
Control Period Adaptation for Resource-Constrained MPC Applications

Marcello Domenighini1,2, Paolo Pazzaglia1, Christoph Mark1,

Kevin Schmidt1, Laura Beermann1, Alessandro Vittorio Papadopoulos2

Abstract— The integration of control applications into cloud
and edge expands the capabilities of modern control systems,
but also introduces variability in shared resource availability
and competition with other applications, posing new challenges
for control design. This paper presents a multi-mode Model
Predictive Control (MPC) framework tailored for resource-
aware systems. By treating the controller period as a scalable
parameter, our approach dynamically adjusts control accuracy
and computational complexity in response to changing resource
and state-space conditions. Unlike existing event- and self-
triggered strategies, our multi-mode design allows users to
actively manage trade-offs between computational load and
control quality. We provide feasibility and stability guaran-
tees for the proposed control framework and demonstrate
its effectiveness in a simulated cart-pole system, showcasing
significant improvements in computational resource efficiency
without compromising control performance.

I. INTRODUCTION

Advancements in computing and communication tech-

nologies have significantly influenced the design and imple-

mentation of modern control systems. Traditionally, control

applications relied on specific, dedicated onboard hardware

for real-time control tasks. Now, the growing accessibility

of cloud and edge computing allows for complex control

algorithms to be deployed remotely, reducing the need for

powerful local hardware and the associated costs [1], [2],

[3], [4]. This shift toward distributed control architectures

enables more advanced control strategies, but also creates

unique challenges in managing the shared resources for

computation, communication and memory access.

In a distributed control setting, the variability in resource

availability is a major concern. Multiple concurrent applica-

tions compete for limited resources, leading to fluctuations

in computational capacity and communication bandwidth,

ultimately affecting the responsiveness of the control task.

This advocates for a shift from traditional “static” control

paradigms toward resource-aware designs that adapt to the

current resource availability while maintaining system sta-

bility and performance.

Related Work: Previous research has tackled resource-

constrained control through various triggering strategies.

Thanks to its flexibility, Model Predictive Control (MPC)

is often chosen as underlying control strategy. In event-

triggered control schemes [5], the controller is activated

1 Robert Bosch GmbH, Germany
2 Mälardalen University, Västerås, Sweden

Acknowledgements: This work was supported by the ITEA4 project 22013
OpenSCALING (grant #01IS23062A), by the Swedish Research Council
(VR) with the PSI project No. #2020-05094, and the Knowledge Foundation
(KKS) with the MARC project No. #20240011.

when specific state-space conditions are met. While effective

on average, this approach can lead to intermittent peaks of

execution, which may be undesirable in real-time applica-

tions where predictability is essential or when budgets are not

flexible. Alternative event-driven “rollout” MPC approaches

exist [6], [7] where the transmission schedule is optimized to

produce sparse or sporadically changing input signals. In [8],

the rollout idea is combined with a “token bucket” model for

communication resources. In [9], the period is selected be-

tween multiple controllers running in parallel. Nonetheless,

the focus remains on saving communication resources, and

the approaches are still computationally intensive.

With self-triggered approaches, the controller determines

its next activation time based on current conditions [10], [11],

balancing resource usage and performance. Such adaptive

rate is nonetheless coupled with the underlying optimization

problem, which makes it difficult to control the activation

rates independently. Varying the prediction horizon has been

explored with a similar goal, e.g. in [12], [13]. However, this

requires recompiling the control function at runtime, with

possibly significant impact on the execution time.

Estimating the execution time of an MPC is diffi-

cult. Mathematical methods exist for relevant solvers, see

e.g. [14], [15], but most control-theoretical results rely on a

zero-time assumption. In [16], an input buffer is introduced,

which covers possible delays in communication or compu-

tation. In [17], the size of the input buffer is automatically

adjusted based on the deviation between the predicted and

actual state-space conditions; in [18], the same is done

based on the effect of disturbances. In a recent work [19],

the execution time is taken into account by shifting the

application of the optimal input by one step. As in [10], the

time step is variable and an allocation mechanism ensures

that it matches the time slot that is actually available.

