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Abstract

This paper presents the development and evolution of an educa-
tional module centered on collaborative problem-based learning,
model-based software development, and end-to-end timing analysis
for vehicular embedded systems, highlighting our experiences in
integrating state-of-the-art research and industry practices over the
years. For the past eight years, the module has been taught to both
industry professionals and academic students. In the industry, it has
been presented through seminars and workshops organized within
the industrial settings of two vehicle manufacturers and a provider
of vehicular software development tools. In an academic context,
this module has been delivered as part of a PhD course. Further-
more, it has been incorporated into 11 instances of master’s courses
across four European universities. When offered in an industry
context, the module is kept concise and more focused on hands-on
activities and practical use cases. In contrast, when the module is
delivered in an academic setting, it is supplemented with additional
lectures and discussions on its topics. Interestingly, the feedback
received from participants, especially those from the industry, has
not only contributed to refining this educational module but has
also advanced the state of the art in modeling and timing analysis
of embedded software architectures.
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1 Introduction

The size and complexity of software running on onboard embedded
computers, known as Electronic Control Units (ECUs), in mod-
ern vehicles have been increasing tremendously over the past few
years [20]. The software size has already reached the order of 100
million lines of code [6, 29]. According to a study by Jaguar Land

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2025, Istanbul, Tirkiye

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mohammad Ashjaei
mohammad.ashjaei@mdu.se
Milardalen University
Visteras, Sweden

Rover [5], the size of vehicle software is projected to reach 1 bil-
lion lines of code soon. This drastic increase in software size and
complexity is driven by the increasing demand for new software-
based features in vehicles. These features often require advanced
high data-rate sensors (e.g. cameras and lidars) and next-generation
high-bandwidth and low-latency onboard communication, such
as Time Sensitive Networking (TSN) [1, 7]. Consequently, devel-
oping vehicle software has become a daunting task. Additionally,
many vehicular software functions are constrained by various tim-
ing requirements. Therefore, vehicle software developers must not
only manage software complexity but also analyze and verify the
specified timing requirements during development.

Model-based software development approaches that employ the
principles of Model-based Engineering (MBE) and Component-
based Software Engineering (CBSE) [25, 34], along with real-time
scheduling and schedulability analysis [9, 12, 31], have proven
effective in addressing the aforementioned challenges in vehicle
software development within the industry [20]. Therefore, it is
crucial to incorporate these approaches into educational modules
for software engineering students, particularly those specializing in
embedded software systems and automotive software engineering
programs. These educational modules can also benefit doctoral
students conducting research in this field. In addition, these modules
can be valuable in training programs within the vehicle industry,
especially when they are updated and refined with the latest state-
of-the-art results.

This paper presents an educational and training module
that integrates collaborative Problem-based Learning (PBL) with
a multi-phase model-based development approach for vehicular
embedded software systems. The presented approach is based on
several academic and industrial embedded software development
approaches that are used in the vehicular domain. The module in-
cludes several industrial use cases. A key component of the module
is collaborative PBL, where participants initially learn to construct
the problem, enabling them to generate knowledge based on their
understanding, and subsequently refine and solve it collaboratively.
The module also includes a demonstration of the Rubus-ICE! [22]
industrial tool chain used to solve the same problem, followed by
a discussion on the comparative evaluation of the solutions. Fur-
thermore, the paper discusses our experience of how the module
and included approach are refined over the years based on the
evolving industrial needs of next-generation vehicular systems and
advancement in the state-of-the-art research to meet those needs.

This module has been taught as part of a PhD course at Mélardalen
University (Sweden) and has also been included in 11 instances
of master courses. Specifically, it has been part of 7 instances in

Uhttps://www.arcticus- systems.com/products/rubus-tool-suite
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a course that is included in three Master programs at Mélardalen
University: (1) Master Program in Intelligent Embedded Systems?,
(2) Master Program in Robotics®, and (3) Master Program in De-
pendable Systems?. Additionally, it has been taught in 2 instances
at J. J. Strossmayer University of Osijek (Croatia), 1 instance at Tech-
nical University of Eindhoven (The Netherlands), and 1 instance at
University of L’Aquila (Italy). Over the past 8 years, the module has
also been presented to two vehicle manufacturers and one vehicular
software development tools provider through several seminars and
workshops. Note that when the module is delivered in an academic
setting, it is supplemented with additional lectures and discussions
on its topics. In contrast, when offered in an industry context, the
educational module is kept concise and more focused on hands-on
activities and practical use cases. Feedback on requirements and use
cases from the industry has contributed not only to the refinement
of the model-based software development approach in this module
but also to the advancement of the state of the art in modeling and
timing analysis of embedded software architectures.

