2025 IEEE Intelligent Vehicles Symposium (1V) | 979-8-3315-3803-3/25/$31.00 ©2025 IEEE | DOI: 10.1109/1V64158.2025.11097476

2025 IEEE Intelligent Vehicles Symposium (IV)
June 22-25, 2025. Cluj-Napoca, Romania

Machine Learning-Based Prognostic Approaches for
Construction Equipment Powertrain Systems

Zafer Yigit
Volvo Construction Equipment
Eskilstuna, Sweden
Milardalen University
Visteras, Sweden
Email: zafer.yigit@volvo.com

Abstract—Construction equipment has important roles in in-
dustries such as construction and mining. Any downtime because
of failures increase cost. Traditional diagnostic systems detect fail-
ures only after they occur, making it difficult to take precautions
and prolonging repair times. This paper is the first to address
the analysis of machine learning-powered Prognostic and Health
Management (PHM) systems specifically for predicting failures in
diesel engine air intake systems, focusing on two common issues:
air leakage and Exhaust Gas Recirculation (EGR) blockage. This
study compares various machine learning and deep learning
models for anomaly detection and fault classification using real-
world sensor data from controlled engine tests. The results
demonstrate that ensemble and neural network-based machine
learning methods, such as Random Forest, XGBoost, and LSTM,
achieve highly successful predictions for anomaly detection and
fault classification.

Index Terms—Construction Equipment, Airpath, PHM, Ma-
chine Learning, Neural Networks.

I. INTRODUCTION

Construction machines have complex structures composed
of multiple different subsystems working together. These sub-
systems should work efficiently and smoothly to operate at
high performance and in accordance with legal regulations.
Identifying and resolving issues correctly and on time is
crucial to maintain the optimal performance of these systems.
Diagnostic functions, which are part of the powertrain applica-
tion software, detect faults in machines and record Diagnostic
Trouble Codes (DTCs) related to faults within J1939 standards
[1], [2]. Data coming from Electronic Control Units (ECUs)
are monitored and warnings are generated when a failure is
detected. They cannot prevent bigger problems or long-term
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damage to the machine because they activate after the fault
has occurred. In addition, DTC codes provide only general
description about the failure so finding the failure and making
a diagnosis can be hard and may take too much time. Detecting
possible failures in advance and taking precautions provide
longer life to the equipment, save costs, minimize environ-
mental damage, and reduce machine downtime. As mentioned
in many studies, Prognostic and Health Management (PHM)
systems predict possible failures by continuously observing
the functions and components of the system and ensure the
necessary interventions are made on time [10], [11], [16].

This study has several key contributions. First, a comprehen-
sive performance comparison has been made through studying
literature on anomaly detection and failure prediction using
machine learning models. Detecting anomalies and predicting
faults are important parts of PHM in construction equipment
powertrain systems. The study also focuses on two critical
failure types in diesel engine airpath systems; air leakage and
Exhaust Gas Recirculation (EGR) system clogging failures.
We have selected these failures in our use-case, as they occur
frequently in diesel engine air intake systems.

Finally, all data were gathered by performing controlled
tests on a real engine. Real-world sensor data collected from
diesel engine testing under controlled conditions simulates
both normal operations and designed failure scenarios.

The second chapter of this research article describes PHM
and applied methods in the literature for PHM systems pow-
ered by machine learning. In the third chapter, focus is on the
analysis results of the data gathered from engine sensors about
engine and air systems under different conditions. The same
chapter also includes more information about performance and
results of machine learning and deep learning methods applied
for anomaly detection and failure classification. In chapter
four, the results of the applied methods are compared, and
future studies about the research are discussed.
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II. APPROACHES FOR PROGNOSTIC HEALTH
MANAGEMENT SYSTEMS

The main purpose of PHM systems is to ensure long life
for the construction machines, operational continuity and save
maintenance costs. As an engineering system, PHM continu-
ously monitors the health of machines and their subsystems
using components such as data collection, data processing,
anomaly detection, fault diagnosis, and prognosis. Through
the outputs from these processes, PHM determines the health
status of the machine and estimates its Remaining Useful Life
(RUL)[11].

