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Abstract. Digital twins are becoming powerful tools in industrial appli-
cations, offering virtual representations of cyber-physical systems. How-
ever, verification of these models remains a significant challenge due to
the potentially large datasets used by the digital twin. This paper in-
troduces an innovative methodology for verifying neural network-based
digital twin models, in a black-box fashion, by integrating model checking
into the process. The latter relies on defining and applying system-level
contracts that capture the system’s requirements, to verify the behavior
of digital twin models, implemented in Simulink. We develop an auto-
mated solution that simulates the digital twin model for certain inputs,
and feeds the predicted outputs together with the inputs to the contract
model described as a network of timed automata in the UPPAAL model
checker. The latter verifies whether the predicted outputs fulfill the spec-
ified contracts. This approach allows us to identify scenarios where the
digital twin’s behavior fails to meet the contracts, without requiring the
digital twin’s design technicalities. We apply our method to a boiler sys-
tem case study for which we identify prediction errors via contract ver-
ification. Our work demonstrates the effectiveness of integrating model
checking with digital twin models for continuous improvement.

Keywords: Digital Twin - Model Checking - UppAaAL- Neural Networks
- Simulink

1 Introduction

The emergence of Industry 4.0 has propelled Digital Twins (DT) to the forefront
of industrial digitalization, offering virtual representations of cyber-physical sys-
tems that facilitate precise simulations, analysis, and control [19]. As industrial
systems grow in complexity, ensuring the reliability and correctness of these DT
becomes crucial.

This work is a part of the Dynamic and Robust Distributed Systems (D-
RODS) project aiming to develop an adaptable and dependable framework for
the implementation and operation of DT, tackling issues in industrial digitaliza-
tion including system integration, performance enhancement, and compatibility
with legacy systems [8,17]. In the current study, we focus on the Verification and
Validation (V&V) of Neural Network-based Digital Twins (NNDT) models using
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model-checking techniques. NNDT have the potential to predict system behav-
ior, conduct real-time tests, and identify optimization opportunities. However,
their effectiveness depends on their ability to represent and accurately respond
to real-world conditions [7].

Recent advancements in model-driven engineering, such as the CoCoSim
framework, have demonstrated the value of integrating formal verification tech-
niques with model-based design, especially for multi-periodic discrete systems [3].

Our research applies a similar concept to the domain of DT, proposing
a novel approach that employs model checking to verify monotonicity, func-
tional, and infrastructure contracts specified for black-box NNDT. We propose
a methodology for systematically verifying the behavior of DT models imple-
mented in Simulink by defining system contracts, as networks of UPPAAL timed
automata [1]. We present an automated solution that connects a simulation en-
vironment with model checking, allowing for the continuous validation and im-
provement of NNDT models. Our approach detects situations where the NNDT
generates incorrect outcomes.

Due to their dynamic nature and complex interactions with cyber-physical
systems, verifying DT models is challenging. Dahmen et al. emphasize the im-
portance of systematic methods to verify and validate DT models [5], and pro-
pose an approach that breaks down the verification problem into smaller, more
manageable components. This research aligns with our methodology of using
(sub-)system contracts to verify specific aspects of DT behavior.

Given the importance of ensuring the correctness of DT behavior, our re-
search aims to address the following research question: RQ: How can we design
an automated solution to model check a black-box NNDT model?

To answer it, this paper presents a contract-based approach for verifying
black-box NNDT models in UPPAAL. The solution simulates the Simulink NNDT
model for certain inputs, and feeds the predicted outputs together with the in-
puts to the contract model described as a network of timed automata in the
UPPAAL model checker. The latter verifies if the predicted outputs fulfill the
specified contracts. In brief, our contributions are as follows:

— Model-Checking-based Methodology: We propose a methodology that uses
contracts modeled as UPPAAL timed automata, and employs model checking
to verify the correctness of black-box NNDT.

— System Contract Implementation: We define a systematic approach for mod-
eling system contracts that specify expected behaviors, enabling precise ver-
ification of model outputs against system requirements.

— Practical Validation: Our approach is illustrated through a burner-boiler
system case study, showcasing its effectiveness on an industrial application.

Our approach facilitates the identification of scenarios where the DT’s be-
havior fails to meet the contracts, without requiring knowledge of the model’s
internal structural and functional details.