Differently from existing self-triggered approaches, in this

paper we couple the sampling frequency of the controller

with a multi-mode design. A simple multi-mode MPC design

is found in [20], where the controller alternates between

remote and local MPC implementations with different sam-

pling rates to address communication disruptions. In their

setup, however, the local controller only serves as a safety

fallback, leaving limited control over the computational

trade-off under variable resource constraints.

Contribution: We present a resource-aware MPC strat-

egy with a variable sampling period across multiple modes,

enabling the controller to balance accuracy and compu-

tational load in response to variable state and resource

conditions. Theoretical guarantees of feasibility and stability

are provided under arbitrary mode switching patterns. The

proposed solution allows flexibility in managing the trade-

off between control quality and computational load. We illus-

trate in simulation the practical advantages of the proposed

framework, showing significant improvements in resource

efficiency while maintaining high control performance.

Notation: In context of MPC, xk refers to the plant state

at step k, whereas xi|k denotes its i-step ahead prediction.

Optimal quantities resulting from an optimization problem

are indicated with a ∗, e.g., x∗
i|k. For some integers a, b ∈ N

with b > a we define the index set I
b
a = {a, . . . , b}. A

sequence of state predictions is defined as xk = {xi|k}i∈I
N
0

.

Given a square matrix P ∈ R
n×n, the expression P ≻ (�) 0

identifies P as a positive (semi-)definite matrix. For a vector

x ∈ R
n we define the weighted two-norm as ‖x‖2Q = x⊤Qx.

II. PROBLEM FORMULATION

We consider a linear time-invariant dynamics governed by

ẋ(t) = Ac x(t) +Bc u(t), ∀t ∈ R≥0, (1)

where x(t) ∈ R
nx is the system state, u(t) ∈ R

nu the control

input, Ac and Bc the corresponding dynamic matrices.

State measurements are provided by a sensor with period

h > 0, i.e., xk = x(tk) is produced at time tk = kh, ∀k ∈
N≥0. For compactness, we will also use integer indices k ∈
N≥0 to denote the discrete time instants tk.

An actuator updates the control input applied to the plant

periodically, with the same period h as the sensor, such that

u(t) = uk for t ∈ [tk, tk+1), ∀k ∈ N≥0. The discrete-time

description of (1) at the sampling instants then is

xk+1 = Axk +B uk, (2)

where the system matrices are obtained as
[

A B
0 I

]

= exp
([

Ac Bc

0 0

]

h
)

. (3)

Assumption 1: There exists a controller uk = K xk,

such that system (2) is asymptotically stable, i.e., for given

matrices Q ≻ 0 and R ≻ 0

∃P ≻ 0 : A⊤
KPAK +QK − P � 0, (4)

with AK = A+BK and QK = Q+K⊤RK.

The control inputs uk are the result of our proposed

multi-mode MPC, consisting of M different modes (i.e.,

implementations) of MPC, where each mode is indexed in the

set M = {1, . . . ,M}. The control design and the switching

mechanism between modes are analyzed in detail later in

Section III, but for the purposes of the problem formulation,

some features are anticipated here.

First, each MPC mode µ ∈ M is executed with period

hµ = σµh, with σµ ∈ N>0. The deadline for the successful

completion of its execution is set equal to the period hµ. The

modes have different periods; within each period, only one

mode can be active. Mode switches are only possible at the

end of the period. All modes share the same prediction hori-

zon N , and the time step size for the prediction is equal to h.

Finally, differently from classic MPC implementations, when

an iteration of the control mode completes its execution, the

entire sequence of predicted control inputs is provided to the

actuators. Such values are stored in a local memory, and the

actuator applies them sequentially until they are overwritten

by a subsequent control execution.

A. Resource Model

The controller runs on a server or platform, shared with

other applications. Computational resources, e.g., a percent-

age of the cores utilization, must be divided among the con-

current applications. The successful execution of an iteration

of the MPC controller requires to perform a certain amount

of computations; to complete them in time, a minimum

budget of computational resources must be provided, spread

over the time interval when it is executing.