The rest of the paper is organized as follows. Section 2 presents
an introduction to the educational and training module. Section 3
presents the model-based software development approach. Section 4
presents industrial relevance of the approach. Section 5 discusses
the module refinement based on the industry feedback and advances
in the state of the art. Section 6 concludes the paper.

2 PBL-based Educational and Training Module

The educational and training module spans the areas of model-based
engineering, component-based software engineering, and real-time
systems. The module offers in-depth theoretical knowledge and
state-of-the-art techniques for the development and timing verifi-
cation of advanced embedded software systems. The module has a
particular focus on the vehicular domain.

When offered in academia, the module aims to achieve two
main goals: (i) to prepare participants for PhD studies by provid-
ing a solid theoretical foundation, and (ii) to equip participants
for careers as embedded software engineers in the industry by in-
troducing them to various technologies used in the development
of modern embedded software systems. The participants receive
both formative and summative assessments on their individual and
collaborative problem-based learning assignments. When the mod-
ule is part of a PhD course, it is delivered as a two-day workshop.
Conversely, when it is included in a master’s course, the module
extends over 4 weeks, featuring 8 three-hour lectures, take-home
assignments, and a half-day collaborative workshop.

When offered in industry, the module aims to provide a hands-
on tutorial for the Rubus-ICE model-based software development
tool chain. It enables participants to effectively utilize the tool
chain and techniques for developing vehicle software. In addition,
it deepens their understanding of the timing analysis framework
supported by the tool chain. This allows the participants to accu-
rately analyze the timing behavior of vehicle software architectures

2https://www.mdu.se/en/malardalen-university/education/international/
programme/masters-programme- in-intelligent-embedded- systems
Shttps://www.mdu.se/en/malardalen-university/education/programme-
syllabus?id=1114
“4https://www.mdu.se/en/malardalen-university/education/programme-
syllabus?id=1740
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in industrial applications. This module can be offered as a one- to
two-day training and discussion workshop.

The module consists of five components. These components are
discussed as follows.

1 - Lectures and Interactive Discussions

The first component includes a set of lectures and interactive dis-
cussions. These explain the context, motivation, academic and in-
dustrial relevance, and details of the model-based development
approach for vehicular embedded software systems. Highlights of
this component will be discussed in detail in Section 3.

2 - PBL Assignment: Construct Your Own Problem

This component facilitates the participants to build new knowl-
edge with the help of problem-based learning (PBL) [2]. PBL is an
educational approach where participants learn by engaging with
and solving real-world problems. The purpose is that the partici-
pants construct their knowledge about the theory, concepts, and
techniques covered in the first component by their practical applica-
tion on problems. This method encourages active learning, critical
thinking, and the ability to apply theoretical knowledge to practical
situations. The assignment in this component requires each partici-
pant to construct their own comprehensive problem. They do this
by investigating the basic requirements and rudimentary informa-
tion provided to them and coming up with concrete assumptions
and comprehensive information. The problem is then solved both
individually and collaboratively in the later components.

A highlight of the assignment is depicted in Fig. 1, where the
participants are provided primitive software architecture of a sim-
plified steer-by-wire use case [28]. Participants are tasked with
verifying the predictability of the software architecture with re-
spect to its end-to-end timing. They need to identify the necessary
information required for this analysis and determine what addi-
tional details are needed in the software architecture to perform
a thorough end-to-end timing analysis. Furthermore, they must
explore the methods and techniques for conducting timing analysis
on the software architecture.

'PBL Assignment: Construct Your Own Problem

i Use the FISh model to solve this assignment.

Steering Control Node Wheels Control Node
Real-time (
Network
Software Software Software
Component 1 Component 2 Component 3
An example of the steer-by-wire distributed embedded system use case

{What do you need to know to show that the above software
architecture is predictable with respect to its end-to-end timing?

‘1. What more information do you need in this software architecture?

Figure 1: PBL Assignment: Construct your own problem.

