
Black-box protocol testing using Rebeca and
Automata Learning⋆

Stefan Marksteiner1,2[0000−0001−8556−1541] and
Mikael Sjödin2[0000−0001−7586−0409]

1 AVL List Gmbh, Graz, Austria stefan.marksteiner@avl.com
2 Mälardalen University, Väster̊as, Sweden

{stefan.marksteiner,mikael.sjodin}@mdu.se

Abstract. Industrial and critical infrastructure devices should be scru-
tinized with rigorous methods for inconsistencies with a specification. At
the same time, this specification should also be correct, otherwise the
specification conformance is of little value. On the example of eMRTDs
(electronic Machine-Readable Travel Documents) we demonstrate an ap-
proach that combines model-checking a specification for correctness in
terms of security with learning an implementation model using automata
learning. Once the specification is modeled, we automatically mine a
model of the implementation and check the model for compliance with
the verified specification using simulation and trace preorder. Underspec-
ification of the standard is in this setting modeled as non-deterministic
behavior, so one of the possibilities has to simulate the implementation
in order for the latter to be compliant. We also present a working tool
chain realizing this method. When adopting the tool chain accordingly,
the method might be used in practice for checking the correctness of any
reactive system.

Keywords: Automata Learning · Rebeca · Compliance Checking · Model
Checking · Formal Methods · NFC · eMRTD · Afra

1 Introduction

1.1 Motivation

Electronic Machine Readable Documents (eMRTDs) are critical infrastructure
and should therefore be correct and secure systems. This means that they should
be scrutinized with rigorous methods for inconsistencies with a specification. At
the same time, this specification should also be correct, otherwise the specifica-
tion conformance is of little value. We therefore strive for a methodology to auto-
matically checking both a specification for its correctness and an implementation
to be compliant to the former. In practice we present a practical approach to con-
nect model checking for a correct specification for eMRTD communication (via

⋆ The authors want to thank Marjan Sirjani, the receiver of this Festschrift and PhD
advisor of the main author for teaching Rebeca and helping with the first steps of
modeling the system described in this paper. Congratulations to the jubilee!

2 Marksteiner, Sjödin

Near-Field Communications – NFC) with automata learning to mine a model of
an implementation to check its conformance with the verified model. We thereby
emphasize on security properties (i.e., protected information may only be read
with proper authentication, etc.). With appropriate adapter classes, the method
might be used for checking the correctness of many reactive systems. Having the
interaction of two reactive systems (an eMRTD and a reader device) as target
of examination, we use the Rebeca modeling language [28] (particularly Core
Rebeca) to create a checkable specification model, since modeling these kind of
systems is the very purpose of Rebeca. The latter, in conjunction with its Java-
like syntax makes the modeling process fairly easy (compared to the decription
syntax of other model checking systems) and, therefore, well-maintainable.

1.2 Contribution

This paper combines formal methods with systems engineering and testing to
create a tool chain for checking implementations for their correctness and secu-
rity. Our main contributions are:

– An approach for combining model-checking a specification for correctness
with learning an implementation model

– An automated tool chain for the complete process, once a specification is
modeled

– A verified specification model for eMRTDs

We use three formal methods: automata learning, equivalence checking (particu-
larly simulation and trace preorder), and model checking. We use these methods
in an automated tool chain and apply it to a practical use case, namely checking
eMRTDs for their specification conformance and verifying the specification for
security properties. Relying on Rebeca to model the standard, we produce a
more secure (assured by model checking) and maintainable (through the traits
of Rebeca) specification model to be used for checking the behavioral correctness
of mined implementation models.

1.3 Approach

Starting from existing work on learning a behavioral model using automata learn-
ing and comparing it with a (partial) specification [19, 20], we use Rebeca to
create a partial model of the International Civil Aviation Organization’s (ICAO)
Doc 9303 part 9 standard [25], which was done by hand in the contributions
mentioned before. This document defines the structure of an eMRTD (includ-
ing mandatory and optional elements, like stored document and personal data,
biometrics, etc.) and how to access this data via the NFC protocol (ISO/IEC
14443-4 [10]) and standardized integrated-circuit interfaces (ISO/IEC 7816-4
[11]). It is important to note that despite using the standard that defines the
data structure for eMRTDs, we actually model the behavior of inter-reacting sys-
tems: one hosting and one accessing the data structures defined in the standard.

Black-box protocol testing using Rebeca and Automata Learning 3

We already outlined the specifics in another paper [20]. Rebeca’s integration
environment (Afra) comes with a specific model checker (Modere) [28]. This
allows to verify the model for properties using Linear Temporal Logic (LTL) or
Computational Tree Logic (CTL). The checker also creates a state space that
represents the model (based on two communicating reactive systems). On the
other hand we use active automata learning with the Learnlib library [13] to
mine Mealy machine models of eMRTD implementations (i.e., the electronic
representations of passports). We use a self-written converter to transform the
Rebeca state space model into a Mealy-styled LTS (see Section 4.3). We can then
check whether the learned implementation model is included (using simulation
or trace preorder – see Section 4) in the verified specification. We use the MCRL2
toolset’s [4] ltscompare tool to perform this analysis. If both the specification
is successfully verified and the implementation is inside the specified behavior
(i.e., preorder is successful), we can claim that the examined system is assured
to fulfill the verified properties. We modeled security properties (e.g., authenti-
cation before access to sensitive data – see Section 4.2) and implemented this
into a tool-supported process (see Figure 1).

Fig. 1. Overview of the approach. Green are processes, blue are external inputs, and
amber are outputs (i.e., results), the arrow labels are artifacts (input artifacts for arrows
from blue to green boxes, output artifacts from green to amber boxes. The italic labels
next to the green boxes denote the used tool sets/frameworks.

1.4 Limitations

Due to a lack of an available implementation, the authentication method is
limited to Basic Access Control (BAC), while the other standardized methods,
namely Password Authenticated Connection Establishment (PACE) and Termi-
nal Authentication (TA) are not included in the models.

4 Marksteiner, Sjödin

2 Preliminaries

Here we give a brief overview of some fundamental concepts used in this paper,
as well as some basic descriptions of used tools and methods. We also give
some definitions to well-known concepts to show our interpretation and avoid
ambiguities.