A. Approaches for PHM

PHM systems are classified under three categories. These
are model-based approaches, data-driven approaches, and
hybrid approaches combining the model-based and data-
driven approaches [3]. Model-based approaches depend on
the physics and mathematical models of the system to detect
failures or create the degradation model to predict RUL
[20]. The data-driven approach does not need the physical
information of the system. It can learn the behavior and the
logic of the system from measured sensor data, and it can
be used for very complex systems that are difficult to model
mathematically [10]. In hybrid models, these two approaches
are used together to create more robust models [4].

B. Data Driven Approaches

Data-driven models use the data acquired from inputs and
outputs of the system to check the health status of the system.
These models try to predict the time and type of possible
failures according to pre-trained models. Nowadays, data-
driven PHM methodologies have been widely studied in the
literature, especially based on machine learning and deep
learning methods. A digital twin, a digital copy of the machine,
can be combined with machine learning methods and used to
detect possible failures in the machine. For example, Duarte,
Viegas, & Santin [5] created a machine learning-based digital
twin model to predict the pressure levels in the fuel injection
system of a diesel engine and to understand system behavior
and failures. Another example is a digital twin hierarchy
designed and used to monitor the bearing and seal to detect
failures of a pump used by industries [6].

1) Machine Learning Methods: Machine learning appli-
cations of PHM contain prediction of RUL, failure classi-
fication and anomaly detection under the different types of
approaches like supervised, unsupervised and reinforcement
machine learning methods.

The linear regression model is one method. It has been used
in a digital twin to predict pressure levels in the fuel injection
system [5] and to predict NOx emissions from industrial
diesel engines [7]. Support vector machine (SVM) is another
supervised learning method generally used in classification
problems [8]. K-Nearest Neighbor (K-NN) is yet another
method which uses nearest distances from similar values
to make classifications or predictions [9]. Extreme gradient
boosting (XGBoost) is also one of the popular approaches that

performs high efficiency for regression and classification [7].
To detect and diagnose different type of failures in automotive
electric machines, decision trees, linear discriminant, and
SVMs can be used [8]. Some supervised machine learning
models like K-NN, SVM, decision tree, and random forest are
used to predict CO2 emissions level for automotive [9]. Linear
regression method is proposed as a solution to predict the
failure of clogging plural problems in exhaust gas recirculation
(EGR) system [12]. It also present a way to update weights of
the model derived from one machine to another machine with
using online stochastic gradient descent approach. Yang, Chen,
& Guan [19] use an AVL-Boost model to run simulations of
diesel engine failures, and the fault diagnosis is performed by
analyzing data from the simulations using the random forest
model, the SVM model, and BP neural network algorithms.
2) Deep Learning Methods: Deep learning and its powerful
tools, especially in overcoming complex problems in big
data, makes these tools indispensable for research. Recurrent
Neural Networks (RNNs) have the ability to keep the status of
previous cells. Thus, they are suitable for applications using
sequential time-based data [16]. Long-short term memory
(LSTM) neural networks and Gated Recurrent units (GRU)
which are types of RNNs also seem to be quite successful
in applications used for time-based data. They can handle big
multivariate sequential time-series data without dimensional
reduction and detect different types of anomalies effectively
[13]. These are also popular approaches for prediction of
remaining useful life in industry [14]. Research in which these
RNNs and other Neural networks like Convolutional neural
networks (CNNs) methods are combined and used are becom-
ing quite common. Han, Ellefsen, Li, AEsgy, & Zhang [15] use
an LSTM network model which includes two LSTM layers,
two feed-forward neural network (FNN) layers, and a dropout
layer to prevent overfitting, to predict faults and RUL of engine
components based on sensor data in marine diesel engines.
Ellefsen, Li, Holmeset, & Zhang [17] use an LSTM-based
variational autoencoder for anomaly detection in marine diesel
engines and performance is compared with an autoencoder,
an isolation forest-based detector, and a standard variational
autoencoder. An analytical pipeline for PHM designed with
Semi-supervised ML with Autoencoder (AE), XGBoost, and
the SHAP (Shapley Additive exPlanations) method is proposed
for anomaly detection failure detection and RUL estimation.
Also, LSTM, CNN, and GRU models are used to comparison
for performance. SHAP is an analyzing technique which uses
the game theory to calculate each feature’s contribution to
the system for machine learning techniques [14]. Machine
learning techniques based on genetic algorithms and generated
synthetic data created by simulation models of a mobile harbor
crane, have also been used for predicting failures [18].

