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Abstract—The increasing complexity of modern embedded
systems highlights the limitations of Controller Area Network
(CAN) in terms of transmission speed and scalability. The IEEE
Time-Sensitive Networking (TSN) task group developed a set of
standards to enhance switched Ethernet with high bandwidth, low
jitter, and deterministic communication. Despite these advances,
CAN will likely co-exist with TSN in, e.g., the automotive industry
due to factors such as cost-effectiveness and legacy of CAN.
This paper presents an experimental evaluation of a CAN-to-
TSN gateway implementation, focusing on the impact of different
forwarding and scheduling strategies on network performance.
We analyze various queuing techniques and scheduling mecha-
nisms in a realistic experimental setup and assess their impact on
end-to-end delay and TSN bandwidth utilization. The evaluation
results demonstrate that encapsulating only a single CAN frame
within a TSN frame effectively minimizes the end-to-end delay
of CAN frames, in particular when a high-speed TSN network is
used. Furthermore, we perform a comparative evaluation of the
Time-Aware Shaper (TAS) and Weighted Round Robin (WRR)
mechanisms in the TSN network. Interestingly, WRR leads to
lower delays for CAN frames in the TSN network compared to
TAS, which we attribute to the lack of synchronization between
CAN and TSN.

Index Terms—Controller Area Network, CAN, Time-sensitive
Network, TSN, Gateway, Automotive embedded systems.

I. INTRODUCTION

The automotive industry has significantly advanced through
the adoption of embedded systems. As vehicles incorpo-
rate more features, the number of Electronic Control Units
(ECUs)1 has increased to several tens per vehicle [2]. This
large number of ECUs requires a network capable of handling
higher data throughput with low latency and real-time re-
quirements. The Controller Area Network (CAN) [3], referred
to as classical CAN in this paper, is the most widely used
onboard network due to its simplicity, reliability, and low cost.
However, classical CAN, with an 8-byte data payload limit and
a maximum speed of 1 Mbit/s, cannot meet the high data-
rate demands of modern vehicles. To address this, the CAN
Flexible Data-rate (FD) [4] was developed to increase both the
payload size and the data rates. Despite these enhancements,
CAN FD still does not meet the high data-rate requirements
of modern vehicles.

Switched Ethernet, offering speeds over 10 Gbit/s, can
address the high data-rate requirements but lacks the support

A version of this work has been made available as a technical report for
indexing [1]. This report does not constitute published work.

1We will use the terms ECU and node interchangeably throughout the paper.

for low-jitter and timing-predictable communication [5]. These
limitations in the traditional switched Ethernet are addressed
by the set of Time-Sensitive Networking (TSN) standards
that are developed by the IEEE TSN task group. These
standards provide numerous features such as high-bandwidth,
low-latency, low-jitter, and timing-predictable communication,
among others [6].

Although real-time Ethernet networks such as TSN are
expected to eventually replace CAN, the transition will be
gradual due to the continued use of low-cost legacy CAN
networks [7]. During this transition, CAN and TSN will
need to communicate through a gateway [8]. Several gateway
techniques enable communication between CAN and TSN,
allowing multiple CAN frames to be encapsulated in a single
TSN frame for efficient bandwidth use [9]. However, this
can cause delays for CAN frames awaiting encapsulation.
Gateway techniques can minimize these delays using timers
and marking frames as “urgent” [10]–[12].

While existing studies have analyzed different CAN-to-TSN
forwarding strategies, there is still a lack of experimental
evaluation regarding their performance in unsynchronized TSN
networks. Many real-world TSN networks operate without
global synchronization and rely on unscheduled off-the-shelf
end-systems, such as cameras and LiDARs, which introduce
unpredictability into the network [13]. Most previous work
has focused on theoretical analysis or synchronized network
environments [8], [14] and has not fully explored how traffic
shaping mechanisms such as Time-Aware Shaper (TAS) and
Weighted Round Robin (WRR) affect CAN-to-TSN commu-
nication in such scenarios. A deeper investigation is necessary
to understand the impact of queuing, forwarding, and traffic
shaping mechanisms on latency and bandwidth utilization in
unsynchronized networks.

In this paper, we present an experimental evaluation of a
CAN-to-TSN gateway implementation, focusing on the effects
of different forwarding and scheduling techniques on network
performance. We evaluate the impact of various traffic shaping
mechanisms, including TAS and WRR, on encapsulated CAN
frames in an unsynchronized CAN-to-TSN network. These
two traffic shaping mechanisms are selected because TAS
provides deterministic scheduling which is crucial to time-
sensitive applications, while WRR offers a balance between
fairness and efficiency, making it suitable for mixed-criticality
traffic. Additionally, we compare the measured forwarding
delays from our experiments with the theoretical analysis in [8]979-8-3315-9984-3/25/$31.00 ©2025 IEEE



to validate the accuracy of the analytical model. The key
contributions of this paper are as follows:

• We implement and experimentally evaluate a CAN-to-
TSN gateway in a realistic automotive use case, assessing
how different queuing and forwarding strategies affect
transmission latency and network utilization.