The remainder of this paper is organized as follows. Section 2 provides the
necessary background information. Section 3 details our methodology for verify-
ing NNDT models using contract-based model checking. Section 4 describes our
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case study of a burner-boiler system, including the DT model implemented in
Simulink, as well as the system’s contracts. Section 5 presents the implemen-
tation of contracts in UPPAAL, for model checking, and Section 6 discusses the
verification results. Finally, Section 7 presents and compares to relevant related
work, before Section 8 concludes the paper, summarizing our contributions and
discussing potential lines of future work.

2 Preliminaries

This section presents the background information necessary to understand the
concepts and methodologies employed in our study.

2.1 The D-RODS Approach

The D-RODS project, proposed a cutting-edge approach for development and
operation of DT. This innovative framework aims to address the complexities
inherent in industrial digitalization by integrating artificial intelligence (AI) and
formal verification techniques.

Context: Physical (CP) represents the physical components including ma-
chineries and controllers.

Context: Learning (CL) layer (Fig.1a)) focuses on creating DT models through
unsupervised learning. These models are derived from extensive data histories
and existing domain expertise.
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Fig. 1: D-RODS approach details

Context: Functionality (CF) and Context: Infrastructure (CI) are simi-
lar layers (Fig.1b, ¢), each containing Al and V&V components. These contexts
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supervise and enhance the development and execution of complex DT, facilitat-
ing continuous learning, optimization, and behavior evaluation.

At its core, D-RODS seeks to unite DT, AI, and V&V technologies in a novel
architectural setup. This integration aims to increase the trustworthiness of Al
approaches through formal verification and analysis while optimizing operations,
resource utilization, and power consumption. The framework is designed to sup-
port high levels of autonomy by ensuring the accuracy and efficiency of employed
models through continuous learning and verification.

D-RODS is committed to improving system performance forecasting and
optimizing resource allocation in the field of AI. The project also aims to inte-
grate formal verification and runtime testing to ensure the accuracy of devel-
oped models and continuously monitor operational correctness. Through these
advancements, D-RODS aims to advance DT technology, offering a comprehen-
sive framework that addresses the challenges of complex industrial systems while
promoting efficiency, reliability, and adaptability.

2.2 UprprAAL Timed Automata

Model checking is a formal verification technique that systematically and exhaus-
tively verifies whether a system model meets specified requirements. UPPAAL [1]
is a state-of-the-art model checker designed for modeling, verification, and sim-
ulation of distributed systems. Its modeling framework is based on Timed Au-
tomata (TA), which extends traditional finite-state machines by incorporating
real-valued clocks. These clocks allow for the precise timing of events, enabling
the modeling of systems where timing is critical.

In UpPPAAL, the concept of TA is further enhanced through the use of Up-
PAAL Timed Automata (UTA). UTA introduces discrete data variables, such as
integers and Boolean values, which can act as guards or expressions to control
transitions between states. Additionally, UTA supports specifications in the C
programming language, facilitating the observation and control of the model’s
discrete states.

A UTA can be formally defined as a tuple: (L,ly, Cp,V, E, I}, where: L is a
finite set of locations in the automata model, [, represents the initial location,
Chr = Cp! U C17 denotes a set of channels for communication, with Cy! and C}?
representing sending and receiving channels, respectively [14]. V includes a set
of data variables and clocks, E consists of edges connecting locations, I specifies
invariants that must hold true for certain expressions.

UPPAAL’s ability to model and verify real-time systems makes it particu-
larly valuable in safety-critical domains. The tool offers a user-friendly graphi-
cal interface for designing models and simulating their behavior, along with a
command-line interface for efficient verification processes [15].

Fig 2(a) shows a network of UTA modeling a simple lamp and its user [16].
The lamp has three locations: off, low, and bright. If the user presses a button,
i.e., synchronizes with the press? then the lamp is turned on. If the user presses
the button again, the lamp is turned off. However, if the user is fast and rapidly
presses the button twice, the lamp is turned on and becomes bright. The user
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press!

(a) Lamp (b) User

Fig. 2: The simple lamp example.

model is shown in Fig 2(b). The user can press the button randomly at any time
or even not press the button at all. The clock y of the lamp is used to detect if
the user is fast (y < 5) or slow (y >=5).

The contracts (queries in UPPAAL) to be verified by model checking on the
resulting network are specified in a decidable subset of (Timed) Computation
Tree Logic ((T)CTL). In this paper, we verify (T)CTL queries of the following
kinds (p is a state property): (i) Reachability: E { p - the query evaluates to true
if there exists a path where p eventually holds, and (ii) Invariance: AOp - the
query evaluates to true if (and only if) every reachable state satisfies p, in other
words, for all paths p always holds.

