls Labels 4 and 5.
Label 2 does not control Label 6 because Label 6 does not post-dominate Label 4 or Label

3. This occurs because not all paths originating from Label 4 include Label 6.

code 2: while(b1)
◦
{if(b22)

•
{if(b33)

▽
{if(b44)return5;f1()6;

▽
}f2()7;continue8;

•
}x=59;

◦
}

f3()10;

2.3 Control Flow Graph and Post-Dominator Tree

A Control Flow Graph (CFG) is a directed graph used in program analysis and compiler design
to represent the flow of execution in a program.

Fig. 1

Definition 1. The Control Flow Graph (CFG) consists of a set of nodes, which represent state-
ments in intra-procedural programs (single procedure), while the edges denote control flows, as
shown in Fig. 1-B.
The CFG always includes two additional nodes for each represented code: Entry and End.
By definition, a CFG must have a path from Entry to every node in the graph and at least one
path from each node to the End node. Otherwise, dead code may exist.

4

Syntax-Directed Control Dependence Analysis

Algorithms that calculate post-domination compute all post-domination information in the
program and organize it into a graph or tree. They cannot compute the post-domination fact for
a single statement in isolation. Instead, they must first compute and store all post-domination
data before using it.

To determine the predicates that control the execution of a specific node in the CFG, all post-
domination information in the program must be computed and arranged into a post-dominator
tree. Control dependency is then derived from this tree based on the following rule: a node W is
control dependent on node U if the CFG contains an edge U → V , where W post-dominates V
but does not post-dominate U .

2.4 Example 2

If we examine whether Node 4 controls Node 7 in Fig. 1-B, we find that Node 4 has two successors:
Label 5 and Label 8. From Fig. 1-C, we observe that Label 7 post-dominates Label 5 but does
not post-dominate Label 8. Therefore, Label 4 controls Label 7.

2.5 Predicate Code Block (PCB) graph

The approach in this work builds on the Predicated Code Block (PCB) graph, a program repre-
sentation introduced in [9,14], which designates compound statements2as the primary entities in
program representation. Each compound statement is represented as a PCB, incorporating the
Boolean expression of its predicate and the label of each statement.

Typically, each PCB inherits the label of the Boolean expression of the corresponding condi-
tional statement. For example, in Code 2, P4=[4,5].

For nested compound statements, a placeholder represents the location of the child PCB
within its parent. Similar to a PCB, the placeholder inherits the label of the Boolean expression.
For example, P3=[ph(4),6] and P2=[ph(3),7,8].

3 Synopsis of the Proposed Approach

This section introduces the proposed approach within this context.

3.1 Predicate-Controlled Regions

In structured source code, a predicate k may control statements in three regions: the first is the
follow region of its PCB, the second is the follow region of the loop it resides in, and the third
is the header of that loop. It is important to define the follow region concisely:

Definition 2. A loop follow block is the unique basic block (or node) in a control flow graph
(CFG) that executes immediately after the termination of a loop. It is the first basic block to be
executed once the loop condition evaluates to false and the loop body is no longer executed.

Definition 3. A basic block is a sequence of consecutive instructions in a program that executes
sequentially from start to finish without interruption, except at the end.
It begins at a point where control can enter (such as after a label or a branch) and terminates when
execution may jump elsewhere (such as a branch, jump, or return statement). Once execution
enters a basic block, all instructions within it must execute in order until it reaches the end.

2 The compound statement is either a conditional statement (e.g., if) or a loop (e.g., while or for).

5

Husni Khanfar

For example, in Code 3, the follow region of the while conditional statement (P1) is [11,12,13].
The follow region of P2 is [4,5,6]. The header region of P1 consists only of Label 1.

code 3: while(b11){if(b22)continue3; f1()4;f2()5;if(b36)break7;f3()8;

if(b49)continue10;}f4()11;f5()12;if(b513)return14;f6();

3.2 Identifying Control Dependencies Outside While Loops

In this case, each predicate enclosing a jump statement controls its follow region. Furthermore,
it also controls the follow region of its parent PCB if it is the last child PCB within its parent.
For example:

In Code 4, the follow region of P4 is [6,7], meaning 6→4 and 7→4 hold. Similarly, P7.follow
= [9,10], resulting in 9→7 and 10→7. Now, P2.follow = [12,13], leading to 12→2 and 13→2.
Additionally, the region [12,13] is controlled by Predicate 10.

code 4: void main(){f1()1;if(b12)
•
{f2()3;if(b24)return5;f3()6;if(b37)return8;f4()9;

if(b410)return11;
•
}f5()12;if(b513)return14;f6()15;f7();}

3.3 Identifying Control Dependencies Inside While Loops

Control dependencies inside while loops are recognized in the same way as they are outside while
loops. Each predicate that contains a jump statement—continue, break, or return—controls
its follow region. Additionally, a predicate also controls the follow region of its parent if it is the
last one in its PCB.

In Code 3, b2 controls Labels 4, 5, and 6, while Predicate 6 controls Labels 8 and 9. Similarly,
b1 controls Labels 11, 12, and 13.

3.4 Control Dependence Analysis of Loop Headers and Follow Blocks

Capturing the control dependencies of loop headers and follow blocks through internal predi-
cates that control or enclose different numbers and types of jump statements is one of the most
challenging aspects of this work. This is because they may either support each other in satisfying
the two control dependency properties or eliminate each other, depending on their combinations
within the PCB.

The main idea of this work is to capture one of the control dependency properties in a query
or dataset, then propagate it forward inside the PCB to determine whether the second property
is satisfied. The satisfaction of the second property depends on this propagation.

We define five datasets, created within each PCB. Four of these datasets, Eh, Ch, Bf , and Rf ,
collect each visited predicate that satisfies one of the properties for a specific region:

– Eh collects predicates that control break or return statements because they satisfy Def. 6-B
for controlling the loop header.

– Ch collects all predicates that control continue statements because they satisfy Def. 6-A in
their relation to the loop header.

– Bf collects all predicates that control break statements because they satisfy Def. 6-A in their
relation to the follow region of the loop.

– Rf collects all predicates that control return statements, meaning these predicates satisfy
Def. 6-B concerning the follow region of the loop.

6

Syntax-Directed Control Dependence Analysis

– Cf is designed to capture control dependencies involving both continue and break statements,
which may lead to controlling the follow region when a return statement is present. This
dataset is slightly more complex than the others and is specifically designed to capture special
scenarios.

Based on this, in Code 1, P1 has the sequence [P2,4,ph(5),7,ph(8)]. The analysis traverses
ph(2), and since Predicate 2 controls a continue statement, which jumps directly to Label 1,
Predicate 2 is added to Ch(P2). After processing P2, Ch(P1)=Ch(P2)={2}. When the analysis
advances to Label 4, nothing changes. Upon reaching P5, it processes it and finds a break

statement, which jumps outside the while loop and then reaches End. This satisfies the second
property, meaning all predicates in Ch(P1) control the execution of Label 1. After establishing a
dependence between 1 and each label in Ch(P1), Ch(P1) is emptied.

4 Background

4.1 Control Flow Graph, Basic Blocks, Post-Domination, and Control Dependency

This section provides an overview of the Control Flow Graph (CFG), basic blocks, and control
dependencies.

A CFG models the control structure of a program by representing its execution paths as a
directed graph. The nodes in a CFG correspond to Basic Blocks (BBs), which are sequences of
consecutive statements with a single entry and exit point. Directed edges between nodes represent
possible control flow transitions in the program.

Definition 4 (Control Flow Graph (CFG)). A CFG for an intra-procedural program s is a
4-tuple (N,E,Entry,End), where N is the set of nodes, each representing a basic block in s; E
is the set of directed edges representing control flow transitions between nodes, i.e., E ⊆ (N×N);
Entry is a unique start node, where Entry ∈ N ; End is a unique exit node, where End ∈ N ;
every node n ∈ N is reachable from Entry; and every node n ∈ N has a path leading to End.

Definition 5. Post-domination: In a CFG G, a node n post-dominates another node y if every
path from y to End contains n.

Definition 6 (Standard Control Dependence). A node n is standard control dependent on
a node m in program s (denoted as n → m) if and only if the following two properties hold: (A)
there exists a non-trivial3 path π from m to n, such that every intermediate node n′ ∈ (π−{m,n})
is post-dominated by n, and (B) m is not strictly post-dominated by n.

4.2 Program Representation: Predicate Code Block Graph

The Predicate Code Block graph (PCB-graph), introduced by Khanfar [9,14,16], provides a struc-
tured abstraction for source code representation. It captures the predicate of each conditional
statement along with the statements within its main body. Elementary statements are repre-
sented as-is, while internal conditional statements are denoted as placeholders, ph().

A PCB is formally defined as: pcb ::= {[b, s1, . . . , sn], type, pcb parent}

Where a PCB consists of: (1) a predicate p; (2) a list of statements ([es1, ph(2), . . . , esn]),
where each (esi) is an elementary statement and each (ph(i)) is a placeholder for an internal

3 A path π is non-trivial if it contains at least two nodes, as defined in [15].

7

Husni Khanfar

conditional or loop statement; (3) a type (type); and (4) a reference to its parent PCB, (
pcb parent). Additional information may be incorporated as needed.

The type type classifies PCBs as either linear (L), corresponding to conditional statements
such as if, or cyclic (C), representing iterative constructs such as while.

The PCB representation preserves the syntactic structure of the program by maintaining a
reference to its parent PCB, pcb parent. The notation P(Pk) denotes the pcb parent of Pk.

