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Abstract—Integrating safety and security in automotive cyber-
physical systems (CPS) domains (e.g. autonomous vehicles), is
challenging for two main reasons. First, it is still difficult
to represent the potential consequences of system failures or
malicious attacks. Secondly, these systems must ensure safety
and security despite unknowns and uncertainties. A Digital De-
pendability Identity (DDI) can facilitate this by encapsulating all
dependability characteristics (e.g., design, requirements, safety,
and security analysis models) of CPS’s components. The Open
Dependability Exchange (ODE) metamodel is an implementation
of the DDI concept, but has limitations in the interplay between
safety and security. ODE is aligned with with ISO 26262 but
lacks certain security concepts to be aligned with ISO 21434.
Also, ODE supports modeling fault trees, but modeling attack
trees and attack-fault trees still not. This paper proposes an
extension to the ODE metamodel, aiming to increase coverage
of ISO 21434 concepts and allowing the modeling of attack-
fault trees. We built these metamodel extensions based on an
analysis of the ODE metamodel, industry standards, Microsoft
STRIDE model, and HEAVENS security analysis methodologies.
We evaluated the proposed extensions in an illustrative example
of an autonomous vehicle.

Index Terms—Safety and Security Co-analysis, Attack-fault
Trees, Threat Analysis and Risk Assessment, Open Dependability
Exchange (ODE).

I. INTRODUCTION

Safety-related systems in cyber-physical system (CPS) do-
mains, such as autonomous vehicles [1] and aviation [2], are
becoming increasingly critical due to the integration of com-
ponents from various manufacturers and their responsibility
to perform safety-critical functions that, if compromised, can
harm people or disrupt critical infrastructures with catastrophic
consequences to people and society [3], [4].

Ensuring correct CPS operation is essential for the safety
of passengers and other road users. Thus, dependable CPS
design must prevent failures caused by software/hardware de-
sign faults or malicious attacks. Safety engineering addresses
random and systematic faults, while malicious attacks and

vulnerabilities are managed during security analysis. However,
interdependencies between safety and security can lead to
conflicting requirements. For example, security measures such
as cryptography can introduce time delays, conflicting with
safety requirements such as worst-case execution time [5].

Safety and security engineering teams often work indepen-
dently, with limited interaction. They follow different stan-
dards (e.g. ISO 26262 [6] for safety and ISO 21434 [7]
for cybersecurity in the automotive domain), which involve
different processes, terminology, and artifacts. Despite these
differences, both disciplines rely on a common system archi-
tecture and tree-based representations to model information
flow [8], [9]. The Digital Dependability Identity (DDI) helps
bridge these differences by encapsulating design, safety, and
security analysis models of a CPS component [10].

The Open Dependability Exchange (ODE) metamodel [3],
[11] implements the DDI concept, enabling the exchange of
design, requirements, domain, safety, and security information
between CPS components. The Executable Digital Dependable
Identity (EDDI) is built on DDI, aiming to be executable at
runtime. It provides a model-based, data-driven solution for
real-time dependability assurance in multi-robot systems [2].
ODE leverages both DDI and EDDI to support dependable in-
formation exchange across design-time and runtime contexts.

ODE supports ISO 26262 by providing the ODE:: De-
pendability::HARA and ODE:: Dependability::FailureLogic
packages. The HARA package includes elements to assess
severity, likelihood (exposure), and controllability, which help
classify risks under a given Automotive Safety Integrity Level
(ASIL) [8]. The FailureLogic package includes sub-packages
for common safety analysis techniques, such as Fault-Tree
Analysis (FTA), Failure Mode and Effect Analysis (FMEA),
and Markov Chains. However, ODE lacks support for security
concepts essential for safety and security co-analysis. Those
security concepts include damage and threat scenarios from



ISO 21434 [7], the CIA triad (Confidentiality, Integrity, Avail-
ability) [12], [13], and the STRIDE model (Spoofing, Tam-
pering, Repudiation, Information disclosure, Denial of service,
and Elevation of privilege) [14]. These gaps limit the modeling
of fault, attack, and attack-fault trees, and consequently restrict
the use of DDI concepts within the ODE specification.