3 Proposed Methodology

In this section, we describe our methodology for verifying NNDT models in a
black-box fashion, by integrating model checking into the process.

3.1 Digital Twin Model as a Neural Network

The starting point of our methodology is a black box NNDT model, implemented
in Simulink (in this paper). However, the approach can be applied to other mod-
eling frameworks, straightforwardly. The NNDT serves as a virtual representa-
tion of the cyber-physical system, continuously updated with real-time data to
mirror its current state and behavior.

The black-box nature of this neural network-based model allows us to capture
complex, non-linear relationships within the system without requiring detailed
knowledge of its internal structure. This approach provides flexibility and accu-
racy in representing the system’s behavior across various operating conditions.
The inputs and outputs form the basis for our subsequent contract verification
process, allowing us to assess the NNDT’s performance against predefined sys-
tem contracts.

3.2 Contract Model Development

We develop a comprehensive contract model using UTA, and provide contract
verification in UPPAAL. These contracts capture the system’s requirements and
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Fig. 3: Methodology

serve as a formal specification of the expected behavior of the NNDT. We cate-
gorize the contracts into three main types:

— Monotonicity Contracts: These contracts are designed to verify that the out-

put of the NNDT behaves monotonically with respect to certain inputs. This
means that if an input’s value increases, the NNDT’s output value should
also increase, and vice versa. This property is crucial in many industrial
applications where a predictable relationship between inputs and outputs is
expected.

Functional Contracts: These contracts specify the expected functional behav-
ior of the digital twin, defining relationships between inputs and outputs that
must be maintained throughout the operation of the model. These contracts
ensure that the digital twin follows the intended operational specifications.
Infrastructure Contracts: These contracts focus on the operational aspects
of the digital twin, such as response times, resource usage, and system stabil-
ity. These contracts ensure that the digital twin operates within acceptable
performance limits.

Contracts for Neural Networks-based Digital Twins (NNDT). In the
following, we define our notion of NNDT contract, as used in this paper.

Definition 1 (NNDT Contract). Let N : R™ — R™ be a digital twin repre-
sented by a neural network, mapping an input vector x € R™ to an output vector

y € R™. We define the assume-guarantee contract for the digital twin, as the
pair (A, G), as follows:

— Assumption (A): We assume that the input and output of the digital twin at

time t, denoted as xz(t), and y(t), respectively, are represented by a moving
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average over the last m time steps (m is a constant that depends on the
application), to mitigate the effects of inaccurate sensing, and predictions,
respectively:

&(t) =

x(t — i), (1)

i=1

where Z(t) is the stabilized input, and:
gty = — > y(t—1i), (2)

where §(t) is the stabilized output. To these cross-cutting assumptions (they
hold for all contracts), we add predicate p that captures the requirements on
inputs (t).

— Guarantee (G): A predicate q that captures the NNDT’s expected output
behavior. As an example, a monotonicity contract that states that, if the
input T increases component-wise, then the output of the neural network,
N (%), should also increase component-wise, can be expressed formally as
follows (similarly, for the decreasing case):

(V&, 2" e R". & < 7"), N(2) I N(2)) (3)

Here, < denotes component-wise inequality (that is, inequality that is applied
individually to each entry, which can be the average value over m previous
ones, as explained above). This ensures that the neural network maintains
monotonicity and avoids erratic behavior in response to changes in input.

The semantics of the (A, G) contract of Definition 1 is given in terms of UPPAAL
timed automata (UTA), as follows.

Definition 2 (Semantics of NNDT Contracts). A contract for a neural-
network-based digital twin is a pair (A, G), where A = ||;UTAa, represents the
network of i # 0 assumption UTA, and G = ||;UT Ag, is the network of
j # 0 guarantee UTA. The semantic contract is then defined by the parallel
composition Al|G.

3.3 Role of Contracts in Verification

The contracts mentioned above play a critical role in the verification process
because they set clear expectations for how the digital twin should behave. Dur-
ing the model-checking phase, we compare the outputs predicted by the NNDT
model to these contracts. If the outputs do not meet any of the contracts, it
shows that there might be a problem with how the model is working.

By using these contracts in a structured way, we can ensure that the digital
twin meets its required functions and follows the necessary rules for operation.
This helps to improve the reliability and safety of the system that it represents.