5 Theoretical Fundamentals

In structured source codes, identifying control dependencies within loops poses significant chal-
lenges primarily due to the presence of various jump statements such as break, continue, and
return. Outside the loops, the complexity is reduced, as control dependencies arise only from
the if conditions that control return or exit statements.

In this section, we establish some rules written as definitions, lemmas, theorems, and corollar-
ies to properly deduce the right control dependencies from the syntax of the program statements.

5.1 Loop Follow Block

The syntax-directed approach for computing control dependencies identifies the labels of state-
ments influenced by predicates based on their relative locations. The first relation location is
the block of statements that are immediately next to the compound statements. Such blocks of
labels are referred to as Pℓ.follow, where ℓ is the header label of the compound statement.

code 5: void main(){if(b11)return2;stm13;stm24;if(b25)return6;stm37;stm48;}
For example, in Code 5, we have three PCBs, which are: P(0)={0,ph(1),3,4,ph(5),6,7}, P1={1,2},

and P4={4,5}. Additionally, it defines the next immediate blocks to P1 and P5 as: P1.follow={3,4,5}
and P5.follow={6,7}.

Definition 7. A loop follow block is the unique basic block (or node) in a control flow graph
(CFG) that is executed immediately after the completion (termination) of a loop. It is the first
basic block to be executed once the loop condition becomes false and the loop body is no longer
executed.

Inside the loops, the if conditional statements might control the execution of three different

blocks. First, there is its follow block (Code 1, Label 4
cd−→Label 2). Second, it refers to the header

of the closest outer loop that exists in (Code 6, Label 6
cd−→Label 8). Third, it pertains to the

follow block of its closest outer loop (Code 1, Label 10
cd−→Label 8).

code 6: while(b1){ if(b12)continue3;if(b24)continue5;

while(b3η=6){cnt++7;if(b48)return9;}if(b510)continue11; }

5.2 Chained Controlling Predicates

In this context, we introduce the notion of Chained Continue Predicates—a sequence of predicates
within a loop, where each predicate controls a continue statement as well as the execution of
the next predicate in the sequence. In contrast to the preceding predicates, the final predicate in
the sequence controls two continue statements. Formally, it can be expressed as follows:

Definition 8 (Chained Continue Predicates). Let P = [P1, P2, . . . , Pn] be a sequence of
predicates of if conditional statements inside the body of a loop, where each Pi (1 ≤ i < n)
controls a continue statement and Pi+1, while Pn controls two continue statements.

8

Syntax-Directed Control Dependence Analysis

As well, we define Chained Break Predicates and Chained Controlling Return Predicates as
follows:

Definition 9 (Chained Break Predicates). Let P = [P1, P2, . . . , Pn] be a sequence of predi-
cates of if conditional statements inside the body of a loop, where each Pi (1 ≤ i < n) controls
a break statement and Pi+1, while Pn controls two break statements.

Definition 10 (Chained Return Predicates). Let P = [P1, P2, . . . , Pn] be a sequence of
predicates, where each Pi (1 ≤ i < n) controls a return statement and Pi+1, while Pn controls
two return statements.

Remark 1. If a predicate Q controls a Chained Return Predicate sequence P = [P1, P2, . . . , Pn],
then Q is considered to control the entire sequence by controlling the first predicate P1.

Remark 2. When referring to the label of a chained predicate, it denotes the label of the first
predicate in the chain.

For example, in Code 7, there is a Chained continue Predicate consisting of the sequence
[b3, b4, b5]. We refer to the label of the chain as 4, which corresponds to the label of b3. Since b2
controls the execution of b3, we say that b2 also controls the execution of the Chained continue

Predicate [b3, b4, b5].

code 7: while(b11)
◦
{f1()2;if(b23)

•
{if(b34)continue5;x=56;if(b47)continue8;else9f2()10;

if(b511)continue12;continue13;
•
}f3()14;

◦
}

5.3 Lemmas

This section has general lemmas that would be used in proving some upcoming theorems.

Lemma 1 Suppose ω is the header of a compound statement. There is a path from ω to each
statement inside its body.

Proof. Def. 4 states that there is a path from Entry to each statement in the code. Because all
paths in structured code from Entry to any statement in a loop pass through its header, there
must be a path from ω to each statement in its body. ⊓⊔

Lemma 2 Suppose ω is the header of a loop, there is path exists from Pω.follow to End that
bypasses all statements in Pω.

Proof. Assume, for contradiction, that all paths from Pω.follow to End must pass through ω.
Because there is a structured flow from ω to ω.follow, this would imply an infinite loop, contra-
dicting Def. 4, which requires the existence of a path from each label to End. ⊓⊔

5.4 General

Theorem 1. Suppose ω is the predicate of a while loop that contains an internal if condition
with the predicate η. If η controls the execution of two identical jump statements—whether two
continue, break, or return statements—then η does not control either ω or Pω.follow.

9

Husni Khanfar

Proof. If η controls two continue statements, all successor paths from η converge at ω, violating
Def. 6-B. Thus, η controls neither ω nor Pω.follow. If η controls two return statements, its
successor paths bypass both ω and Pω.follow, failing Def. 6-A. Consequently, η controls neither.
If η controls two break statements, no path from η includes ω, and all paths converge at Pω.follow.
Hence, η does not control Pω.follow either. ⊓⊔

code 8: while(b1){if(b12)return3;if(b24){if(b5)continue6;continue7;}f1()8;}f2()9;
In Code 8, suppose ω = 1, η = 5, and Pω.follow corresponds to Label 9. Then, η does not control
Label 1 or Label 9.

Theorem 2. Suppose η is the predicate of an if condition that controls exactly one jump state-
ment. Then, Pη.follow is control dependent on η.

Proof. Since Pη encloses a jump statement, Pη.follow necessarily post-dominates one of its suc-
cessors, satisfying Def. 6-A. To satisfy Def. 6-B, a path must exist from one of η ’ successors to
End without passing through Pη.follow.

If the jump is a return statement, such a direct path exists, confirming that η controls
Pη.follow. Otherwise, if the jump is a continue or break statement labeled ℓ, then Pη lies
within a loop Pω with ω as its header. The paths [η, ℓ, ω, Pω.follow] (for continue) and [η ,
ℓ, Pω.follow] (for break) exist. By Lemma 2, a path from Pω.follow to End excludes ω and,
accordingly, Pη.follow, satisfying both properties in Def. 6. Thus, Pη.follow is control dependent
on η. ⊓⊔

In Code 1, b1 controls Labels 3 and 4, while b2 controls Labels 7 and 8.

Corollary 1 Suppose η is the predicate of an if condition that does not control any jump state-
ment. Then, η does not control Pη.follow.

Proof. At Pη.follow, the two paths from the successors of η converge. Therefore, Def. 6-B is not
satisfied. ⊓⊔

Theorem 3. Suppose η is the predicate of an if..else conditional statement, and each of its
branches contains a jump statement. Then, η does not control Pη.follow.

Proof. In structured programs, there are three jump statements: break, continue, and return.
Each of these transfers control outside the loop associated with η. Since the control exits the
loop, it implies that there exists a path to End that does not include Pη.follow. Therefore, under
this assumption, Def. 6-A is not satisfied. ⊓⊔

Theorem 4. Suppose ω is the header of a loop containing a compound statement Pη, either a
loop or a conditional statement. If Pη contains a jump flow avoiding η and Pη.follow, then Pη

prevents all prior predicates in Pω from controlling Pη.follow.

Proof. The jump from Pη leads to ω, Pω.follow, or End. According to Lemma 2, a path from
Pω.follow to End excludes all labels in Pω. Additionally, there is direct program flow from ω
to Pω.follow. In all three cases, a path from η to End exists without passing through Pη.follow.
Consequently, no post-dominance exists between the previous predicates of η over Pη.follow,
meaning Def. 6-B is not satisfied. ⊓⊔

In Code 1, b1 controls Labels 4 and 5 but cannot control Label 7.

Theorem 5. Assume P(Pk) = Pη, where Pη contains a jump statement labeled ℓ, Pk contains
a jump labeled ℓ′, and ℓ > k, then the predicate k does not control Pη.follow.

10

Syntax-Directed Control Dependence Analysis

Proof. The Def. 6-B between a successor of k and Pη.follow cannot be satisfied due to the
presence of ℓ. ⊓⊔

code 9: while(b1){if(b22){if(b33)break4;f1()5;x=56;continue7;}cnt++8;};
In Code 9, the predicate b3 controls Labels 5, 6, and 7; however, it cannot control Label 8 because
of continue at Label 7. If the statement at Label 7 is not a jump, then 8→3.break

5.5 Controlling The Header of the Loop

Theorem 6. Suppose ω is the predicate of a while loop containing an internal if condition with
predicate η. If η controls a continue statement, or controls a chained continue predicate, and
there exists a path from η within the while loop to a break or return statement that bypasses
η, then ω→η.

Proof. Consider first the case where η controls a continue statement labeled ℓ, and there exists
a path from Pη to a break or return statement labeled ℓ′. In this case, two paths exist: [η, ℓ, ω]
and [η, ℓ′, Pω.follow, End] (Lemma 2 proves the existence of a path from Pω.follow to End).

Since all paths from the first successor of η (i.e., ℓ) lead to ω, and there exists a path from
its second successor to End that excludes ω, it follows that ω→η.