This paper introduces ISO 21434-aligned extensions to
the ODE metamodel. The proposed extensions aim to assist
the research community and industry in exploring the full
potential of ODE in supporting safety and security co-analysis
of automotive CPSs using interconnected fault, attack, and
attack-fault trees. Our extension includes the addition of new
metamodel elements and associations to the ODE metamodel
in accordance with industry standards. We built this meta-
model extension based on an analysis of the ODE metamodel,
ISO 26262, ISO 21434, STRIDE, and HEAVENS security
analysis methodologies [13] to bridge the gap between safety
and security concepts.

The remainder of this paper is organized as follows: Section
II provides background information on safety and security
analysis and the ODE metamodel. Section III discusses the
limitations of ODE addressed in this paper. Section IV presents
the proposed modifications to the ODE::Dependability::TARA
package. Section V applies our extension to an illustrative CPS
example in the automotive domain, showing how to create an
attack-fault tree using ODE. Section VI reviews related work
on metamodels for safety and security co-analysis. Finally,
Section VII presents conclusions and future work.

II. BACKGROUND

In this section, we provide an overview of tree-based safety
and security analysis models, security concepts, and the ODE
metamodel required for the reader to understand the proposed
extension to ODE within the scope of this paper.

A. Tree models for safety, security and their interplay

The Fault Tree (FT) model used in the Fault-Tree Analysis
(FTA) technique allows the representation of the correlations
between a higher-level primary event (system failures, i.e.,
hazards) and the basic events, which can either be independent
(basic events) or dependent (intermediate events) on other
events [15]. Kaiser et al. [16] state that the usage of FTA
proves beneficial in helping engineers identify potential causes
and impactful factors for a hypothesized failure by iteratively
tracing back the causal chain. As for the analysis part, quali-
tative analysis can be carried out by identifying sets of basic
events leading up to the top event, while quantitative analysis
helps calculate the top event probability based on the tree
structure. The application of FTA is recommended or even
required by safety standards such as ISO 26262 [16].

The attack tree (AT) model used in the Attack Tree Analysis
(ATA) is similar to FT by employing nodes to represent attacks
and describes pathways of attacks through the system [17].
However, while FTA is centered around safety properties, ATA
considers the skills, resources, and risk appetite of an attacker
[18]. The domain ontology (i.e., safety and security goals for

Fig. 1. Illustrative model of ISO/SAE 21434.

an application domain) of FTs and ATs is what sets them apart
as formalisms. These models differ on the attributes of the
leaves (e.g., mean time to failure in FTs and vulnerabilities
for ATs) and types of gates (e.g., SPARE gates in FTs and
SAND gates in ATs) [19].

Attack-Fault Trees (AFT) merge the safety features of FT
with security aspects from AT, making it possible to break
down a top-level goal into smaller ones [9]. AFT can be
modeled by incorporating FTs and ATs. An AT model can
be incorporated into a FT model using an OR gate if the top
event of the AT (i.e., its goal) is the same as an FT event
[15]. The ODE metamodel supports the specification of fault
trees, but has limitations concerning AT and AFT modeling.
Those limitations relate to how an attack (security concept) is
associated with a failure (safety concept).

B. Security concepts

Here, we highlight the security concepts used throughout
this paper, starting with threat and damage scenarios. A threat
scenario is a potential result when an attacker exploits vulnera-
bilities that lead to risks to the system’s assets [13]. According
to Lautenbach et al. [20], ”threat scenarios describe a set
of actions that lead to one or more damage scenarios,”
where damage scenarios specify the result of an attack. In
addition, their proposed HEAVENS 2.0 methodology has a
step called ”Threat scenario identification”, which complies
with the industry standard ISO 21434 [7]. We identify a chain
of relations here: one or more attacks can represent a threat
scenario to a system, and one or more threat scenarios can
lead the system to the same damage scenario.

According to ISO/SAE 21434 [7], a damage scenario is an
adverse consequence involving a vehicle or vehicle function
affecting a road user. The estimation of damage or physical
harm is named ”impact”, which is a required parameter, along
with ”attack feasibility”, for the estimation of ”risk”. Figure 1
presents an illustrative model of the ISO/SAE 21434 concepts
used in this work.

The STRIDE classification is a threat model defined in the
Microsoft security development lifecycle. STRIDE categories
help security engineers to identify threats based on what the



TABLE I
RELATIONSHIP BETWEEN STRIDE CLASSIFICATIONS AND IAS OCTAVE

ATTRIBUTES.