2.1 Labeled Transition Systems and Mealy Machines

There are some basic approaches to model reactive systems. We use two of them,
particularly Labeled Transitions Systems (LTS) and Mealy Machines. Transition
systems describe a system’s behavior in a graph-based manner by defining a set
of states the system is in and a set of transitions that realize changes of these
states, normally denoted by actions (i.e., inputs) and a transition function, along
with initial states and atomic propositions (i.e., properties of the system in a
certain state). An LTS contains also a labelling function that assigns actions to
transitions. Formally, an LTS is defined as LTS = (Q,Act,→, I, AP,L), with
Q being the set of states, Act a set of actions, → a transition function, I the
set of initial states, AP a set of atomic propositions and L a labelling function
[2]. Finite State Machines (FSMs), also called automata, are similar to LTS,
but their number of states and transitions is finite (a restriction not applicable
to LTS), often used in a deterministic version, so called deterministic finite au-
tomata (or acceptor - DFA). This means that every input must have exactly one
result in each state whereas, LTS do not have to be deterministic and can be
seen as non-deterministic automata [8]. To model real-world, reactive systems,
automata types that provide input and output are used. The two most common
are Mealy [21] and Moore machines [23], where the difference lies in the output
being produced by transitions (Mealy) or by states (Moore). For easier access
to learning algorithms, we use Mealy machines. In a Mealy Machine, each input
from a set (the alphabet) must be matched with a transition (i.e., change to
a certain state, which can also be the original one) and an output. A Mealy
Machine is defined as M = (Q,Σ,Ω, δ, λ, q0), with Q being the set of states, Σ
the input alphabet, Ω the output alphabet (that may or may not be identical
to the input alphabet), δ the transition function (δ : Q×Σ → Q), λ the output
function (λ : Q×Σ → Ω) – or a merger of both functions (Q×Σ → Q×Ω) –
and q0 the initial state. The transitions can be viewed also as tuples ⟨p, q, σ, ω⟩
with p, q ∈ Q, σ ∈ Σ, and ω ∈ Ω as elements of the combined input/transition
function. State machines can be viewed as LTS by interpreting input/output
pairs as labels of an LTS [29].

2.2 Types of Equivalence

To check the conformity of a system with a standard, we look for standard con-
form behavior of the system. The idea is to compare the behavior of a system
with a specification. Using formal methods, we use behavioral equivalence checks
of a learned (see Section 2.3) model of the implemented system with a correct

Black-box protocol testing using Rebeca and Automata Learning 5

(see Section 2.5) specification model. Since we treat our models as LTS, we con-
centrate on equivalences for LTS. There are different types of formally defined
equivalences, of which we use simulation and trace preorder, as well as bisimula-
tion and trace equivalence [2]. The difference between preorder and equivalence
relations is that preorder is reflexive and transitive, whereas equivalence is re-
flexive, transitive and symmetric (i.e., an equivalence is a symmetric preorder)
[5]. Formally defined:

Definition 1 (Simulation Preorder). Simulation preorder of two LTS (LTS1 ⪯
LTS2) is defined as exhibiting a binary relation R ⊆ Q×Q, such that [2]:

A) ∀s1 ∈ I1 · (∃s2 ∈ I2 · (s1, s2) ∈ R).

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈ R

Where Post is the set of successor states of another state Post(s) =
⋃

α∈ACT Post(s, α)
and Post(s, α) = {s′ ∈ Q|s → s′} [2]. For preorder, the respective rela-
tion may be unidirectional, whereas for equivalence, it is bidirectional. That
means that when comparing two LTS (LTS 1 and LTS2) with simulation pre-
order (LTS1 ⪯ LTS2), LTS2 has to simulate every behavior of LTS1 , but not
vice versa; with bisimulation equivalence (LTS1 ∼ LTS2) LTS1 has to simulate
LTS2 ’s behavior and vice versa. For preorder, the behavior of a system LTS1 has
to be included in another system LTS2 , but the latter might display additional
behavior not included in the former. Additionally there is trace preorder, which
mandates that the set of traces of LTS1 has to be included in the one of LTS2 ,
which might or might not contain additional traces:

Definition 2 (Trace preorder).
Traces(LTS1) ⊆ Traces(LTS2)

For bidirectional relations, there are equivalence relations with the same princi-
ples as preorder, namely bisimilarity and trace equivalence.

Definition 3 (Bisimilarity). of two LTS (LTS1 ∼ LTS2) has a binary rela-
tion R ⊆ QxQ, such that [2]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.

B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)

2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈ R

3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈ R

Trace equivalence is the symmetric version of trace preorder, which means that
two transitions systems produce the same traces for each same input.

Definition 4 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

6 Marksteiner, Sjödin

2.3 Automata Learning

(Active) Automata Learning is a method of deriving a system model by querying
a system with input data. Originally, it was described by Angluin in her work on
learning regular sets [1], where she introduces the Learner-Teacher-Framework.
In this framework, a learning system might ask a teacher two kinds of questions
about the scrutinized system (System-under-learning – SUL):

– Membership queries and

– Equivalence queries.

Thereby, it is assumed that the teacher possesses a correct automaton of the SUL.
The naming stems from the original purpose of learning Deterministic Finite
Acceptors (DFA), a state machine type that describe regular languages. The
DFA does or does not accept (hence acceptor) arbitrary sequences of symbols
from a specific alphabet by deciding if the sequence (i.e., word) is a well-formed
part of the respective language. Therefore, membership queries denote such input
words, where the teacher answers whether or not they are accepted. The learner
uses the respective output in a systematic way to infer a state machine. This
also works for real-world reactive systems, but instead of generating queries to
learn a DFA, the target is usually to learn a Mealy or Moore type automaton.
Given the nature of these, the answer to membership queries is not yes or no,
but rather the output of the automaton according to the output function, i.e.
a query consists of an input word Wσ that consists of symbols from the input
alphabet (σ ∈ Σ|Wσ = ⟨σ1, σ2..σn⟩) and delivers an output word Wω consisting
of symbols from the output alphabet (ω ∈ Ω|Wω = ⟨ω1, ω2..ωn⟩) according to
the output function λ (simultaneously traversing through the sates according to
δ). If there is enough data to construct a state machine, the learner might ask
the teacher whether the constructed state machine (hypothesis) corresponds to
the actual system. This type of question is called equivalence query. The teacher
answers with yes, if the hypothesis is correct (i.e., the hypothesis automaton is
equivalent to the SUL automaton). Otherwise, the answer is a counterexample in
form of an input word and the respective output word from the SUL automaton,
that deviates from the hypothesis automaton’s output word. Since the original L*
algorithm, many improvements in learning methodologies have been developed,
most notably the closure strategy of Rivest and Schapire [26]. More recent
improvements include the replacement of the originally used observation tables
by tree structures that represent distinctive features between states and allow
for more efficient membership query generation. Notable algorithms using trees
include Kearns-Vazirani (KV) [15], Direct Hypothesis Construction (DHC) [22],
TTT [12], and L# [30]. When learning real-world systems, the assumption of
possessing a correct SUL automaton is not feasible, especially for black-box
learning settings (which is one of the main use cases for automata learning).
Therefore, generally equivalence queries are replaced by conformance tests, i.e.

Black-box protocol testing using Rebeca and Automata Learning 7

a sufficient3 amount of (potentially long) queries after a certain strategies, e.g.,
random walks [18].

2.4 LearnLib

Learnlib [13] is arguably the most widely used library for automata learning
(however, there are others, e.g., AALpy [24] or Libalf [3]). Written in Java,
It features the most used automata learning algorithms (L*, Rivest-Schapire,
AAAR, ADT, KV, DHC and TTT) and an addon L# implementation is available
[17]. Also, it contains classes for conformance testing strategies (complete depth-
bounded exploration, random words, random walk, W-method, Wp-method) and
interfaces for providing connectors to SULs. It further contains AutomataLib,
which contains tools for automata analysis and manipulation (e.g., minimizing
automata).