Now consider the case where η controls a chained continue predicate labeled ℓ. All jump
statements in the chain converge at ω. Thus, semantically, there is no difference between control-
ling a single continue statement and controlling a chained continue predicate. In both cases,
ω→η. ⊓⊔

In Code 10, Label 1→Label 2. and Label 1→Label 4. In Code 11, 1→5

code 10: while(b1){if(b12)continue3;if(b24)continue5;f1()6;if(b37)break8}f2()9;

code 11: while(b1){if(b22)return3;if(b34){if(b45)break6;continue7;}f1()8;}f2()9;

Corollary 2 Suppose ω is the predicate of a while loop with an internal if condition whose
predicate η controls a break, return statement, a chained break predicate, or a chained return
predicate, each labeled ℓ. Then, η controls ω if it also controls a continue statement or a non-
jump last statement in the loop.

Proof. There are two paths from η : [η, ℓ, Pω.follow, End], which continues to End without
passing through ω (Lemma 2), and a second path leading to ω , either via a continue statement
or through the loop’s natural control flow, jumping from its last statement to ω. Since both
conditions in Def. 6 are met, ω→η. ⊓⊔

In Code 12, 1→3 and 1→5.

code 12: while(b1){f()2;if(b13){cnt++4;if(b25)break6;}f1()7;}f2()8;

code 13: while(b11){if(b22){ if(b33)break4;if(b45)break6;f4()7;break8;};};

Corollary 3 Suppose ω is the predicate of a while loop with an internal if condition whose
predicate η controls a break or return statement labeled ℓ. Then, η controls ω if it also controls
a chained continue predicate.

Proof. Since all the paths in the chained continue predicate converge at ω, we can apply the
proof of Corollary 2. ⊓⊔

11

Husni Khanfar

5.6 IF-Break Controls the Follow of a Loop

Theorem 7. Suppose ω is the label of a loop predicate containing an if condition with predicate
η . The relation Pω.follow→η holds if η controls a break statement inside Pω , or a chained break
predicate, and has an internal path within Pω bypassing η and reaching a return statement.

Proof. Suppose the label of the break statement or the chained break predicate is ℓ, and the
label of the return statement is ℓ′. Further, assume that η has two successors, k and k′. Since
η controls the execution of ℓ, it follows that ℓ must post-dominate one of its successors; assume
this is k. This implies that Pω.follow post-dominates k, thereby satisfying Def. 6-A.

Moreover, the predicate η can reach ℓ′ only through its other successor, k′, without exiting
the loop. Therefore, there exists a path [η , k′, ..., End] that does not include Pω.follow. As a
result, Def. 6-B is also satisfied, and we conclude that Pω.follow→η . ⊓⊔

Corollary 4 Suppose there is a loop with predicate label ω containing a return statement labeled
ℓ and an internal if predicate η, which controls a break statement. If η has a path to a continue

statement labeled ℓ′ or to the last statement in the loop, then Pω.follow→η , even if ℓ < η < ℓ′.

Proof. The result follows directly from Theorem 7 by applying the same reasoning to the case
where both a break and a continue statement are present and interact with the return behavior
inside the loop. Therefore, no additional steps are needed. ⊓⊔

In Code 14, 10→2 and 10→4. In Codes 11, the predicate b4 controls f2().

code 14: while(b1)
◦
{if(b12)break3;if(b24)break5;f1()6;if(b37)

•
{if(b48)return9;

•
}
◦
}f2()10;

Corollary 5 Suppose ω is the predicate of a while loop that contains an internal if condi-
tion whose predicate η controls the execution of either a return statement or a chained return
predicate. Additionally, it also controls a break statement or a chained break predicate. Then,
Pω.follow→η.

Proof. By Theorem 7, the claim holds under the same conditions by applying its reasoning to
the current case. ⊓⊔

5.7 Loop Predicates Controlling their Follow Statements

Theorem 8. If ω is the predicate of a while loop that includes a return statement, then
Pω.follow→ω holds.

Proof. The label ω has two successors, one being Pω.follow, satisfying the first condition of Def. 6,
while the second path begins at ω+1. By Lemma 1, a path exists from ω to each statement inside
its loop. An internal path from ω to a return statement within the loop implies a path from its
second successor to End that excludes Pω.follow, satisfying the second condition of Def. 6. Thus,
Pω.follow→ω. ⊓⊔

In Codes 11, and 15, Label 1 controls the execution of f2(). In Code 16, Label 7→Label 2.

code 15: while(b1){ if(b12)break3;if(b24){ if(b35)return6}} f2()7;

code 16: while(b1){while(b02){if(b1)return3;counter++4;}x=55;break6;}f1()7;

12

Syntax-Directed Control Dependence Analysis

6 Data Sets and Flags

In this approach, each PCB maintains seven datasets that the analysis propagates forward from
the first to the last statement in the PCB. The first dataset, Ωint, stores predicates definitively
controlling the immediate next visited statement within the PCB. Two datasets, Eh and Ch,
contain predicates potentially controlling the loop header, while three others, Rf , Cf , and Bf ,
track predicates potentially controlling the loop follow block (Pω.follow). The final dataset, Ωext,
holds predicates that certainly control Pω.follow.

Datasets are divided into two categories: Potential Controlling Predicates (Ch, Eh, Cf , Bf ,
and Rf), comprising predicates potentially controlling either the loop header or loop follow
block by satisfying one property from Def. 6; and Certain Controlling Predicates (Ωint and
Ωext), consisting of predicates definitively controlling specific regions.

The Potential Controlling Predicates datasets are summarized as follows: (I) Eh(Pk) contains
predicates controlling break or return statements, thus satisfying Def. 6-B in relation to the
loop header; (II) Ch(Pk) includes predicates controlling continue statements, potentially con-
trolling the loop header (satisfying Def. 6-A); (III) Bf (Pk) contains predicates controlling break ,
potentially controlling Pω.follow, satisfying Def. 6-A, while their satisfaction of Def. 6-B remains
under investigation; (IV) Cf (Pk) comprises predicates either directly controlling or having paths
to continue statements, potentially controlling Pω.follow, with both properties from Def. 6 still
under verification; and (V) Rf (Pk) tracks predicates having paths to return , satisfying Def. 6-B
regarding Pk.follow.

Each PCB also maintains three flags: FB(Pk), indicating the presence of a break statement;
FR(Pk), marking the presence of a return statement; and FC(Pk), indicating the existence of a
continue statement.

The following subsections detail the visit function invoked for statements of type if, while,
break, return, or continue.

6.1 Events and Actions

This work relies on propagating Potential Controlling Predicates within PCBs to identify or
reject suspected control dependencies. During propagation, various Events occur, such as visiting
a return statement or encountering an if PCB containing a break statement. Some of these
events prompt decisions, referred to as Actions in this context.

The upcoming sections organize this process by grouping Events that trigger specific Actions
for particular datasets. These Events include: VST RET (visiting a return statement), VST BRK

(visiting a break statement), and VST CNT (visiting a continue statement). Additional events
are VST PCB CNT, VST PCB BRK, and VST PCB RET, which refer to visiting placeholders of PCBs
containing a continue , break , or return statement, respectively.

Events signaling termination include: EoI, marking the end of an if condition; EoL, marking
the end of a loop; EoL NR, indicating the end of a loop without a return statement; and EoL R,
signifying the end of a loop containing a return statement.

Event actions are categorized into three types: kill(Eh(Pk)), gen{Eh(Pk)}, and copy{Eh(Pk)}.
The first action clears the dataset Eh(Pk). The second generally establishes a control dependency
where the loop header becomes control dependent on each predicate within Eh(Pk); Lastly, reach-
ing the end of a PCB may result in copying dataset contents into the corresponding dataset of
its parent PCB.

The rules are structured clearly: Events appear on the left, followed by the notation ⊢ and the
associated Action. Typically, detailed descriptions of actions are enclosed within< *>. Finally,
implementation details for each Event ⊢ Action pair are explicitly noted using the notation ▷ ,
pointing to the exact lines in the subsequent algorithms where these actions occur.

13

Husni Khanfar

The notation ”Alg. 2-6” refers to Algorithm 2, Line 6. Specifically, it denotes line 6 within
Algorithm 2.

6.2 Eh - Predicates Exiting Loop and May Control Header of the Loop

This dataset implements Corollary 2. The dataset Eh(Pk) collects all predicates that have a path
to a break or return statement, thereby satisfying Def. 6-B. As the analysis progresses inside
the PCB Pk, if Eh(Pk) encounters a continue statement before being cleared due to the presence
of a branch that prevents the satisfaction of Def. 6-A, then each predicate in this set is considered
to control the header of the loop.

In Code 17, after processing ph(3), Eh(P2) becomes {3}. Upon processing P5, the analysis
clears Eh(P2) and sets Bf (P2) to {5}. Traversing Label 7 and ph(8) leaves Eh(P2) unchanged, as
the predicates in Eh(P2) do not directly control the continue statement at Label 9, but they
have paths to it. At Label 10, the analysis encounters the continue statement, confirming that
Predicate 5 controls Label 1.

Initially, Eh(P2) contains predicates with paths to End excluding Label 1, thus potentially
satisfying Def. 6-B relative to Label 1. Predicate 3 (b3) is removed during the processing of ph(5)
because, despite having a valid path to End, it does not satisfy Def. 6-A as Statement 6 directs
the second successor’s path to End. Visiting P8 does not affect Eh(P2), since P8 neither satisfies
Def. 6-A nor invalidates Def. 6-B at this point. However, at Label 10, the analysis verifies that
Predicate 5 (b4) post-dominates all paths originating from it, thus fulfilling Def. 6-A in addition
to Def. 6-B.

code 17: while(b11)
◦
{if(b22)

•
{if(b33)break4;if(b45)break6;f()7;if(b58)continue9;

continue10;
•
}f1()11;

◦
}f2()12;

In the coming enumeration, we show the results of the propogation of Eh in the form of Event-
to-Action Relationship.