Threat Attribute
Spoofing Authenticity
Tampering Integrity
Repudiation Non-repudiation, Accountability and

Auditability
Information Disclousure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

attacker is trying to achieve instead of thinking about end-
less possibilities of attacks and attack techniques. Thus, this
categorization avoids scenario explosion [13]. The STRIDE
acronym stands for: Spoofing, Tampering, Repudiation, In-
formation Disclosure, Denial of Service, and Elevation of
Privilege [21]. Each STRIDE threat category compromises
a given cybersecurity property of one or more assets, for
example, spoofing (threat) of a vehicle sensor (asset) violates
authenticity. A cybersecurity property is an attribute of an asset
that can be worth protecting, e.g. Confidentiality, Integrity,
and Availability (CIA). The CIA triad is often referred to
as primary security attributes. However, in 2013, the Infor-
mation Assurance & Security (IAS) Octave was proposed
as an extension to the CIA triad, and five new attributes
were included: authenticity, authorization, non-repudiation,
accountability, and auditability [13].

Harm, impact, and risk are somehow present in the ODE
metamodel, but adjustments must be made to ensure compli-
ance with the ISO 21434 cybersecurity standard. In addition,
STRIDE and IAS Octave are important classifications that
can lead to a more robust analysis. Table I highlights the
relationships between the threat categories of STRIDE and
the cybersecurity properties of IAS Octave.

C. Open Dependability Exchange metamodel

In open and adaptive systems, systems and components need
to exchange dependability (e.g., safety and security) informa-
tion with other systems they are connecting to (see Section
I). However, according to Zeller [3], the review, extraction,
and relation of safety/security information between suppliers
are usually manual, highly time-consuming, and error-prone.
Safety and security information should be expressed in a
common and interoperable language.

The Open Dependability Exchange (ODE) metamodel [11]
provides the basis for representing and exchanging safety
and security information between open-adaptive systems. With
its metamodel elements, engineers can describe the system
design, requirements, domain, safety and security information
in the format of assurance cases.

An assurance case is the heart of the DDI, a structured,
modular, and hierarchical model of system dependability prop-
erties [2]. The DDI, created from the ODE metamodel, carries
all this information within the system or component so that
dependability can be assured at design time and runtime (i.e.,
when the DDI is extended to be executable).

1) ODE Packages: The first version of ODE is orga-
nized into packages that provide means to express, con-
nect, and communicate safety information, such as: archi-
tectural modeling (sufficient to express safety information)
through the ODE::Design package; failure logic modeling
(e.g., using FTA, FMEA, and Markov Chain techniques)
through the ODE::FailureLogic package; hazard and risk anal-
ysis through the ODE::Dependability::HARA package (based
on ISO 26262 [6]); domain standards and assurance levels
through the ODE::Dependability::Domain package; and re-
quirements through the ODE::Dependability:: Requirements
package [3]. In Table II, we present an illustrative selection of
metamodel elements from each package.

In the remainder of this paper, we will use the italic font
style to represent ODE packages and the bold font style to
represent metamodel elements.

2) ODE Profile V2.: The second version of ODE
introduces security concepts primarily found in the
ODE::Dependability::TARA package (referred to as the
TARA package in the remainder of this paper). This new
package contains elements for conducting security analysis,
which are detailed in the following. The Asset element
and its specialization VulnerableItem are valuable objects
potentially targeted by attackers (i.e., ThreatAgent), who
can exploit weaknesses of the system (i.e., Vulnerability)
through an Attack [7]. The ODE metamodel ODE Profile
V2 also has the AttackerGoal element, even though this
concept is not presented in ISO 21434. The AttackerGoal
element represents a SecurityRisk to the system and is
addressed by SecurityCapabilities, which SecurityControls
implement. These last two elements are high-level and
low-level countermeasures, respectively. In this version, the
Failure element from ODE::FailureLogic package receives
a specialization named SecurityViolation, caused by one
or more Attacks. This last addition aims to enable users to
model the adverse consequences of security Attacks on the
system.

Although the ODE metamodel completeness around secu-
rity concepts, there are still limitations that must be overcome
to make this metamodel ISO 21434-compliant. In the next
section, we discuss each limitation of the TARA package
around those concepts and the FT specification.

III. ODE LIMITATIONS

As mentioned in Section II-C, the ODE metamodel can
be beneficial when used to support safety and security co-
analysis due to its wide range of modeling concepts and
package structure, along with the exchange capability due
to the DDI concept it is built upon. However, we identified
limitations in the TARA package concerning security concepts
needed to support safety and security co-analysis. In the
following sections, we highlight those limitations and the
rationale behind them.