• We conduct a comparative evaluation of the impact
of TAS and WRR schedulers on TSN frames that are
transmitted from the gateway.

• Our experiments demonstrate that encapsulating a single
CAN frame in a TSN frame is preferable on a 1 Gbit/s
TSN network. Additionally, TSN frames transmitted from
the gateway experience increased delays using TAS com-
pared to a WRR shaper in an unsynchronized TSN net-
work. Furthermore, a comparison between the measured
forwarding delays and the theoretical analysis from [8]
confirms that the analytical model provides accurate
upper-bound estimates.

II. BACKGROUND AND RELATED WORK

A. Controller Area Network (CAN)
In 1985, Robert Bosch developed the CAN protocol to

reduce vehicle weight by decreasing the number of cables
needed to connect various ECUs. The protocol was later
standardized in ISO 11898 [3]. CAN connects multiple nodes
to a single network, simplifying architecture and control.
It is an asynchronous multi-master serial data network that
uses fixed-priority non-preemptive scheduling, meaning once a
frame starts transmission, it cannot be aborted, and the highest
priority frame is transmitted first. Classical CAN operates at
speeds up to 1 Mbit/s with frame payloads up to 8 bytes.

B. CAN Flexible Data-Rate (FD)
CAN FD [4] is an ISO standard that improves on classi-

cal CAN protocol by allowing higher data throughput with
payloads up to 64 bytes and data rates up to 8 Mbit/s.
Its main advantages are reduced frame transmission times
and support for larger frame formats. CAN FD can coexist
with classical CAN on the same network by distinguishing
transmission bit rates between arbitration and data bits. During
arbitration, arbitration bits are transmitted at rates compatible
with classical CAN, while data bits are transmitted at higher
rates during the data phase.

C. Time-Sensitive Networking (TSN)
TSN is a set of IEEE 802.1 standards supporting high-

bandwidth, time-critical, and low-latency communication over
switched Ethernet [15]. TSN leverages features such as a
common notion of time and traffic shaping to enable determin-
istic networking.The IEEE 802.1AS standard enables precise
clock synchronization with sub-microsecond accuracy, which
is essential for time-triggered scheduling mechanisms in TSN.
Among these, the IEEE 802.1Qbv standard introduces the
Time-Aware Shaper (TAS), which controls the transmission of
traffic at switch port egress queues using a gate control mecha-
nism. This mechanism allows traffic to be transmitted accord-
ing to a pre-set schedule, which is known as the Gate Control
List (GCL), enabling latency-free offline scheduled traffic
(ST). TSN, which is built upon the IEEE 802.1AVB (Audio-
Video Bridging) standards, also supports the credit-based

shaper (CBS) for real-time rate-constrained traffic scheduled
online. TSN hardware can support the Weighted Round Robin
(WRR) scheduler, and according to IEEE 802.1Qaz, WRR
can coexist with CBS on the same output port. WRR is an
online scheduling mechanism sharing bandwidth according
to predefined proportions. Each queue is assigned a weight,
determining bandwidth allocation, and the scheduler cycles
through queues in a round-robin fashion, serving each queue
based on its weight.

D. Related Work

Several techniques have been proposed for enabling com-
munication between CAN and Ethernet domains via gateways.
Early work by Scharbarg et al. [9] and Kern et al. [10]
explored basic encapsulation strategies and timer-based release
mechanisms to balance bandwidth efficiency and latency. To
improve responsiveness, urgent-frame handling and dynamic
timers were introduced.

Subsequent work focused on scheduling and traffic shaping.
Nacer et al. [16] proposed shaping outgoing traffic to reduce
the burst-induced load on the receiving CAN bus. Herber et
al. [11] studied queuing strategies in CAN-to-AVB gateways
using cyclic AVB transmission but only evaluated gateway
delays. More recent work by Thiele et al. [12] provided event-
model abstractions for worst-case delay analysis.

In the context of TSN, several studies have focused on
improving schedulability. Xie et al. [17] and Wu et al. [18]
proposed low-latency scheduling strategies, such as Maximum
Awaiting Time (MAT) and a high response ratio priority
scheduling algorithm (HRRP) for CAN-to-TSN gateways.
However, these approaches often rely on header modifications
or focus only on best-case latencies. Yan et al. [19] proposed
offline optimization methods for encapsulation and scheduling,
though their assumptions (e.g., capped TSN payload, dead-
lines larger than periods) limit generality. Morato et al. [14]
evaluated CBS shaping in a one-to-one mapping scheme but
assumed synchronized CAN and TSN nodes.