2.5 Model Checking

Model checking is an automated methodology that (efficiently) explores all states
(i.e., system scenarios) of (state-based) system model. Traversing through the
states, it can check if certain system properties are satisfied in a certain state
based on a sound fundament of graph theory, data structures, and logic [2].
The checkable properties can be stated in different kinds of logic like Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL), or the branching-
time logic CTL* that encompasses both of the former. For its availability in the
used model checker, we concentrate on LTL formulas. These are propositional
logic [27] formulas with temporal modalities. Those modalities are

– always (□): the proposition must hold in any state
– eventually (♢): the proposition must hold in some subsequent state (could

hold before)
– next (⃝): the proposition must hold in the immediately subsequent state

and
– until (U): the proposition A1 must hold until another defined proposition

A2 occurs (A1UA2).

The respective proposition is embedded in a propositional formula. LTL formulas
can also be nested. This allows for describing state conditions that must and must
not occur in any state-based model. We use model checking in LTL for verifying
the security properties (particularly authentication) of a specification model.

2.6 Rebeca

Rebeca is a modeling language that can be used to model reactive systems with
a Java-like syntax [28]. It possesses its own modeling IDE (Afra [16]), which

3 What is sufficient heavily depends on the specific use case and cannot be determined
generally.

8 Marksteiner, Sjödin

has also a built-in model checker (Modere [14]) that uses LTL statements for
checking Rebeca models. A Rebeca model mainly consists of reactive classes,
which model the behavior of a specific actor. These classes can have (internal)
functions and (externally callable) message servers. Both allow local variables
and basic statements like arithmetic and logic operations, assignments, condi-
tionals, comparisons, casting, and instance operators that work like in the Java
programming language. Additionally, it has non-deterministic assignment oper-
ator to model behavior that may take one of multiple paths. Additionally, a
reactive class can have state variables that are maintained in any state of the
model. These state variables can also be checked with Modere. Instances of a
class are called reactive actors or Rebecs. Each class can have a list of known
Rebecs with which its instances can interact by sending messages to its mes-
sage servers. A class has also a message queue of defined size that holds (and
sequences) messages for its specific server functions. This queue is also used for
checking purposes like deadlock detection – if the system reaches a state where
the message queue of the Rebec that is to take action at that point is empty,
the system stalls in a deadlock. For model checking, a property file is defined
that contains property definitions (i.e. atomic propositions that are statements
formed from state variables of Rebecs), assertions (simple logic formulas that are
always checked in any model checker execution) and LTL formulas (that can be
executed one-by-one). The model checker also creates a state space of all visited
states in an XML format, which is also convertible to the Graphviz format. The
model checker thereby creates a state for every execution of a message server.
This means that for a model of two interacting reactive systems, the resulting
state machine shows mutual calling of the two Rebecs, with the possibility of
a Rebec also calls its own message server (i.e., a self-loop). The state variables
referenced in the property file are included as atomic propositions of the sate
(they show up in the state if they are true and do not show up if they are false).
Local functions and variables are not part of LTS generated from the state space.

2.7 Near Field Communication

Near Field Communication (NFC) is a wireless communication standard for pas-
sive (powerless), small embedded devices such as Radio-Frequency Identification
(RFID) and chip cards (also known as smart cards). A proximity coupling device
(PCD) creates an induction field that powers up a proximity integrated circuit
card (PICC) and modulates the communication signals onto the induction field
for transfer between PCD and PICC. ISO/IEC 14443-4 [10] defines the messages
types for data transmission (information or I blocks), signaling (supervisory or S
blocks), and acknowledgements (receive-ready or R blocks), along with protocol
mechanisms like block numbering, chaining, error correction, etc.

2.8 Integrated Circuit Access

ISO/IEC 7816-4 [11] defines data structures for transmission (both wired and
wireless) to and from integrated circuit cards, including PICCs in the NFC pro-

Black-box protocol testing using Rebeca and Automata Learning 9

tocol. Potential defined operations are data access, reading and writing data,
as well as administrative and security functions, including authentication. For
data access, PICCs are usually segmented into different applications (compa-
rable to directories in a file system) that can be accessed via Dedicated Files
(DFs). The actual data resides in Elementary Files (EFs). Both are usually
accessed through a SELECT command. Once (potentially a DF and) an EF
is (successfully) selected it can be manipulated via READ, WRITE and simi-
lary commands. Since the access to certain data should be protected, also the
GETCHALLENGE and AUTHENTICATE commands are defined. The former
is to initiate an authentication process, while the second concludes it. How that
authentication works in particular is subject to the respective application and
out of scope of the standard, usually some cryptographic operation based on
a (symmetric or asymmetric) secret is conducted on the value obtained with
the GETCHALLENGE command and returned in the AUTHENTICATE com-
mand. It is also expected that, after the authentication process, the commands
for file selection and manipulation are secured (i.e., usually encrypted). It is also
common that a successful authentication is tied to the application (i.e., DF) and
could also differ on different applications on the same PICC.

The answer to any request contains the (encrypted or unencrypted) return
data and a (always unencrypted status code, consisting of two bytes. In our
work with eMRTDs, we have learned (and modeled) the following status codes
as answers to specific queries:

– 9000 - OK
– 6300 - No information given (seen at authentication attempts with wrong

credentials)
– 6700 - Error with no information given (when trying to perform write oper-

ations without authentication)
– 6982 - Security status not satisfied (i.e., lack of authentication)
– 6985 - Conditions of use not satisfied (when trying to authenticate without

an application selected)
– 6986 - Command not allowed (when trying to read without a file selected)
– 6988 - Insecure messaging DOs (when encrypting data with a wrong key)
– 6A82 - File not found
– 6D00 - Instruction code not supported or invalid (when sending malformed

commands)

2.9 Electronically Machine-Readable Travel Documents

Electronically Machine-Readable Travel Documents (eMRTDs) refer to the data
stored on passport integrated circuits, accessible via NFC. The data structure is
standardized in ICAO Doc 9303 part 9 [25]. It defines four applications: eMRTD,
travel records, visa records, and additional biometrics. They are grouped into
LDS1 (only the eMRTD application) and LDS2 (all other applications). Only
the first is mandatory. Since we found only LDS1 on examined passports, we
concentrate on this group. In the common area of the device (i.e., the area

10 Marksteiner, Sjödin

without selecting an application), the standard defines the following files to be
(mandatorily or optionally) present:

– Attributes/Info (ATTR/INFO): containing the card capabilities (only manda-
tory if LDS2 is present).

– Directory (DIR): containing a list of supported applications on the device
(only mandatory if LDS2 is present).

– Card Access (CA): containing security infos required for PACE authentica-
tion (only mandatory if PACE is implemented).