8 F. Author et al.

Verifying Satisfaction of NNDT Contracts. In our approach, the verifica-
tion of NNDT contracts reduces to model checking the UTA parallel composition
Al||G of Definition 2, against invariance properties of the form A q, where ¢ is
the predicate that models the guarantee, per component. As sometimes it proves
faster, we can also check reachability properties of the form E <> —q, where a
witness trace returned by UPPAAL identifies a breach of contract.

3.4 Automated Verification Process

We develop an automated solution to bridge the gap between the Simulink-
based NNDT and the UPPAAL contract model. This solution consists of the
following steps:

— Simulation Ezecution The automated system triggers simulations of the DT
model in Simulink across various input scenarios.

— Data Extraction The system captures the text output data generated by the
Simulink model during these simulations.

— Contract Verification The captured data is fed into the UPPAAL contract
model obtained as described above, which is then model checked against the
specified contracts, hence verifying the NNDT’s behavior compliance.

3.5 Results Analysis

We analyze the verification results, identifying any violations of the contracts,
where the NNDT’s behavior fails to meet the contracts. This process involves:

— Pinpointing the exact input conditions that lead to contract violations.
— Categorizing errors based on the type of contract breached (monotonicity,
functional, or infrastructure).

4 Case Study: Burner-Boiler System

To illustrate our approach, we apply it on a case study focused on heating
different liquids until they evaporate (Fig 4). This model includes several parts
that work together to achieve the goal.

At the center of the system, there is a wood provider, which supplies fuel to
a warehouse. From there, a burner system takes the fuel to heat up a boiler.
The boiler heats containers made of various materials, each holding different
types of liquids. The system’s complexity comes from several randomly assigned
rates. These include how efficiently the wood burns, how well heat transfers
in the containers, and how quickly each liquid heats up. Key parameters, such
as the starting amounts of wood and liquid, sizes of wood deliveries, and the
evaporation temperatures of the liquids, are also randomly set. This randomness
allows for generating a variety of scenarios in our study.

Fig 4 shows a simple diagram of this setup, highlighting the main parts, as
well as how information flows through the system. The model is built around
the System of Interest (Sol), which includes three main subsystems:
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— Warehouse: The central place for storing and distributing fuel.
— Burner: Responsible for burning fuel and generating heat.
— Boiler: The part where liquids are heated.

There is also an external Wood Delivery System that interacts with the Sol
but operates separately. While this system is important for supplying wood, it
is not included in our DT modeling. We can change its delivery conditions—Ilike
when and how much wood is delivered—Dbut it remains outside our current focus.
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Fig. 4: The heating system.

Our main goal is to create efficient and accurate DT models. In this paper, we
focus on the verification of a black-box NNDT model developed in our previous
work. This model represents the complex interactions within the burner-boiler
system, and our current efforts aim to ensure its correctness and reliability using
contract-based verification in the UPPAAL tool.

4.1 Digital Twin Model

The Fig 5 illustrates the DT model in Simulink. The NNDT model for the
burner-boiler system is implemented in Simulink and serves as a virtual repre-
sentation of the physical boiler. This model integrates real-time data to accu-
rately reflect the current state and behavior of the boiler.
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We use the following notation to describe the DT model for this use case:

Br: Burner Temperature Bor: Boiler Temperature

Wr: Water Temperature Wi Water Mass

Wonr: Wood Mass Teny: Environmental Temperature
t: Current time step TBoil: Boiling Temperature

W 4: Water Alarm Wop: Wood Delivered

Woa: Wood Alarm Wogr: Wood Request

A: Assumption G': Guarantee

The model takes several input parameters, including temperatures, burner
characteristics (Alpha, Beta, Delta), wood and water mass and alarms. These
inputs allow the DT to adapt to changing conditions and predict the boiler’s
operations effectively.

Key outputs from the model include predictions for By, Bor, Wy, Woay,
Wy, Woa, Wogr and Wop. The DT uses a neural network to process these
inputs and generate accurate predictions about future states of the system.

While the model has been trained on specific datasets and validated with
known data, there remains a potential for errors due to limitations in the avail-
able data. This aspect is critical as it highlights the scope of our work in this pa-
per. We focus on model-checking the NNDT black-box model using the contract-
based approach described in Section 3.