A. Security Concepts
First, as its name ”Threat Analysis and Risk Assessment”

suggests, we should be able to use the metamodel when



TABLE II
METAMODEL ELEMENTS FROM EACH PACKAGE (ILLUSTRATIVE SELECTION).

Package Elements
ODE::Base BaseElement and TimeUnit
ODE::Design System, Context, Port, Function, and Signal
ODE::FailureLogic Failure, SecurityViolation, and FailureModel
ODE::FailureLogic::FTA FaultTree, Cause, and Gate
ODE::FailureLogic::FMEA FMEA and FMEAEntry
ODE::FailureLogic::Markov MarkovChain, Transition and State
ODE::Dependability Measure and MaintenanceProcedure
ODE::Dependability::HARA Hazard, RiskParameter, and RiskAssessment
ODE::Dependability::Domain Standard and AssuranceLevel
ODE::Dependability::Requirements RequirementSource and DependabilityRequirement

Fig. 2. Current modeling of ODE::TARA package.

analyzing threats and assessing risks. However, we do not
have a representation for ”Threat”. We understand that the
positioning of ”Threat” in the ODE metamodel is now occu-
pied by the AttackerGoal element, due to associations with
VulnerableItem (Asset), SecurityCapability, SecurityRisk,
ThreatAgent, and Attack, as presented in Fig.2. Moreover, a
threat can be enhanced with Microsoft STRIDE classification
to help engineers not think about endless possible threats that
hinder the analysis (see Section II-B).

The IAS Octave security attributes are other important but
missing classifications (see Section II-B). These attributes
represent security properties that a security requirement must
protect. The SecurityRequirement is represented in ODE,
but it does not relate to any security attribute. Along with
identified threat categories, these attributes can be beneficial
when defining security requirements.

In security, harm and risk assessment can only be expressed
if we use ODE to model the chain of relationship composed of
Hazards, Failures, SecurityViolations, Attacks, Attacker-
Goals, and SecurityRisk. Although it is possible and reason-
able in safety and security co-analysis, this current modeling
restricts security analysis to be conducted in isolation.

B. Tree Models

Fig.3 presents the current ODE modeling that supports the
tree model specification. All nodes of the tree model are
Causes. The Cause element can be linked to at most one
Failure, which allows us to represent Failure with a node of
the tree model. For a Cause to be linked to multiple Causes,
it has to be specialized as a Gate. As a result, the possible
nodes of the tree model include both Causes and Gates. Since

Fig. 3. Current modeling of ODE::FailureLogic package.

the Cause becomes a Gate, it is not associated with Failure,
which justifies the association with zero Failures.

According to ODE Profile V2 [11], the SecurityViolation
element enables the modeling of the direct effect a security
Attack has on the system by inheriting from Failure. How-
ever, this element is absent in the ISO 21434 glossary [7].
Avizienis et al [12] classify faults as internal or external, which
is supported by the ODE metamodel. The authors also state
that, in security terms, an attack is a malicious external fault,
but the ODE metamodel does not model failures and attacks as
parent and child elements. This connection is an association
when it should be an inheritance. Furthermore, this current
modeling does not allow the specification of Attacks as basic
events in tree models. We highlight this as a crucial limitation
since it hinders engineers when conducting safety and security
co-analysis through the correct modeling of FT.

As stated by Andre et al. [18], in an FT, the nodes of the
tree model could be either basic component failures or basic
attack steps. Using ODE, we should be able to represent a
Failure and an Attack as nodes of the tree, but that is not the
case. Also, according to Hayakawa et al. [22], security attacks
are performed by exploiting system vulnerability, leading to
a failure, connecting an attack tree to a fault tree. We should
be able to replace a Failure with an attack tree, making the
Failure the top event of the attack tree. In traditional attack
trees, the top event results from the attack, and the nodes refine
this result [23]. Considering the current version of the ODE
metamodel, Attacks can not be linked with Gate elements,
which weakens the propagation analysis that users could
achieve with the FTA technique. A suitable representation of
an FT is illustrated in Fig.4.



Fig. 4. A representation of an AFT achievable with current ODE.