To the best of our knowledge, no prior work has exper-
imentally evaluated the effect of queuing and traffic shaping
strategies such as TAS and WRR on a gateway implementation
under an unsynchronized CAN-to-TSN setup. This paper
addresses this gap through a prototype-based evaluation of
real-time performance across varying queuing techniques and
TSN traffic shapers.

III. CAN-TO-TSN GATEWAY ARCHITECTURE

This section presents the proposed CAN-to-TSN gateway,
including the gateway architecture and forwarding techniques
used by the gateway.

A. Architecture of the Gateway

Communication between CAN and TSN networks is facili-
tated through a gateway node that interfaces both networks. In
this work, we focus on a CAN-to-TSN gateway based on the
architecture presented in [8], where CAN frames received at
the gateway are transmitted to the TSN network using encap-
sulation and forwarding techniques. The maximum number of
CAN frames that can be encapsulated in a single TSN frame
is limited by the maximum payload size of 1500 bytes. The



maximum size of a classical CAN frame is 17 bytes, while a
CAN FD frame can be up to 74 bytes.

The gateway generates periodic TSN frames but does not
implement the ST class as defined in TSN. While CAN traffic
is event-driven and scheduled dynamically, the gateway buffers
and transmits frames at periodic intervals, without strict offline
scheduling requirements. The periodic forwarding from the
gateway ensures bounded delays without explicit synchro-
nization with a global schedule. While this study focuses on
periodic CAN frames, the existing gateway techniques can also
handle sporadic CAN frames. In such cases, sporadic arrivals
may introduce additional queuing delays, particularly under
high network load. Future work could explore the impact of
sporadic CAN traffic and evaluate the effectiveness of different
scheduling policies in such scenarios.

A high-level architecture of the CAN-to-TSN gateway is
shown in Figure 1. When a CAN frame is received at the
CAN Physical Layer (PHY), which is responsible for the
physical transmission of data over the network medium, it is
stored in the receive buffer, and an interrupt is generated to
the dispatcher. The dispatcher assigns incoming CAN frames
to memory queues based on their TSN destination. In the
current implementation, each destination in the TSN network
is assigned a separate queue, ensuring that frames are destined
for the same endpoint. This approach simplifies scheduling but
may require careful memory management when handling a
large number of TSN destinations. The order in which frames
are stored in the queues depends on the queuing technique
used, which can be First-In-First-Out (FIFO), Fixed-Priority
(FP), or one-to-one. In the one-to-one approach, each incom-
ing CAN frame is forwarded immediately for encapsulation
without additional queuing.

A TSN frame is generated from the memory queues by
forwarding a specified number (β) of CAN frames from the
queue to the Ethernet Media Access Control (MAC) layer,
which manages access to the physical network medium and
performs frame encapsulation. The parameter β determines
how many CAN frames must be accumulated before encapsu-
lation into a TSN frame, directly impacting latency and band-
width efficiency. After an encapsulation delay, the generated
TSN frame remains in the buffer until the specified period for
the TSN frame. This cyclic transmission of TSN frames allows
predictable transmission of the TSN frames while limiting the
delay experienced by the CAN frame. Finally, the frame is
sent to the Ethernet PHY for transmission across the TSN
network. It is important to note that traffic shaping does not
occur within the gateway itself. Instead, shaping is applied at
the TSN switch, where TAS and WRR schedulers regulate the
transmission of TSN frames. The gateway primarily functions
as a bridge, encapsulating CAN frames into TSN frames and
forwarding them according to the selected queuing policy.

B. Gateway Forwarding Techniques
1) One-to-one Technique: The one-to-one mapping is the

simplest technique for encapsulating CAN frames into TSN
frames. In this technique, a CAN frame is encapsulated into a
TSN frame as soon as it arrives at the gateway. This minimizes
delays for the received CAN frames at the gateway since
this technique does not require any queuing of the frames.
However, TSN frames experience overhead due to the small

Fig. 1: High-level architecture of a CAN-to-TSN gateway.

size of CAN frames (up to 17 bytes for CAN and up to
74 bytes for CAN FD). The minimum Ethernet frame size is 64
bytes as per IEEE 802.3. However, for real-time analysis, the
total transmission overhead must also include the preamble,
start frame delimiter, and interframe gap, leading to a total
minimum transmission size of 84 bytes. Padding is necessary
to meet the minimum size of a TSN frame. Additionally,
creating a TSN frame for each CAN frame utilizes more
bandwidth as compared to encapsulating multiple CAN frames
in a TSN frame.

2) First-In-First-Out (FIFO) Technique: When utilizing the
FIFO forwarding technique, CAN frames are dequeued in the
order in which they were added to the frame queue. This
technique ensures fair forwarding of CAN frames regardless of
their priority, but it may result in significant delays for higher-
priority CAN frames that arrive later than the lower-priority
CAN frames.