III. PHM APPROACH FOR DIESEL ENGINE AIR
SYSTEMS

The air system plays a fundamental role for the combustion
quality, output power, fuel efficiency, and emission levels of
the diesel engine. Engine application software has diagnostic
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functions for air systems, but a prognostic approach is nec-
essary and important to detect faults earlier, also to keep the
system performance at maximum and to prevent the downtime
of the construction equipment. For this reason, in this article,
anomaly detection and fault classification models powered by
machine and deep learning methods are created with real
sensor data. The fault classification framework enables the
identification of various types and extensions of anomalies,
such as different levels of EGR clogging.

A. Data Acquisition

Data is collected from a diesel engine test rig under constant
ambient conditions at sea level. The data is then cleaned
and filtered based on the engine’s speed and torque values.
Faulty parts were used for different classes of air system
failures in the tests. Normal state and failure state data were
collected by running different types of test cycles such as part
load cycle and non-road transient cycle (NRTC). The total
data set included 436746 samples of 51 tests, 14 tests are
normal state data, and others are different types of faulty data.
Three different data sets were prepared for training and nine
different data sets were prepared to test the models depending
on different types of failure. Two of three training data sets
only included normal state engine condition data to train the
models for anomaly detection. The third data set includes
mixed (normal and faulty state) engine conditions and was
only used to train the models for failure classification.

B. Anomaly Detection

Air leakage is a common and important failure type for
diesel engines. The correct amount of boost is crucial for
diesel engines because it affects combustion, performance,
and efficiency. When there is a leak on the boost line, boost
pressure will decrease and the necessary air inside the cylinder
of engine for combustion is lost. This loss can result in issues
such as reduced power output and higher fuel consumption.
Air leakage can be detected by diagnostic functions based on
boost pressure value shown in Fig.1. A damaged pipe was used
instead of the existing elastic pipe on the airpath to simulate
the air leak scenario, see Fig.2a. The 3-way valve shown in
Fig.2b was installed in the airpath and a 1 cm diameter opening
was left to simulate high boost leakage.

Another common failure is the blockage in the Exhaust Gas
Recirculation (EGR) systems. Exhaust gas including largely
CO2, water vapor, and soot has higher heat than air. While
the hot exhaust gas is passing through the EGR valve and
EGR cooler, it gets cooler and condenses. Wet soot can cause
the EGR valve and cooler clogged and prevent the passage
of exhaust gas. EGR clogging is usually one of the hardest
problems to diagnose until the last stage. Using some plates
with different sizes of cuts shown in Fig.3, the EGR gas outlet
in the engine was blocked and data was collected for different
types of clogging scenarios from the engine. Machine and deep
learning approaches can be used to detect these anomalies.

Data sets were cleaned and filtered according to the input
parameters. Models are trained to predict boost pressure sensor
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Fig. 1. Boost Pressure Sensor Value for Normal and Faulty State Engine
Condition.
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Fig. 2. (a) Punctured Air Hose, (b) 3-way Valve having 1 cm diameter outport

Fig. 3. Engine EGR and plates with different sizes of cuts used for blocking
scenario. (a) EGR, (b) %50-60 blocked EGR plate, (c) %75-80 blocked EGR
plate, (d) %85-90 blocked EGR plate, (e) Fully blocked EGR plate
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and EGR differential pressure sensor values separately. Test
datasets are used on the trained models for validation purposes
and some performance metrics are calculated for comparison
of the models. All models trained by normal state engine con-
dition datasets for two sensor predictions takes approximately
13.5 hours to run. The system used for training consists of
an Intel(R) Core (TM) Ultra 7 165H 3.80 GHz, with 64 GB
memory on a Windows 64 bit Operating System.