IV. PROPOSED EXTENSION

This study does not propose a visual notation for tree-based
dependability analysis models. Since the ODE metamodel pro-
vides the abstract syntax of system design, safety, reliability,
and security analysis models, we focus on extending the TARA
package to support safety and security analysis aligned with
ISO 21434 standard. The proposed metamodel extension may
guide the development of tooling to support safety and security
co-analysis in compliance with dependability standards. The
concrete syntax in the specification of an AFT used in this
study is based on the FT notation and was used for illustrative
purposes. The proposal of a visual notation for AFT is another
potential contribution subject of further work.

Our extension to the ODE metamodel is restricted to the
TARA package. We will present all modeling modifications,
shown in Fig.5, using the letter M followed by a sequence
number (e.g., M1). Each modification was designed and built
by taking into account the background (see Section II) and
ODE limitations (see Section III) presented in this paper.

In M1, a ThreatScenario element is created and set as a
substitute for the AttackerGoal element. As pointed out in
Section II-C1, an AttackerGoal is not a concept presented in
ISO 21434 but is equivalent to a ThreatScenario. This new
element has the ”category” attribute, typed as a ThreatCate-
gory, an enumeration created based on the Microsoft STRIDE
threat analysis model (see Section II-B). We kept previous
relationships with ThreatAgent, Attack, VulnerableItem (a
specialization of Asset), and SecurityCapability. This last
element is related to SecurityRequirement, which received
the attribute cybersecurityProperty, typed as a Cybersecuri-
tyProperty, in our M2 modification. All possible values for
ThreatCategory and CybersecurityProperty are presented
on the left side of Fig.5.

Modification M3 introduces the DamageScenario as a
concrete situation raised by a ThreatScenario. The estimation
of risk for the DamageScenario is present in the SecurityRisk
element, which has properties for likelihood and impact on
assets, individuals, and businesses. Since a DamageScenario
can cause harm, we established an inheritance with Hazard
element from the ODE::Dependability::HARA.

As presented in Section III, the current ODE metamodel
prevents specifying Attacks as basic events in an attack or
attack-fault trees. We aim to solve this issue by proposing
modifications M4 and M5. To be aligned with the ISO
21434 cybersecurity standard, in M4, the SecurityViolation
element was removed along with its inheritance from Failure.
This modeling is refactored with M5, which adds the direct
inheritance from Failure to Attack. The Attack element is
a Failure with the attribute originType set as INPUT. Also,
the modeling of the Attack element already has important
attributes, such as financialCost, timeRequired, difficulty, de-
tectability, and feasabilityRating, which makes this element
conceptually more robust than just an external fault.

Finally, modification M6 adds to the Attack element a
relationship to itself, named ”attackPaths”. This modification
aims to enable engineers to model attack trees to the desired
granularity, refining attacks into attack steps until no more
refinement is needed or desired [18].

V. ILLUSTRATIVE EXAMPLE: HAD VEHICLE

This section presents the usage of our metamodel in support-
ing safety and security co-analysis of an automotive Highly
Automated Driven (HAD) vehicle involved in a rear collision
hazard. The architecture and scenarios were inspired by the
work of Gallina et al. [24], Kruck et al. [8] and Sabaliauskaite
et al. [25]. HAD is an example of an automotive cyber-
physical system that demands dependability assurance since
it is exposed to events critical for both safety (failures -
e.g., braking system fault) and security (attack - e.g., jammed
communication with external entities) due to its operation in
uncertain environments.

A. Architecture

We present the architecture of this illustrative example
in Fig.6. The Communication Unit (CU) component enables
vehicle openness by allowing it to connect with the Central
Gateway to receive over-the-air updates for the Vehicle Com-
puter (VC) component. HAD allows users to update firmware
via USB Stick (US), which requires physical access to the
vehicle. Updated packages input from USB data or CU data
are loaded by the On-Board Tester (OBT), which is responsible
for flashing the provided software on the VC.

The vehicle also contains a LiDAR (Light Detection and
Ranging) responsible for sensing the vehicle’s immediate
environment (e.g., distances to neighboring vehicles, road
traffic conditions, and traffic signs) as well as its dynamics
(e.g., location and speed). LiDAR sensors use laser pulses that
bounce off nearby objects and reflect to the sensor, allowing
object identification and recognition. This HAD Vehicle is also
equipped with Cameras in four directions (front, rear, left, and
right). Cameras seek to imitate human vision as closely as
possible, which is used as a complement to LiDAR sensors.
With environmental data, the VC can decide and manipulate
the Brakes (B) braking force, the Powertrain (PT) torque,
and the Steering (S) angle to adapt the vehicle to different



Fig. 5. Modeling modifications in the TARA package.