3) Fixed-Priority (FP) Technique: With the FP forwarding
technique, CAN frames are forwarded for encapsulation into
TSN frames based on priority, which is determined by their ID.
The lower the ID, the higher the priority of the CAN frame.
The advantage of this technique is that high-priority frames
experience significantly less forwarding delay, as they are
prioritized. However, implementing the FP technique is more
complex compared to other techniques, and lower-priority
frames may experience significantly larger forwarding delays
at the gateway.

IV. CONFIGURATION OF THE TSN NETWORK

The configuration of the TSN network can impact the
delays experienced by the encapsulated CAN frames. In this
section, we discuss how to configure the TAS and WRR traffic
schedulers in the TSN network and define the periods of the
TSN frames transmitted by the gateway.

A. Period of TSN Frames Transmitted by the Gateway
To determine the period of TSN frames transmitted from

the gateway, we will use Equation (1) proposed by Herber et
al. [11]:

TTSN (q) = β/
∑

∀i∈fwd(q)

1

Ti
(1)

Where TTSN (q) represents the transmission period of TSN
frames from queue q, β is the number of CAN frames
encapsulated into a single TSN frame, and fwd(q) represents
the set of CAN frames forwarded to queue q with Ti being
the period of the forwarded CAN frame i.

It is important to consider the period of TSN frames
transmitted from the gateway when using the one-to-one



forwarding technique. This technique involves immediately
encapsulating and transmitting a CAN frame upon its arrival
at the gateway. Depending on the CPU of the gateway, a
large number of CAN frames arriving at the gateway and
requiring immediate encapsulation and transmission can lead
to frame loss if not efficiently managed. One commonly
used approach is to encapsulate multiple CAN frames into
a single TSN frame, which reduces CPU processing overhead
and improves transmission efficiency. However, in this study,
we implemented a one-to-one mapping approach to evaluate
its impact on queuing and forwarding behavior. While this
method may require additional CPU processing and bandwidth
on the TSN network, it reduces buffering delays experienced
by the CAN frames. This one-to-one mapping technique
involves periodic encapsulation of CAN frames. In general,
the encapsulation period should be no greater than the smallest
period among all CAN frames forwarded to a queue to ensure
timely transmission:

TTSN (q) ≤ min
∀i∈fwd(q)

(Ti) (2)

However, in the specific case of one-to-one mapping, where
each CAN frame is encapsulated individually upon arrival,
the encapsulation period should instead cover the sum of the
frequencies of all CAN frames in the queue. This stricter
condition ensures that all queued frames are encapsulated at
the required rate, preventing queue buildup and maintaining
the required real-time constraints:

TTSN (q) ≤ 1∑
∀i∈fwd(q) Ti

(3)

It is important to note that TTSN is independent of Tcycle,
which refers to the cycle time of the GCL in TAS mechanism.
Unlike Tcycle, which is determined by the TSN schedule,
TTSN is dictated by the encapsulation strategy applied to CAN
frames in the gateway.

B. Configuration of TSN Schedulers
1) Time-Aware Shaper (TAS): The TAS operates by open-

ing the gate at a TSN output port queue q based on the
GCL schedule. In this work, we consider multiple queues per
TSN output port, as different devices transmitting through the
switch may require distinct traffic classes. While TAS is typi-
cally applied only to the highest priority, our setup considers
scheduling multiple queues to accommodate different traffic
priorities in the system.

The GCL schedule repeats in a cycle with a predefined
period denoted by Tcycle. To determine the gate opening
time O(q), shown in Equation (4), we must first find the
transmission time of the largest frame being transmitted to
queue q. The transmission time is calculated by dividing the
frame length L by the link transmission rate R.

O(q) =
max∀i∈q(Li)

R
(4)

Since we consider a single TSN switch and a single sched-
uled link, we do not explicitly define queue offsets, as all
transmissions are scheduled relative to the same cycle start
time. However, in multi-hop networks, queue offsets would
need to be carefully managed to avoid contention.

For the GCL schedule to be feasible, the sum of all gate
opening times of each queue qi should be less than or equal
to the GCL schedule cycle Tcycle, as shown in Equation (5),
where Q represents the set of queues of a TSN output port.

Tcycle ≥
∑
∀i∈Q

O(qi) (5)

2) Weighted Round Robin (WRR) Scheduler: The WRR
scheduler ensures that transmission queues receive available
bandwidth based on their assigned weights. The scheduler
processes the queues in a round-robin fashion, but instead of
treating all queues equally in one cycle, it allocates bandwidth
to each queue based on its weight. This means that a queue
with a higher weight receives a larger share of the bandwidth.

As explained by Walrand et al. [20], the long-term trans-
mission rate of queue qi, which refers to the average rate at
which data is transmitted from the queue over an extended
period of time, can be calculated using the WRR scheduler
with Equation (6). In this equation, Ri represents the long-
term transmission rate of qi, wi is the weight of queue qi, and
Sw is the sum of all weights assigned to the queues.