The required amount of resources may be variable, es-

pecially during the transient of the controlled system. We

assume that, for each mode µ ∈ M, a corresponding

worst-case amount βµ ∈ R>0 of computational resources

must be always provided, to ensure a successful completion

within the deadline. Also, due to the shared setting of the

computational platform hosting the control functionality, the

resources available for the controller may change over time.

At any time, the platform orchestrator (i.e., the entity man-

aging the assignment of the resources to applications) assigns

a resource budget b(t) ≥ 0 to the control application. The

allocated budget is modeled as the sum of two contributions

b(t) = φ(t) + δ(t), (5)

where, φ(t) ≥ 0 is the resource budget readily available

at time t, while δ(t) is a variable quota that models an

additional degree of freedom on the part of the application.

With δ(t) > 0, we model an additional budget actively

requested on top of φ(t), while δ(t) < 0 represents an

amount actively released from φ(t), because not necessary.

When starting a new iteration at time k with mode µ, the

allocated resource budget must satisfy the constraint
∫ tk+hµ

tk

b(t) dt ≥ βµ, (6)

ensuring completion of every execution within its deadline.

The free budget φ(t) depends on the variable load of

the other applications hosted on the platform and is thus

incontrollable by the MPC application and treated as a dis-

turbance. To exclude pathological cases, we assume that the

variability of the resources is slower than the sampling rate of

the controller, and free resources cannot drop abruptly. The

additional budget δ(t) is instead a variable that the control

application can directly influence. When δ(t) is positive, it

may, e.g., trigger the action of ramping up an additional core

or server that is left idle otherwise. Fig. 1 shows an example

of resource usage, while the control application changes the

operating mode from λ to µ.

For some systems δ(t) ≤ 0, i.e., only freeing resources

is possible. In this case, φ(t) represents an upper bound

to the resource budget available for computation, effectively

constraining via (6) which modes can be currently active.

βλ βλ βλ

βµ

t

hλ

(a)

hλ

(b)

hλ

(c)

hµ

(d)

h

φ(t)

b(t)
↑ δ(t) > 0

↓ δ(t) < 0

Fig. 1. Resource budget allocation. Within each control period, the
allocated budget (shaded areas) must be greater or equal than the minimum
budget βµ (dashed areas) required by the selected control mode. If the free
budget is insufficient, additional resources are requested (b, c). If the free
budget is high enough, extra resources can be actively released (d).

B. Requirements

The MPC modes must be designed and chosen to guar-

antee stability in every condition. Moreover, the budget

constraint in (6) must be satisfied at each iteration, so that

the control application can run properly. Requesting (resp.

releasing) resources is associated with a cost (resp. reward).

Here, we consider a simple proportional cost

c(t) = Wr δ(t). (7)

Modes with higher frequency generally provide better

control performance but require a higher budget (and cost) to

run. Modes (and thus budgets) must be selected to maximize

control performance and minimize cost, within the limits

allowed by the stability requirement. Providing a detailed

trade-off solution to this problem is outside the scope of the

paper, but some guidelines are discussed in Section III-C.

III. CONTROL DESIGN

A. Multi-Mode MPC Design

The proposed multi-mode MPC design accounts for the

actual resource budget, by creating modes with different

periods and providing a seamless transition between such

modes. In this section, the MPC formulation of a generic

mode and its behavior during mode switching are presented.

Consider an arbitrary sampling instant k, where a new

execution of control mode µ ∈ M is triggered. By design,

k is also the deadline of the previous instance, where mode

λ ∈ M is running (µ and λ might be the same mode).

Unlike standard MPC implementations, the iteration of

the chosen mode µ executes over σµ prediction time steps

h before the new iteration is called. For each sampling

instant in the continuous-time interval [tk, tk + hµ)—while

the current iteration is executing—the actuator applies to

the plant the corresponding elements of {u∗
i|k−σλ

}
σλ+σµ−1

i=σλ
,

taken from the optimal input sequence u
∗
k−σλ

that was

computed at the previous iteration. At time tk+hµ, when the

new optimal sequence u
∗
k = {u∗

i|k}
N−1

i=0
is made available,

the value at i = σµ is applied, and then the successive ones,

iteratively until the deadline of the next iteration. A graphical

interpretation of this pattern is provided in Fig. 2.

