
Approaches For Automating Cybersecurity
Testing Of Connected Vehicles

Stefan Marksteiner, Peter Priller, and Markus Wolf

Abstract Vehicles are on the verge building highly networked and interconnected
systems with each other. This requires open architectures with standardized inter-
faces. These interfaces provide huge surfaces for potential threats from cyber attacks.
Regulators therefore demand to mitigate these risks using structured security engi-
neering processes. Testing the effectiveness of this measures, on the other hand,
is less standardized. To fill this gap, this book chapter contains an approach for
structured and comprehensive cybersecurity testing of contemporary vehicular sys-
tems. It gives an overview of how to define secure systems and contains specific
approaches for (semi-)automated cybersecurity testing of vehicular systems, includ-
ing model-based testing and the description of an automated platform for executing
tests.

1 Introduction

Mobility is a high priority in our society. Statistics report global annual car sales
between 60 and 75 million1 during recent years. According to the European Au-
tomobile Manufacturers’ Association (ACEA), just in Europe approximately 350
million cars are currently in use [8], and the number grows to beyond 1 billion for a
worldwide estimation. Cars are ubiquitous, for many families and businesses around
the world, since decades. What has changed, however, is the fact that today’s vehicles

Stefan Marksteiner
AVL List GmbH, Graz, Austria and Mälardalen University, Västerås, Sweden e-mail: ste-
fan.marksteiner@avl.com

Peter Priller
AVL List GmbH, Graz, Austria e-mail: peter.priller@avl.com

Markus Wolf
AVL List GmbH, Graz, Austria e-mail: markus.wolf@avl.com

1 https://www.statista.com/statistics/200002/international-car-sales-since-1990/

1



2 Stefan Marksteiner, Peter Priller, and Markus Wolf

have become complex IT systems, often also called ”computers on wheels”. Modern
cars run 100+ million lines of source code (MLOSC), and host complex computer
networks both internally (in-vehicle networks) and externally. Many modern cars are
now connected via the Internet to (maybe even multiple) cloud services, as well as
to cellular networks (3G, LTE, 5G), and to specific vehicular networks (also known
as car-to-car (C2C) or vehicle-to-everything (V2X), like ITS-G5). And that’s not all:
most vehicles also provide local networking capabilities (also called personal area
networking, PAN). Typically based on WIFI and Bluetooth, it is used to connect
to users’ personal devices like smart phones and tablets, or to their home WLAN.
To complement that already impressive array of wireless communication interfaces,
some car manufacturers (or Original Equipment Manufacturers - OEMs) might add
ultra-wide band (UWB) radios to communicate with car access systems like owner’s
keys or keycards. In addition, advanced driver assistance systems (ADAS) and future
fully automated driving (AD) capabilities add GNSS receivers (Global Navigation
Satellite System), TMC receivers (Traffic Message Channel), and active radar sys-
tems. Modern vehicles combine deeply complex software with exposure to a wide
range of wireless networking technologies to both public and closed networks). In
cybersecurity, this is called opening a large attack surface. This is worsened by the
fact that vehicles are exposed for a much longer time than, e.g., personal computers
(PC) or mobile devices like smart phones. Cars are in operation for some 15 years
and more, which increases the threat that a vulnerability is found, shared, and at some
point in time exploited by an attack. With such significant high exposure, let’s con-
sider potential threats which could evolve from malign attacks. Vehicles are highly
dynamic (by nature), provide high levels of energy (storing 100kWh and more), are
valuable (sometimes beyond 100k=C) and exist as worldwide accessible objects in
public, thus unrestricted places. When exploited by an attack taking over remote
control, vehicles could become dangerous weapons, for both passengers inside, and
for other road participants. Worse, if groups of vehicles would come under attacker’s
control, they could be used to stage threats on city or even national level. State-
sponsored attackers could stage war or terror attacks of not-yet-seen scale. Other
scenarios might be less about harming humans, but could include denial-of service
on single vehicles (e.g., owners cannot use their vehicles unless a ransom is paid) or
on fleet level (e.g., blocking important road infrastructure, threatening whole com-
munities, and some serious damage of a brand’s reputation). And of course, there is
simple car theft. Data privacy is also an important aspect. Modern cars might ”know”
quite a lot about their users, including their past and present locations, driving habits,
additional passengers, anything spoken in the vehicle, attention level while driving,
contact information like phone numbers from connected personal devices, etc. An
attack could therefore retrieve quite a lot of personal information and thus become
considerable value to attackers. While not all of these threats have been discussed
widely in public, the automotive industry is very much aware of it, and has stepped
up efforts in designing more secure systems in cars, and establishing secure life
cycle processes to provide necessary updates to fix vulnerabilities. An important
part of securing these vehicular systems is the verification and validation of the
effectiveness of taken security measures through testing. This testing needs to be