12 different models and some of their variations were
trained for anomaly detection for air leakage and EGR clog-
ging failures. We trained and analyzed the performance using
regression functions and tools in MATLAB R2021b for the
following models: linear regression (lasso and ridge regu-
larization approaches), two different (SVM) models having
second order polynomial and gaussian kernels, decision trees,
and two ensemble models (Random Forest and XGBoost).
Hyperparameters were optimized for each model separately. In
addition, feedforward neural network (FFNN), convolutional
1D neural network (CNNI1D), residual convolutional neural
network (ResNet1D), and long-term memory (LSTM) models
were trained. Their performance were then analyzed using
the PyTorch machine learning library. Hyperparameters such
as learning rate, sliding window size, epoch number, etc. of
neural network models with different types of structures were
run separately and optimized. Parameters and structures were
selected according to the performance of the minimum error
and maximum accuracy. The sliding window technique, which
is a method for dividing and iterating sequence of time series
data, is one of the common methods in the literature and is
generally preferred to increase the accuracy performance [21],
[22]. Time windows were created to increase the accuracy
of CNNID, ResNetlD, and LSTM models. Size of sliding
windows were determined depend on the maximum accuracy
of the models.

Models were trained to detect anomalies with different
training data and input-output parameters about the air leak-
age and EGR clogging separately. Table I shows the results
(inference time for training and test, error values and anomaly
percentages) for air leakage anomaly detection.

1) Performance Tools for Anomaly Detection Regression
Models:

Each model was tested using test data having different engine
conditions. First, both training and testing inference times
were measured on the CPU. Additionally, mean absolute error
(MAE) and anomaly percentage metrics were calculated and
used to measure the accuracy of the models’ performance.
Training Inference Time (s): This is the time spent on training
the model. Hyperparameter optimization is not included in this
time.

Test Inference Time (s): This is the time spent on testing the
model with test data.

Mean Absolute Error (MAE): It measures the average value
of the difference between predictions and true values [23], see
Equation 1.

Anomaly Percentage: Anomaly percentage shows how much
deviation from the true values occurs in the predictions of

models. It is calculated based on Z-score, see Equation 3,
and error distribution [24], [25], see Equation 4. A threshold
value is defined for Z-score and the percentage of anomaly
is calculated according to values which exceeds the threshold.
The predictions and error distributions of the LSTM model on
50% clogged EGR test data are shown in Fig.4 and Fig.5. In
a normal distributed data set, 99% of the data falls within the
-3 to +3 sigma range. The outer part of this region can be
described as an outlier so that threshold value is selected as Z
greater than 3 for this detection sample.

1 n
MAE = — z_; |[Yirue — Ypred| (1)
Error = |Yirye — ypred| )
E i
Tscore — 2T K (3)
g

Number of Anomalies

> x 100
Number of Total Samples

“4)
where (4 is the mean value of the error value of the normal state
engine condition training data. ¢ is the standard deviation of
the error value of normal state engine condition training data.
The error is the difference between the prediction and the true
value in test data. The number of anomalies gives the number
of samples exceed the threshold value.

Anomaly Percentage = <

Residual Values Predicted vs. Actual Values

Residuals
Predicted Values

1 © 8
True Values Actual Values

Fig. 4. LSTM Model Predictions on %50 Clogged EGR Engine Condition

C. Failure Classification

Two new datasets were created by taking equal numbers
of samples from the datasets having different engine condi-
tions and characteristics. These new data sets were filtered,
cleaned, and classified under certain engine speed and torque
conditions. Mitigation strategies to solve problems such as
class imbalance, biasing to major class, and overfitting were
implemented. Equalization of the number of samples was not
done on the test data. Failure types are shown in Table II.

