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Abstract—In order to fully utilize the data collected from
different sources and transform them into valuable assets for the
prediction and explanation of Artificial Intelligence (AI) systems,
this paper introduces an approach that combines Multimodal
Machine Learning (MML) with Explainable AI (XAI). The goal
is to provide insights into a deeper understanding of driver
performance in terms of mental fatigue in drivers. The perfor-
mances of the drivers can be assessed primarily based on their
mental fatigue levels. Detecting mental fatigue using MML with
explainability remains a challenge, especially when heterogeneous
data are collected in an unsupervised manner. This paper includes
multiple modalities in primary prediction and explanation tasks,
enabling Multimodal XAI (MXAI). The work used vehicular
telemetry data collected from multiple driving scenarios in Spain
and Italy, providing a rich multi-source dataset for MML model
development. Here, MML integrates information fusion, co-
learning, and reasoning to analyse multivariate unlabelled data
for fatigue detection. It applied k-means clustering on these
unlabelled data, followed by classification using Random Forest
and XGBoost, effectively creating a semi-supervised learning
approach. In this study, XAl is used to enhance the transparency
and interpretability of the MML model. Here, the contribution
of various parameters to fatigue classification was examined
using SHAP-Shapley Additive Explanations. Hence, the work
contributes to driver fitness using MML to improve model ac-
curacy and robustness, as well as XAI for model interpretability
and transparency in detecting fatigue-related patterns.

Index Terms—Explainable AI, Multi-modal XAI, Multi-modal
Machine Learning, Mental Fatigue.

I. INTRODUCTION

Research indicates that drivers’ fatigue can be assessed
using multiple modalities, including vehicular telemetry and
neurophysiological data [1]-[3]. However, labelling such data
is challenging due to variations in driving behaviour, envi-
ronmental conditions, and traffic dynamics [4], [5]. In the
FitDrive' project, multimodal data, including drivers’ neu-
rophysiological signals, vehicular telemetry, and contextual
information, are utilised for driver fitness, including mental
fatigue classification using Multimodal Machine Learning
(MML).

This study was supported by the following projects: 1) FitDrive, funded
from the European Union’s (EU) Horizon 2022 Research and Innovation
programme, Grant Agreement No. 953432; 2) TRUSTY, financed by SESAR
JU under the EU’s Horizon 2022 Research and Innovation programme, Grant
Agreement No. 101114838; 3) CPMXai, funded by the VINNOVA, Diary No.
2021-03679.
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MML has advanced rapidly, enabling the integration of
diverse data sources like text, images, audio, and video [6], [7].
However, one of the major challenges in MML is the need for
labelled data across all modalities [8]. In our previous studies
(131, [7D), MML demonstrated its effectiveness in fusing di-
verse data types to achieve accurate classification. By integrat-
ing multiple modalities, MML enhances model performance
by using complementary information from different sources.
The integration of Explainable Al (XAI) with MML presents
a promising approach known as Multimodal XAI (MXAI).
The authors in a survey [9] explore the evolution of MXAI
across four areas—traditional Machine Learning (ML), deep
learning, foundation models, and generative Large Language
Models (LLM)—shedding light on its challenges and the path
toward more transparent and trustworthy Al. Again, authors in
[10], examine from a clinical standpoint, the challenges of XAI
for multimodal and longitudinal datasets. The author in [11],
uses multimodal data and interpretable ML to predict stress
levels, highlighting the superiority of ensemble models and
the role of Shapley Additive Explanations (SHAP) [12] based
explainability in enhancing transparency for clinical decision-
making.