Fig. 6. Architecture containing the HAD Vehicle and related infrastructure.

situations. Fig.7 presents an internal block diagram of the
HAD Vehicle.

B. Scenarios

This example focuses on three scenarios leading to a rear
collision hazard, chosen to represent safety, security, and cy-
bersecurity events. We aim to conduct a safety and security co-
analysis using the proposed extensions. Scenario 1, ”blurring
the camera image”, which represents a safety event due to
an internal failure. In Scenario 2, the security event involves
a ”malicious software update using the USB port”, requiring
the attacker’s physical presence. Lastly, Scenario 3 represents
a cybersecurity event with a ”malicious over-the-air update
through network using spoofing techniques”.

C. Threat Analysis and Risk Assessment

This section presents how to instantiate the extended ODE
metamodel as a UML Object Diagram for threat analysis and
risk assessment, using ISO 21434 concepts within the extended

TARA package. We do not intend to conduct the ISO 21434
TARA process in completeness.

The threat of unauthorized service modification is related
to two different assets (i.e., LiDAR and CU), represented by
Scenarios 2 and 3. Due to space limitations, we present only
Scenario 3 in this section, but it is complete enough to show
the ODE metamodel in practice with our extension.

In Scenario 3, LiDAR sensors are spoofed
(ThreatCategory) via an over-the-air update attack. Fig.8
presents this scenario in a UML object diagram. Due to
the CU’s lack of authentication (Vulnerability), it makes
it possible for the attacker to send a malicious software
update through the network and cause impact on the Vehicle
(VulnerableItem / Asset). Once the LiDAR sensors are
spoofed, the attacker can simulate an obstacle in the front
of the car at high speed, leading to the violation of LiDAR
sensors’ data integrity (DamageScenario). This simulation
causes the VC to brake abruptly to stop longitudinal
movement, which can lead to a rear collision.

Risk estimation (SecurityRisk) considers the likelihood and
the impact as parameters. Likelihood can be estimated with
calculations over the attribute attackFeasability of all Attacks
that compose this scenario. Impact is classified based on how it
affects the asset, individuals, and business. We modeled those
impacts as high since a rear collision can cause great damage
to vehicles, passengers, and brand reputation. It is worth
mentioning that this impact can be mitigated by implementing
protection measures (presented in the following), and the



Fig. 7. HAD Vehicle components and communications.

Fig. 8. Object diagram for the spoofing on LiDAR sensors threat scenario.
Elements and attributes proposed by our contribution are highlighted in darker
colors and bold font style, respectively.

vehicle still has four cameras that can act as a redundancy for
LiDAR (which will be more evident in Section V-D, during
Attack-Fault Tree Analysis).

This threat scenario can be avoided by assuring au-
thentication (SecurityRequirement), which is implemented
by implementing a cryptographic authentication mechanism
(SecurityControl) for CU communication.

D. Attack-Fault Tree Analysis

After identifying damage scenarios, threat scenarios, and
related attacks during the analysis using ODE with our ex-
tension, we now have the hierarchical relationships between

safety-related failure and security-related attacks needed to
specify a complete tree model.

First, let us clarify how to specify a tree model according to
the ODE metamodel presented in Section III-B. Fig.9 presents
five steps for specifying a tree model using ODE elements.
All tree nodes must be Cause elements (STEP 1). The Cause
element can not be associated with other causes unless it is
specialized as a Gate element. In STEP 2, we represented the
OR and AND gates, but ODE also supports the XOR, NOT,
VOTE, PAND, POR, and SAND gates [9], [19], [26]. In the
following steps, the Cause element remains as a circle, with a
dashed line for Failure (STEP 3), and a dotted line for Attack
(STEP 4). In STEP 5, modification M6 facilitates developing
an Attack into minor Attacks, as described in Section IV.