Ri = R
wi

Sw
(6)

In real-life scenarios, where the long-term transmission rate
of the devices sending to queue qi is known. The weight of
the queue needed to guarantee the necessary bandwidth for
the queue can be derived using Equation (7).

wi = Sw
Ri

R
(7)

V. EXPERIMENTAL SETUP

This section provides a detailed description of the ex-
perimental setup of the CAN-to-TSN network as shown in
Figure 2. The experimental setup is based on a realistic
automotive system provided by our industrial partners where
control signals are transmitted over CAN to the TSN network.

A. Implementation of the CAN Network

The CAN network consists of two nodes and a gateway.
One node transmits CAN frames while the other node trans-
mits CAN FD frames. The CAN and CAN FD nodes are
implemented using two Microchip PIC32CMJH01 evaluation
boards [21]. Each evaluation board features a 48 MHz Arm
Cortex M0+ Core microcontroller with 512 KB Flash memory,
64 KB SRAM, and two CAN controllers that support classical
CAN and CAN FD. The microcontroller runs FreeRTOS [22]
real-time operating system.

Each CAN or CAN FD frame inherits its period from the
period of its transmitting task. To ensure consistency and
repeatability in our experimental setup, both nodes start their
schedulers simultaneously and stop frame transmission after a
predefined number of hyperperiods in the CAN schedule. A
hyperperiod is defined as the least common multiple (LCM)
of the periods of all CAN frames transmitted across the entire
CAN network. This approach ensures that CAN frames always
appear on the network in the same order, which is crucial



Fig. 2: Experimental hardware set-up of CAN-to-TSN network.

TABLE I: CAN frames ID 0-14 used in the automotive use case. Periods (T) and their Data Length Code (DLC).

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T (ms) 50 100 500 20 20 20 20 50 100 100 500 20 1000 40 500
DLC 7 8 3 2 2 8 8 8 4 8 3 8 2 6 8

for comparing different gateway strategies under consistent
conditions.

B. Implementation of the TSN Network

The TSN network consists of a TSN switch connecting
two video cameras, two traffic-generating nodes, a destination
node, and the CAN-to-TSN gateway as shown in Figure 2. The
TSN switch and cameras are industrial-grade devices used in
construction vehicles. However, due to confidentiality agree-
ments, details regarding the specific models of the TSN switch
and cameras cannot be disclosed. The cameras stream constant
bitrate (CBR) video traffic at 18 Mbit/s each and are assigned
to output port queues 6 and 5 in the TSN switch. Traffic is
generated using RELY-TRAF-GEN [23], capable of producing
TSN traffic up to 3 Gbit/s, with generated flows ranging from
256 bytes to 1518 bytes and interarrival times between 10–200
µs, assigned to queue 0. The encapsulated CAN frames are
transmitted at data rates aligned with automotive sensor traffic
and are assigned to the highest-priority queue 7 in the TSN
output port. Since the nodes in the TSN network are legacy
nodes, they are not synchronized with the network.

The TSN switch used in this study was provided by our
industrial partner and supports TAS and WRR. WRR was
selected as the traffic shaping mechanism because it is widely
supported across TSN-capable hardware, including the switch
used in this study. We acknowledge that Interleaved WRR
(IWRR) has been shown to provide improved real-time perfor-
mance over classical WRR in some scenarios [24]. However,
since our TSN switch only supports standard WRR, we focus
our evaluation on this mechanism.

C. Implementation of the CAN-to-TSN Gateway
The CAN-to-TSN gateway is implemented on the Renesas

RZ/N2L RSK development board [25]. The board is equipped
with an Arm Cortex processor running at 400 MHz, 256 KB
flash memory, and 1.5 MB RAM. It also features a TSN
switch that supports various TSN mechanisms including IEEE
802.1Qbv and 802.1AS, as well as a CAN FD controller.
Frame buffers for storing CAN frames are implemented as
software buffers.

Fig. 3: Implementation of the CAN-to-TSN gateway

The frame encapsulation pipeline is illustrated in Figure 3,
where CAN frames arriving at the CAN Network Interface
(CAN NI) are first processed by the CAN Controller (CC),
which extracts basic frame information and ensures error-free
reception. The Receive Task (RT) is then triggered to classify
the frame based on its ID. The Forwarding Table (FT) is used
to determine the TSN destination of the incoming CAN frame.
The RT checks the FT to identify whether the frame has a
known TSN destination and assigns it to its corresponding
queue in RAM. A periodic TSN Creation and Forwarding
(TCF) task is executed on the gateway CPU at intervals defined



by Equations (1) and (2). The TCF task extracts β CAN frames
from the buffer, encapsulates them into a TSN frame, and
forwards them to the TSN Port (TP) of the TSN Network
Interface (TSN NI) for transmission.