3 — Collaborative PBL Assignments

The participants engage in solving the constructed problem in the
previous component through a combination of independent investi-
gation and collaborative PBL group investigation. We experimented
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with various group sizes, ranging from 2 to 6 individuals per group.
From our experience and the results of the PBL discussions, we
found that the most effective collaboration occurred with groups
of 5 persons in master education, 3 persons in PhD education, and
2 persons in industry training.

3 (a) - Collaborative PBL using the FISh Model

We encourage the participants to use the FISh (Focus, Investigate
and Share) model [24] in both independent and group investigations.
The FISh model is a useful tool to understand how to effectively
approach problem-solving by encouraging participants to reflect
on their perceptions, investigate answers individually and collabo-
ratively, and share their findings to support a deeper understanding
and collaborative learning environment. The constructed problem
in the previous component sets the stage for exploration. In the Fo-
cus phase, participants reflect on their perceptions of the scenario,
noting any questions or reflections that arise. They observe what
they see, draw on their previous experiences, and identify what
they already know. This phase also involves specifying a few key
questions to be investigated further. In the Investigate phase, partic-
ipants discuss ideas on where to find answers to their questions and
decide on how to proceed both individually and as a group. They
individually study the suggested resources or conduct their own
searches, summarizing their findings. Finally, in the Share phase,
participants come together to share their insights and reflections
with the group, facilitating a collaborative learning environment.

3 (b)-Collaborative PBL using the Iterative Fork-Join Model
Effective collaboration in a PBL group requires continuous col-
laboration within the group as opposed to the case where group
members investigate the problem individually in isolation and fi-
nally put together the investigation results. No doubt, it is important
that the members perform investigation individually in their own
time. However, the individual investigations need to be discussed
and refined time and again in achieving the intended results. To this
end, we developed the iterative fork-join model for collaborative
problem solving in each PBL group and encouraged the participants
to apply this model. In this model, shown in Fig. 2, each individ-
ual member or subgroup breaks out to investigate the problem
independently in the first iteration. At the end of the iteration, the
group members present their individual findings to each other and
discuss them for the purpose of refining the findings, investigation
inputs and other related parameters. The iterations are repeated
several times to achieve more refined results. The participants uti-
lize the FISh model within the iterative fork-join model to solve
collaborative PBL assignments. Note that each PBL group solves the
problem that was initially constructed in the previous component
and further refined at the beginning of this component.

""""" Final
Investigation

Individual Individual ~ Results
Investigation Investigation

Figure 2: Iterative fork-join model for collaborative PBL.

4 - Infusing Industrial Tool Demo with Collaborative PBL
This component enhances participants’ learning by incorporating
industry solutions. The problem developed and refined in previous
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components is now modeled, timing analyzed, and synthesized
using Rubus-ICE (Integrated Component model development En-
vironment)® [22, 23], a tool utilized in the vehicle industry. This
approach allows participants to experience solving the same prob-
lem with an industrial tool, thereby enhancing their learning by
comparing their solutions with some of the industrial solutions.

5 — Concluding Discussion and Feedback

Towards the end of the module, a workshop is organized for all
groups to share and discuss their results, along with the assump-
tions and design decisions that led to those results. This allows
the groups to learn from each other’s experiences. The discussion
and feedback have the potential to provide valuable input for the
industrial tool or contribute to advancing the state of the art in the
field. Further discussion on this will be presented in Section 5.

3 Model-based Software Development Approach

The participants of this module are presented with a generic model-
and component-based software development approach for vehicular
embedded systems, as illustrated in Fig 3. This approach is organized
in various phases, where each phase represents the complete vehic-
ular embedded software system for a given purpose: requirements
elicitation, software architecture modeling, analysis, synthesis, sim-
ulation and testing, and deployment and execution. Note that we do
not cover business, organizational and post-deployment operational
aspects in this approach. This approach is inspired by several aca-
demic and industrial embedded software development approaches
in the vehicular domain, such as the approaches used by EAST-ADL
modeling language [3, 19], AUTOSAR standard [13, 32], ISO26262
Standard [16], Fraunhofer ESK [4], ProCom component model [30],
COMDES-II component model [18], and Rubus Component Model
(RCM) [11, 14, 22], to mention a few.

/‘ Requirements Elicitation

Modeling

Analysis |
2
| Synthesis |

| Simulation & Testing

| Deployment & Execution |

Figure 3: A typical approach for model-and component-based
development of vehicular software architectures.