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 3

done continuously through the life cycle (as new exploits might come up over time),
and also as updating a system (or just a part of it) might alter its behavior an a way
relevant to its security. In essence, (cyber)security testing must assure a system to
display a small attack surface, be resilient and (possibly) to fix vulnerabilities before
they are exploited in the wild.

The remainder of the chapter is structured the following way: Section 2 contains
the current state of the art and related work. Section 3 contains measures for securing
automotive systems. Section 4 contains specific approaches for automated cyberse-
curity testing of vehicular systems, including model-based testing and the description
of an automated platform for executing tests. Section 5, eventually concludes this
chapter.

2 State of the Art and Related Work

The automotive industry can draw from experience in other domains regarding
security testing. General IT (managing e.g., corporate networks and IT systems)
has established a history of penetration testing (abbreviated: pen testing), as simu-
lated, authorized cyber-attacks. Typically executed by cybersecurity experts (acting
as “white-hat hackers”), the goal is to identify weaknesses by letting these experts
try to hack into the system under test (SUT) under pre-defined constraints (e.g., no
physical access, no permanent harm), typically within a defined time window. If
successful, these tests can thereby discover and document weaknesses. Translated to
automotive industry, several companies offer similar pen-testing as a service on dif-
ferent levels (component, system, vehicle). While pen-testing might provide highly
valuable insights into what level of security has been achieved for the vehicle, and
might even uncover previously unknown vulnerabilities, it suffers from limited scal-
ability and repeatability, as it is driven by and dependent on human experts. Security
experts have toolboxes with highly effective tools (like the open source Metasploit
framework2), but often need to supervise and configure these tools, and to adapt
existing or write new scripts for complete attack chains to match a specific SUT.
This requires skills and labor, and often involves considerable costs, which clearly
limits scalability. Due to the sheer complexity of automotive software code (100+
MLOSC), it is also quite challenging for the experts to correctly hypothesize vul-
nerabilities, and to select (and execute) the most effective attacks, given the limited
time available. This might heavily depend on expertise of the human testers, further
limiting repeatability and comparability between pen tests campaigns. The threat of
cyber attacks by adversaries has, however, also been recognized by standards and
regulatory bodies. The United Nations Economic Council for Europe (UNECE) has
issued a regulation (R 155 [35]) that prescribes the installation of a cybersecurity
management system (CSMS). A CSMS is a process framework that accompanies the
automotive development process over the complete life cycle and assures cybersecu-

2 https://github.com/rapid7/metasploit-framework



4 Stefan Marksteiner, Peter Priller, and Markus Wolf

rity in every phase. Consequently, the International Organization for Standardization
(ISO) and the Society of Automotive Engineers (SAE) have issued a joint stan-
dard (ISO/SAE 21434 [16]) that defines such a CSMS. As testing guidelines in
these standards are somewhat underrepresented in contrast to security engineering,
a structured approach is needed, e.g., as defined in [23, 24]. It further became clear
that in order to establish dependable security covering all variants of vehicle lines
in their full life cycle, supporting the upcoming accelerated software development
cycles (automotive DevOps), an advanced process based on smart automation was
required, as suggested in [6].