In our experimental setup, all encapsulated CAN frames are
forwarded to the highest-priority TSN queue (queue 7) in the
TSN switch to ensure minimal transmission latency. Therefore,
queue selection does not impact performance, as all CAN
frames are treated with the highest priority. While it would
be possible to distribute CAN frame priorities across multiple
TSN queues, this would introduce additional transmission
delays, as lower-priority queues may experience waiting times
due to traffic shaping mechanisms such as TAS and WRR.
Since the focus of this study is on evaluating queuing and
traffic shaping strategies rather than queue mapping effects,
we chose to use queue 7 for all frames.

The detailed frame processing steps of the gateway are
outlined in Algorithm 1, which formalizes the frame reception,
queuing, encapsulation, and forwarding process.

Algorithm 1 CAN-to-TSN Gateway Frame Processing

1: Input: Incoming CAN frame FCAN

2: Output: Encapsulated and transmitted TSN frame FTSN

3:
4: // Step 1: Receive CAN Frame
5: CAN frame FCAN arrives at CAN Network Interface

(CAN NI)
6: CAN Controller (CC) processes the frame and triggers the

Receive Task (RT)
7: RT extracts data (ID, payload)
8:
9: // Step 2: Frame Classification and Queue Assignment

10: RT consults the Forwarding Table (FT) to determine TSN
destination

11: if FCAN has a known TSN destination then
12: Assign FCAN to its respective queue in RAM
13: else
14: Discard FCAN (no valid TSN mapping)
15: end if
16:
17: // Step 3: Periodic Encapsulation and TSN Frame

Transmission
18: TSN Creation and Forwarding (TCF) executes at time

intervals defined by Eq. (1) and (2)
19: Extract β CAN frames from the assigned queue
20: Form a TSN frame FTSN with encapsulated CAN frames
21: Forward FTSN to TSN Port (TP) of the TSN Network

Interface (TSN NI)
22: TSN NI transmits FTSN over the TSN link

D. End-to-End Delay Measurement

Measuring the end-to-end delays of CAN frames requires a
precise technique due to the lack of synchronization between
devices on the CAN network and the TSN network. This lack
of a unified time reference introduces difficulties in accurately
determining end-to-end delays. To address these limitations,

we propose a technique that decomposes the end-to-end delay
measurement of CAN/CAN FD frames into three distinct
components: delays on the CAN/CAN FD network (DCAN),
delays induced by the gateway (DGW), and delays on the TSN
network (DTSN). The total end-to-end delay (DE2E) can be
expressed as:

DE2E = DCAN +DGW +DTSN (8)

Delays on the CAN/CAN FD network correspond to the
worst-case response times of the frames and are calculated
using the MPS-CAN Analyzer [26], [27]. The delay experi-
enced at the gateway is measured internally by the gateway
itself. To measure delays within the TSN network, we use
the RELY-TSN-LAB device [28], which measures network
delay by timestamping packets at the input and output of the
network.

VI. EVALUATION

In this section, we evaluate the CAN-to-TSN gateway im-
plementation using an automotive use case. The experimental
evaluation involves various gateway techniques discussed in
Section III. We encapsulate CAN frames using different values
of β (1, 3, 6, 9, 12) and both FP and FIFO enqueueing
of frames. For β =1, the period TTSN is equal to 100 µs,
which is significantly lower than the required encapsulation
period (2.84 ms) calculated from the CAN frame frequencies
in Table I based on Equation (3). This allows the system to
approximate one-to-one mapping, minimizing queuing delays
and ensuring timely forwarding. However, this choice uti-
lizes more computational and network resources than strictly
necessary, as encapsulating more frequently increases CPU
usage and TSN frame generation. Additionally, we evaluate
the impact of the TAS and WRR traffic schedulers in the
TSN network. Furthermore, to validate the accuracy of the
experimental results, we compare the measured forwarding
delays against the theoretical analysis presented in [8]. To
ensure the validity of the experiments, each experiment is run
for 4 hyperperiods of the CAN frames being forwarded to the
gateway.

A. Evaluation Scenarios

We consider two scenarios in the evaluation.
1) First Scenario: In this scenario, we evaluate the delays

experienced by the CAN frames using different gateway
forwarding techniques and increasing encapsulation size β.
Fifteen CAN frames are sent from the CAN nodes to the
Monitoring node. The properties of the CAN frames are shown
in Table I. We conduct the evaluation for both classical CAN
and CAN FD. Classical CAN operates at 500 Kbit/s. For
CAN FD, the frame size is increased by a factor of 8 to
accommodate the larger supported payloads. The arbitration
phase of CAN FD also runs at 500 Kbit/s, while the data
phase runs at 2 Mbit/s. The links on the TSN network operate
at speeds of 100 Mbit/s and 1 Gbit/s.