3.1 Requirements Elicitation

The first phase in this development approach is to identify broad
needs of the customer and capture end-to-end requirements on
the vehicle functionality. Furthermore, requirements on the use
cases and proof-of-concept prototypes may also be identified in
this phase. The requirements are often captured in an informal
way using natural language. There are several tools that support
requirement elicitation for vehicle software, e.g., SystemWeaver®
and CATIA No Magic’.

Shttps://www.arcticus- systems.com/products/rubus-tool-suite

®https://systemweaver.com
https://www.3ds.com/products-services/catia/products/no-magic/
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In this educational module, we mainly focus on timing require-
ments (e.g., response times, jitter, age delays and reaction delays)
and other resource requirements (e.g. computational power, memo-
ries and bus/network bandwidth). Timing requirements are often
derived from functional requirements, design choices, and envi-
ronmental and physical limitations. For example, the timing re-
quirement on a decision to deploy an airbag is 15-30 milliseconds.
Similarly, the timing requirement on inflating the airbags is 50-80
milliseconds after the onset of the crash.

3.2 Software Architecture Modeling

In this phase, models of software architectures of distributed vehic-
ular embedded systems are developed. The software architecture
model comprises of software components (SWCs) representing soft-
ware functions, interconnections among the SWCs, structures and
other design artifacts. An SWC is the lowest-level hierarchical ele-
ment in the software architecture. An SWC can have one or more
behaviors. For example, an SWC can have a separate behavior in
each of start-up, running, stand-by and low-power modes.

In addition to modeling the software architecture in this educa-
tional module, we focus on modeling timing properties and require-
ments on the software architectures. Some examples of these prop-
erties include activation sources of SWCs (e.g., periodic clocks and
sporadic events), periods of periodic clocks, minimum inter-arrival
times of event sources, priorities of SWCs, precedence relations
among SWCs (an SWC must finish its execution before starting the
execution of subsequent SWC), and Worst Case Execution Time
(WCET) of the SWC representing the maximum time it takes for
the SWC to execute from start to end in isolation.

An example of a software architecture modeled with EAST-ADL
modeling language is presented in Fig. 4. This software architecture
consists of four SWCs. The SWCs interact with each other through
flow ports that are identified as data input and data output ports
in Fig. 4. Each SWC has a name (e.g., C), an entry function or
behavior (e.g., F1) and worst-case execution time (e.g., WCET}).

Data
Input
port
; Output
Cs port
[1 F [} '

Software component

Figure 4: An example of a software architecture modeled
with EAST-ADL modeling language.

Fig. 5 depicts the software architecture example of a two-node
distributed vehicular system modeled with Rubus modeling lan-
guage. Note that a timing constraint is specified between the models
of a sensor and an actuator, while the path from the sensor to the
actuator traverses through two nodes (Electronic Control Units)
and one network. The internal software architecture of one of the
nodes is also presented in Fig. 5. Some SWCs are triggered by peri-
odic clocks while others are triggered by sporadic events that are
generated by their predecessor SWCs. The models of network, mes-
sages and signals contained in the messages are also shown in this

S. Mubeen

figure. Note that the control and data flows are clearly separated in
this architecture. Such a separation supports timing analysis of the
software architecture with ease and high precision [23, 28].

Software Architecture of a Distributed Embedded System |

1

Timing, 1

Sensor Constraint  Node or ECU Network | _ ) | Message |
E 1

Tnput Output  Trigger Wheel Torque_Msg2 |

Clogk trigger Steer_Feedback_Msg 1

port. igger port _ terminator

Wheel_Torque_Msgs |
1

Figure 5: Software architecture example of a distributed ve-
hicular system modeled with Rubus modeling language.

3.3 Analysis

The software architecture modeled in the previous phase can be
analyzed for various purposes, e.g., analysis of refined requirements
in the software architecture, consistency analysis, timing analy-
sis, to name a few. In this educational module, we focus only on
model-based timing analysis of software architectures [23, 27, 28].
These analyses include response-time analysis of SWCs, response-
time analysis of network messages, and end-to-end response-time
analysis as well as end-to-end data propagation delay analysis of
distributed chains of SWCs and messages in the software architec-
tures. These analysis are supported by several model-based timing
analysis tools such as Rubus, VNA, Symtavision, and several tools
in the AUTOSAR tool chain, to mention a few.