The model corresponding to our example is presented in
Fig.10. The presented AFT illustrates an rear collision hazard
as the top event. We included all scenarios presented in Section
V-B. Representing safety events of Scenario 1, we have F3
(Front camera blurry image) and F4 (Front camera recognition
system fault) connected to an OR gate, resulting in F2 (Front
camera incorrect video stream value). For the representation of
security events (i.e., attacks conducted in person) of Scenario
2, we have A5 (Gain physical access to the vehicle) and A6
(Software flashing using a USB Stick) connected to an AND
gate, resulting in A2 (LiDAR software spoofed physically).
The attack A5 can be developed into A7 (force door open)
and A8 (Clone car key signal) connected to an OR gate. Fi-
nally, representing cybersecurity events (i.e., attacks conducted
remotely) of Scenario 3, we have A3 (Gain access to network)



Fig. 9. A step-by-step process to specify AFT using the ODE metamodel.
STEP 1: Specify tree model composed of only Cause elements. STEP 2:
Replace Cause elements with its child Gate element where it applies. STEP
3 and 4: Associate Failure and Attack elements where they apply. STEP 5:
Expand Attack elements if needed.

and A4 (Software flashing over the network) connected to an
AND gate, resulting in A1 (VC software spoofed remotely).

The hazard H1 (Rear collision) is achieved when F1 (Un-
intentional Braking) occurs, and this can be due to the occur-
rence of F1, A1, or A2. A1 violates the VC software remotely,
A2 violates the LiDAR sensor’s data integrity (scenario ex-
plored in Section V-C), and failure F2 compromises the front
camera video. Once the autonomous vehicle concludes that
there is an obstacle in the front of the vehicle due to any of
these events, unintentional braking is triggered and can cause
a rear collision in many situations. As mentioned in Section
V-C, cameras and LiDAR sensors can act as redundancy to
each other in order to mitigate this kind of risk. However, we
did not model these countermeasures due to space limitations.

VI. RELATED WORK

As related work, we considered contributions that designed
or extended a metamodel that relates concepts of safety and
security, and contributions that integrate fault and attack trees.
Most of the presented studies in this section were extracted
from a systematic literature review on model-driven safety and
security co-analysis [27].

Even though we conducted a safety and security co-analysis
in Section V, this paper’s goal is to extend the ODE metamodel
in a conceptual contribution. We recognize the existence of
other works that propose new methodologies, approaches,
processes, or frameworks related to safety and security co-
analysis. However, we did not mention them in this section

as related work, since their contribution is not focused on
metamodels and tree models as ours.

A. Metamodels

Bakirtzis et al. [28] propose a metamodel that addresses
safety, security, and resilience. Their metamodel is built upon
STAMP and mission-aware cybersecurity to create general
connections between safety and security concepts. Sharing
the same motivation as ODE, they were concerned about
exchanging dependability information between systems and
reusing models between modeling tools.

Kruck et al. [8] also proposed a metamodel relating safety
and security concepts and a method to use it. They got
inspiration from HARA described in ISO 26262 [6] for safety,
building their metamodel over the fault-tree analysis and
component fault trees. For security, they based their approach
on the Modular Risk Assessment (MoRA) method, adapting
the terminology to comply with ISO 21434 [7]. Their approach
was implemented in a modeling tool where the system model
is analyzed, and suggestions are presented to the user based
on the metamodel relationships between safety and security
concepts. Their contribution is a model-driven approach for
safety and security co-analysis, but the proposed metamodel
cannot be exchanged since it is coupled to a specific tool.

Gallina and Haider [29] extended the SafeConcert meta-
model in the CHESS modeling tool for multi-concern model-
ing, focusing on alignment with ECSS (European Cooperation
for Space Standardization) standards. Subsequently, Debiasi
et al. [30] expanded the tool to support system-level safety
and security analysis. The CHESS toolset uses the CHESSML
modeling language profile based on OMG standard languages
such as UML, SysML, and MARTE. Due to previous contri-
butions, such as Failure Logic Analysis [31] and State-Based
Quantitative Dependability Analysis [32], CHESS already
supported safety analysis. With the contributions from Gallina,
Haider, and Debiasi, CHESS now includes security modeling,
but still lacks mechanisms to exchange and fully integrate
dependability artifacts.

B. Integration of safety and security tree models

An enhancement of FTA with security concerns is proposed
by Steiner and Liggesmeyer [33]. They use the STRIDE
classification to highlight basic safety events that can be
achieved by threatening security properties. Then, this safety
event becomes the top event of an attack tree, allowing the
integration of models. Kumar and Stoelinga [9] equipped
AFTs with stochastic model checking techniques in a model-
driven approach that enables both qualitative and quantitative
analysis. André et al. [26] contribute with a framework that
translates AFTs into parametric weighted timed automata
within the ATTop tool and IMITATOR model-checker. This
model-driven approach enables the analysis of the most feasi-
ble failure and attack scenarios. Other relevant studies connect
FTs with ATs to form AFTs [15], [34]–[36]. However, none of
these works presented in this section leverages the architectural
modeling of the system as the ODE metamodel does, and their



(a) Tree model.