The optimization problem for the MPC mode µ at time k

is formally detailed as follows. Given the state vector xk and

the optimal sequence u
∗
k−σλ

obtained at previous iteration,

t

t
tk − hλ tk

tk tk+1 tk + hµ

h

u∗
0|k = u∗

σλ|k−σλ

u∗
σµ|k

u∗
σλ|k−σλ

Fig. 2. Transition at tk from mode λ (above) to mode µ (below). Dashed
areas represent the current execution, while shaded areas the past execution.
During each controller’s period, the optimal input values from the previous
iteration are applied while the control function is executed. These values
are enforced during the first steps of the prediction.

for a prediction horizon N we aim to find the new optimal

state and input sequences x
∗
k ∈ R

nu×N+1 and u
∗
k ∈ R

nu×N

minimizing the cost function

V (xk,uk) =

N−1
∑

i=0

l(xi|k, ui|k) + Vf (xN |k), (8)

with stage cost l(x, u) = ‖x‖2Q + ‖u‖2R and terminal cost

Vf (x) = ‖x‖2P , with P , Q, and R as in Assumption 1. The

MPC problem reads

min
uk,xk

V (xk,uk) (9a)

s.t. xi+1|k = Axi|k +B ui|k, ∀i ∈ I
N−1

0 (9b)

ui|k = u∗
σλ+i|k−σλ

, ∀i ∈ I
σµ−1

0 (9c)

xi|k ∈ X, ∀i ∈ I
N−1

0 (9d)

ui|k ∈ U, ∀i ∈ I
N−1

0 (9e)

xN |k ∈ Xf , (9f)

x0|k = xk. (9g)

where X ⊂ R
nx and U ⊂ R

nu are polytopic state and input

constraints containing the origin, and Xf is such that the

following assumption holds.

Assumption 2: The terminal set Xf is positively invariant

for dynamics (2) under the terminal controller u = K x, i.e.:

AK x ∈ Xf , ∀x ∈ Xf , (10)

and satisfies Xf ⊆ X, K x ∈ U for all x ∈ Xf .

The formulation in (9c) takes into account the fact that,

while executing the current iteration for σµ steps, the pre-

vious control inputs are used by the actuator. The new

optimal control input sequence is thus designed such that

u∗
i|k = u∗

σλ+i|k−σλ
, for i ∈ I

σµ−1

0 . After completion at time

k + σµ, the optimal control inputs sequence u∗
i|k, i ∈ I

N−1
σµ

is updated at the actuator level. At startup, a constant input

value uk = uinit shall be applied for k ∈ I
σµ−1

0 . To avoid

pathological cases where not enough stored control inputs

are available until the current execution is completed, we

provide the following assumption.

Algorithm 1 Control loop

Initialization

1: (m, p)← µinit ∈M ⊲ Initialize current and prev. modes

2: (σm, σp)← σµinit ⊲ Initialize corresponding mode periods

3: u
∗
init ← {uinit}

N−1
i=0 ⊲ Initialize control inputs

4: i← 0 ⊲ Initialize input counter

5: k ← 0 ⊲ Initialize time step counter

Main control loop ⊲ Running at sampling rate h

6: while True do

7: if i == σm then ⊲ At the deadline instant

8: Store(u∗
k−σm

) ⊲ Fill memory with results of (9)

9: (p, σp)← (m, σm) ⊲ Update values for previous mode

10: Update(m, σm) ⊲ Check if current mode is updated

11: i← 0 ⊲ Reset input counter

12: end if

13: if i == 0 then ⊲ At activation instant

14: Run (9) ⊲ Call problem (9) with proper inputs

15: end if

16: uk ← u∗
i+σp|k−i−σp

⊲ Apply stored control input

17: i← i+ 1
18: k ← k + 1
19: end while

Assumption 3: For each pair (µ, λ) ∈ M, σµ + σλ ≤ N .

The overall control routine, including switching between

modes, is detailed as pseudocode in Algorithm 1.

B. Formal Guarantees

So far, we introduced three modifications to the standard

MPC design: the delayed application of the optimal inputs

after the deadline, the extended controller period, and the

possible transition to a new mode. These aspects do not

alter the main ingredients of standard MPC design. The basic

results of the recursive feasibility and asymptotic stability are

preserved. The following assumption however is necessary.