Event ⊢ Action Rules for Eh:

1. VST RET ∨ VST BRK ∨ VST PCB RET ∨ VST PCB IF BRK ⊢ kill(Eh(Pk))< Eh(Pk)=∅ >,
▷ Alg. 4-3, Alg. 5-7, Alg. 6-2, Alg. 7-8, Alg. 8-8, Alg. 8-17.

2. VST CNT ∨ EoL ⊢ gen{Eh(Pk)}< ∀p ∈Eh(Pk),loop(Pk).header→p > ▷ Alg. 3-3, Alg. 5-2,

3. EoI ⊢ copy{Eh(Pk)}< Eh(Pk)⇒Eh(P(Pk)) > ▷ Alg. 7-12, Alg. 8-58, Alg. 8-69.

Reaching the end of a loop, meaning that, with the consideration of Killing Events, no branch
diverts the path from the predicate to the loop’s end. This implies a direct path from one of the
successors of the predicate in Eh(Pk) to loop(Pk).header. At this point, we conclude that each
predicate in Eh(Pk) controls the execution of loop(Pk).header.

In Code 17, if we replace f() with while(b){if(b)return13;}, then this prevents b4 from
controlling Label 1.

6.3 Ch Predicates Controlling Continue May Influence Loop Header

This dataset is designed to enforce Theorem 6. The dataset Ch(Pk) accumulates predicates that
control continue statements. As the analysis advances within Pk, if this dataset encounters a
path leading to a return or break statement, each predicate in Ch(Pk) is considered to control
loop(Pk).header.

14

Syntax-Directed Control Dependence Analysis

In Code 18, P1 = [ph(2), ph(4), 13], and P4 = [ph(5), ph(7), 9, ph(10)]. After processing P2
4,

visiting ph(2) yields Ch(P1) = {2}. Since P4 contains a break statement, visiting ph(4) follows
that 1→2. Furthermore, when the analysis reaches ph(10) within P4, the content of Ch(P4) is
{4,5}. Consequently, visiting ph(10) establishes the control dependencies 1→5 and 1→7.

code 18: while(b11)
◦
{if(b22)continue3;if(b34)

•
{if(b45)continue6;if(b57)continue8;f1()9;

if(b610)if(b711)break12;
•
}f2()13;

◦
}f3()14;

Event ⊢ Action Rules for Ch:

4. VST CNT ⊢ kill(Ch(Pk))< Ch(Pk)=∅ > ▷ Alg. 3-6
5. VST RET ∨ VST PCB RET ∨ VST BRK ∨ VST PCB BRK ⊢

gen{Ch(Pk)}< ∀p ∈Ch(Pk), loop(Pk).header→p >
▷ Alg. 4-5, Alg. 5-4, Alg. 6-7, Alg. 7-6, Alg. 8-7, Alg. 8-15.

6. EoI ⊢ copy{Cf (Pk)}< Ch(Pk)⇒Ch(P(Pk)) > ▷ Alg. 7-22, Alg. 8-63.

6.4 Bf - Predicates Controlling Break May Influence the Loop Follow

This dataset is exploited to enforce Theorem 7. The dataset Bf (Pk) accumulates predicates that
control break statements and chained break predicates. As the analysis proceeds within Pk,
if this dataset encounters a return statement, all predicates within Bf (Pk) are considered to
control loop(Pk).follow.

In Code 19, visiting ph(2) results in predicate 2 being added to Bf (1). Since P4 contains a
return statement, visiting ph(4) establishes the control dependency 14→2. Within P4, visiting
ph(5) results in predicate 5 being added to Bf (4). Similarly, visiting ph(7) adds predicate 7 to
Bf (4). Subsequently, visiting ph(10) establishes the control dependencies 14→5 and 14→7.

code 19: while(b11)
◦
{if(b22)break3;if(b34)

•
{if(b45)break6;if(b57)break8;f()9;

if(b610)return11;
•
}if(b712)return13;

◦
}f2()14;

Event ⊢ Action Rules for Bf :

7. VST CNT ⊢ kill(Bf (Pk))< Bf (Pk)=∅ > ▷ Alg. 4-2.
8. VST CNT ⊢ copy{Bf (Pk)}< Bf (Pk)⇒WL(loop(Pk)) > ▷ Alg. 3-2
9. VST RET ∨ VST PCB RET, EoL R ⊢ gen{Bf (Pk)}< ∀p ∈Bf (Pk), loop(Pk).follow→p >

▷ Alg. 5-9, Alg. 6-5, Alg. 7-16, Alg. 8-57.
10. EoI ⊢ copy{Bf (Pk)}< Bf (Pk)⇒Bf (P(Pk)) > ▷ Alg. 7-27, Alg. 8-70.

6.5 WL - Waiting List in Loop PCB

Suppose that we have the following scenario:

code 20: while(b11)
◦
{if(b22)return3;if(b34)

•
{if(b45)break6;if(b57)continue8;f1()9;

•
}f2()10;

◦
}f3()11;

In Code 20, it is evident that 11→5 due to the existence of two distinct paths: [5,6,11], with
no alternative path diverging from Label 6; and [5,7,8,1,End], which satisfies Def. 6-B.

4 There is no need to confuse P2 with ph(2). Processing P2 means visiting all internal elements of P2,
whereas processing ph(2) refers to studying the effect of the findings inside P2 on its parent, P1.

15

Husni Khanfar

However, consider replacing the statement f1() at Label 9 with a break statement. In this
scenario, Bf (P4) is cleared at Label 9, thus invalidating the control dependency between Label
11 and Predicate 5.

The complexity of this scenario arises from the presence of the continue statement at Label
8. Due to this statement, forward propagation cannot accurately detect preceding return state-
ments appearing earlier in the code, even though these statements remain reachable from the
continue statement.

To address this issue, a specialized dataset, WL(Pk), is introduced at the loop PCB level.
When the analysis encounters a continue statement or a PCB containing a continue state-
ment, all predicates currently in Bf (Pk) are added to WL(Pk). After processing all statements
within the loop, the analysis verifies whether the loop includes any return statements. If such a
statement is found, all predicates stored in WL(Pk) are then considered to control the execution
of loop(Pk).follow.

Applying this approach to Code 20, while processing loop(P3)—corresponding to P1—the
analysis checks for the presence of a return statement by evaluating FR(P1). If a return state-
ment exists, all predicates stored in WL(P1) are determined to control the execution of Label 9
or P1.follow.

6.6 Cf - Predicates Reaching Continue May Influence the Loop Follow

The dataset Cf is created to implement Corollary 4. Cf collects all predicates that have paths
to continue statements to later determine whether they also control a break statement. If this
occurs, then when the analysis reaches the end of the loop, it checks whether the loop contains
a return statement. If it does, then each predicate that controls a break statement and has a
path to a continue statement is considered to control the follow block of the loop.

In Code 21, By tracking the paths, we find that predicates b3, b4, and b5 control the execution
of f2(). Taking b4 as an example, the paths [5,8,9,10,12], [5,8,9,10,11,13], and [5,8,9,10,11,12,13]
show that all paths starting from Label 8 (a successor of Predicate 5) reach Label 13. This
implies that Label 14 post-dominates Label 8, thereby satisfying Def. 6-A . Additionally, Def. 6-
B is satisfied by the path [5,6,7,1,2,3,End].

code 21: while(b11)
◦
{if(b22)return3;if(b34)

•
{if(b45)

⋄
{if(b56)

×
{continue7;

×
}
⋄
}
•
}

f1()8;if(b69)break10;if(b711)break12;break13;
◦
}f2()14;

The dataset Cf shares the same challenge as Bf . The presence of a preceding return state-
ment, which is reachable through a continue, can disrupt the dependency analysis. Upon ex-
amining Cf (Pk), it becomes evident that it satisfies neither Def. 6-A nor Def. 6-B . Specifically,
if a predicate in Cf (Pk) encounters a return statement, it does not control loop(Pk).follow. For
example, In Code 22, the predicate b3 does not control f() (loop(P4).follow) since Predicate 4
never satisfies Def. 6-A with Label 7. However, replacing x=5 with a break statement establishes
a control dependency between b3 and f() due to the two paths [4,6,7] (satisfying Def. 6-A) and
[4,5,1,2,3,End] (satisfying Def. 6-B).

Thus, the primary role of Cf is to determine whether the predicates controlling a continue

statement also control a break statement. If this occurs, the contents of Cf are transferred to
WL, and the analysis continues until the end of the loop. If a return statement is encountered
anywhere within the loop, all predicates stored in WL are considered to control the loop’s follow
block.

code 22: while(b11){if(b22)return3;if(b34)continue5;x=56;}f()7;

16

Syntax-Directed Control Dependence Analysis

Event ⊢ Action Rules for Cf :

11. VST RET ∨ VST CNT ∨ VST PCB RET ∨ VST PCB IF CNT ∨ EoL ⊢
kill(Cf (Pk))< Cf (Pk)=∅ > ▷ Alg. 3-7, Alg. 5-6, Alg. 6-4, Alg. 7-11, Alg. 8-16.