We trained and analyzed the performance using classifica-
tion methods and tools in MATLAB R2021b for the following
models: SVM, decision trees, and ensemble models (Random
Forest and XGBoost). In addition, FFNN, CNN1D, ResNet1D,
and LSTM models were trained and analyzed using the
PyTorch machine learning library.
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TABLE I
AIR LEAKAGE ENGINE CONDITION REGRESSION METHODS RESULTS FOR ANOMALIES

‘ Test_Datal (Normal Condition) Test_Data2 (Normal Condition) | Test_Data3 (Low Air Leak Condition) ‘ Test_Datad4 (Visible Air Leak Condition)
Machine Learning Approach | Training Time (s) | Test Time(s) | MAE [ Anomaly % | Test Time(s) | MAE |Anomaly % | Test Time(s)| MAE | Anomaly % | Test Time(s)| MAE [ Anomaly %
Linear Regression 0.55 0.0228  3.0747 1.64 00139 5.9809 8.35 0.0108 3743 0.13 00199 | 13.8368 54.11
Lasso 0.11 00121 3.9556 1.43 0.0071 80852  17.37 0.0070 | 7.9820 0.13 0.0106 | 15.9600 52.13
Ridge 0.16 00120  3.0459 1.66 0.0063  6.0064 878 0.0076 | 3.8649 0.13 00114 | 13.8622 54.01
SVM (Second Order) 25.03 0044354 21377 0.16 00190  3.0568  2.05 0.0256 | 1.0705 0.04 0.0150 | 13.1750 90.07
SVM (Gaussian) 538 028452 23738 0.1 01025 37564 899 02072 | 127444 80.85 02139 | 125580 74.51
Decision Tree 19.09 09250 07828  4.06 00059  3.0098  23.35 0.0075 | 7.7733 73.12 00155 | 129546 91.98
Random Forest 23.68 0461827  0.5515 3.77 03391 23314 2696 04046 | 8.7624 97.87 04138 | 14.7856 99.64
XGBoost 3.87 0061999 05615  4.17 01200  1.8552  26.61 0.0180 | 8.4197 96.5813 0.0247 | 11.9253 99.4
FFNN 578.31 001338 0.8693 1.75 00044 22242 1444 0.0096 | 3.2827 38.58 0.0090 | 12.8902 92.73
CNN-1D 284.95 135 0.8047 1.43 0.7 17351  16.37 0.15 3.9549 97.14 0.16 11.8804 98.75
ResNet1D 15697.9 8.39 3.0033 046 2.93 35287 1147 5.17 4.0123 95.09 633 29.6680 98.79
LSTM 15886.7 7537 1.2980 1.57 8.09 1.8331 7.78 20.56 6.2790 87.1 2489 | 132504 91.98
TABLE III
i === Mean - Normal Condition Data PERFORMANCE COMPARISON FOR CLASSIFICATION MODELS
10000 --- Mean - %50 Clogged EGR Test Data
o s N"""al‘ C"":"_"’“ Data Models Training Time | Test Time | Accuracy (%) | F1-Score
00 === -3 STD - Normal Condition Data SVM 64.82 017 87.67 8411
mmm Normal - Condition Data Distribution =,
S Test - %50 Cloaed EGR Data Dist Decision Tree 219 0.59 95.11 94.95
N 9“‘ Random Forest 33.52 0.02 90.69 85.85
g w0 XGBoost 0.33 0.01 98.67 98.6
g FFNN 553.98 0.20 79.70 69.75
£ e i CNNID 3070.01 1.1 85.14 83.16
ResNet1D 3713.14 3.32 83.13 75.83
LSTM 22362.46 0.01 95.01 94.66
2000
0
=15 =10 =05 00 05 10 15 20
Error Feed Forward Neural Network Model XGBoost Model
Accuracy: % 79.70 Accuracy: %98.67
Confusion Matrix Confusion Matrix
. o e . . . -1 2358 0 468 0 0 0 -2
Fig. 5. LSTM model Prediction Error Distribution 0 0 g 0 0
-1 2289 8 0 0 0 0 -0 [2297 0 0 0 0
TABLE II 2. 1 0 0 0 0 2. 2 0 0 0 0
FAILURE CLASSES FOR AIR SYSTEM 8 b
I 0 o |2617 1288 0 3. o 0 0 0 0 =
Engine Condition Fault Type Class
Normal No Fault 0 0 0 0 4 63 0 0 0 268 2554 O
Air Leakage Low Air Leakage 1 S0t
o — B " 0 0 0 0 0 -
Air Leakage Visible Air Leakage 2 0 0 0 0 0
Clogged EGR %50 -60 Clogged EGR 3 Predicted Labels ‘ ‘ prodicted Labels ’
ClOgng EGR %75 -80 ClOgng EGR 4 Class  Precision Recall F1-Score Class  Precision Recall F1-Score
ClO ged EGR Full ClO ged EGR 5 0 50.73 83.44 63.10 0 99.93 100.00 99.96
g y g 1 100.00 0.35 0.69 1 100.00 100.00 100.00
2 90.58 99.98 95.05 2 100.00 99.96 99.98
3 99.85 67.02 80.20 3 93.58 100.00 96.98
4 68.14 97.63 80.26 4 100.00 90.50 95.01
5 98.41 100.00 99.20 5 100.00 100.00 100.00
1) Performance Tools for Failure Classification Models:
Precision, recall, F1 scores, and accuracy were calculated Fig. 6. Worst and Best Performance Results on Confusion Matrix for