Through the use of its neural network architecture, this DT captures complex
relationships within the boiler system. Our contract-based verification method
enables us to capture specific behavioral requirements for the NNDT, allowing
us to assess its contract compliance. This approach ultimately aims to improve
the reliability and accuracy of real-world applications NNDT.
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Fig.5: DT Model
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4.2 System Contracts

We define three categories of contracts for our DT model: Monotonicity Con-
tracts (MC), Functionality Contracts (FC), and Infrastructure Contracts (IC).
Each contract is formulated as a pair, (4, G), using the notation described in
Section 3.2. In cases where multiple assumptions exist, we have: A = A; A;, and
similar for multiple guarantees: G = N\;G;.

Monotonicity Contracts (MC) These contracts are designed to verify that
the output of the NNDT behaves monotonically with respect to certain inputs,
which is a crucial property of NN.

MC1 (BT s BOT).' Al: Vi, BT(t) < TBoil

A2: Br(t) > Br(t—1) , G1: Bor(t) > Bor(t—1)
A3 BT(t) < BT(t — 1) y G2 BOT(t) < BOT(t — 1)

When the burner temperature By is below the boiling point T, it may increase
or decrease smoothly over time. The boiler temperature Bor must follow the
trend of the burner temperature, either increasing or decreasing, accordingly.
MC2 (WM vs BOT).'

Al: Bor(t) > Thou , G1: War(t) < War(t —1)
A2 BOT(t) S TBoil y G2 WM(t) ~ WM(t — 1)

When BZ)T exceeds Tgoi1, evaporation occurs, causing Wy, to decrease over time.
However, if the B;)T drops to or below Tge1, the evaporation should slow down
or stop, stabilizing the Was. This ensures that the system correctly models the
evaporation dynamics, maintaining a realistic relationship between Bor and
W]\/[.

MC3 (Wop vs Br): Al : Vi, Burner = ON

A2: Wopn(t) > Wopn(t—1) , Gl: Bp(t) > Br(t—1)
A3: Wop(t) < Wop(t —1) , G2: Brp(t) < Bp(t—1)

Br depends on the Wonr. When wood burns, its mass decreases. If more wood is
added, By should increase or stay the same. If wood mass decreases, By should
eventually drop.

By establishing these monotonic relationships, the verification process en-
sures that the digital twin accurately simulates the boiler system’s thermal be-
havior. Any contract violation suggests issues in the neural network model, data
handling, or system design, helping in detecting potential problems.

Functionality Contracts (FC) The functionality contracts define the ex-
pected operational behavior of the system, by specifying how different compo-
nents should respond to certain conditions.

1- Burner System FC:

The burner system ensures safe and efficient operation by managing wood
supply, monitoring temperature, and responding to boiler signals.



12 F. Author et al.

FC1: A: Wop(t) < Wour,,, , G: RequestWood()
The burner must request wood when the Woj, falls below a certain thresh-
old.

FC2: Al : (Wog(t) A =Wop(t + At) where At = 60s) , A2 : (Wop <
WOMm,in) ,GZ WA
The W4 should be triggered if no wood is received within 1 minute after the
wood request, or when Woys falls below the minimum level.

FC3: A: Wop(t) > Womin , G1: =Wog(t), G2: -Wop(t)
This states that there should be no wood request or delivery when the Woj,
is above Wonmin.-

FC4: Al: Reachedldeal Range(t) = True , A2 : Bp(t) < 130°C'V Bp(t) >
160°C) , G : CriticalTemperatureAlarm(t)
The system must enable the Critical TemperatureAlarm, if By leaves the ideal
operational range after reaching once.

FC5: A: TurnOffSignal(t) = True , G : Burner = Off
The burner must shut down immediately when it receives a TurnOffSignal
from the boiler.

FC6: A: Wy(t) > Wiin , G: Wop(t) >0
The Wojp; must always remain above zero if the W), is above the minimum
level, to keep the burner functional.

2- Boiler System FC:
The boiler system ensures stable operation by maintaining boiling conditions,
monitoring water levels, and responding appropriately to critical conditions.

FC7: Al : ReachedBoilingState(t) , A2 : War(t) > W,
TBoil R
If the boiler system has reached the boiling state and the W), is above the
minimum level, the BbT should remain around Tg;.

FC8: A: Wy(t) < Wiy, , G1: Wa(t) ,G2: TurnOf fSignal(t)
If the W), falls below the minimum level, the system must generate W4 and
send a TurnOffSignal to the burner to prevent unsafe operation.