Assumption 4: The MPC optimization problem (9) admits

a feasible solution at time step k = 0 with x0|0 = x0.

Theorem 1 (Feasibility): Consider system (2) under con-

trol input uk+i = u∗
i|k, i ∈ I

σµ

0 from (9). If Assumptions 1–

4 are satisfied, then the MPC optimization problem (9) is

recursively feasible for all triggering times k ≥ 0.

Proof: We prove the claim by induction. We start from

the feasibility at time k = 0 (Assumption 4), then we show

that if problem (9) is feasible at a generic triggering time k,

it will be feasible at the next triggering instant as well.

Let σµ be the period of the control execution triggered at

k, and k+ σµ be the next trigger instant. At time k+ σµ, a

feasible shifted candidate solution for mode µ is

uk+σµ
= {u∗

σµ|k
, . . . , u∗

N−1|k,

K x∗
N |k,KAK x∗

N |k, . . . ,KA
σµ−1

K x∗
N |k} (11)

where the last σµ elements are appended terminal controllers.

Applying (11) to (9b) results in the shifted state sequence

xk+σµ
= {x∗

σµ|k
, . . . , x∗

N−1|k,

x∗
N |k, AK x∗

N |k, . . . , A
σµ

K x∗
N |k}. (12)

In view of feasibility at time k, constraints (9d) are verified

for all {xi|k+σµ
}
N−σµ−1

i=0
. Due to the terminal constraint (9f),

it holds that xN−σµ|k+σµ
= x∗

N |k ∈ Xf ⊆ X which, together

with the invariance property of Assumption 2, verifies (9d)

for all {xi|k+σµ
}N−1

i=N−σµ
and (9f) for xN |k+σµ

.

Analogously, the input constraints (9e) are verified for all

{ui|k+σµ
}
N−σµ−1

i=0
. For i ∈ I

N−1

N−σµ
, we apply the terminal

controllers K xi|k+σµ
. From the shifted candidate solution

we have that xN−σµ|k+σµ
∈ Xf , and by invariance of Xf ,

{xi|k+σµ
}N−1

i=N−σµ+1
∈ Xf as well. From Assumption 2 we

have that K x ∈ U for all x ∈ Xf , therefore the input

constraints (9e) are verified for all {ui|k+σµ
}N−1

i=N−σµ
.

Theorem 2 (Asymptotic Stability): If Assumptions 1–4

hold, then the origin of system (2) under control input

uk+i = u∗
i|k, i ∈ I

σµ

0 from (9) is asymptotically stable.

Proof: Let V ∗(x) be the optimal cost of (9a). We prove

the claim by showing that the optimal cost between two time

instances is upper bounded by zero, i.e.,

V ∗(xk+σµ
)− V ∗(xk) ≤ 0. (13)

To show this, consider the shifted candidate solutions (11)

and (12) from Theorem 1. It suffices to prove this claim for

σλ = 1, where we consider the cost V (x∗
1|k,uk+1) of (9) at

time k + 1 under uk+1. Then by optimality

V ∗(xk+σµ
)− V ∗(xk)

σµ=1

≤ V (x∗
1|k,uk+1)− V ∗(xk).

Substituting the individual terms of the cost function yields

V (x∗
1|k,uk+1)− V ∗(xk)

= Vf (x
∗
N |k+1) +

N−1
∑

i=0

l(x∗
i|k+1, u

∗
i|k+1)

− Vf (x
∗
N |k)−

N−1
∑

i=0

l(x∗
i|k, u

∗
i|k)

= ‖x∗
N |k‖

2

A⊤

K
PAK

+ ‖x∗
N |k‖

2
QK

− ‖x∗
N |k‖

2
P

− ‖x∗
0|k‖

2
Q − ‖u∗

0|k‖
2
R

(4)

≤ −‖x∗
0|k‖

2
Q − ‖u∗

0|k‖
2
R = −‖xk‖

2
Q − ‖uk‖

2
R.

Since by Assumption 1 the matrices Q and R are positive

definite, we establish asymptotically that

0 ≤ lim
t→∞

1

t
V ∗(xt)− V ∗(x0)

≤ lim
t→∞

1

t

t
∑

k=0

(‖xk‖
2
Q + ‖uk‖

2
R) = 0

which concludes the proof.