Response-time analysis is a classical schedulability analysis
technique that calculates the worst-case response-time of each SWC
(task)® and compares it with the corresponding timing constraint
(deadline) [31]. The worst-case response time of an SWC is the
sum of all the interference from higher and equal priority SWCs,
blocking from lower priority SWCs and WCET of the SWC itself as
depicted in Fig. 6.

Interference from higher or
equal priority SWCs (tasks)

SWC (task) activation SWC (task) completion

SWC (task)

Worst-case interference 3
Execution

time

>

i [ . H
#€—— Response time —>}

Blocking from
ower priority SWCs (task]

Figure 6: Components of the response time of an SWC.

The end-to-end data propagation delay analysis calculates
the data propagation delays from the input to the output across a
distributed chain of SWCs and network messages [9, 10, 12]. For
example, a distributed chain is identified with an arrow in Fig. 7.

8Software component is a design-time entity. It may correspond to a schedulable entity
at runtime, e.g., an operating system task [8].



Problem-Based Learning in an Educational and Training Module on Model-Based Development of Vehicle Software

The chain is initiated with a data input from a sensor, which is
acquired by Nodel. The data then propagates through the network
to Node2 where it propagates through a chain of SWCs, and finally
towards an actuator. There are two data-propagation delays that
are commonly analyzed in the vehicular domain, namely age and
reaction delays. These delays (age and reaction delays) and their
corresponding constraints (age and reaction constraints) are part of
the AUTOSAR Standard and several industrial modeling languages
such as EAST-ADL, TADL2 and Rubus. A reaction constraint is
specified from the input to the output of the chain in Fig. 7.

Figure 7: Visualization of end-to-end delay in a distributed
embedded software architecture.

In order to explain the age and reaction delays, consider a simple
example of a software architecture consisting of three SWCs as
shown in Fig 8. Various timing properties (periods and priorities)
of SWCs are specified in the figure. The WCET of each SWC is
assumed to be 1 time unit. There can be four possible delays that
the data can experience from the input to the output of the chain.
Only two of these delays (age and reaction) are important in the
vehicular domain [26, 32] and are identified with thick arrows in
Fig 8. The age delay refers to the delay between the last input of
the chain (that is not overwritten) until the last output of the chain
(even in case of duplicate outputs). Whereas, the reaction delay
refers to the first reaction (output) to any input event that was just
missed by the initiator SWC at the input of the chain.

Priority = Medium
Period = 16 Period = 4 Period = 8

B P T D (D

SWC; “just missed” the new data
The missed data is read by the next instance of SWC,

Priority = High Priority = Low

14 16 tme v

A ALtor Ap ¢o 5 First to First Delay
FtoF ‘REacllon Delay} Ap to L* First to Last Delay
AL oL Ap o F: Last to First Delay
A oL [ Age Delay J»| A, 4,1 Last to Last Delay

FtolL

D: arrival

Figure 8: Various end-to-end delays in the vehicle software.

The age constraint finds its significance in the control
systems domain, where maximum age of the data is of significance
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such that the control signals driving the actuators do not exceed
the maximum age. Consider the example of a cruise control system
in a car. A sudden change in the speed is required if the car goes
up/down a hill. If the age of the data is too long then the car will
speed up/slow down with noticeable delay, which is undesired.
The reaction constraint finds its applications in the body
electronics domain in vehicles such as the button-to-reaction
functions, e.g., electronic door lock in a car. When the door-locking
button is pressed, the primary focus is on the first reaction, which
is locking the door, to the button input. Any subsequent reaction is
of no use as an already locked door cannot be further locked.

In order to perform the above mentioned analyses, the end-to-end
timing models need to be extracted from the software architectures
and fed as input to the timing analysis engines as shown in Fig.9. An
end-to-end timing model comprises timing properties and require-
ments on individual SWCs and messages as well as on distributed
chains of SWCs and messages in the software architecture [21].
The analysis results are used to verify the timing requirements that
are specified on the software architectures. If the requirements are
not met, the analysis results can guide the developers to refine the
software architecture or even refine the requirements as depicted
by the backward arrows from the analysis phase to the modeling
and requirements elicitation phases in Fig. 3.