FC9: A: Wy(t) > Way,,, , G1: =Wa(t), G2: ~TurnOf fSignal(t)
When the W), is above the minimum level, W4 should not be triggered, and
no TurnOffSignal should be sent to the burner.

FC10: Al : Vt,Burner = off , G1: Bp(t) > Tenu(t), , G2 : Bop(t) >
Tenv (t)
The B and Bor should always stay above or equal to the T.,,, even if the
burner is off. They may gradually decrease but should never drop below the
ambient temperature, unless an external cooling source is applied.

G : Bor(t) =~
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4.3 Infrastructure Contracts (IC)

IC1: A : 3t such that (CriticalAlarm(tg) = True) A (V' € [to,to + 5],
CriticalAlarm(t') = True) , G : ShutDownBurner()
If a critical alarm remains active for more than 5minutes, the burner must
shut down to prevent system damage and ensure safety.

5 Contract Modeling in UPPAAL

The UTA models presented in this section demonstrate how contract-based ver-
ification can check the correctness of a digital twin model, systematically. By
mapping component and system contracts onto UPPAAL timed automata, we
ensure that key constraints are validated. UPPAAL allows for efficient verifica-
tion, as it explores all possible states and detects contract violations.

5.1 Contract Model for MC1

The Monotonicity Contract (MC1) ensures that the Bor follows the changes
in the By. This contract guarantees a realistic and predictable behavior of the
heating system. The UPPAAL model designed for MC1 is implemented as a timed
automaton (Fig 6), effectively capturing the dynamic relationship between the
temperatures. To model this contract in UPPAAL, we used three templates: Up-
dateV (Variable Update), Apyrc1, and Garer. The UpdateV template updates
Br and Bor values periodically. The Ap;c1 template represents the expected
behavior of the By, while the Gj;¢1 template ensures that the Bopv follows the
Br’s trend.

The UpdateV template maintains the system’s temperature changes using
global variables: By (current burner temperature), By, (previous burner tem-
perature), Bor (current boiler temperature), and Bor, (previous boiler temper-
ature). The function UpdateVar() updates these values using a moving average.
A clock variable (c) ensures that updates occur at regular time steps.

Aprcr template defines three possible states for the burner temperature:
Increasing (Br > Br,), Decreasing (Br < Br,), and Stable (Br == Brp).
The system transitions between these states based on the changes in Bp. If the
burner reaches the boiling point, the system enters a special state (Boiling).

The G ;o1 template enforces the expected reaction of the boiler temperature.
It includes three states: Increasing (Bor > Bor, ), Decreasing (Bor < Bor,),
and Stable (Bor == Bor, ). The transitions ensure that the boiler temperature
behaves consistently with the burner temperature.

Verification in UPPAAL. UPPAAL provides a query language to verify system
properties [1]. The verification is done using queries, which check whether certain
properties hold in all possible executions of the system. To verify the correctness
of the model, we define the following queries:
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Contract (Cyc,)

Stable Stable

Increasing e Decreasing | Incre:
c<

a
1 c<1
1Boiling &&
BT >B_T_1

Initial

(a) Assumption (Ayc) (b) Guarantee (Gug:)

c<1 cs1

Fig. 6: Monotonicity Contract UTA Model for MC1

Safety Property Check: This ensures that the system always satisfies the
monotonicity requirement:

A[]1 Assumption.Increasing imply Guarantee.Increasing

If this query fails, it indicates that there are case(s) where the boiler temperature
does not always follow the burner temperature correctly. Additionally, UPPAAL
provides diagnostic traces, which help locate errors by showing a counterexample
when a property does not hold.

5.2 Contract Model for FC9

The Functional Contract (FC9) ensures that when W), is above a defined mini-
mum threshold, the alarm should not be triggered, and no turn-off signal should
be sent to the burner. This contract prevents unnecessary interruptions in the
heating system and ensures efficient operation.

In Fig 7, the UPPAAL model represents a contract (FC9) for a boiler system.
To model this contract in UPPAAL, we define three key templates: Apcg (Wa-
ter Level Monitoring), Glpcg (Alarm Condition), and G2pcg (TurnOffSignal).
Additionally, a UpdateV (Variable Update) template periodically updates the
monitored water level, similerly as described in MC1 Model.

The Apcg template maintains the state of the water level, defining two pri-
mary locations: AboveW_min, and BelowW_min, where . A clock variable (c¢) en-
sures regular updates, and the system transitions between these states based on
the water level condition.