– Card Security (CS): containing chip and terminal authentication (only manda-
tory if PACE with chip authentication mapping is implemented).

– Common (EF.COM): containing metadata (version, encoding, etc.) of the
application

– Data Group 1 (EF.DG 1): containing the machine readable zone (manda-
tory).

– Data Group 2 (EF.DG 2): containing the holder’s face image (mandatory).
– Data Group 3 (EF.DG 3): containing the holder’s fingerprints image (op-

tional).
– Data Group 4 (EF.DG 4): containing the holder’s iris image (optional).
– Data Group 5 (EF.DG 5): containing holders displayed portrait(s) (op-

tional).
– Data Group 6 (EF.DG 6): is reserved for future use (optional).
– Data Group 7 (EF.DG 7): containing the holder’s displayed signature (op-

tional).
– Data Group 8 (EF.DG 8): containing data features (optional).
– Data Group 9 (EF.DG 9): containing structure features (optional).
– Data Group 10 (EF.DG10): containing substance features (optional).
– Data Group 11 (EF.DG11): containing additional personal details (e.g., lo-

calized name, place-of-birth – optional).
– Data Group 12 (EF.DG12): containing additional document details (e.g.,

issuing authority, date-of-issue – optional).
– Data Group 13 (EF.DG13): containing optional details (optional).
– Data Group 14 (EF.DG14): containing data elements (only mandatory if

PACE is implemented).
– Data Group 15 (EF.DG15): containing the public key info for active authen-

tication (only mandatory if active authentication is implemented).
– Data Group 16 (EF.DG16): containing persons to notify (optional).
– Document Security Object (EF.SOD): containing hash values of the data

group for integrity checking (mandatory).
– Country Verifying Certification Authorities (EF.CVCA): containing public

keys of CVCA for terminal authentication (mandatory).
– Key files for authentication.

The elementary files inside applications need, according to the standard,
authentication. The LDS1 authentication needs Basic Access Control (BAC) or
the newer Password Authenticated Connection Establishment (PACE), and data
groups 3 and 4 additionally needs Terminal Authentication (which is, in contrast

Black-box protocol testing using Rebeca and Automata Learning 11

to the other methods, based on a public key infrastructure). LDS2 applications
(travel records, visa records, additional biometrics) need PACE and Terminal
Authentication. All of these methods are defined in the standard. For the lack
of a usable implementation of others authentication methods, we are limited
to BAC. This method performs cryptographic operations based on a challenge
with the passport number, expiration date, and the owner’s date of birth as key
material. This information is readable on the main page of the passport, but the
accessible information is basically just an electronic version of the former (except
for DG 3 and 4, which requires additional authentication). The purpose is not
to completely shield this information, but to prevent bystanders of a person
to obtain its personal information by just reading it out from the passport.
In contrast to LDS2, the elementary files in the LDS1 application are defined
to be read-only. Note that, due to many optional elements, the standard is
underspecified. This means that more than one implementation is correct, which
makes the standard non-deterministic from a modeling perspective.

3 Learning

We use Learnlib (see Section 2.4) to create a setup to learn NFC-based eMRTDs.
This section covers the details on the interface, abstraction layer and alphabets.
To learn the models we relied on the TTT algorithm and random walks as
conformance testing algorithm. We learn the behavior of an eMRTD device with
regard to the ICAO Doc 9303 part 9 (file structure and access rules), ISO/IEC
7816-4 (file access and security commands), and ISO/IEC 14443-4 (command
and data transmission) standards. The learning setup is based on a previous
paper [20], which we extend with the aspect of checking the specification model.

3.1 NFC Interface

To interact with eMRTDs, we created an NFC interface for Learnlib [19]. We
connect the developed SUL class via a Socket to an API (based on C++) that op-
erates a Proxmark3 device [7], running a custom firmware enhanced to support
automata learning.

3.2 Abstraction

As usual with learning real-world systems, we use an abstraction layer to limit the
potentially very large input space. This means that we reduce the input alphabet
to sensible commands targeting the data structures from the ICAO standard.
Since this includes secure communications, we use the commands (except for
authentication-related) in encrypted and unencrypted versions. We also abstract
the output to the status code, since it does not contain data and is also always
unencrypted. This avoids non-determinism.

12 Marksteiner, Sjödin

Fig. 2. Logical Data Structure of Machine Readable Travel Documents from [20].
Amber is the master file (MF), Cyan are dedicated files (DF), Blue are Elementary
Files (EF), and Green are key files. Solid frames means mandatory files, dashed ones
optional files. Solid boxes donate the LDS contexts, dashed black boxes requirements,
and dashed red boxes necessary authentication.

Black-box protocol testing using Rebeca and Automata Learning 13

3.3 Input Alphabet

The input alphabet consist of the data structure from ICAO Doc 9303 part 9
accessed with ISO/IEC 7816-4 commands over the ISO/IEC 14443-4 protocol.
Concretely, we use the select DF, select EF, GETCHALLENGE, EXTERNAL
AUTHENTICATION, READ BINARY, and UPDATE BINARY commands.
Limiting to LDS1 (i.e., the eMRTD application), the full alphabet consists of SE-
LECT DF LDS1 (SEL DF.LDS1) and SELECT EF for the files mentioned (e.g.,
SEL EF.CM) in Section 2.9, as well as READ BINARY to perform a read oper-
ation on selected files. Each of these inputs is used in a plain, unencrypted and
a secure, encrypted version (e.g., SSEL EF.CM for securely accessing the Com-
mon file). Additionally, we use a BAC symbol that issues the correct sequence
(consisting of a GETCHALLENGE and an EXTERNAL AUTHENTICATION
command based on the former) for performing this type of authentication. This
also yields a session key that is used for performing the encryption operations
in secure commands.

Output Alphabets The output alphabet does not have to be defined before-
hand, but is discovered in-situ by the received answers. However, since we are not
interested in the actual data, but rather want to prevent non-determinism (which
the learner requires for proper functioning), we abstract the answers by using
just the status code as an output. This is enough information to create a model
for checking the security properties, mainly to check the proper authentication
of data access. This eases also handling the answers of secure commands, as oth-
erwise their data would need to be decrypted first. Using always-unencrypted
status codes only, this is not needed.

3.4 Labeling and Simplification

Based on the (by the standard) known status codes, we can issue a simple la-
beling of the states, that also correspond to atomic propositions if the learned
Mealy Machine is seen as an LTS [20]:

– From the initial state, follow the select EF for CardAccess transition
– If output yields 9000, label this state as EF
– From the inital state, select the DF for LDS1.eMRTD tansition
– If output yields 9000, label this state as DF
– From DF, follow the BAC transition
– If output yields 9000, lable this state as DF—AUTH
– From DF—AUTH, follow the encrypted select Data Group 1 transition
– If output yields 9000, label this state as DF—AUTH—EF
– From the initial state, select the BAC transition
– If output yields 6985 label the state as FAILAUTH
– From FAILAUTH, follow the select LDS1.eMRTD transition
– If output yields 9000 label the state as FAILAUTH—DF
– From EF, select the BAC transition

14 Marksteiner, Sjödin

– If output yields 6985 label the state as FAILAUTH—EF

– From the DF—AUTH—EF, select the unencrypted READ BINARY transi-
tion

– If output yields 6982 label the state as DEAUTH

The propositions are: EF for a selected elementary file, DF for a selected ded-
icated file (i.e. the LDS1.eMRTD application), AUTH for a successful authen-
tication (i.e., BAC), FAILAUTH for a failed authentication, DEAUTH for a
revoked authentication.