Software Archi ofa Distributed Embedded System
i
S Contramt Node or ECU Network | ) | Message

Wheel_Torque Mgt
—]

Wheel_Torque_Msg2

1

1

1

— 1 Actuator 1

L (o !
1

1

1

Gutput
Steer_Feedback_Msg

Wheel_Torque_Msg3 |

End-to-end
timing model
extraction

I Endto-end Timing Model | e

i " o

' Timing Model e | J) Analysis » 21v)
! engines o

1 [ Node Network Model g o=

1| Nod otw Engines

I Timing Timing .
! Model Model Analys1s
|

I

1

1

i

1
i results
1
1

Figure 9: Extraction of end-to-end timing models from the
software architectures to support their timing analysis.

3.4 Synthesis

In this phase, synthesizable code for the run-time framework is
automatically generated from the timing verified software architec-
tures. For example, a fragment of the generated code by Rubus code
generation engine is depicted in Fig. 10 that shows some data struc-
tures of an SWC. Note that this is not behavioral code (representing
internal logic of the SWC). Many software architecture modeling
tools in the industry, e.g., Rubus, are integrated to Simulink that al-
lows modeling of behaviors of the SWCs. In this way, the behavioral
code of SWCs can also be generated automatically.
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Software architecture

Automatic code
generation

=** Interface: PathCalculator_Interface

Stypedef struct {
intl6_t const *rte_PathCalculatorInput;
int16_t const *rte_AccelleratorPosition;
int16_t const *rte_SteerTorque;
intl6_t const *rte_SteerAngle;

} rte_1P_PathCalculator_Interfacefrgs_t;

Sitypedef struct {
intl6_t rte_Path;
intl6_t  rte_IPA_accellerator;
intls_t rte_IPA_brake;
intle_t rie_IPA_steer;
} rte_OP_PathCalculator_InterfaceArgs_t;

Ctypedef struct {
intls_t rte_PathCalculatorInput;
int16_t  rte_AccelleratorPosition;
intls_t rte_SteerTorque;
intl6_t  rte_Steerangle;
} rte_1P_PathCalculator_Interface_Local _Args_t;

Stypedef struct {

rteSwcInstanceAttr_t const *attr;
rte_IP_PathCalculator_InterfaceArgs_t IP;
rte_OP_PathCalculator_Interfacedrgs_t *0P;
vold *ST;
rte_IP_PathCalculator Interface Local Args t *locallp;

} rte_PathCalculator_InterfaceArgs t;

#define RTE PathCalculator InterfaceArgs t 1

Figure 10: An example of automatically generated code from
a vehicular software architecture.

3.5 Simulation and Testing

In this phase, a simulation and model-based testing [33] of the soft-
ware architecture is carried out. The element that can be simulated
and/or tested can be a single SWC, an assembly (a group of SWCs),
software architecture within a node or electronic control unit, soft-
ware architecture of entire distributed vehicular embedded system
as shown in Fig. 11. Additionally, various high-level tools such
as LabVIEW or Simulink can be used for feeding the simulation
process with specific inputs as depicted in Fig. 12.

The simulation and testing results can also guide the developers
to refine the software architecture or even refine the requirements
as depicted by the backward arrows from the simulation and testing
phase to the modeling and requirements elicitation phases in Fig. 3.

3.6 Deployment and Execution

In this phase, the synthesized code is deployed to both software
and hardware platforms. The software platforms comprise typical
real-time operating systems (RTOS) such as Rubus RTOS, MicroC
OS, VxWorks, FreeRTOS, to mention a few. Whereas, the hardware
platforms comprise the ECUs or processors that run the RTOS and
reside inside the vehicle. Alternatively, if the hardware platforms
are not available then a version of the RTOSs can be adapted to host
general-purpose operating systems like Windows or Linux, which
in turn, can be used as the software platform. In this case, regular
PCs can act as ECUs which can be connected by various types of
networks like Controller Area Network (CAN) [17] and TSN. This
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Figure 11: An example of simulation and testing environment
for the software architecture.
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Figure 12: An example of simulation and testing environment
for the software architecture.

can be useful to understand, simulate and test the system if actual
ECUs are not available or are not configured yet. Multiple deploy-
ment scenarios used by the Rubus-based software development and
deployment process are depicted in Fig. 13

4 Industrial Relevance of the Approach

This section presents use cases of two industrial model-based soft-
ware development approaches that align with the approach dis-
cussed in the previous section. These use cases are also included as
part of the educational and training module.