12. VST BRK ⊢ copy{Cf (Pk)}< Cf (Pk)⇒WL(loop(Pk)) > ▷ Alg. 4-4
13. EoI ⊢ copy{Cf (Pk)}< Cf (Pk)⇒Cf (P(Pk)) > ▷ Alg. 7-14, Alg. 8-64

6.7 Rf - Predicates Reaching Return Statement May Control the Loop Follow

This dataset is used to implement Corollary 5. Rf (Pk) collects each predicate that controls a
return statement or a chained return predicate. Later, if any of these predicates are found to
also control a break statement or a chained break predicate, this implies that they control the
execution of loop(Pk).follow.

Since these predicates satisfy Def. 6-B, satisfying Def. 6-A requires them to directly control a
break statement. In turn, any branch from each of these predicates to break must be free from
any jump statement or a PCB containing a jump statement.

code 23: while(b11)
◦
{if(b22)return3;if(b34)return5;while(b46)

•
{cnt++7;if(b58)return9;

•
}

x=110;if(b611)break12;if(b713)break14;break15;
◦
}f2()16;

In Code 23, Predicates 2 (b2) and 4 (b3) do not control f2(), whereas Predicate 6 (b4) does.
This difference arises from the presence of a return statement positioned between predicates b2,
b3, and the subsequent break statement at Label 15. In this scenario, we introduced a sequence
of proxy if statements with break: (if(b)break;if(b)break;...).

The establishment of new dependency relations between predicates in Rf and the loop fol-
low block depends on whether the propagation of Rf encounters a break statement. However,
encountering a statement like if(b)break; neither satisfies Def. 6-A nor disrupts an already
satisfied Def. 6-B; it remains neutral. Similarly, this neutral effect applies to datasets intended to
capture predicates that satisfy Def. 6-B and seek satisfaction of Def. 6-A. Hence, the compound
statement if(b)continue; has a neutral effect on the forward propagation of Eh, and if(b)

break; similarly has a neutral effect on the forward propagation of Cf .

Event ⊢ Action Rules for Rf :

14. VST RET ∨ VST PCB RET ∨ VST CNT ∨ VST PCB CNT ∨ EoL
⊢ kill(Rf (Pk))< Rf (Pk)=∅> ▷ Alg. 3-5, Alg. 5-8, Alg. 6-3, Alg. 7-10, Alg. 8-11, Alg. 8-18

15. VST BRK ⊢ gen{Rf (Pk)}< ∀p ∈Rf ,loop(Pk).follow→p > ▷ Alg. 4-7
16. EoI ⊢ copy{Rf (Pk)}< Rf (Pk)⇒Rf (P(Pk)) > ▷ Alg. 7-13, Alg. 8-59

7 Algorithms

This approach is syntax-directed, using depth-first search (DFS) on the PCB-graph, ensuring
traversal of program structures. When encountering a placeholder for a child PCB (Pk), a new
set of datasets and flags is created in Pk to maintain isolation. The analysis then recursively
explores all elements within Pk, applying appropriate visit functions based on statement types.
Once the child PCB is fully analyzed, control returns to the parent PCB, resuming execution from
where it left off. The datasets and flags in the parent PCB are updated either upon encountering
a placeholder for a child PCB or when processing a jump statement (return, break, continue).

17

Husni Khanfar

Algorithm 1: Main Visit Algorithm

1 VisitStm(ℓ, η, ω)
Data: return

2 k: this integer datatype points to the next label in the program.
3 k= ℓ;
4 if η > 0 then ∀p ∈Ωint(Pη), ℓ→p ;
5 switch ℓ.type do
6 case if:
7 Ωint(Pℓ) = ℓ;
8 k = VisitPCB(ℓ, ω) + 1;
9 if nextLabel.type ̸= else then

10 VisitIf(ℓ, η, ω)
11 else
12 Ωint(Pk) = ℓ;
13 k = VisitPCB(k, ω) + 1;
14 VisitIfElse(ℓ, k, η, ω)

15 break;

16 case while ∨ for:
17 Ωint(Pℓ) = ℓ;
18 k = VisitPCB(ℓ, ω) + 1;
19 VisitWhile(ℓ, ℓ);
20 break

21 case break: VisitBreak(ℓ, η, ω); break ;
22 case return: VisitReturn(ℓ, η, ω); break ;
23 case continue: VisitContinue(ℓ, η, ω); break ;

24 return k

Algorithm 2: Visit PCB

1 VisitPCB(η, ω)
Data:
handler : global or static variable that handles the C file;
counter : number of statements, which assigned to global variable of each new statement ;

2 handler = HandleFile(fileName);
3

4 repeat
5 stmt = ReadStm(fileHander);
6 counter++;
7 stmt.label = counter ;
8 ArrayStm+=stmt ;
9 counter = VisitStm(counter,η,ω);

10 until statement = ”}”;
11 return counter

Although our program representation is based on the PCB-graph, we do not find it necessary
to explicitly construct this data structure. Instead, by reading the statements one by one, we can
determine the beginning and end of each compound statement.

18

Syntax-Directed Control Dependence Analysis

7.1 Notations

Before proceeding, we introduce key notations—ℓ, ω, and η—used across all algorithms. ℓ rep-
resents the currently visited statement, η is the header of the compound statement enclosing ℓ,
and ω is the closest outer loop enclosing Pη. For example, in Code 23, if the currently visited
statement is Label 5, then ℓ = 5, η=4, and ω=1. If ℓ = 7, then η=6, and ω=6.

Additionally, handler is a global variable managing the C file, including intraprocedural
programs. counter tracks the last statement number, and ReadStm reads the next statement
from the buffer.

7.2 Visit Statements

This approach relies on recursively calling visit functions that implement depth-first search. Algo-
rithm 2 presents the procedure that initiates this approach. The function ReadStm reads state-
ments sequentially from the file5 and uses Regular Expression matching to determine whether a
statement is an opening curly brace, while, for, if, else, break, return, continue, or a closing
curly brace. Other statements are processed superficially using a specialized small parser that
identifies their types (e.g., integer declarations, procedure calls, pointer dereferencing) without
deep analysis. However, the primary focus is on determining their tokens and identifying their
controlling predicates. The internal details of this function are beyond the scope of this work,
but it is important to clarify how the Abstract Syntax Tree is bypassed.

Algorithm 1 serves as the core of this approach, invoking the appropriate function for each
statement based on its type. It begins at the procedure header and terminates at its end when the
procedure is closed. For simplicity, we assume each compound statement starts with an opening
curly brace ”{” and ends with a closing curly brace ”}”.

In this solution, all statements are read and stored in an array of objects called ArrayStm.
The variable counter is an integer that tracks the order of statements and predicates in the
source code, with its current value serving as the label of the currently visited statement. For
simplicity, ℓ is treated as an instance representing a statement or predicate. For example, instead
of writing ArrayStm[ℓ].type, we use ℓ.type or simply refer to it as the ”type of ℓ”.

In Line 3, we assign the value of ℓ to k. The variable k is used to determine the return value,
which corresponds to the last statement processed by this procedure. It is also used in the if

case to determine whether the if statement is followed by an else branch. The second line,
Line 4, makes each statement control dependent on the last predicates stored in Ωint(Pη), which
control the follow regions in the parent PCB.

When it comes to jump statements (break , return , continue), each is processed through
a dedicated procedure: VisitBreak, VisitReturns, and VisitContinue, respectively. These
procedures analyze the effect of each corresponding jump statement on the datasets within its
PCB (denoted by Pη), as well as on the datasets of its enclosing loop (denoted by Pω).

Regarding compound statements (if , else , while , for), they are analyzed in two steps.
The first step is handled by VisitPCB, which sequentially explores and visits the internal state-
ments of the new PCB created to represent the compound block, and updates its datasets
according to the internal jumps and branches. The second step involves one of three specific
functions—VisitWhile, VisitIF, or VisitIfElse—each of which evaluates the impact of the
corresponding compound statement on the datasets in its parent PCB (Pη) and its loop (Pω).

The case of if..else requires special handling. In this case, two PCBs are created—Pℓ and
Pk—one for each branch. Thus, VisitPCB is called twice: once for each branch. For the second
branch, which begins with the else keyword, ℓ is considered the first predicate controlling the

5 In the actual implementation, this could be a buffer.

19

Husni Khanfar

statements in its body, even though the PCB itself begins from the else keyword. Afterward,
the procedure VisitIfElse is called.

7.3 Visit continue

Algorithm 3 illustrates the effect of visiting a continue statement with label ℓ, positioned at the
end of the PCB Pη. Lines 9 adds η to Ch(Pη) and Cf (Pη) if no other child predicate within Pη

controls a break or return statement. Line 10 enforces Theorem 5. Finally, since Pη contains a
continue statement, the flag FC(Pη) must be set (Line 11).