3 Automotive Cybersecurtiy Lifecycle Management

In order to maintain secure (and through, security-related impacts, also safe) ve-
hicular systems, the respective system needs a security concept. The cybersecurity
testing (see Section 4) will eventually validate and verify the effectivness of that
concept. To establish a security concept for the complete life cycle of a vehicle for
testing, we mainly rely on five pillars:

1. Threat Modeling (see Section 3.1)
2. Variant Management
3. Vulnerability Assessment
4. Automated Test Generation (see Section 4.2)
5. Process Governance

Threat modeling (see Section 3.1) is a widely proliferated technique in the au-
tomotive industry, mainly as part of a threat analysis and risk assessment (TARA)
process [38].

As an OEM’s fleet contains various vehicle model configurations, all of which
contain tens of ECUs all of which again may display different hardware and software
versions, keeping track of this potentially vast number of variants is crucial to
determine the security posture of each member of the fleet. Our approach to tackle
this problem is to use calibration data management that links technical attributes
with software calibrations, to keep track of all ECU variations over the system’s
life cycle [5, 30]. This system, CRETA, contains exhaustive information about the
variants, including their ECU firmware binaries.

This allows for the stored firmwares to be subsequently analyzed, generating a
digital model of the software. To do so, firstly the firmware is extracted by iterating
through the file tree, using an extraction algorithm and validating the extraction’s cor-
rectness. The extracted software undergoes a composition analysis that pre-processes
executables and normalizes the software in order to compare to a large database of
mapped components, identified e.g. by file paths, file names, and characteristic
strings in the software or configuration data, yielding a Software Bill-of-Materials
(SBOM). Subsequently, the model is analyzed for security properties using pattern
recognition. Patterns of known attacks from Common Vulnerabilities and Exposures



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 5

(CVEs) are compared with each identified software library in the SBOM. Further-
more, the model undergoes a binary code analysis to find vulnerabilities not found
in public databases: the binary is mapped in data and code sections, the code is
then disassembled and later mapped into an intermediate language (for normalizing
purposes) that allows for reconstructing the functions, analyzing the parameters and
stack behavior and building control and data flows [11]. This matching, for instance,
is able to identify common flaws like buffer overflows and, hence, is able to uncover
zero-day vulnerabilities in software in a black box setting. Thirdly, patterns for pro-
liferated code guidelines and relevant security standards are implemented, allowing
for compliance checking against a given set of standards. This analysis, paired with
full life cycle-coverage of the variants, allows for dealing with the parts lists and
vulnerability management requirements mentioned above, as well as for verifying
security requirements.

Vulnerabilities found in the code through pattern matching, however, are not
necessarily exploitable for a variety of reasons. For instance, the location in the code
could not be reachable, the impact of the vulnerability could be nullified through
write protection of the memory or file system, or the interface might be protected
by access controls. Therefore, the generated model also allows for model-based
cybersecurity test case generation by using either the generated behavior model for
model checking or by directly using the found patterns as basis for vulnerability
exploitation [22]. We also aim for deriving test cases from threat modeling with a
certain degree of automation (see Section 4.2).

To govern the process we developed our tool, FUSE, that guides activities of a
given standard and provides standards-compliant documentation given the necessary
input. We implemented ISO/SAE 21434 [16] and UNECE R155 [35] (as well as ISO
26262 [15], ISO 25119 [14]). The modeled objectives from the standards allow for
providing all necessary artifacts for performing a review or audit, as well as keeping
track of the conformance to relevant standards inside the development project.

3.1 Threat Modeling

One key element of cybersecurity analysis in all life cycle phases is threat modeling.
This technique for security analysis is around for many years and well proliferated.
It basically consists of modeling the information flows in an SUT and consequently
examining them in a comprehensive way, e.g., via STRIDE or a similarly structured
method [33].
Numerous software capable of performing a thread modeling process exists, but
prior to ThreatGet none was specifically developed for embedded or IoT systems.
ThreatGet is a software tool developed by Austrian Institute of Technology (AIT)
and based on Microsoft Enterprise Architect, a commonly used platform for systems
model engineering [7].
It is used to examine models, objects, connections and charts in a system to enable
iterative threat and risk analysis, covering the following categories:



6 Stefan Marksteiner, Peter Priller, and Markus Wolf

Fig. 1 A list of found threats between the camera and the sensor data fusion and decision making
[7].