4 Compliance Evaluation

To determine an implementation’s compliance with the standards, we compare
a learned implementation model from previous works [20] with a specification
model derived from the standards (see Section 4.1). As the ICAO standard is
underspecified, the results of access operations on (dedicated or elementary) files
may have more than one legit result. This means that we cannot model a prop-
erly defined Mealy Machine from the standard (since it is non-deterministic),
but rather a Mealy-styled LTS (or pseudo-Mealy), with more than one tran-
sition target and/or output label for a given input in a given state. However,
since we make the comparison operations on LTS with the input/output pair
being a combined label, the restriction to a deterministic model does not apply
in practice. Due to multiple legit (i.e., standard-compliant) transitions for the
same state/input pair, we cannot check for full equivalence. The learned model is
a proper (and, thus, deterministic) Mealy Machine (otherwise the learner would
crash for failing to handle non-deterministic behavior). Therefore, our learned
model can always only cover one (of potentially multiple) state/input transi-
tions. This makes it very likely that the specification displays extra behavior in
comparison. For this reason we use preorder instead of simulation for compliance
checking – the (learned) implementation model’s behavior should stay inside the
boundaries of the (modeled and checked) specification behavior.

4.1 Specification Model

We model the eMRTD specification as outlined in Section 2.9 in Rebeca by
defining two reactive classes: a PCD class that is instantiated with a Rebec
called reader and a PICC class that is instantiated with a Rebec called PP
(short for passport). Each of the inputs (e.g., SELECT DF LDS1) is a message
server of the PICC, while the respective answers (OK or respective error codes)
are message servers of the PCD. Inside the PICC servers, we define the behavior
according to the standard given the state variables (e.g., return OK for a secure
select of a present file in an authenticated state, while returning an error in an
unauthenticated). Listing 1.1 gives an example of the secure SELECT EF CA

Black-box protocol testing using Rebeca and Automata Learning 15

and CVCA command4. It checks (via state variables) if there was a successful
authentication. If that is the case it sets the EF selected state variable and calls
the reader message server for ok (the integer parameter identifies the secure
SELECT EF CM as originator of the call). Otherwise, it calls the message server
for a missing authentication (since the secure command is out-of-context outside
of the LDS1 application) or a not found error if the file is not present (which
is selected by a non-deterministic assignment). This includes the optionality of
files having multiple possible answer paths even if the state (determined by the
set state variables) is the same.

Listing 1.1. Exemplary message server for the secure SELECT EF CM command

msgsrv SSEL_EF_CA_CVCA (){

boolean present =?(true ,false);

if(!AUTH) {

if(present) reader.FailSec ();

else reader.NoFind ();

}

else {

EF=true;

reader.OK (6001);

}

}

The reader possesses a message server for every (standard-defined) answer
code and a reset server that resets intermediately used state variables and is
called at the beginning. Except for the message server for an OK message, ev-
ery answer server and the reset function has local integer variable that is non-
deterministically filled with an identifier and an according switch/case statement
to determine the function to call next (the default is an error function that should
never be reached, which is checked as an assertion by the model checker). This
way, all of the possible combinations for inputs are invoked by the model checker.
The message server for OK is different, as it sets some intermediate state vari-
ables that are used by the model checker to determine whether some specific
operations are successfully executed. These intermediate state variables are re-
set by the reset message server. Listing 1.2 gives an example for the OK and
reset servers (note that the list of called functions is arbitrarily truncated for
the sake of brevity.

Listing 1.2. Exemplary message server for the OK answer followed by a reset.

[...]

msgsrv reset(){

OK=false;

rdBinOK=false;

4 The command is the same for the optional CA file in the common area and the
mandatory CVCA file in the LDS1 application area. The difference is just whether
the DF LDS1 is selected or not.

16 Marksteiner, Sjödin

srdBinOK=false;

ERROR = false;

sselEFOK=false;

int data =

?(1001 ,2001 ,2002 ,2003 ,3001 ,4001 ,6001 ,6002 ,6003 ,7001);

switch(data){

case 1001: PP.SEL_DF_LDS1 (); break;

case 2001: PP.SEL_EF_CA_CVCA (); break;

case 2002: PP.SEL_EF_CM (); break;

case 2003: PP.SEL_EF_CS_SOD (); break;

case 3001: PP.RD_BIN (); break;

case 4001: PP.BAC(); break;

case 6001: PP.SSEL_EF_CA_CVCA (); break;

case 6002: PP.SSEL_EF_CM (); break;

case 6003: PP.SSEL_EF_CS_SOD (); break;

case 7001: PP.SRD_BIN (); break;

default: self.ERR();

}

}

msgsrv OK(int data){

switch(data){

case 1001: break;

case 2001: break;

case 2002: break;

case 2003: break;

case 3001: rdBinOK=true; break;

case 4001: break;

case 6001: sselEFOK=true; break;

case 6002: sselEFOK=true; break;

case 6003: sselEFOK=true; break;

case 7001: srdBinOK=true; break;

default: self.ERR();

}

OK=true;

reset ();

}

[...]

Figure 3 shows a simplified state model of a small part of the specified stan-
dard, including just selecting the CM elementary file, the LDS1 application and
an authentication. The full standard contains far too many states (134) to dis-
play here.

Black-box protocol testing using Rebeca and Automata Learning 17

S0:

S1:

reader.RESET

S2:

reader.RESET

S3:

reader.RESET

S6:
 DF

PP.SEL_DF_LDS1 PP.SEL_DF_LDS1PP.SEL_DF_LDS1 PP.SEL_DF_LDS1

S5:

PP.SEL_EF_CMPP.SEL_EF_CM PP.SEL_EF_CM PP.SEL_EF_CM

S4:

PP.BAC

reader.NOUSE

reader.NOUSE

reader.NOUSE reader.NOFIND

reader.NOFIND

reader.NOFIND

S7:
 DF

reader.OK

S8:
 DF

reader.RESET

S9:
 DF

reader.RESET

S10:
 DF

reader.RESET

PP.SEL_DF_LDS1 PP.SEL_DF_LDS1 PP.SEL_DF_LDS1 PP.SEL_DF_LDS1

S16:
 DF

PP.SEL_EF_CM PP.SEL_EF_CM PP.SEL_EF_CM PP.SEL_EF_CM

S11:
 DF

 AUTH

PP.BAC

S12:
 DF

 AUTH

reader.OK

S13:
 DF

 AUTH

reader.RESET

S14:
 DF

 AUTH

reader.RESET

S15:
 DF

 AUTH

reader.RESET

PP.SEL_DF_LDS1PP.SEL_DF_LDS1

S18:
 DF

 AUTH

PP.SEL_DF_LDS1 PP.SEL_DF_LDS1

PP.SEL_EF_CM PP.SEL_EF_CM

S17:
 DF

 AUTH

PP.SEL_EF_CM PP.SEL_EF_CM

PP.BAC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.NOSEC

reader.OK

Fig. 3. Example of a simple Rebeca model. It only covers selecting one EF (CM), one
DF (LDS1) and a BAC authentication command.