Algorithm 3: Visit a Continue Statement

1 VisitContinue(ℓ,η, ω)
2 WL(Pω) += Bf (Pη); Bf (Pη)=∅;
3 ∀p ∈ Eh(Pω), ω→p;
4 Eh(Pη) = ∅;
5 Rf (Pη) = ∅;
6 Ch(Pη) = ∅;
7 Cf (Pη)=∅;
8 if ¬FB(Pη)∧¬FR(Pη) then
9 Cf (Pη) += η; Ch(Pη) += η

10 Ωint(Pη)=∅;
11 FC(Pη) = true ; FC(Pω) = true ;

Algorithm 4: Visit a Break Statement

1 VisitBreak(ℓ,η, ω)
2 Bf (Pη) = ∅;
3 Eh(Pη) = ∅;
4 WL(Pω) += Cf (Pη); Cf (Pη)=∅;
5 ∀p ∈ Ch(Pω), ω→p ;
6 Ch(Pω) = ∅;
7 Ωf (Pη) + = Rf (Pη);
8 if ¬FC(Pη)∧¬FR(Pη) ∧ Pη is if then
9 Eh(Pη) += η; Bf (Pη) += η

10 Ωint(Pη)=∅;
11 FB(Pη)=true ;

7.4 Visit break

Algorithm 4 outlines the steps performed when ℓ corresponds to a break statement. If ℓ is
exclusively controlled by η, then Line 9 adds η to both Bf (Pη) and Eh(Pη). Furthermore, since Pη

contains a break statement, Line 11 sets FB(Pη). Finally, Line 10 clears Ωint(Pη), in accordance
with Theorem 5.

7.5 Visit return

Algorithm 6 outlines the steps performed when the currently visited statement, labeled ℓ , is
a return statement. Since Pη has a return statement, Line 11 sets FR(Pη). Line 9 adds η to
Eh(Pη) and Rf (Pη) if and only Label η controls ℓ.

7.6 Visit while

The primary function of Algorithm 5, VisitWhile, is to update the datasets in the parent PCB,
Pη, based on the internal contents of Pℓ’s datasets. A loop—whether a while or a for—establishes
control dependencies outside itself only if it contains a return statement. Therefore, most of the
statements in this procedure are executed only when the loop contains a return statement.

Line 3 checks for the presence of a return statement inside the loop, and if one is found, it
executes additional steps that affect the datasets in the parent PCB (Pη).

Line 13 enforces Theorems 4, 8, and 2. Once all statements in Pℓ are processed and visited,
Line 14 adds all predicates in Ωf (Pℓ) to Eh(Pη), as each already has a path to End through one
of its successors. Since they control Pℓ.follow, if Pℓ.follow terminates with a jump to the loop
header, each predicate in Ωf (Pℓ) also controls the loop header.

Since Pℓ.follow is a successor of ℓ, their control dependence satisfies Def. 6-A. Moreover, as
Pℓ includes a return, it also satisfies Def. 6-B. Thus, Line 16 adds ℓ to Ωf (Pℓ).

20

Syntax-Directed Control Dependence Analysis

7.7 Visit if

According to Corollary 1, Line 3 checks whether the PCB has a jump statement. If not, it exits
the procedure.

The propagation from child if PCBs to their parents is necessary because, unlike loops,
which have a control flow returning from the last statement to the loop header, the paths and
post-domination relationships of if successors remain unchanged due to the termination of the
if condition. To illustrate this, consider the following example:

code 24: while(b1)
◦
{if(b22)

•
{if(b33)

▽
{if(b44)continue5;f1()6;

▽
}f2()7;

•
}break8;

◦
}f3()9;

Here, we can handle f2() similarly to f1() from b4’s perspective. Thus, the path [4,6,7,8]
exists, and the end of the if conditional statement has no impact, as the transition occurs from
an if statement to its parent, regardless of the parent’s type.

Algorithm 5: Visit a while or for PCB

1 VisitWhileFor(ℓ, η, ω)
2 ∀p ∈ Eh(Pℓ) , ℓ→p;
3 if FR(Pℓ) then
4 ∀p ∈ Ch(Pη), ω→p;
5 Ch(Pη) = ∅;
6 Cf (Pη)=∅;
7 Eh(Pη) = ∅;
8 Rf (Pη) = ∅;
9 Ωf (Pη) += Bf (Pη);

10 Ωf (Pℓ) += ℓ;
11 Ωf (Pℓ) += Bf (Pℓ);
12 Ωf (Pℓ) += WL(Pℓ);
13 Ωint(Pη) = ∅; Ωint(Pη) += Ωf (Pℓ);
14 Eh(Pη) += Ωf (Pℓ);
15 Rf (Pη) += Ωf (Pℓ);
16 Ωint(Pη) += ℓ;
17 FR(Pη)=true ;
18 FR(Pω)=true ;

Algorithm 6: Visit a return Statement

1 VisitReturn(ℓ,η, ω)
2 Eh(Pη)=∅;
3 Rf (Pη)=∅;
4 Cf (Pη)=∅;
5 Ωf (Pη) + = Bf (Pη);
6 Bf (Pη)=∅;
7 ∀p ∈ Ch(Pη), ω→p;
8 Ch(Pη) = ∅;
9 if ¬FB(Pη)∧¬FC(Pη) ∧ ℓ.type is if

then Eh(Pη) += η; Rf (Pη) += η ;
10 Ωint(Pη)=∅;
11 FR(Pη)=true ;

Algorithm 7: Visit if Placeholder

1 VisitIF(ℓ, η, ω)
2 if ¬FB(Pℓ)∧¬FR(Pℓ)∧¬FC(Pℓ) then
3 return
4 Ωint(Pη)= ∅;
5 if FB(Pℓ) ∨FR(Pℓ) then
6 ∀p ∈ Ch(Pη), ω→p;
7 Ch(Pη) = ∅;
8 Eh(Pη) = ∅;

9 if FC(Pℓ) ∨ FR(Pℓ) then
10 Rf (Pℓ)=∅;
11 Cf (Pℓ)=∅;

12 Eh(Pη) += Eh(Pℓ);
13 Rf (Pη) += Rf (Pℓ);
14 Cf (Pη) += Cf (Pℓ) ;
15 if FR(Pℓ) then
16 Ωf (Pη) += Bf (Pη);
17 Eh(Pη) += ℓ;
18 Rf (Pη) += ℓ;
19 FR(Pη) = true ;
20 FR(Pω) = true ;

21 if FC(Pℓ) then
22 Ch(Pη) += Ch(Pℓ);
23 WL(Pω) += Bf (Pη);
24 Cf (Pη) += ℓ;
25 FC(Pη)=true ;

26 if FB(Pℓ) then
27 Bf (Pη) += Bf (Pℓ);
28 Eh(Pη) += ℓ;
29 FB(Pη) = true ;

30 Ωint(Pη) += ℓ;
31 Ωint(Pη) += Ωint(Pℓ) ;
32 Ωf (Pη) += Ωf (Pℓ) ;

21

Husni Khanfar

8 IF-Else Algorithm

Up to this point, the proposed work relies on propagating datasets to incrementally capture
control dependencies by reading statements sequentially. This process involves capturing one of
the dependency properties first, then propagating information to determine whether the second
property is satisfied. This propagation works well with if and while compound statements, as
they always have two successors: one inside the body of the compound statement, and the other
in its follow region. By identifying where the body branch leads, and where the second successor
flows and what it visits, control dependencies can be computed through sequential scanning.

However, this scenario does not apply to if..else statements, because they introduce two
distinct execution paths. One path traverses all the statements in the first branch, while the
other jumps from the if to the else and executes the statements in the second branch. The
predicate is shared between both branches, and the first statement in each branch represents one
of its successors. To check whether the control dependency properties are satisfied, a direct and
explicit examination of both branches is required.

Alg. 8 is internally divided into three sections. The first spans from Line 6 to Line 19, and
shows how visiting a if statement affects the datasets of its parent.

The second section, from Line 20 to Line 22, determines whether the predicate of the if..else
statement controls the header or follow region of its loop. It also evaluates whether the predicate
controls its own follow region. This depends on what exists in its two branches.

The final part, from Line 56 to the end, addresses what should be copied from both branches
to the parent of the if..else statement. Although it is possible to summarize the algorithm,
we chose to retain its full structure to make it easier to understand.

In this section, we focus primarily on the second part, as the first and third parts are already
covered in Section 6.

The lines from 20 to 22 state that ℓ→Pω.header if the predicate ℓ of a if..else statement
exists in the Ch set of the PCB for one branch and reaches a break or return statement in the
other branch. This satisfies Theorem 6.

code 25: while(b1)
◦
{if(b22)

×
{f1()3;if(b14)continue5;continue6;

×
}

else7
•
{if(b28)

⋄
{f2()9;break10;

⋄
}
•
}
◦
}f3()11;

In Code 25, 1→2 holds because Label 2 has two successors: 3 and 7, where Label 1 post-
dominates Label 3 but does not post-dominate Label 7.

In Alg. 8. Line 20, it is worth noting that the dataset Ch contains the predicates that control
either individual continue statements or chained continue predicate.

Lines 23 and 24 establish a control dependence relation Pω.follow→ℓ if ℓ exists in the Bf

dataset in one of the two branches and has a path to a return statement in the second branch.
The predicate ℓ exists in Bf if it controls a break statement or a chained break predicate.

Lines from 25 to 30 add ℓ to Eh(Pη) if one of the branches of the if..else statement contains
either a break or\and a return statement, and the other branch contains neither.

A natural question that might arise is: what happens if the second branch contains a continue
statement? This scenario is handled in Lines 20 to 22.

The Cf set is designed to collect predicates that control both continue and break statements.
If this occurs, the contents of Cf are copied into WL to wait until the end of the loop event
is reached. This procedure aligns with the Event–Action relationship described in Event#11
(page 17), where visiting a return or continue statement clears Cf . Lines 32 and 36 implement
these events by testing the two branches. If one of the branches Pℓ contains a continue statement
and the second branch Pk contains a return or continue statement, then it removes ℓ from
Cf (Pℓ) (Line 32). The same test is applied to the second branch Pk(Line 36).