Remark 1: The above considerations are valid for any

MPC setup involving the design of a terminal region and

controller (not only the linear one). Here, we consider only

the linear case to provide concise results and clearly show

which elements of the proofs are changed and which are kept

unvaried with respect to a standard MPC setup.

TABLE I

PERFORMANCE OF FIXED VS MULTI-MODE CONTROL.

Fig. 3: unlimited res. state err. act. energy res. cost

— fixed mode 3 0.466 0.362 1.00
— fixed mode 1 0.441 0.212 5.00
— multi-mode 0.442 0.214 2.19

Fig. 4: limited res. state err. act. energy res. cost

— fixed mode 3 0.466 0.362 1.00
— fixed mode 1 0.497 0.163 –
— multi-mode 0.446 0.236 1.76

C. Criteria for Mode Switching

The number of modes M is decided based on the target

requirements for flexibility, and the assigned budgets depend

on the computational power of the target platform, paired

with the target periods and deadlines to satisfy. The expected

performance of the modes can be characterized offline or

estimated online based on the current MPC prediction. In-

stead, the cost of the budget allocation could be evaluated by

analyzing the evolution of free resources. Consistently with

our choice of switching modes before a new period starts,

it is reasonable to run this analysis over the last period and

update the budget consequently.

Overall, the choice of the new mode and budget is likely

to be formulated as a separate optimization problem. Its

objective function will be based on an integral of (7), to

account for resource cost, and (9a), for control performance,

with proper weights based on the system properties.

A practical advantage of the proposed approach is that the

same optimization problem (9) can be implemented across

all modes, by properly adapting σµ in (9c). Thanks to the

shared time base and the fixed prediction horizon N , in

practical implementations when using e.g., CasADi, there

is no need to recompile the control function when switching

between modes, providing a seamless and lightweight multi-

mode formulation. The only difference between the modes is

the sequence of control input values at the beginning of the

prediction, which is passed as an input parameter at runtime.

IV. SIMULATION ANALYSIS

To motivate the proposed approach, we set up a simulation

using a simple cart-pole system as an example application.

The state variables x = [p, θ, v, ω]⊤ represent the linear and

angular position, and velocity of the cart and the pole, respec-

tively. The control input u is a force applied horizontally to

the cart. The system is linearized about the unstable vertical

configuration with matrices

Ac =





0 0 1 0

0 0 0 1

0 327/200 0 −25/24
0 981/40 0 −375/24



 , Bc =





0

0

35/18
25/6



 .

We choose unit weights Q = I , R = I and Wr = 1 and use

the same βµ = 1 for all modes. Starting from the vertical

configuration, with cart position −0.4 m, the controller is

required to track a step change in the reference position and

−1

0

p
o
s
er
ro
r
(m

)

−10

0

10

fo
rc
e
(N

)

0 1 2 3 4 5

t (s)

3

2

1

m
o
d
e

Fig. 3. Testing classic fixed-mode designs using the slowest or fastest mode
(orange and blue, respectively), against the proposed multi-mode approach
(green). In the first two plots, the blue and green trajectories nearly coincide.

stabilize it at a target position +0.4 m. Once stabilized, an

impulse disturbance force is applied to the cart (at t ≈ 2.8 s),

which the controller is required to reject. We define a safety

range for the cart position p ∈ [−0.75,+0.75] m and the

actuator force u ∈ [−10,+10] N, and we impose them as

constraints of (9). We define a discretization step of h = 20
ms and define three control modes with period h1 = h,

h2 = 2h, h3 = 5h and a prediction horizon of N = 80
steps. The results of the experiments are reported in Table I.

Fig. 3 shows the tests comparing our multi-mode approach

against classic single-mode designs. We consider three se-

tups: A fixed-mode design with slowest mode (mode 3),

a fixed-mode design with fastest mode (mode 1) and a

multi-mode design with all 3 modes. In each setup, the

performance of the closed-loop system is measured as mean

squared error of the normalized state and input trajectory, as

well as the minimum total amount of resources required to

run each setup over the simulation.