18 Marksteiner, Sjödin

4.2 Model Checking

Before using the specification model for compliance checking, we assure its cor-
rectness with regard to some basic security properties, as stated below, using
model checking. For checking the model, we defined six different rules in LTS
that assure the correctness of the security properties of the modeled specifica-
tion. In particular these rules are:
NoXStates: □(¬ (¬DF ∧ AUTH));
PlainRead: □(¬ (READOK ∧ (¬EF ∨ DF)));
ReadFollowsSelect: (¬READOK U EF) ∨ □(¬READOK);
SecureRead: □(¬ (SREADOK ∧ ¬(DF ∧ AUTH ∧ EF)));
SecureSelect: □(¬ (SSELEFOK ∧ ¬(DF ∧ AUTH)));
SecureReadFollowsSecureSelect: (¬SREADOK U SSELEFOK) ∨□(¬SREADOK);
Apart from obvious atomic propsitions like EF, AUTH, and DF, we use READOK,
SREADOK, and SSELEFOK, which stand for successful operations and are only
set for one state before being unset in the reset message server. NoXStates con-
tains a check for illegal states where authentication is true without an LDS se-
lected (which should not happen because of lacking context for authentication).
Plainread says that a (plain EF) READ should not be successful without selected
EF or with selected DF (in the latter case, only secure READs should be suc-
cessful), ReadFollowsSelect sayst that a READ should only be successful when
a file is selected or not successful at all. SecureRead says that a secure READ
should only successful in an authenticated, DF and EF selected state, SecureSe-
lect says that a successful secure SELECT should only occur in an authenticated
and DF-selected state, while SecureReadFollowsSecureSelect says that a secure
READ can only occur after a secure SELECT (implying authentication).

4.3 Converting the Specification Model

A full state space export (see Section 4.2) comes in an XML format, that can
be converted into the Graphviz (DOT) format. However, displaying two com-
municating reactive systems (see Section 3), the format is not compatible with
the learned implementation automata, which are Mealy Machines. The Mealy
Machines combine the two systems into a single combined state, where the two
communication directions are visible in the input/output dualism of the transi-
tions.

We therefore wrote an automated conversion tool that removes the states and
transitions concerning the reset function and the respective states for unsetting
the successful operation propositions (READOK, SREADOK, and SSELEFOK),
as those are just used for checking the model (if certain operations succeed
only if certain conditions are met) and should not show up in the specification
automaton. Then, it determines the mergable states by first building equivalence
classes based on the states’ propositions and remove redundant ones. In our case,
it is possible to form equivalence classes for merging states this way, because
the Rebeca model sets the states’ propositions according to system properties
relevant for the comparison with a learner, reducing the possible set of remaining

Black-box protocol testing using Rebeca and Automata Learning 19

ones to the relevant ones, i.e., the set of possible equivalence classes is predefined
by the possible combinations of propositions in the model. This was also the
motivation of writing a dedicated converter instead of relying on established
toolsets. Lastly, for each equivalence class, it replaces reader/PP state pairs
with single states and take the transitions from reader to PP as input part and
from PP to reader as output part of the resulting combined transition label.
This eventually creates a Mealy-styled LTS with the transitions labeled with
input and output. The difference to an actual Mealy Machine is, again, that
the we can have more than one transition for the same input in the same state
(making the LTS effectively a non-deterministic pseudo-Mealy Machine). This
is, however, not a concern for the compliance checking procedure, as we treat
the learned implementation (a Mealy Machine) and the specification automaton
(a pseudo-Mealy Machine) as LTS with the input/output pairs as labels. This
makes the automata comparable by diverse kinds of equivalence relations using
standard methods.

Figure 4 shows a comparison of the specification pseudo-Mealy Machine with
the learned passport model. For readability, just to demonstrate the concept, we
shrinked the showed model the operations SELECT EF CM, SELECT DF LDS1
and BAC. The evaluation, however, covers the full standard specification (see
Section 5).

S0:

PP_BAC / NOUSEPP_SEL_EF_CM / NOFIND

S1:
 DF

PP_SEL_DF_LDS1 / OK

PP_SEL_EF_CM / NOSECPP_SEL_DF_LDS1 / OK

S2:
 DF

 AUTH

PP_BAC / OK PP_SEL_EF_CM / NOSEC PP_SEL_DF_LDS1 / OK

PP_BAC / OKPP_SEL_EF_CM / NOSECPP_SEL_DF_LDS1 / OK

S0: PP_SEL_EF_CM / NOFINDPP_BAC / NOUSE

S1:

PP_SEL_DF_LDS1 / OK

PP_SEL_DF_LDS1 / OKPP_SEL_EF_CM / NOSEC

S2:

PP_BAC / OK PP_SEL_DF_LDS1 / OK PP_SEL_EF_CM / NOSEC

PP_BAC / OK

Fig. 4. Simplified example of a Rebeca model converted in a non-deterministic Mealy-
style LTS compared to a learned MRTD Mealy model. Note that the difference lies in
additional transitions in the Rebeca version, modeling optional behavior. The Rebeca
model shows the same behavior as the one in Figure 3.

5 Evaluation

In this section we briefly outline the achieved results with the described methods.
We used the described model-checked ICAO standard’s specification model and
used trace and simulation preorder to check a learned model of an Austrian
passport for its compliance with the specification model. We obtained the learned

20 Marksteiner, Sjödin

model in Graphviz format from our Learnlib-based NFC learner (see a labeled,
simplified version in Figure 5), created the specification model using Rebeca in
the Afra IDE and verified it with the Modere model checker. We then converted
the verified model into a pseudo-Mealy Machine in Graphviz format (see Figure
6 for a simplified, consolidated version). The full pseudo-Mealy has 6 states and
662 transitions, whereas the original state model from Rebeca has 134 states and
over 5300 transitions. This shows the significant decrease of complexity through
the Rebeca state model’s conversation into a Mealy-styled LTS. The learned
model has 6 states and 342 transitions. We converted both Graphviz models
into the Aldebaran format and used it as an input for mCRL2’s [4] ltsccompare
tool, with which we performed simulation and trace preorder checking. The
result showed a positive check, i.e. it showed that a simulation preorder relation
between the learned model and the specification exists. Hence, the learned model
behavior is included in the behavior of the specification. We were therefore able
to demonstrate the passport’s compliance with the ICAO standard and, through
the model checking, we were able to demonstrate the security of the standard
specification (in terms of the data being securely stored on the eMRTD device).