besides training and testing times. Accuracy and F1 scores for
each trained model are listed in Table III. Confusion matrix
for worst and best performance is given as shown in Fig.6.
Precision:shows how many predicted values that were correct
among all incorrectly and correctly detected values.

Recall (also called sensitivity):is also named as sensitivity is
the metric that shows how many results predicted as positive,
which should have been predicted as positive.

F1 Score: That value shows us the harmonic mean of the
precision and recall values.

Accuracy: The accuracy, see Equation 5, is calculated by the
ratio between the data predicted correctly in the model and
the total data set.

Number of Correct Predictions

Accuracy = 100

(&)

Total Number of Predictions

Classification Models.

IV. CONCLUSION AND FUTURE WORK

In this article we performed a comprehensive study about
PHM on diesel engine air intake systems of construction
equipment. The main idea is to develop a PHM that success-
fully predicts anomalies and takes necessary precautions in
situations where existing diagnostic systems are insufficient
and late. The study shows that some machine learning models,
particularly ensemble models and neural network based mod-
els, give successful results, especially in cases where there is a
fault or anomaly in the air intake system of the diesel engine.
However, it is very difficult to measure.

In this research study two different use cases were selected
from the construction machine diesel engine air intake system.
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The different machine learning models were trained with
engine data collected from a diesel engine test rig. Their
performance on anomaly detection and failure classification
were then compared. The performance of the machine learning
models was compared according to their training and test
speeds, as well as the accuracy of their predictions.

A. Performance Results for Anomaly Detection

All models were trained with normal state condition data,
and they were tested with normal and faulty state condition
dataset. While good predictions and low anomaly percentages
are expected from models tested with the data set under
normal state conditions, higher error predictions and increased
anomaly percentages are expected when faced with data types
with faulty conditions. Linear regression models could be
trained and tested quickly due to their simple structure. Their
predictions were successful for normal state condition data,
but they failed to predict distinguishing results when they were
tested with faulty condition data. SVM approaches could not
make robust and accurate predictions on data sets of faulty
conditions. XGBoost is successful in terms of speed training
and test performance and especially in its distinguishing pre-
dictions on faulty datasets. The unexpected prediction errors
of XGBoost, decision trees, and random forest approaches in
test data, indicate that these models are too dependent on the
training data. They have different engine speed and torque
characteristics from the training data but have expected normal
condition states. Although the training time of deep neural
networks is extremely long, LSTM and ResNet approaches
generally showed better performance in tests.

B. Accuracy Performance for Failure Classification

The data set with normal and different faulty state conditions
was used for fault classification. To prevent the models from
being biased towards any class during training, the data was
filtered and distributed equally based on classes. Therefore, the
training data was quite limited and especially neural networks
were difficult to learn due to limited data. Decision tree and
XGBoost stand out with their testing and training time as
well as their accurate predictions. In addition, LSTM had
very accurate predictions among the other neural network
approaches.

In the future, more accurate models can be created by
combining models that give successful results according to the
study, or more robust predictive functions can be designed by
ensuring that different models confirm each other. In addition,
synthetic data can be generated using digital twin structures
of the diesel engine to train these models more successfully.
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