4.1 Example of EAST-ADL

EAST-ADL is a domain-specific architecture description language
in the vehicular domain. EAST-ADL also provides a development
approach for the software architecture development at four abstrac-
tion levels: vehicle, analysis, design and implementation as shown
in Fig. 14. Note that the fifth level, called the operational level, is
out of the scope of this module. Each abstraction level presents
complete definition of the system for a specific purpose. Several
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Figure 13: Various deployment scenarios of synthesized code
from the software architectures.

academic and industrial component models, languages and tools
for the development of vehicle software are also depicted in Fig. 14.
The industrial members in the EAST-ADL association that led the
development and extension of the language are presented in [28].

The vehicle level, also referred to as the end-to-end level by
some vehicle manufacturers, captures requirements on the end-to-
end functionality of the vehicle. The requirements are captured
in an informal (often textual) and solution-independent way. This
level is aligned to the requirements elicitation phase in the approach
presented in Section 3.

The analysis level, formally captures the requirements in an
allocation-independent way. Functionality of the system is defined
based on the requirements and features without implementation
details. Various types of analysis can be performed at this level, in-
cluding functional verification, consistency analysis, and high-level
timing analysis [28]. This level is aligned to a combination of mod-
eling and analysis phases in the approach presented in Section 3.

The design level describes the software architecture that is ab-
stracted from implementation details. The refined artifacts from the
analysis level include design-level software components, middle-
ware abstraction, hardware architecture, and software functions to
hardware allocation. This level corresponds to the modeling phase
in the approach presented in Section 3.

The implementation level describes concrete implementation
of the software architectures in terms of software components
and their inter-connections. The software components at this level
resemble black boxes that have no details about their behavior
code. This level has sufficient information included in the modeled
software architecture to perform its end-to-end timing analysis.
This level is aligned to a combination of modeling and analysis
phases in the approach presented in Section 3.

4.2 Example of Rubus

Rubus is a collection of methods, tools, a component model and an
approach for model- and component-based software development
of vehicular embedded systems. The Rubus tools include modeling
tools, code generators, analysis tools and run-time infrastructure.
Rubus also includes a real-time operating system which is certified
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Figure 14: Examples of some industrial and academic com-
ponent models and tools for the development of vehicular
software architectures at various abstraction levels.

in the ISO 26262:201110 [16] safety standard according to ASIL D.
Rubus is developed by Arcticus Systems in close collaboration
with several academic and industrial partners. The approach and
accompanying tools have been used in the vehicle industry for over
0 years [22]. Rubus is mainly used for the development of control
functionality in vehicles by several vehicle manufacturers such as
Volvo Construction Equipment®, Mecel, Knorr-Bremse, Hoerbiger,
BAE Systems Higglunds!?, to name a few. The Rubus approach to
model- and component-based software development is depicted in
Fig. 15. Note that all phases in the Rubus approach are perfectly
aligned to all the phases except the first phase in the development
approach discussed in Section 3. The Rubus approach does not
focus on requirements elicitation, in fact, it relies on other tools
and languages to acquire the requirements.

5 Industrial and Research Feedback in the
Module Refinement

In order to demonstrate how the model-based software develop-
ment approach is refined based on the industrial feedback and
research results, consider the refined and annotated version of
the two-node distributed vehicular embedded system modeled in
the collaborative exercise in the educational module, shown in
Fig. 16. The initial versions of the exercise considered only CAN
network between the two nodes. CAN is an event-triggered and
non-synchronized network protocol and is the most widely used
traditional real-time onboard communication protocol in the ve-
hicular domain [20]. Fig. 16 shows a model of a distributed chain
of SWCs and a message. The chain is initiated by reading data
from Port-0 in Node1 and terminated by providing data to Port-2 in
Node2. Two timing constraints, Age and Reaction, are specified on
the chain. The corresponding analysis results (calculated age and
reaction delays) are shown in Fig. 17. Note that the analysis results

https://www.volvoce.com
WOhttp://www.baesystems.com
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Figure 15: Rubus approach to model- and component-based
development of vehicular software architectures.

are based on the assumption that any node receives a network
message using the polling policy, where the network interface is
periodically checked for any new message. This policy is commonly
used in the automotive industry.
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Figure 16: Refined and annotated version of the problem in
collaborative PBL assignment in the educational module.
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Figure 17: Calculated age and reaction delays corresponding
to the constraints specified in Fig. 16.