The Glpcg template models the alarm behavior by defining two states:
NotAlarm, and Alarm. The transition to the Alarm state occurs only if the wa-
ter level falls below the threshold. If the water level is above the threshold, the
system remains in the NotAlarm state, ensuring that the contract requirement
is met.

The G2pcg template models the burner control system by ensuring that the
burner remains on as long as the water level is above the minimum threshold. The
states in this template include B_off_false, and B_off_true. The transition
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to B_off_true is allowed only if, ensuring that the burner is not turned off
unnecessarily.

Contract (Cgco)

AboveW_min Alarm B_off_true
cs1

W_M >W_min W_M >W_min

W_M <W_min

W_M <W_min

cs1

BelowW_min NotAlarm B_off_false

(a) Assumption (Agce) (b) Guarantee (G1gco) (c) Guarantee (G2¢¢,)

Fig. 7: Functionality Contract UTA Model for FC9

Verification in UPPAAL. To verify the correctness of the model, we define the
following queries. The invariance property check ensures that, when the water
level is above the threshold, neither the water alarm is triggered, nor the burner
is turned off. This is expressed as:

A[] A_FC9.AboveW_min imply (not (G1_FC9.Alarm || G2_FC9.B_off_true))

If this property fails, it indicates that W4 or turn-off signal is incorrectly
triggered despite the water level being sufficient. The reachability check verifies
whether a violation of the contract is possible:

E<> A_FC9.AboveW_min imply (G1_FC9.Alarm || G2_FC9.B_off_true)

6 Verification Results

Our contract-based verification approach using UPPAAL revealed some scenar-
ios in which the predictions of the NNDT model deviated from the specified
contracts. These findings highlight areas for improvement in the model and po-
tential safety concerns regarding the boiler system’s operation.

6.1 MC1: Relation between the burner and the boiler temperatures

We simulate the contract automaton model described in section 5.1 to verify the
relation between the burner and the boiler temperatures. The results illustrate a
violation of the expected relationship between burner and boiler temperatures.
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Fig. 8: Contract violation in MC1

According to MC1, the boiler temperature should correlate with the burner
temperature, allowing for an acceptable delay §, particularly when the burner
temperature is below the boiling threshold.

In Figure 8, the graph shows that the burner temperature gradually decreases
with time, even dropping below the boiling temperature at certain points. De-
spite this, the boiler temperature remains unchanged and does not follow the
expected correlation. This discrepancy suggests that the heat transfer dynamics
between the burner and the boiler are not accurately trained in the digital twin
model.

The impact of this contract breach is significant. It may result in erroneous
system behavior, such as the boiler maintaining a high temperature despite a
decrease in burner temperature, which could lead to incorrect operational con-
ditions. This conclusion emphasizes the need for model refinement to ensure
that the digital twin accurately represents temperature dependencies and state
transitions, enhancing its fidelity and reliability as a predictive tool.

6.2 FC3: Erroneous wood request

The results indicate a contract violation in the wood request mechanism, leading
to an unnecessary wood supply. According to FC3, a wood request should only
be triggered when the wood mass falls below the minimum threshold. However,
as shown in Figure 9, noise in the wood request signal causes the system to
falsely detect a low wood level, even when there is enough wood available.

As a result, the model requests unnecessarily additional wood, leading to an
excessive amount of wood in the burner. This misbehavior can affect system
efficiency and fuel management, potentially causing overheating or inefficient
combustion.

Improvements in the wood request signal processing are required to avoid
such errors. Possible solutions include noise-filtering techniques or threshold ad-
justments to avoid false triggers and ensure accurate wood requests.

These verification results highlight the importance of refining the DT model,
particularly in areas of wood mass management, temperature control, and sys-
tem state consistency. They also demonstrate the effectiveness of contract-based
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Fig.9: Contract violation in FC3

verification in identifying potential safety and operational issues that might not
be apparent through traditional testing methods.

6.3 FC9: Alarm Water Finished False Trigger
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Fig. 10: Contract violation in FC9

The findings highlight a contract violation in the Water Finished Alarm,
which led to an incorrect shutdown of the burner. According to FC9, the alarm
should activate only when the water mass falls below the minimum threshold.
However, as illustrated in figure 10, interference in the alarm signal leads to a
false burner shutdown, even when the water mass remains above the minimum
level.