• Actor,
• Sensor,
• Vehicle Unit,
• Data Store,
• Communication Interface,
• Communication Flow

Objects and connections in ThreatGet have so called tagged values at creation
time. These describe analysis or security relevant properties of elements. It is rec-
ommended for users to extend the properties in addition to already proposed tagged
values. Additionally, a database is used in the background that contains objects,
which can also be extended by a user [7].

As an application example, Figure 1 shows the threat diagram of a communication
flow inside ThreatGet. In this case, the environment data from the camera is directed
to the ”Sensor Data Fusion and Decision Making” unit. After all diagrams are
completed, a threat-overview is derived. An automatic risk evaluation consists of
suggested values and can be adapted in a manual risk evaluation. In this step it is
possible to rate the impact and occurrence of a threat at different levels and afterwards
results can be exported in a report [7].



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 7

4 Cybersecurity Testing

In order to assure the cybersecurity of automotive systems and provide evidence for
the appropriateness and effectiveness of security measures (according to a cyber-
security management system) , rigorous, structured and comprehensible testing is
necessary [35]. Therefore a structured process, aligned with ISO/SAE 21434 [16]
is recommendable. Such a process for testing could contain the following activities
[24]:

1. Item Definition
2. Threat Analysis and Risk Assessment
3. Security Concept Definition (mainly including the test targets)
4. Test Planning and Scenario Development

a. Penetration Test Scenario Development
b. Functional and Interface Test Development
c. Fuzz Testing Scenario Development
d. Vulnerability Scanning Scenario Development

5. Test Script Development

a. Test Script Validation

6. Test Case Generation

a. Test Environment Preparation

7. Test Case Execution
8. Test Reporting

While items 1-3 correspond to a threat modeling process (see Section 3.1), the rest
of them are the core testing process. To increase testing efficiency, these steps could
be partially automated using model and learning-based approaches that can execute
test planning and execution steps [6]. Here, the steps can be summarized into concept
design. Item 4 forms V &V planning, while items 5 and 6 can be subsumed under V
& V Methods. Finally, items 7 and 8 forms V & V execution. In between the planning
and the methods, steps for automation can take effect: models from the concept
design can be validated in an automated way and single components can be modeled
using automated learning techniques and verified using methods from the V & V
methods. An example of this used in the InSecTT project is described in Section 4.1.
The full approach as described above consists of the following steps [6]:

1. Concept Design
2. V&V Planning
3. Model Validation
4. Model Learning
5. V&V Methods
6. V&V Execution



8 Stefan Marksteiner, Peter Priller, and Markus Wolf

4.1 Learning-based Testing

Following the approach described above, we use learning, more concretely active
automata learning to derive a model of a system [36]. The methodology uses a learner-
teacher system where an all-knowing teacher answers the learning system queries
about the SUT, in the context of cyber-physical systems ordinarily by providing
the output to a series of inputs. The learner tries to infer a state machine from
the given information. Once it has a hypothesis of a state machine that describes
the observed behavior, it presents it to the teacher who then acknowledges the
hypothesis as correct or gives a counterexample. This again, in real-world situations
of black-box learning will mostly be simulated by conformance testing algorithms:
if conformance is shown, the hypothesis is assumed as correct, otherwise a failing
test sequence serves as a counterexample. The counterexample is taken as new input
to refine the hypothesis and the learning continues until no more counterexamples
are found. The this algorithm has been first formulated by Angluin [3] and has
experienced significant improvements since (e.g., [17, 31]).

In accordance with the process outlined in Section 4, we use this technique to
infer a model of a component. As a proof-of-concept we test a car access system
based on Near-Field Communications (NFC). The testing setup consists on a learner
(as described above) based on the Learnlib Java library [18] and a Proxmark NFC
device [12] with an respective API that enables us to learn a model of the ISO
14443-3 NFC handshake protocol [13]. Figure 2 shows an overview of this setup.
The used learning setup allows for inferring a state machine of the protocol and
compare it to the specification in the standard to check its conformance. Figure 3
shows the learned model of the actual SUT (and NXP test card of a car access system
prototype). Further use of the model is to do actual model checking or to use the
model as an input for guided fuzz testing.