When we presented this module in the educational seminars at
several partner companies (vehicle manufacturers and tool provider),
based on their feedback we realized that some vehicle manufactur-
ers use polling policy while others use interrupt policy for receiving
network messages. The analysis used in the educational module as

S. Mubeen

well as the analysis implemented in the Rubus tool chain did not
support the interrupt policy. This decision can make a significant
impact on the timing analysis results as indicated in the top two
sub-figures in Fig. 18 (different age delays) and Fig. 19 (different
reaction delays). Hence, the analysis as well as the implementation
in the tool was refined to support more generic use cases, where
some nodes may support the polling policy while others support
the interrupt policy. Moreover, this decision needs to be supported
in the Rubus component model and language such that an attribute
corresponding to the policy selection can be annotated to the node
model within the software architecture.

Another interesting feedback received from the industry in the
seminars is that the vehicular industry is exploring the possibility
of utilizing the next-generation high-bandwidth and low-latency
onboard communication networks like TSN which support synchro-
nization among the nodes within a distributed embedded system.
They are interested in incorporating modeling and analysis of these
networks within their model-based software development approach.
Once again, the modeling and analysis used in the initial version of
this educational module as well as the implementations in Rubus
did not support these next-generation onboard networks. As TSN
supports synchronization, this can also have a considerable impact
on the end-to-end delays as indicated in the bottom two sub-figures
in Fig. 18 (different age delays) and Fig. 19 (different reaction delays).
To support the modeling (defining new properties in the software
architectures) and timing analysis of these networks within the
development approach, the state of the art needed to be extended
as well as the Rubus tool chain needed to be extended [15, 21].

In crux, the model-based development approach discussed in
this educational and training module was refined based on the
feedback from industrial partners. Moreover, previous modeling
techniques needed to be extended and new timing analysis tech-
niques needed to be developed and integrated into the software
engineering environment based on the received feedback. This
collaborative refinement is depicted in Fig. 20.

6 Summary and Conclusion

In this paper, we have presented the contents and shared our ex-
periences on how an educational module focused on model-based
software development and end-to-end timing analysis of vehicular
embedded systems has evolved over the years. This evolution has
been driven by the incorporation of state-of-the-art research and
industry practices, ensuring that the module remains relevant and
effective in addressing the needs of both academic and industry
participants. For the past eight years, the module has been taught to
both industry professionals and academic students. In the industry,
it has been presented through seminars and workshops organized
within the settings of two vehicle manufacturers and a provider
of vehicular software development tools. In academia, this module
has been part of a PhD course and included in multiple instances
of master courses across various universities.

The collaborative problem-based learning approach used in this
module aided by the FISh and Iterative fork-join models has yielded
positive outcomes, with participants demonstrating a deeper under-
standing of concepts and articulating the holistic relevance of their
knowledge. This is evident through positive classroom/onsite feed-
back, improved course evaluations, fewer revisions of individual
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Figure 19: Results of the refined analysis based on the the participants’ feedback.

assignments, and a higher pass rate on the first attempt. It is inter-
esting to see how different collaborative problem-based learning
groups approached the same problem in distinct ways, resulting
in varied outcomes. An interesting feedback from the participants
was their curiosity about the origin and definition of the problem
parameters. This led to the incorporation of a component where

participants construct their own problem through a combination of
independent investigation and collaborative problem-based learn-
ing. Furthermore, module has had a significant positive impact on
participants’ learning, allowing them to enhance their understand-
ing by comparing their solutions with industrial solutions. The
feedback from the participants of this module, particularly from
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the industry, has played a significant role in refining the module,
enhancing industrial tools, and advancing the state of the art in
modeling and timing analysis of embedded software architectures.

Industrial requirements and use cases on utilization of next-generation
technologies within model-based software development process

Industrial feedback via the

Industrial MBD process, 5 :
educational seminars s

Extended tools, use cases
N 'd

N '
[Vehiclelndustry | Education Module | Research]

J N
Extended modeling &
analysis techniques

Y, .
A Educational seminars
for the industry

Extended and refined model-based development (MBD)
& timing analysis techniques

Figure 20: Collaboration resulting in the refinement of the
software development approach in the educational module.
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