The slowest mode (orange line) fails to provide a sat-

isfactory behavior: the controller response is delayed, the

cart-pole oscillations are larger and the peak of the actuator

force is higher. With the fastest mode (blue line), the best

possible performance is achieved. To fit the execution of the

mode within the shorter period, however, a higher budget

is needed, which comes at the expense of higher resource

usage costs. The superior performance offered by the fastest

mode, on the other hand, is unlikely to be required once the

plant conditions are no longer critical. Indeed, approaching

steady-state conditions, the difference between the modes is

barely noticeable.

In the last setup (green line), the multi-mode approach

is used to gradually switch to mode 2 and 3 (which can

run on a lower resource level), while the system approaches

the steady state conditions. In this example, the multi-mode

design achieves a large reduction of the resource costs

(approx. 70%), against a small degradation of the control

performances (< 5%).

In Fig. 4, we repeat the tests with the same setups as

−1

0
p
o
s
er
ro
r
(m

)

−10

0

10

fo
rc
e
(N

)

β1/h1

β2/h2

β3/h3re
so
u
rc
es

0 1 2 3 4 5

t (s)

3

2

1

m
o
d
e

Fig. 4. Multi-mode pattern with limited resource availability (represented
by the dash-dotted line). The activation of the faster modes is cut (t ≈ 0.3 s)
or delayed (t ≈ 2.8 s) under critical conditions if not enough resources are
available.

above, but under a limited and variable resource budget. We

define an upper bound to the free resources that cannot be

exceeded. If such budget is insufficient to execute a mode

within the corresponding deadline, a backup LQR controller

will be applied in place of the optimal MPC trajectory.

In this setting, the fixed-mode design with the slower

mode 3 (orange line) performs as in the previous experiment.

With mode 1 (blue line), the performance are worse in this

scenario, due to the inability of the control task to execute as

expected. Under the reduced resource availability, the backup

controller takes over; instability is avoided, but the system

response is slower. The switching pattern of the multi-mode

design (green line) is readjusted, within this constraint, to

adapt to the new resource availability. The resulting trajectory

is slightly worse than the one from the previous experiment,

but still manages to improve the performance over both

fixed setups. Also in this scenario, the multi-mode design

manages to cope with the variability of the resources while

maintaining good levels of performances.

V. CONCLUSION AND FUTURE WORK

The multi-mode MPC approach presented in this paper is

a scalable control strategy, where the accuracy and the com-

putational complexity of the controller can be dynamically

adjusted at runtime. This feature is essential for a successful

execution under variable resource conditions. We showed

that our design guarantees feasibility and asymptotic stability

of the controlled system under arbitrary switching of modes.

Finally, with a simulation analysis we showed the potential

of the proposed approach for resource costs reduction, with

limited impact on the control performance.

The control and resource formulation we adopted is fairly

general and allows us to model resource availability and

constraints for different architectures and use cases. Further

steps towards a complete resource-aware control framework

will cover finding a mechanism for the optimal selection of

the modes and allocation of the resources, and extending the

allocation problem to the case of multiple control applica-

tions concurring for shared resources on the same platform.

REFERENCES

[1] P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson,
“Wireless Network Design for Control Systems: A Survey,” IEEE

Commun. Surv. Tutor., vol. 20, no. 2, pp. 978–1013, 2018.
[2] A. W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,

R. Harrison, and J. L. Jammes, Francois Lastra, Eds., Industrial Cloud-

Based Cyber-Physical Systems. Springer Int. Publishing, 2014.
[3] S. M. Salman, V. Struhár, Z. Bakhshi, V.-L. Dao, N. Desai, A. V.

Papadopoulos, T. Nolte, V. Karagiannis, S. Schulte, A. Venito, and
G. Fohler, “Enabling Fog-based Industrial Robotics Systems,” in Proc.

IEEE Int. Conf. Emerg. Technol. Fact. Autom. (ETFA), 2020, pp. 61–
68.