4.2 Model-based Test Case Generation

On a macroscopic level, a model of a complete vehicle as defined in the threat model
(see Section 3.1) has to be explored in order to identify single components and
generate test cases based on an attack tree [29, 32], a petri net [28, 37], or similar.
If the SUT is modeled manually and, therefore, the components are known, this is
trivial. If the setting is a black or grey box situation, we follow the approach to assume
a generic model as starting point and test various components of the model by, e.g.,
send certain CAN messages for enumeration or try out an exploit that is known to
affect a very broad variety of systems. Based on a comparison of the expected and
actual output of the test, one can narrow down the set of likely components and
system architectures (as described in [25]), e.g., based on SAT solving [27].

In order to generate test cases on a component level, a model must be transformed
into a form that can be examined using a model checker (e.g. the Rebeca model
checker [34] or SLAM [4]). Violations of the specification found by a model checker



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 9

Learnlib (JAVA) API (C/C++) ProxmarkSocket
USB NFC

SuL

Fig. 2 NFC Automata Learning Setup

point towards an interesting position for a test case that could be extrapolated out of
the traces leading to the respective states. There is also work regarding a toolchain
using the UPPAAL framework [1].

Subsequently properties defining the security of a system shall be defined and
used in the model checking. For c) where the model checking fails, a security problem
might be present. The trace of the counter example can help in building a test case.
Moreover, the input sequences used for the automata learning of the model shall
be used to make test cases for the actual system-under-test. Using the traces as test
vectors eliminate false positives from the model checking, as the exploitability of
specification violations is test on the actual system. To concrete the abstract input,
fuzzing techniques may be used [2].

4.3 Testing Platform

To realize the testing in the faction outlined in Section 4, a testing framework was
developed and implemented. The high-level architecture was derived from the ap-
proach outlined in [23]. It has been adapted to suit the need of performing test in any
phase of the product life cycle by adding co-simulation techniques into the testing
framework architecture (see Figure 4 for an overview). The core component is a
Security Testing Framework (see Section 4.4). It gains test cases from a generation
engine that is fed by two sources: security functional tests from security requirements
and penetration test attack vectors that have been tried out before (see description in
Section 4.4) from a library. The core framework executes the attacks directly onto
the SUT or into a co-simulation platform (indicated as framework interfaces in the



10 Stefan Marksteiner, Peter Priller, and Markus Wolf

Fig. 3 Learned Model of an NXP NFC Test Card

figure) that interconnects various simulation parts: environment (i.e. other vehicles’
and infrastructure’s interference), network (generating mainly ITS-G5 traffic), chan-
nel (capable of simulating various physical layer signals as well as emitting them
physically) and application (Section 4.4 contains an example with a platooning ap-
plication). This way, each component can be stimulated the same way regardless if
it is a physical or simulated component.



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 11

Fig. 4 Overview of the Automotive Cybersecurity Testing Framework’s high-level architecture

4.4 Automated Test Execution

For test execution, the test cases that were derived as described in previous chapters
are fed into the automated test execution environment. Test cases are either manually
written or generated in the ALIA DSL [39] format, which aims to provide an abstract
and system agnostic representation of logical steps in a test case. Out of the main
test-script and its included sub-scripts (containing frequently occurring blocks that
handle a specific task such as opening a listener) a JSON Object is generated. These
test case descriptions in DSL and JSON format are stored into a Database and
can be accessed through the Orchestration Application; a platform independent web
application that allows a user to manage information about the current SUT, schedule
test execution and review results. This Orchestration Application then sends the test
cases that the user wants to execute to the Execution Engine (AXE) and afterwards
generates a report out of the received output from the AXE and the Test Oracle. The
AXE is a Python based software that runs on an instance of Kali Linux and utilizes a
variety of different interfaces, libraries and other software tools to perform a test case
execution. It takes either a single test case or a structured collection of tests as input
in JSON format and starts to subsequently execute contained steps. This modular
approach allows not only to target a specific SUT but also to control and parameterize
whole (semi-) virtual SUT environments to manage SUT-behavior during a test
scenario. Furthermore, it is possible to define and address different processes for
tool execution which enables for example to host a malicious server, start a netcat
listener and execute exploit code sequentially in a single test and afterwards perform
code execution in an obtained reverse shell in the listener process.