ε (S)SEL_EF.- / 6a82(S)*_BIN / 6986SSEL_EF.DIR / 6a82

DF

SEL_DF.LDS1 / 9000 SSEL_DF.LDS1 / 9000 FAILAUTH

BAC / 6985

EF

(S)SEL_EF.+ / 9000

(S)SEL_* / 6982(S)SEL_DF.LDS1 / 9000(S)*_BIN / 6986

DF|AUTH

BAC / 9000

BAC / 9000SSEL_DF.LDS1 / 6a82SSEL_EF.NoPres / 6982SRD_BIN / 6986

FAILAUTH|DF

SEL_EF.* / 6982SEL_DF.LDS1 / 9000 *_BIN / 6986 SUP_BIN / 6700

DF|AUTH|EF

SSEL_EF.Pres / 9000

BAC / 9000

SEL_EF.* / 6982SEL_DF.LDS1 / 9000*_BIN / 6986SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

SEL_DF.LDS1 / 9000

SEL_EF.- / 6a82*_BIN / 6986BAC / 6985SSEL_EF.* / 6988SRD_BIN / 6988SUP_BIN / 6700

FAILAUTH|EF

SEL_EF.+ / 9000SEL_DF.LDS1 / 9000SSEL_DF.LDS1 / 9000

(S)SEL_EF.+ / 9000(S)SEL_EF.- / 6a82RD_BIN / 9000UP_BIN / 6982SRD_BIN / 9000SUP_BIN / 6982

BAC / 6985

SEL_EF.+ / 9000SEL_EF.- / 6a82RD_BIN / 9000UP_BIN / 6982BAC / 6985SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

SEL_DF.LDS1 / 9000

BAC / 9000SSEL_EF.+ / 9000SSEL_DF.- / 6a82SRD_BIN / 9000

DEAUTH

SEL_EF.CA / 6982 SEL_EF.+ / 6982 SEL_EF.- / 6a82 *_BIN / 6982SUP_BIN / 6700

SEL_DF.LDS1 / 9000

BAC / 9000

SEL_EF.* / 6982*_BIN / 6982SSEL_* / 6988SRD_BIN / 6988SUP_BIN / 6700

Fig. 5. Labeled model of an Austrian passport learned with TTT from [20].

6 Related Work

There are approaches for combining automata learning and bisimulation algo-
rithms [6, 9]. However, to the best of our knowledge, there are no approaches for

Black-box protocol testing using Rebeca and Automata Learning 21

ε SRD_REC, S*_BIN / NOINFSSEL_EF_*, SSEL_DF_LDS1, SRD_BIN / FAILSECBAC / NOUSERD_REC, *_BIN / NOSUP, NOEFSEL_EF_* / NOFIND

EF

SEL_EF_ATR, SEL_EF_DIR, SEL_EF_CS_SOD, SEL_EF_CA_CVCA / OK

DF

SEL_DF_LDS1 / OKSRD_REC, S*_BIN / NOINFSRD_BIN, SSEL_DF_LDS1 / FAILSECSEL_EF_*, SSEL_EF_* / NOFINDBAC / NOUSERD_REC, *_BIN / NOSUPUP_BIN / NOSECRD_BIN / OKSEL_EF_DIR, SEL_EF_ATR, SEL_EF_CS_SOD / OK

SEL_DF_LDS1 / OK

S*_BIN,SRD_REC / NOINFSSEL_EF_*, SSEL_DF_LDS1, SRD_BIN / FAILSECSSEL_EF_CA_CVCA / NOFIND*_BIN, RD_REC / NOSUPUP_BIN, RD_BIN / NOEFSEL_EF_* / NOSEC, NOFINDSEL_DF_LDS1 / OK

DF
 AUTH

BAC / OK S*_REC / NOINF SRD_BIN / NOEF *_BIN, RD_REC / NOSUP SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

S*_REC / NOINFSRD_BIN / NOEFSEL_EF_*, SSEL_EF_*, SSEL_DF_LDS1 / NOFINDSEL_DF_LDS1, BAC / OK*_BIN, RD_REC / NOSUP

EF
 DF

 AUTH

SSEL_EF_* / OK

SEL_EF_* / NOFIND, NOSEC SEL_DF_LDS1 / OK

SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

S*_BIN, SRD_REC / NOINFSSEL_EF_* / NOFIND, OKSSEL_DF_LDS1 / NOFINDSEL_DF_LDS1, BAC / OK*_BIN,RD_REC / NOSUPRD_BIN, UP_BIN / NOSEC

EF
 DF

S*_BIN, SRD_REC, SER_BIN / NOINF *_BIN,RD_REC / NOSUP SEL_EF_*, RD_BIN, UP_BIN / NOSE, NOFINDC SEL_DF_LDS1 / OK

SEL_EF_* / NOSEC, NOFIND SEL_DF_LDS1 / OK

BAC / OK

S*_BIN, SRD_REC / NOINFSSEL_EF_*, SRD_BIN, SSEL_DF_LDS1 / FAILSECSSEL_EF_CA_CVCA / NOFINDRD_BIN / NOSECSEL_EF_* / NOFIND, NOSECSEL_DF_LDS1 / OK

Fig. 6. Example of the modeled ICAO specification. Please note that we simplified
the transitions because of the complexity. Solid lines are transitions towards more
elevated access rights, light lines are transitions leading towards the same or lower
access privileges.

combining model checking, learning and preorder checking as ours. We funded
this approach on our method on partly specifying the ICAO eMRTD specifica-
tion [20] and used the learned model from that work. However, in the former
approach we manually modeled the specification pseudo-Mealy Machine using
pure graphical notation (i.e, we hand-modeled it in the graphviz format) and
did not use a modeling language nor model checking. Using Rebeca and Modere
in the present work, we expanded the approach by formally verifying the speci-
fication model and, through the automatic conversion to the specification LTS,
eliminated sources of error in the specification modeling. We also used the ap-
proach of using equivalence checking (bisimulation and trace equivalence) with
NFC before, particularly for an automatic compliance checker for the ISO/IEC
14443-3 (the NFC handshake) protocol [19]).

7 Conclusion

In this paper, we demonstrated an approach and a tool chain of automata learn-
ing to infer models of systems under test and evaluate their compliance with a
specification model in Rebeca, that is formally checked for security properties.
We used this approach in practice to automatically mine a Mealy model of an
eMTRD device (an Austrian passport). We further created a Rebeca model of
the ICAO Doc 9303 part 9 standard and verfied it for security properties (par-
ticularly, proper authentication for access to restricted files). We then used the
mCRL2 toolset to check the compliance of the mined model with the specifi-
cation model using simulation and trace preorder, for which we converted the
specification model into a Mealy-styled LTS. This way we could show the com-
pliance of the SUT with the verfied standard.