2) Second Scenario: In this scenario, we evaluate the
effects of the TAS and WRR traffic schedulers on the delays
of encapsulated CAN frames in Table I with different gateway
forwarding techniques. In this scenario, the cameras stream
data at 18 Mbit/s to the monitoring node. Additionally, the



Fig. 4: Evaluation results for various gateway forwarding techniques when using classical CAN.



Fig. 5: Evaluation results for various gateway forwarding techniques when using CAN FD.



Fig. 6: Comparison of end-to-end delays of encapsulated CAN frames for different TSN traffic schedulers



Fig. 7: Evaluation of TSN network bandwidth utilization of TSN frames transmitted from the gateway

traffic generators also stream data at 40 Mbit/s. The TSN
network operates at 100 Mbit/s to effectively demonstrate the
impact of the traffic shapers on a high-load TSN network.
Since the encapsulated CAN frames are assigned the highest
priority in the TSN network, the GCL cycle time of the TAS in
our experiments is configured to match the transmission period
of TSN frames originating from the gateway. The weights for
the WRR are set as described in Section IV to ensure the
necessary bandwidth for the end-systems. The CAN frames
are then transmitted to the monitoring node, with the CAN
network utilizing classical CAN operating at 500 Kbit/s.

B. Evaluation Results: Gateway Forwarding Techniques

The experimental evaluation for the first scenario for clas-
sical CAN is depicted in Figure 4 while for CAN FD, it is
depicted in Figure 5. The graphs show that the encapsulation
size β significantly impacts the delays experienced by the
CAN frames. When β is set to 1, each TSN frame contains
exactly one CAN frame, minimizing the transmission delay
experienced by the CAN frame. However, due to CPU con-
straints, the gateway processor may not always encapsulate
each arriving CAN frame immediately upon arrival. As a
result, while the system is configured for one-to-one mapping,
occasional buffering may still occur before encapsulation,
leading to slight deviations from an ideal one-to-one mapping
strategy. As we increase β the delays experienced by frames
also increase significantly, especially when β = 15. This is
because the period of the TSN frame encapsulating the CAN
frames is calculated using β and the period of the CAN frames
being transmitted to the gateway. As β increases, the period
of the TSN frame becomes larger, resulting in less frequent
transmission. Consequently, CAN frames wait longer in the
queue for encapsulation.

The delays are also affected by the gateway forwarding
technique used. Using FP provides smaller delays for high-
priority frames, while low-priority frames experience signifi-
cantly larger delays, especially with higher values of β. Thus,
FIFO might be preferred for lower-priority frames. Lower-

priority frames experience high delays with FP because they
must wait longer due to the high frequency of high-priority
frames arriving in the queue. When using CAN FD instead
of classical CAN, we observed similar trends, with frames
experiencing the least delays when β = 1, and low-priority
frames experiencing significantly larger delays with FP.

Lastly, we evaluate the bandwidth utilization on the TSN
network depending on the gateway technique used. The graphs
depicted in Figure 7 show the TSN network running at
100 Mbit/s and 1000 Mbit/s with different encapsulation sizes
for both CAN FD and classical CAN. It is noticeable that using
a 1000 Mbit/s TSN network with classical CAN does not show
a significant difference when encapsulating multiple CAN
frames compared to encapsulating only one CAN frame, with
bandwidth usage around 0.5 % and 1.5 %, respectively. For
CAN FD, we see 1.5 % bandwidth usage when encapsulating
multiple CAN frames and 2.5 % when encapsulating only one
frame. When reducing the TSN link speed to 100 Mbit/s, the
difference becomes more noticeable. With β = 1 and classical
CAN, bandwidth usage is 15 %, which can be reduced to 5 %
with β = 12. For CAN FD at 100 Mbit/s, bandwidth usage is
25 % with β = 1 and 15 % with β = 12. The larger bandwidth
utilization with CAN FD is due to the larger frame sizes,
making the TSN frames larger and increasing transmission
times.

Even though using β = 1 consumes more bandwidth in the
TSN network than using larger β values, the lower delays
experienced by the CAN frames make it preferable, espe-
cially with a 1000 Mbit/s TSN network. However, increased
bandwidth usage may lead to congestion on the TSN network,
potentially impacting other TSN traffic. Unlike techniques that
aggregate multiple CAN frames into a single TSN frame, one-
to-one forwarding generates a higher number of TSN frames,
which could introduce congestion and increase delays for other
traffic classes in the TSN network.In our setup, the TSN
network was not fully saturated, minimizing this effect, but
in lower-speed (100 Mbit/s or 10 Mbit/s) networks, increased
TSN frame generation could impact delays for existing TSN



traffic. For slower network speeds, encapsulating multiple
CAN frames results in relatively lower delays. Selecting the
gateway technique depends on whether high-priority CAN
frames can tolerate delays. If immediate transfer is needed, FP
is preferred; otherwise, FIFO is recommended to limit delays
for lower-priority frames.