One proof-of-concept use case implemented in the framework was security testing
of the Ensemble platooning protocol [19] in a simulated environment. The concrete
setup consisted of two truck simulations running on low-cost hardware connected



12 Stefan Marksteiner, Peter Priller, and Markus Wolf

Fig. 5 AACT Test Execution Framework

via physical ITS-G5 [9] connection via Cohda modems. Another modem is used as
an adversary to eavesdrop and interfere with the connection. The testing framework
is able to start the simulation, so that the simulated trucks form a platoon. The actual
test consists of a) listening to the communications b) distilling the session key out
of a package c) cracking the key (for testing purposes, the key was reduced to eight
bits) d) injecting a malicious message to disband the platoon. Figure 6 shows an
overview of this setup. The result was that the injection failed for timing reasons,
because the platoon keep-alive messages were sent in such a high frequency that they
interfered with the break-up sequence. Even with reduced key (from AES-256 down
to 8 bits) the protocol was secure against the tested attack. Furthermore, ITS-G5
built-in signatures, that were disabled for the test, would have prevented a successful
injection. The test could therefore show the security of the protocol in an automated
way as described above.

4.5 Fuzzing

The goal of fuzzing is to reach a non-intended state of a SUT by using completely
or partially random input. The latter technique may use a structured frame structure
that is compliant with communication standards used by the SUT and randomized
payload data. [26] In case of a CAN-Bus, a fuzzing tool can create packets that
consist of the standard ID Range (0 to 2047) and a previously learned or sniffed
payload [20]. A fuzzer should include the following components [21]:

• A fuzz generator that assembles input from non-random components and random
components with a sufficient amount of randomness

• A deliver mechanism that sends the generated inputs to the SUT
• A monitoring system (test oracle), which interprets the results such as SUT

responses, monitored network communication, debug interface output, system



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 13

Attack-
database

NXP Platoon Simulator (SUT)

AVL Testing Framework

Test Case

Attack Injection

Simulation

Control

Fig. 6 Platooning Use Case Overview

signals or other physical responses and performs decisions based on it e.g. if a
test passes or fails.

By using this approach, no in-depth knowledge about the SUT is needed and every
component that provides external interfaces can be targeted for testing, including
ECU software, ECU hardware, protocols and busses (e.g. CAN). Fuzzing may be
utilized in the automotive environment to [10]:

• Reverse engineer messages on busses
• Disrupt an in-vehicle communication network
• perform a cyber-attack
• lead to vehicle component damage.

Depending on the used interface and protocol it may not be possible to fuzz-test
every possible combination of input in its entirety in a feasible time frame. Therefore,
it makes sense to pre-select meaningful value and position ranges for randomized
content. Because of this potentially large test case space, fuzzing may be applied in
parallel to other test methods as long as the complete run-time is still in a defined
range and produces positive results.

In case of the AVL AXE, fuzzing CAN bus signals is a very common use
case. A fuzzing software e.g. booFuzz, American Fuzzy Lop or caring caribou is
armed with valid CAN Messages or a template with a specification which parts of
messages should be randomized and then handles the tasks of subsequently sending
the (generated) data to the SUT as well as receiving and interpreting the feedback
(such as Vector Tools CANoe).



14 Stefan Marksteiner, Peter Priller, and Markus Wolf

5 Conclusion

This chapter showed a holistic approach of cybersecurity testing of modern vehicles
over the complete life cycle. It showed how, proceeding from threat modeling and
variant management, test cases can (semi-)automatically be derived using structured
processes and learning techniques. The generated tests are subsequently executed on
an automated platform that is capable of controlling the test and/or simulation setup
and applying the respective attack vector. The described methodology provides an
end-to-end means to test vehicular systems over the complete life cycle.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.W.: Automata learning through
counterexample guided abstraction refinement. In: FM 2012. pp. 10–27. Springer, Berlin (2012)