7.1 Discussion

We have limited the current approach LDS1 application of eMRTDs. Further-
more, we were unable to learn another passport (particularly a newer German

22 Marksteiner, Sjödin

one), because it uses the more recent PACE authentication for which we do not
have a working implementation. Nevertheless, the approach is scalable and can
be expanded to cover these areas. Furthermore, the process is transferrable to
other systems, mainly depending on the availibility of a learner.

7.2 Outlook

To generalize the approach, we plan to use the vice-versa method, namely con-
verting learned Mealy machines into Rebeca code. This way we can mine models
of arbitrary systems automatically, which is very tedious to do manually. Once
having these models in Rebeca, we can use Modere for checking them for security
and other correctness properties.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Informa-
tion and Computation 75(2), 87–106 (Nov 1987). https://doi.org/10.1016/0890-
5401(87)90052-6

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (Apr 2008)

3. Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: Libalf:
The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.)
Computer Aided Verification. pp. 360–364. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6˙32

4. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wes-
selink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 Toolset for Analysing Concur-
rent Systems. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 21–39. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-
030-17465-1˙2

5. Champarnaud, J.M., Coulon, F.: NFA reduction algorithms by means of reg-
ular inequalities. Theoretical Computer Science 327(3), 241–253 (Nov 2004).
https://doi.org/10.1016/j.tcs.2004.02.048

6. Chen, Y.F., Hong, C.D., Lin, A.W., Rümmer, P.: Learning to prove
safety over parameterised concurrent systems. In: 2017 Formal Meth-
ods in Computer Aided Design (FMCAD). pp. 76–83 (Oct 2017).
https://doi.org/10.23919/FMCAD.2017.8102244

7. Garcia, F.D., de Koning Gans, G., Verdult, R.: Tutorial: Proxmark, the swiss army
knife for rfid security research: Tutorial at 8th workshop on rfid security and privacy
(rfidsec 2012). Tech. rep., Radboud University Nijmegen, ICIS, Nijmegen (2012)

8. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimula-
tion as a congruence. Information and Computation 100(2), 202–260 (Oct 1992).
https://doi.org/10.1016/0890-5401(92)90013-6

9. Hong, C.D., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic Bisimulation
for Parameterized Systems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Veri-
fication. pp. 455–474. Lecture Notes in Computer Science, Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4˙27

Black-box protocol testing using Rebeca and Automata Learning 23

10. International Organization for Standardization: Cards and security devices for per-
sonal identification – Contactless proximity objects – Part 4: Transmission proto-
col. ISO/IEC Standard ”14443-4”, International Organization for Standardization
(2018)

11. International Organization for Standardization: Identification cards – Integrated
circuit cards – Part 4: Organization, security and commands for interchange (2020)

12. Isberner, M., Howar, F., Steffen, B.: The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
Runtime Verification. pp. 307–322. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3“˙26

13. Isberner, M., Howar, F., Steffen, B.: The Open-Source LearnLib. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 487–495. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4“˙32

14. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: Proceedings of the 2006 ACM Symposium on Applied Computing. pp.
1810–1815. SAC ’06, Association for Computing Machinery, New York, NY, USA
(Apr 2006). https://doi.org/10.1145/1141277.1141704

15. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press (Aug 1994)

16. Khamespanah, E., Sirjani, M., Khosravi, R.: Afra: An Eclipse-Based Tool with Ex-
tensible Architecture for Modeling and Model Checking of Rebeca Family Models.
In: Hojjat, H., Ábrahám, E. (eds.) Fundamentals of Software Engineering. pp.
72–87. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-
031-42441-0˙6

17. Kruger, L., Junges, S., Rot, J.: State Matching and Multiple References in Adaptive
Active Automata Learning. In: Platzer, A., Rozier, K.Y., Pradella, M., Rossi, M.
(eds.) Formal Methods. pp. 267–284. Springer Nature Switzerland, Cham (2025).
https://doi.org/10.1007/978-3-031-71162-6˙14

18. Lee, D., Sabnani, K., Kristol, D., Paul, S.: Conformance testing of protocols
specified as communicating finite state machines-a guided random walk based
approach. IEEE Transactions on Communications 44(5), 631–640 (May 1996).
https://doi.org/10.1109/26.494307

19. Marksteiner, S., Sirjani, M., Sjödin, M.: Using Automata Learning for Compli-
ance Evaluation of Communication Protocols on an NFC Handshake Example.
In: Kofroň, J., Margaria, T., Seceleanu, C. (eds.) Engineering of Computer-Based
Systems. Lecture Notes in Computer Science, vol. 14390, pp. 170–190. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-49252-5˙13

20. Marksteiner, S., Sirjani, M., Sjödin, M.: Automated Passport Control: Mining and
Checking Models of Machine Readable Travel Documents. In: Proceedings of the
19th International Conference on Availability, Reliability and Security. pp. 1–8.
ARES ’24, Association for Computing Machinery, New York, NY, USA (Jul 2024).
https://doi.org/10.1145/3664476.3670454

21. Mealy, G.H.: A method for synthesizing sequential circuits. The Bell System
Technical Journal 34(5), 1045–1079 (Sep 1955). https://doi.org/10.1002/j.1538-
7305.1955.tb03788.x

22. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata Learning with On-
the-Fly Direct Hypothesis Construction. In: Hähnle, R., Knoop, J., Margaria, T.,

24 Marksteiner, Sjödin

Schreiner, D., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Veri-
fication, and Validation, vol. 336, pp. 248–260. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34781-8˙19

23. Moore, E.F.: Gedanken-Experiments on Sequential Machines. In: Automata
Studies, AM-34, vol. 34, pp. 129–154. Princeton University Press (1956).
https://doi.org/10.1515/9781400882618-006

24. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: An
active automata learning library. Innovations in Systems and Software Engineering
18(3), 417–426 (Sep 2022). https://doi.org/10.1007/s11334-022-00449-3

25. Organization, I.C.A.: Machine Readable Travel Documents – Part 9: Deployment of
Biometric Identification and Electronic Storage of Data in MRTDs (Eigth Edition)
(2021)

26. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Com-
puting. pp. 411–420. STOC ’89, Association for Computing Machinery, New York,
NY, USA (Feb 1989). https://doi.org/10.1145/73007.73047

27. Russell, B.: Mathematical Logic as Based on the Theory of Types. American Jour-
nal of Mathematics 30(3), 222–262 (1908). https://doi.org/10.2307/2369948

28. Sirjani, M.: Rebeca: Theory, Applications, and Tools. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components
and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Nether-
lands, November 7-10, 2006, Revised Lectures. Lecture Notes in Computer Science,
vol. 4709, pp. 102–126. Springer (2006). https://doi.org/10.1007/978-3-540-74792-
5˙5

29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-Based Testing IoT Communica-
tion via Active Automata Learning. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). pp. 276–287 (Mar 2017).
https://doi.org/10.1109/ICST.2017.32

30. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A New Approach for Active
Automata Learning Based on Apartness. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 223–243. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99524-
9˙12