(b) Object diagram. Only one branch of the tree (the central one) is presented, while the left and right branches are omitted
due to space limitations.

Fig. 10. AFT for the rear collision hazard using the proposed metamodel. AFT as an tree model is presented in fig. 10a and the metamodel concepts used
to model it are presented in fig. 10b as an object diagram.

focus is not on achieving compliance with industry standards
(e.g., ISO 26262 and ISO 21434) like ours.

VII. CONCLUSION

In this paper, we address the importance of integrating
safety and security in cyber-physical systems, especially in
critical domains such as the automotive sector, which demands
high levels of safety and protection against cyberattacks.
Through a detailed analysis of the Open Dependability Ex-
change (ODE) metamodel, we identified significant limitations

in its ability to perform safety and security co-analysis. To
overcome these limitations, we proposed an extension to the
ODE metamodel, which introduces new elements and relation-
ships to model attack and failure scenarios more effectively,
in line with the ISO-21434 and ISO-26262 standards.

Our contribution was evaluated in an illustrative example
of an autonomous vehicle, where we presented the coverage
increase of ISO 21434 concepts in our extended metamodel
for safety and security co-analysis. By modeling attack-fault
trees, we showed how cyberattacks and hardware faults could



interact, culminating in risky situations such as unintentional
braking, and highlighted the importance of mitigation mea-
sures to prevent such scenarios.

We believe that the proposed extensions improve ODE’s
co-analysis capabilities, making it a more robust tool for
engineering dependable systems. For future work, we propose
the creation of a concrete syntax for the metamodel and the
development of a model-oriented methodology that facilitates
integrated safety and fault analysis. We also intend to align
our safety and security co-analysis metamodel with the new
ISO/TS 5083 automated-driven system safety standard. Addi-
tional studies could explore the applicability of our approach
in other domains, such as aviation or industrial systems, to
validate the feasibility of our proposal in other domains.
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[18] É. André et al., “Parametric analyses of attack-fault trees,” in 2019 19th
Int. Conf. on Application of Concurrency to System Design (ACSD),
(Piscataway, NJ), pp. 33–42, IEEE, 2019.

[19] C. E. Budde, C. Kolb, and M. Stoelinga, “Attack trees vs. fault trees: two
sides of the same coin from different currencies,” in International Con-
ference on Quantitative Evaluation of Systems, pp. 457–467, Springer,
2021.

[20] A. Lautenbach, M. Almgren, and T. Olovsson, “Proposing heavens
2.0–an automotive risk assessment model,” in Proc. of the 5th ACM
Computer Science in Cars Symposium, (New York, NY, USA), pp. 1–
12, ACM, 2021.

[21] N. P. de Souza et al., “Extending STPA with STRIDE to identify
cybersecurity loss scenarios,” Journal of Information Security and Ap-
plications, vol. 55, no. October, 2020.

[22] T. Hayakawa et al., “Proposal and application of security/safety evalua-
tion method for medical device system that includes iot,” in Proc. of the
2018 VII Int. Conf. on Network, Communication and Computing, (New
York, NY, USA), pp. 157–164, ACM, 2018.

[23] N. Papakonstantinou et al., “Early hybrid safety and security risk
assessment based on interdisciplinary dependency models,” in 2019
Annual Reliability and Maintainability Symposium (RAMS), (Piscataway,
NJ), pp. 1–7, IEEE, 2019.

[24] B. Gallina, L. Montecchi, A. L. De Oliveira, and L. Bressan, “Multicon-
cern, dependability-centered assurance via a qualitative and quantitative
coanalysis,” IEEE Software, vol. 39, no. 4, pp. 39–47, 2022.

[25] G. Sabaliauskaite, J. Cui, L. S. Liew, and F. Zhou, “Integrated safety
and cybersecurity risk analysis of cooperative intelligent transport sys-
tems,” in 2018 Joint 10th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 19th International Symposium on
Advanced Intelligent Systems (ISIS), pp. 723–728, IEEE, 2018.
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