Improvements in alarm signal processing are necessary to address this is-
sue. Possible solutions include implementing signal filtering techniques, adjust-
ing threshold conditions, or introducing hysteresis mechanisms to prevent minor
fluctuations from causing false shutdowns.

7 Related Work

The verification of DT is a growing area of research due to its increasing use in
critical applications.
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Cimatti et al. provide the OCRA tool [4] that enables a design-by-contract
methodology for reactive systems. In OCRA, the system’s DT is its contract,
which consists of an assumption on the system inputs, and a guarantee of the
system outputs under the given assumptions, both described in Linear Temporal
Logic. In comparison, our approach distinguishes between the DT, which is a
neural network, and its contracts, and specifies the latter as timed automata
that are fed with the DT’s inputs and predicted outputs, to verify the black-box
behavior of the DT by model checking.

Perhaps the closest research to ours is the approach used in CoCoSim [3],
which is a toolbox that can be called directly from the Matlab Simulink envi-
ronment, and can be used for code generation (e.g. Lustre) or property verifi-
cation via contracts. The contracts are specified directly in Simulink, as model
components, and the verification is carried out on the generated code, by us-
ing modular SMT-based verification engines (such as Zustre) that also generate
assume-guarantee style formal contracts. However, the difference from our ap-
proach comes from the fact that the verification is not a black-box one, it instead
uses the functional details of Simulink’s model blocks that are transformed into
code. The fact that our approach uses contracts modeled as simple timed au-
tomata that encode the properties to be model checked makes the verification
very fast and scalable.

Notable work for verifying neural networks, which in our case describes the
DT, has been carried out for a while now. Katz et al. introduce the “Reluplex”
method [10], designed to verify deep neural networks by solving satisfiability
problems, particularly in networks utilizing ReL U activation functions. In com-
parison, our method is agnostic of the NNDT’s activation function, being based
only on inputs, predicted outputs and their check of whether they satisfy the
timed automata contracts.

Another strand of research focuses on reachability analysis, where methods
such as symbolic interval propagation [11] and abstract interpretation [6,12,13,
18,20] are used to estimate possible outputs of neural networks within a bounded
input space. This is crucial for safety-critical systems to ensure that neural net-
works do not produce unexpected or unsafe outputs. For instance, the Neural
Network Verification tool (NNV) [20] supports over-approximate analysis by
combining the star set analysis used for feed-forward neural network controllers
with zonotope-based analysis for nonlinear plant dynamics. In general, neural
network verification approaches based on abstract interpretation are supported
by tools that represent the inputs as a set, called abstract domain, which is
then passed along the neural network, yielding a set that over-approximates the
output that is used to evaluate the property under verification. The verification
accuracy depends heavily on the abstract domain chosen [12]. If the abstraction
is too rough, the tool might not be able to decide if the property is verified or
falsified, therefore other methods need to be employed. By using contracts that
encode the actual NNDT properties that need to be verified, we avoid such prob-
lems, providing a fast and scalable solution that can potentially be employed at
run-time too, due to its insignificant overhead.
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Additionally, researchers explore probabilistic verification [2] to handle the in-
herent uncertainty in data-driven models like neural networks. Techniques based
on Bayesian methods and Monte Carlo simulations have been proposed to eval-
uate the performance and robustness of neural networks DT in dynamic envi-
ronments. Kapteyn et al. [9] explore the mathematical foundations of digital
twins, focusing on probabilistic graphical models, including dynamic Bayesian
networks, to model complex systems and inform decision-making processes.

8 Conclusions and Future Work

This paper presents a novel methodology for verifying black-box neural network-
based digital twin models using contract-based model checking. Our approach,
which uses UPPAAL timed automata to define system contracts, allows for black-
box verification without requiring knowledge of the digital twin’s internal de-
tails. This makes it particularly valuable for complex industrial applications.
We validated our methodology using an existing neural network-based digital
twin model of a boiler system developed in Simulink. By modeling contracts as
UPPAAL timed automata, we demonstrated how our approach can be applied
to real-world industrial processes, ensuring digital twin predictions align with
physical constraints and expected behaviors.

Our contract models show fast simulation times, making them suitable for
runtime verification. This efficiency enables real-time monitoring of the digital
twin’s behavior during system operation without significantly impacting overall
performance.

Future work will focus on analyzing the digital twin’s performance under
various input conditions and exploring ways to improve predictions for more
complex systems. We aim to enhance the reliability and utility of digital twins
in industrial applications, leading to improved efficiency and safety in operations.
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