2. Aichernig, B.K., Muškardin, E., Pferscher, A.: Learning-Based Fuzzing of IoT Message Bro-
kers. In: 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
pp. 47–58 (Apr 2021). https://doi.org/10.1109/ICST49551.2021.00017

3. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Com-
putation 75(2), 87–106 (Nov 1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier: Technology
transfer of formal methods inside microsoft. In: International Conference on Integrated Formal
Methods. pp. 1–20. Springer, Berlin, Heidelberg (2004)

5. Dobes, T., Kaserer, T., Schuch, N., Storfer, G.: Smart Variant Calibration with Data Analytics.
ATZ - Automobiltechnische Zeitschrift (Extra August 2018) (2018)

6. Ebrahimi, M., Marksteiner, S., Ničković, D., Bloem, R., Schögler, D., Eisner, P., Sprung,
S., Schober, T., Chlup, S., Schmittner, C., König, S.: A systematic approach to automotive
security. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.) Formal Methods. pp. 598–609.
Springer International Publishing, Cham (2023)

7. El Sadany, M., Schmittner, C., Kastner, W.: Assuring compliance with protection profiles
with ThreatGet. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.)
Computer Safety, Reliability, and Security. pp. 62–73. Springer International Publishing, Cham
(2019)

8. European Automobile Manufacturers’ Association (ACEA): Vehicles in use europe 2022. Tech.
rep., European Automobile Manufacturers’ Association (ACEA) (2021)

9. European Telecommunications Standards Institute: Intelligent transport systems (its); vehic-
ular communications; basic set of applications; definitions. ETSI ”TS 102 638”, European
Telecommunications Standards Institute (2009)

10. Fowler, D.S., Bryans, J., Shaikh, S.A., Wooderson, P.: Fuzz testing for automotive cyber-
security. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN-W). pp. 239–246 (2018). https://doi.org/10.1109/DSN-
W.2018.00070

11. Franco da Silva, A.C., Wagner, S., Lazebnik, E., Traitel, E.: Using a Cyber Digital Twin for
Continuous Automotive Security Requirements Verification. IEEE Software pp. 0–0 (2022).
https://doi.org/10.1109/MS.2022.3171305

12. Garcia, F.D., de Koning Gans, G., Verdult, R.: Tutorial: Proxmark, the swiss army knife for rfid
security research: Tutorial at 8th workshop on rfid security and privacy (rfidsec 2012) (2012)

13. International Organization for Standardization: Cards and security devices for personal iden-
tification – Contactless proximity objects – Part 3: Initialization and anticollision. ISO/IEC
Standard ”14443-3”, International Organization for Standardization (2018)



Approaches For Automating Cybersecurity Testing Of Connected Vehicles 15

14. International Organization for Standardization: Tractors and machinery for agriculture and
forestry – Safety-related parts of control systems. ISOStandard 25119, International Organiza-
tion for Standardization (2018)

15. International Organization for Standardization, Society of Automotive Engineers: Road vehi-
cles – Functional safety. ISOStandard 26262, International Organization for Standardization
(2018)

16. International Organization for Standardization, Society of Automotive Engineers: Road Vehi-
cles – Cybersecurity Engineering. ISO/SAE Standard ”21434”, International Organization for
Standardization (2022)

17. Isberner, M., Howar, F., Steffen, B.: The TTT Algorithm: A Redundancy-Free Approach to
Active Automata Learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification.
pp. 307–322. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2014). https://doi.org/10.1007/978-3-319-11164-3 26

18. Isberner, M., Howar, F., Steffen, B.: The Open-Source LearnLib. In: Kroening, D., Păsăreanu,
C.S. (eds.) Computer Aided Verification. pp. 487–495. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 32

19. Ladino, A., Xiao, L., Adjenugwhure, K., Deschle, N., Klunder, G.: Cross-platform simulation
architecture with application to truck platooning impact assessment. In: ITS World Congress
(2021)

20. Lapczynski, P., Heinemann, H., Schöneberger, T., Metzker, E.: Automatically generating fuzz
tests from automotive communication databases. 5th escar USA, Detroit, isits AG (Jun 2017)