22

Syntax-Directed Control Dependence Analysis

In Event#8 (Page 17), Bf is copied into WL(Pω) if it encounters a continue statement. This
applies to both branches of a if..else statement. Lines 34 and 38 implement this by adding ℓ
to WL(Pω) if one of the branches contains a continue statement while the other includes ℓ in
its Bf .

Lines 40 and 46 implement Event 15 (page 17), while Lines 44 and 50 implement Event 14
(page 17) at the level of the two branches within the currently visited if..else statement.

Line 51 implements Event#1(Page 14). Line 54 enforces Theorem 3.

Algorithm 8: Visit if..else

1 VisitIfElse(ℓ, k, η, ω)
2 if ¬FB(Pℓ)∧¬FR(Pℓ)∧¬FC(Pℓ)∧
3 ¬FB(Pk)∧¬FR(Pk)∧¬FC(Pk) then
4 return
5 Ωint(Pη)= ∅;
6 if FB(Pℓ) ∨FB(Pk) then
7 ∀p ∈ Ch(Pη), ω→p; Ch(Pη) = ∅;
8 Eh(Pη) = ∅;
9 Ωint(Pℓ) = ∅;

10 if FC(Pℓ) ∨ FC(Pk) then
11 Rf (Pℓ)=∅;
12 Cf (Pℓ)=∅;
13 Ωint(Pℓ) = ∅;

14 if FR(Pℓ) ∨FR(Pk) then
15 ∀p ∈ Ch(Pη), ω→p; Ch(Pη) = ∅;
16 Cf (Pη) = ∅;
17 Eh(Pη) = ∅;
18 Rf (Pη) = ∅;
19 Ωint(Pℓ) = ∅;

20 if (ℓ∈Ch(Pℓ)∧(FB(Pk)∨FR(Pk)))∨
21 (ℓ∈Ch(Pk)∧(FB(Pℓ)∨FR(Pℓ))) then
22 ω→ℓ
23 if ℓ ∈Bf (Pℓ)∧FR(Pk) then Ωf (Pℓ)+=ℓ;
24 if ℓ ∈Bf (Pk)∧FR(Pℓ) then Ωf (Pω)+=ℓ;
25 if (FB(Pℓ)∨FR(Pℓ)) then
26 if ¬FB(Pk)∧¬FR(Pk) then
27 Eh(Pη)+=ℓ

28 if FB(Pk)∨FR(Pk) then
29 if ¬FB(Pℓ)∧¬FR(Pℓ) then
30 Eh(Pη)+=ℓ

31 if FC(Pℓ) then
32 if FC(Pk)∨FR(Pk) then Cf (Pℓ)-=ℓ ;
33 else Cf (Pℓ)+=ℓ ;
34 if ℓ∈Bf (Pk) then WL(Pω)+=ℓ ;

35 if FC(Pk) then
36 if FC(Pℓ)∨FR(Pℓ) then Cf (Pk)-=ℓ ;
37 else Cf (Pk)+=ℓ ;
38 if ℓ∈Bf (Pℓ) then WL(Pω)+=ℓ ;

39 if FR(Pk) then
40 if ℓ∈Bf (Pℓ) then Ωf (Pℓ)+=ℓ ;
41 else
42 if ¬FC(Pℓ)∧¬FR(Pℓ) then
43 Rf (Pk) += ℓ
44 else Rf (Pk) -= ℓ ;

45 if FR(Pℓ) then
46 if ℓ∈Bf (Pk) then Ωf (Pk) += ℓ ;
47 else
48 if ¬FC(Pk)∧¬FR(Pk) then
49 Rf (Pℓ) += ℓ
50 else Rf (Pℓ) -= ℓ ;

51 if (FB(Pℓ)∨FR(Pℓ))∧(FB(Pk)∨FR(Pk))
then Eh(Pℓ) -= ℓ; Eh(Pk) -= ℓ; ;

52 if (FB(Pℓ)∨FR(Pℓ)∨FC(Pℓ)) ∧
53 (FB(Pk)∨FR(Pk)∨FC(Pk)) then
54 Ωint(Pℓ) -= ℓ; Ωint(Pk) -= ℓ;
55 flagDual=true ;

56 if FR(Pℓ) ∨FR(Pk) then
57 Ωf (Pη) += Bf (Pη);
58 Eh(Pη)+=Eh(Pℓ); Eh(Pη)+=Eh(Pk);
59 Rf (Pη)+=Rf (Pℓ);Rf (Pη)+=Rf (Pk);
60 if ¬flagDual then Eh(Pη)+=ℓ;

Rf (Pη)+=ℓ; ;
61 FR(Pℓ)=true ;

62 if FC(Pℓ) ∨FC(Pk) then
63 Ch(Pη)+=Ch(Pℓ); Ch(Pη)+=Ch(Pk);
64 Cf (Pη)+=Cf (Pℓ); Cf (Pη)+=Cf (Pk);
65 WL(Pω) += Bf (Pη)
66 if ¬flagDual then Cf (Pk) += ℓ;
67 FC(Pℓ)=true ;

68 if FB(Pℓ) ∨FB(Pk) then
69 Eh(Pη)+=Eh(Pℓ);Eh(Pη)+=Eh(Pk);
70 Bf (Pη)+=Bf (Pℓ); Bf (Pη)+=Bf (Pk);
71 if ¬flagDual then Eh(Pk) += ℓ;
72 FB(Pℓ)=true ;

73 Ωint(Pη) += (Ωint(Pℓ)+Ωint(Pk));
74 Ωf (Pη) += (Ωf (Pℓ)+Ωf (Pk));

23

Husni Khanfar

9 Experimental Evaluations

File Size Return Stmts Break Stmts Continue Stmts If Stmts While Stmts Loop Depth

1K 42 84 78 249 86 7
5K 137 556 402 1,279 410 7
10K 272 1,080 884 2,572 846 7
20K 546 2,034 1,626 4,958 1,729 7
50K 1,462 5,185 4,190 12,624 4,236 7
75K 2,087 7,794 6,358 18,882 6,320 7
100K 2,539 8,372 7,751 22,417 8,668 7
150K 4,103 15,884 12,868 38,178 12,455 7

Table 1: Structural characteristics of generated test files.

In this section, we compare the performance of two methods for computing control dependen-
cies: the state-of-the-practice method, which relies on control flow graphs and post-dominator
trees, and our newly proposed approach, which utilizes control-flow equations. The experiments
were conducted on a machine equipped with a 13th Gen Intel(R) Core(TM) i7-13,700HX pro-
cessor (2.10 GHz) and 32 GB of RAM (31.6 GB usable). Both methods were implemented under
identical conditions to ensure fairness. Specifically, both implementations utilized vectors as con-
tainers, maintained an array-of-structures memory layout, and operated under the same processor
affinity and task priority (REALTIME PRIORITY CLASS). Additional optimizations were also
applied to the standard method, such as pre-reserving vector capacities when constructing basic
blocks. The test files used in these experiments were generated automatically. Each file represents
an intraprocedural program, meaning that it contains only one procedure. Therefore, it is impor-
tant to consider not only the file size but also structural aspects such as the number of return,
break, continue, if, and while statements, as well as the depth of conditional statements
and loops. These factors influence control dependencies and, consequently, the performance of
the evaluated methods. Table 1 provides an overview of these structural characteristics across
different file sizes.

Table 2: Execution time and Memory usages comparisons (Transposed)
Metric 1K 5K 10K 20K 50K 75K 100K 150K

New Method (µs) 155 457 801 1,510 3,571 5,311 6,666 10,399
Standard Method (µs) 309 1,651 3,989 11,871 56,632 118,944 176,709 448,733

Speedup Factor 1.99 3.61 4.98 7.86 15.87 22.40 26.52 43.16
New Method (KB) 3,480 4,132 4,912 6,504 11,256 15,108 18,824 26,716

Standard Method (KB) 4,076 5,548 6,144 8,784 14,980 20,384 25,460 36,996
Memory Reduction (%) 14.6% 25.5% 20.1% 25.9% 24.8% 25.9% 26.0% 27.8%

9.1 Execution Time & Memory Usage Comparisons

Table 2 presents the execution times (in microseconds) for both methods across various file
sizes. The results indicate that the new method consistently outperforms the standard approach,
demonstrating significant speed improvements, particularly for larger file sizes.

24

Syntax-Directed Control Dependence Analysis

Table 2 shows the peak working set size (in KB) for both methods. Our proposed method
not only runs faster but also consumes less memory than the standard approach, further demon-
strating its efficiency.

9.2 Discussion

The standard method’s execution times behave exponentially when the procedure size increases.
This behavior arises from the necessity of constructing a large data structure to represent the
nodes and flows of the control flow graph (CFG) and the post-dominator tree. This escalation is
linked to enhanced memory caching and paging, contributing to latency and hardware limitations.

In contrast, the new method exhibits linear performance. This efficiency is attributed to four
main reasons. First, its time complexity is strictly O(N), ensuring that each statement is visited
only once. Second, it does not construct any graph, avoiding the need to reserve and cache large
memory blocks or spend time decoding and accessing memory locations. Although the philosophy
of this work is based on the PCB graph, it does not explicitly build it. Instead, the natural
alignment between the source code and the PCB graph enables the algorithms to replace graph
construction with recursive procedure calls for each inner loop or conditional construct. Third,
the new approach efficiently manages control flow by quickly creating and deleting datasets. This
lightweight mechanism minimizes memory reservations and reduces latency. Lastly, the analysis
method used to form and delete datasets for each compound statement enables dataset sharing,
reducing the need to create unique datasets for each instance. This strategy significantly improves
execution times and lowers memory usage.