C. Evaluation Results: TAS and WRR Traffic Shapers
In the second evaluation scenario, we compared the per-

formance of TAS and WRR traffic shapers, as well as the
no-interference case, for encapsulated CAN frames in the TSN
network. The no-interference case represents a scenario where
only encapsulated CAN frames are transmitted, serving as a
baseline for comparison against TAS and WRR traffic shaping
mechanisms. The results are presented in Figure 6, which
illustrates the end-to-end delays of CAN frames under different
traffic shaping techniques. Figure 6 shows that TAS results in
significantly higher delay compared to WRR due to the lack
of synchronization between the CAN and TSN networks. The
delay can increase by up to one full GCL cycle, as frames may
arrive at any arbitrary point before the next GCL cycle begins.
Conversely, a delay decrease is observed when a frame arrives
just before encapsulation, leading to immediate transmission.
This pattern of fluctuations is directly tied to the periodic
nature of TAS gating cycles.

WRR exhibits lower delays because frames do not have to
wait for a complete cycle before transmission. Instead, WRR
ensures that a portion of the bandwidth is always allocated
to encapsulated CAN frames, allowing them to be transmitted
without waiting for a pre-defined time slot. The exception to
this trend is the one-to-one forwarding technique, where TSN
frames are transmitted every 100 µs, reducing the impact of
the gating delay in TAS. In this case, TAS and WRR exhibit
comparable performance since the short encapsulation period
ensures that CAN frames are forwarded with minimal waiting
time.

These results highlight the impact of synchronization on
traffic shaping performance. Although TAS performed worse
in this specific unsynchronized scenario, it is important to em-
phasize that TAS is designed for fully synchronized networks
with offline scheduling. In such cases, TAS is expected to
outperform WRR by providing guaranteed transmission slots
for critical traffic and reducing jitter. However, in networks
where synchronization cannot be guaranteed, WRR offers a
more adaptable and predictable scheduling mechanism, mak-
ing it preferable for handling encapsulated CAN frames under
dynamic conditions.

D. Evaluation Results: Comparative analysis
The measured forwarding delays in this study align closely

with the theoretical predictions presented in [8], which analyze
the impact of different forwarding techniques in a CAN-to-
TSN gateway. The theoretical model in [8] predicts that one-
to-one forwarding results in the lowest forwarding delay, as
each CAN frame is immediately encapsulated and transmit-
ted without waiting for additional frames to be aggregated.
Our experimental results confirm this behavior, with one-
to-one forwarding achieving the lowest observed worst-case
forwarding delay of 3 ms, closely matching the expected
theoretical upper-bound estimate of 5 ms from [8]. Similarly,

the FIFO and fixed-priority (FP) queuing techniques exhibit
higher forwarding delays due to frames waiting in the queue
before encapsulation. In our experiments, FIFO forwarding
with β = 10 exhibited a worst-case forwarding delay of 54
ms, while the theoretical analysis in [8] estimated a delay
of 63-65 ms under similar conditions. Additionally, for FP
forwarding with β = 10, the worst-case measured forwarding
delay of the highest-priority frame was 25 ms, compared to the
theoretical estimate of 30 ms. The observed discrepancies be-
tween measured and theoretical values can be attributed to the
pessimistic nature of the analysis, which provides worst-case
delay estimates rather than exact predictions. Despite these
minor deviations, the experimental findings strongly support
the validity of the theoretical predictions in [8], confirming the
relative behavior of different forwarding techniques and their
expected performance trends in a CAN-to-TSN gateway.

VII. CONCLUSION

In this paper, we implemented and experimentally evaluated
a CAN-to-TSN gateway, analyzing the impact of various
gateway forwarding techniques. Moreover, we investigated the
impact of the Time-Aware Shaper (TAS) and the Weighted
Round Robin (WRR) traffic schedulers on the encapsulated
CAN frames in an unsynchronized TSN network. The eval-
uated techniques included First-In-First-Out (FIFO), Fixed-
Priority (FP), and the one-to-one mapping. Our experiments,
conducted using an experimental hardware setup based on a
real-world automotive use case, demonstrated that combining
multiple CAN frames into a single TSN frame does not
significantly increase bandwidth usage on high-speed links
compared to encapsulating a single CAN frame. In terms
of end-to-end delay, the one-to-one forwarding technique is
preferred, as it simplifies the gateway design and provides
lower delays. Additionally, a comparative analysis between
the measured forwarding delays and the existing theoretical
analysis confirmed that the analytical model provides accurate
upper-bound estimates. Furthermore, in our experiments, we
found that due to the lack of synchronization in the TSN
network, the WRR scheduler is more effective than TAS. WRR
provided lower delays and ensured the necessary bandwidth
for encapsulated CAN frames, making it a preferable choice
in unsynchronized TSN networks.
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