21. Lee, H., Choi, K., Chung, K., Kim, J., Yim, K.: Fuzzing can packets into automobiles. In: 2015
IEEE 29th International Conference on Advanced Information Networking and Applications.
pp. 817–821 (2015). https://doi.org/10.1109/AINA.2015.274

22. Marksteiner, S., Bronfman, S., Wolf, M., Lazebnik, E.: Using Cyber Digital Twins
for Automated Automotive Cybersecurity Testing. In: 2021 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS PW). pp. 123–128 (Sep 2021).
https://doi.org/10.1109/EuroSPW54576.2021.00020

23. Marksteiner, S., Ma, Z.: Approaching the Automation of Cyber Security Testing of Connected
Vehicles. In: Proceedings of the Central European Cybersecurity Conference 2019. CECC
2019, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3360664.3360729

24. Marksteiner, S., Marko, N., Smulders, A., Karagiannis, S., Stahl, F., Hamazaryan, H., Schlick,
R., Kraxberger, S., Vasenev, A.: A Process to Facilitate Automated Automotive Cybersecurity
Testing. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC Spring). IEEE, New
York, NY, USA (2021)

25. Marksteiner, S., Priller, P.: A Model-Driven Methodology for Automotive Cybersecurity Test
Case Generation. In: 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS PW). pp. 129–135 (Sep 2021). https://doi.org/10.1109/EuroSPW54576.2021.00021

26. McNally, R., Yiu, K.K.H., Grove, D.A., Gerhardy, D.: Fuzzing: The state of the art (2012)
27. Otten, S., Glock, T., Hohl, C.P., Sax, E.: Model-based Variant Management in Automotive

Systems Engineering. In: 2019 International Symposium on Systems Engineering (ISSE).
pp. 1–7 (2019)

28. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Technische Universität Darmstadt
(1962)

29. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis. In: Pro-
ceedings of the 1998 Workshop on New Security Paradigms. pp. 71–79. ACM (1998)

30. Rathfelder, M., Hsu, H., Brandau, T., Storfer, G.: Calibration Data Management for Porsche
Chassis Systems. ATZ worldwide 118(6), 16–21 (Jun 2016). https://doi.org/10.1007/s38311-
016-0047-z

31. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing. pp. 411–
420. STOC ’89, Association for Computing Machinery, New York, NY, USA (Feb 1989).
https://doi.org/10.1145/73007.73047



16 Stefan Marksteiner, Peter Priller, and Markus Wolf

32. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
33. Shostack, A.: Threat Modeling: Designing for Security. John Wiley & Sons (2014)
34. Sirjani, M.: Rebeca: Theory, applications, and tools. In: de Boer, F.S., Bonsangue, M.M.,

Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and Objects, 5th Interna-
tional Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006, Re-
vised Lectures. Lecture Notes in Computer Science, vol. 4709, pp. 102–126. Springer (2006).
https://doi.org/10.1007/978-3-540-74792-5 5

35. United Nations Economic and Social Council - Economic Commission for Europe: Uniform
provisions concerning the approval of vehicles with regards to cyber security and cyber secu-
rity management system. Regulation ”155”, United Nations Economic and Social Council -
Economic Commission for Europe, Brussels (2021)

36. Vaandrager, F.: Model learning. Communications of the ACM 60(2), 86–95 (Jan 2017).
https://doi.org/10.1145/2967606

37. Varadharajan, V.: Petri net based modelling of information flow security requirements. In:
[1990] Proceedings. The Computer Security Foundations Workshop III. pp. 51–61 (1990)

38. Ward, D., Ibarra, I., Ruddle, A.: Threat Analysis and Risk Assessment in Automotive Cy-
ber Security. SAE International Journal of Passenger Cars-Electronic and Electrical Systems
6(2013-01-1415), 507–513 (2013)

39. Wolschke, C., Marksteiner, S., Braun, T., Wolf, M.: An Agnostic Domain Specific Language
for Implementing Attacks in an Automotive Use Case. In: The 16th International Conference
on Availability, Reliability and Security. pp. 1–9. ARES 2021, Association for Computing
Machinery, New York, NY, USA (Aug 2021). https://doi.org/10.1145/3465481.3470070