In taking the standard method readings, this work deducts the time necessary to build the
ASTs from the execution times. Additionally, it constructs Post-dominator trees over their cor-
responding Control Flow Graphs instead of treating them as two separate data structures. Con-
sequently, these execution times reflect the cost of constructing a single graph compared to the
three required in the classical method. As a result, we inadvertently biased the outcomes in favor
of the classical method.

10 Related Work & History

The first attempt to develop a syntax-directed method for computing control dependencies was
made by Ballance and Maccabe in 1992 in their work [11]. Harrold et al. later published two
similar studies for the same purpose in 1993 [10] and 1996 [12]. In her second study, Harrold
pointed out mistakes in the work of Ballance and Maccabe, while Han and Chen [13] later
identified errors in Harrold’s first study. In [12], Harrold’s method relies on two definitions and
two theorems to determine the predicates that control statements.

The first notable aspect of this work is its focus on simple cases, specifically those with no
more than two jump statements within while loops. This simplicity is evident in the provided
examples. Secondly, while the work presents a lengthy algorithm, it does not directly implement
the theorems. Instead, it primarily displays the mathematical notations within the algorithm
without explicitly applying them. Furthermore, the presentation lacks concrete examples that
illustrate complex interactions between jump statements and predicates. Nevertheless, our focus
here will remain on its theoretical background.

At the outset, Harrold defines the term predicate path, which is a sequence of predicates∏
= {Pn, ..., P1} where ∀Pi, Pi+1 ∈

∏
, Pi→Pi+1 holds.

Subseuqnetly, it defines the control dependence negation of
∏
, denoted ¬

∏
, is expressed as the

following disjunction: (Pn ∧Pn−1 ∧ ...∧Pwp−1 ∧¬Pwp)∨ (Pn ∧Pn−1 ∧ ...∧¬Pwp−1)∨ ...∨ (¬Pn)

25

Husni Khanfar

where Pwp
6 is the first while predicate in the sequence from Pn to P1.

Harrold then denotes the conjunction and disjunction of sets of predicate paths using the nota-
tions ⊗ and ⊕, respectively.
Subsequently, she introduces Theorem 2, which determines the control dependencies for a specific
statement S1 as follows:
If S is a while loop with predicate P and contains m jump statements, each controlled by
predicate paths

∏
, then the predicates controlling S.follow are determined based on the following

cases:

– Case 1: if the jump statements do not include return statements, then there is no predicate
controls S.follow.

– Case 2: If the jump statements consist of either return and continue statements, then S.follow
is control dependent on ⊗A, where A = {¬

∏
i |

∏
i is associated with some Ti that is a return

statement}.
– Case 3: If there are jump statements, including both return and break statements, then

S.follow is control dependent on ⊗A ∨ ⊕B, where: A = {¬
∏

i |
∏

i is associated with some
Ti that is a return statement}, and B = {

∏
j |

∏
j is associated with some Tj that is a break

statement}.

This work explicitly states that it entirely disregards predicates enclosing continue statements
when computing the control dependencies for S.follow. However, this is entirely incorrect. For
instance, in Code 26, b4 controls the execution of stm2, despite the fact that it controls a
continue statement.

code 26: while(b1){ if(b22)return3;

if(b3){if(b44)continue5;if(b56)break7;break;}stm18; }
stm29;

We sought a deeper understanding of how this theorem operates by analyzing its implementation.
However, the implementation itself simply reiterates the same notations used in the theorem.
Nevertheless, when analyzing Code 8 and Code 27, we observe that, according to Harrold’s
theorem, they yield identical results. This, however, is incorrect. Specifically, in Code 8, we find

that f2()
cd−→b1, whereas this is not the case in Code 27.

code 27: while(b1){if(b12)return3;stm1} f1()4;

11 Conclusion

Our overarching research question is: ”How can control dependencies be computed in structured
programs without constructing any type of graph?” The key in answering this relies on tracking
the two properties of control dependence relation separately through datasets associated with
each compound statement. Based on this methodology, two key requirements must be met: the
first is to visit each statement only once, and the second is to avoid storing any data beyond its
immediate use, which is achieved by discarding the datasets of a compound statement once it is
exited.

In comparing the proposed approach with the classical method—both designed for computing
control dependencies in intra-procedural programs—we observe that the classical method treats
all nodes equally, with analysis determined solely by control flows. It addresses this problem
from a single dimension, focusing on post-domination facts, and attempts to resolve it through

6 Since n− 1 < n, we believe the author intended to refer to Pw+1 instead.

26

Syntax-Directed Control Dependence Analysis

multiple stages, involving three layers of graphs, where each layer builds upon its predecessor.
Consequently, while its algorithms are simple, they introduce significant computational overhead.

On the other hand, the proposed approach employs a syntax-directed method that successfully
transforms combinations of jump and conditional statements from a post-domination perspective
into a syntax-based representation. It achieves this by capturing various combinations of jumps
and predicates through the creation of distinct datasets for each conditional statement or loop.
The contents of these datasets are updated through a function that kills and generates dataset
contents, which is invoked when visiting each predicate or jump statement. Although the primary
philosophy behind these datasets is to create them at the beginning of each conditional statement
or loop and remove them at the end, using a fixed number of datasets—without exceeding a
certain limit—significantly enhances its performance.

Limitations or uncovered cases? This might be a philosophical question. However, the pro-
posed approach in this work resolves the control dependence problem by manipulating a numerous
number of different cases both individually and together. Individually, although the algorithm
integrates different sets and flags, each subset is dedicated to handling specific types of cases.
Together, they do not affect each other but share the same processing mechanism within the
same procedures. Given the scope (structured code), the covered cases, and extensive experi-
mental evaluations, we confirm that this approach does not currently have limitations. However,
in the future, unresolved cases may emerge, though I believe this is unlikely. That said, I should
emphasize that the included algorithms have undergone extensive testing.

This type of work requires setting up very fine configurations, which is done once but needs
careful handling, as demonstrated in the presented algorithms. Any fault can produce a large
number of errors. This presents a trade-off between using simple algorithms that operate in
multiple stages, each accumulating results in memory, and employing a very fast solution for
those who require such an approach.

The experimental evaluations demonstrate that the proposed syntax-directed approach yields
correct results, exhibits scalability, and outperforms the classical approach. It achieves a perfor-
mance improvement ranging from 2 to approximately 50 times that of the standard method.

Future work could explore optimizing the approach by reducing the number of datasets and
minimizing the number of equations required when analyzing each jump or placeholder associated
with a conditional statement or loop.

27

Husni Khanfar

References

1. Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in a software develop-
ment environment. In ACM Sigplan Notices, pages 177–184. ACM, 1984.

2. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its
use in optimization. In ACM Transactions on Programming Languages and Systems (TOPLAS),
pages 319–349, 1987.

3. Ganesan Ramalingam. On loops, dominators, and dominance frontiers. ACM transactions on Pro-
gramming Languages and Systems, 24(5):455–490, 2002.

4. Keshav Pingali and Gianfranco Bilardi. Optimal control dependence computation and the roman
chariots problem. Technical report, Cornell University, 1997.

5. Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 19(4):557–567, 1997.

6. Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing
control regions in linear time. Technical report, Cornell University, 1994.

7. Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto statements. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(4):1097–1113, 1994.

8. Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow. In International
Workshop on Automated and Algorithmic Debugging, pages 206–222. Springer, 1993.

9. Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program slicing for safety-
critical systems. In Ada-Europe International Conference on Reliable Software Technologies, pages
50–65. Springer, 2015.

10. Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. Efficient construction of program depen-
dence graphs. ACM SIGSOFT Software Engineering Notes, 18(3):160–170, 1993.

11. Robert A. Ballance and Arthur B. Maccabe. Program dependence graphs for the rest of us. Technical
report, University of New Mexico, 1992.

12. Mary Jean Harrold and Gregg Rothermel. Syntax-directed construction of program dependence
graphs. Technical Report OSU-CISRC-5/96-TR32, 1996.

13. Zhe Han and Shihong Chen. A novel algorithm for construction control dependence subgraph. In
2009 International Conference on Multimedia Information Networking and Security, volume 1, pages
158–162. IEEE, 2009.

14. Husni Khanfar and Björn Lisper. Enhanced PCB-based slicing. In Fifth International Valentin
Turchin Workshop on Metacomputation, page 71, 2016.

15. Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and Matthew B
Dwyer. A new foundation for control dependence and slicing for modern program structures. ACM
Transactions on Programming Languages and Systems (TOPLAS), 29(5):27, 2007.

16. Husni Khanfar, Björn Lisper, and Saad Mubeen. Demand-driven static backward slicing for un-
structured programs. Technical Report MDH-MRTC-324/2019-1-SE, School of Innovation, Design
and Engineering. Malardalen University, May 2019.

17. Husni Khanfar. Computing on-the-fly the relevant program flows to a control dependency. Techni-
cal Report MDH-MRTC-334/2021-1-SE, School of Innovation, Design and Engineering. Malardalen
University, April 2021.

18. Husni Khanfar. Overlapping Flows. Number MDH-MRTC-349/2024-1-SE. Mälardalen Real-Time
Research Centre, Mälardalen University, February 2024.

28