[4] S. M. Salman, V. Struhár, A. V. Papadopoulos, M. Behnam, and
T. Nolte, “Fogification of Industrial Robotic Systems: Research Chal-
lenges,” in W. Fog Computing and the IoT (Fog-IoT), 2019, pp. 41–45.

[5] W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic
Event-Triggered Control for Linear Systems,” IEEE Trans. Automat.

Control, vol. 58, no. 4, pp. 847–861, 2013.
[6] D. Antunes and W. P. M. H. Heemels, “Rollout Event-Triggered Con-

trol: Beyond Periodic Control Performance,” IEEE Trans. Automat.

Control, vol. 59, no. 12, pp. 3296–3311, 2014.
[7] T. Gommans, T. Theunisse, D. Antunes, and W. Heemels, “Resource-

Aware MPC for Constrained Linear Systems: Two Rollout Ap-
proaches,” J. Process Control, vol. 51, pp. 68–83, 2017.

[8] S. Wildhagen, F. Dürr, and F. Allgöwer, “Rollout Event-Triggered
Control: Reconciling Event- and Time-Triggered Control,” at - Au-

tomatisierungstechnik, vol. 70, no. 4, pp. 331–342, 2022.
[9] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-Triggered

Model Predictive Control for Continuous-Time Systems: A Multiple
Discretizations Approach,” in Proc. IEEE Conf. Decis. Control (CDC),
2016, pp. 3078–3083.

[10] Y. Lian, S. Wildhagen, Y. Jiang, B. Houska, F. Allgöwer, and C. N.
Jones, “Resource-Aware Asynchronous Multi-Agent Coordination via
Self-Triggered MPC,” in Proc. IEEE Conf. Decis. Control (CDC),
2020, pp. 685–690.

[11] S. Wildhagen, C. N. Jones, and F. Allgöwer, “A Resource-
Aware Approach to Self-Triggered Model Predictive Control,” IFAC-

PapersOnLine, vol. 53, no. 2, pp. 2733–2738, 2020.
[12] L. Grüne, J. Pannek, and K. Worthmann, “Ensuring Stability in Net-

worked Systems with Nonlinear MPC for Continuous Time Systems,”
in Proc. IEEE Conf. Decis. Contr. (CDC), 2012, pp. 14–19.

[13] P.-B. Wang, X.-M. Ren, and D.-D. Zheng, “Robust Nonlinear MPC
With Variable Prediction Horizon: An Adaptive Event-Triggered Ap-
proach,” IEEE Trans. Automat. Control, vol. 68, no. 6, pp. 3806–3813,
2023.

[14] P. Patrinos and A. Bemporad, “An Accelerated Dual Gradient-
Projection Algorithm for Embedded Linear Model Predictive Control,”
IEEE Trans. Automat. Control, vol. 59, no. 1, pp. 18–33, 2014.

[15] G. Cimini and A. Bemporad, “Exact Complexity Certification of
Active-Set Methods for Quadratic Programming,” IEEE Trans. Au-

tomat. Control, vol. 62, no. 12, pp. 6094–6109, 2017.
[16] P. Varutti and R. Findeisen, “Compensating Network Delays and

Information Loss by Predictive Control Methods,” in Proc. European

Contr, Conf. (ECC), 2009, pp. 1722–1727.
[17] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “Computationally Aware

Switching Criteria for Hybrid Model Predictive Control of Cyber-
Physical Systems,” IEEE Trans. on Automation Science and Engi-

neering, vol. 13, no. 2, pp. 479–490, 2016.
[18] K. Koichi, “Self-Triggered Model Predictive Control for Linear Sys-

tems Based on Transmission of Control Input Sequences,” Journal of

Applied Mathematics, vol. 2016, no. none, pp. 1–7, 2016.
[19] Y. Liu, P. Zeng, J. Cui, C. Xia, and Y. Sun, “A Self-Triggered Ap-

proach for Co-Design of MPC and Computing Resource Allocation,”
IEEE Internet Things J., vol. 11, no. 14, pp. 25 024–25 032, 2024.

[20] P. Skarin, J. Eker, and K.-E. Årzén, “A Cloud-Enabled Rate-Switching
MPC Architecture,” in Proc. IEEE Conf. Decis. Control (CDC), 2020,
pp. 3151–3158.