In this paper, multiple modalities are first utilised by the
primary prediction model for decision-making. Subsequently,
these same modalities are leveraged to generate explanations
for the model’s behaviour, ensuring greater interpretability
and transparency in multimodal AI systems [6]. It devel-
ops a comprehensive model for assessing driver performance
concerning fatigue effects by using multivariate data ana-
Iytics, MML and MXAI. The proposed model incorporates
heterogeneous data sources, including biomedical signals, in-
vehicle metrics, and contextual driving information, to provide
a more holistic and reliable approach to fatigue detection. It
includes k-means clustering and ensemble learning techniques.
Then, it compared Extreme Gradient Boosting (XGBoost)
with Random Forest (RF) to achieve high accuracy in fatigue
classification. Additionally, SHAP [12] was employed for an
in-depth interpretability analysis, revealing the contribution of
various parameters to fatigue classification. This explainability
analysis provides critical insights into the most significant indi-
cators of driver fatigue, offering a transparent and interpretable
framework.
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II. MATERIALS

The primary objective of the experiment was conducted
through two studies: 1) Cycle 1 (Cl) using simulator-road
driving and 2) Cycle 2 (C2) using real-road driving, focused
on gathering behavioural and neurophysiological data to study
fatigue while driving. According to the existing literature [13],
[14], there are specific times of the day when the likelihood of
experiencing fatigue is higher. Driver fatigue annotation in the
alignment process considered the results of neurophysiological
data analysis. The complementary neurophysiological dataset,
including its characteristics, signal modalities, and preprocess-
ing pipeline, was developed and reported by another project

partner in a previous paper [15]

TABLE I
LIST OF THE SELECTED PARAMETERS IN CYCLE 1.
S1 Parameters Descriptions Unit
1 Yaw Rate Ext | Speed of the yaw in the Y axis. deg/s
Sns
2 Speed Lateral Velocity along the vehicle’s X axis. | m/s
3 Acceleration Acceleration along the vehicle’s X | m/s?
Lateral axis.
4 Steering Wheel | The angle of the vehicle’s steering | deg
Angle wheel.
5 Vehicle Velocity | The velocity of the vehicle. m/s
6 Speed Forward Velocity along the vehicle’s Z axis. | m/s
7 Vert Accel Ext | Acceleration along the world’s Y | m/s2
Sns axis.
8 Pitch Ext Sns Angle of the pitch in X axis. deg
9 Pitch Rate Ext | Speed of the pitch in the X axis. deg/s
Sns
10 | Vert Vel Ext Sns | Velocity along the world’s Y axis. m/s
11 | Roll Rate Ext | The roll rate of a vehicle around its | deg/s
Sns longitudinal axis.
12 | Acceleration Acceleration along the vehicle’s Z | m/s>
Forward axis.
13 | Acceleration Position of the acceleration pedal. %
Pedal Position
14 | Long Vel Ext | The longitudinal velocity of a vehi- | m/s
Sns cle.
15 | Lat Vel Ext Sns | The lateral (sideways) velocity of a | m/s
vehicle is the speed at which the
vehicle moves to the left or right
relative to its forward direction.
16 | Yaw Ext Sns The rotation of the vehicle around its | deg/s
vertical axis.
17 | Roll Ext Sns The rotation around the vehicle’s | deg/s
longitudinal axis.
18 | Lat Accel Ext | The rate of velocity changes in a di- | m/s?
Sns rection perpendicular to the direction
of travel.
19 | Long Accel Ext | The rate of velocity changes along | m/s?
Sns the direction of the vehicle’s travel.

A. Cycle 1 Dataset

The C1 dataset was collected using a simulator with a sim-
ulated environment where two driving routes were used, one
based on roads in Rome, Italy (C1.1), and the other on roads
in Leén, Spain (C1.2). After screening based on selection
criteria, 34 participants were finalised, with 17 participants
from each country. During the C1 experiment, participants

were instructed to drive in both challenging and monotonous
environments. The dataset includes vehicular telemetry data
that is 48 signals in total, where the signals containing sig-
nals like GPS, Timestamp, Inertial Measurement Unit (IMU)
sensory data to measure Accelerometer — Measures linear
acceleration (e.g., changes in speed or direction) and Gy-
roscope — Measures angular velocity (rotation rates around
different axes)., and other environment-related signals. Out
of 48 signals, 19 were selected for further scrutiny. Twenty-
five signals with binary values (zero and one) were omitted
to prevent overfitting. Timestamps were used for sorting and
filtering data chronologically and identifying anomalies or
outliers, but were not utilised for analysis. Additionally, GPS-
related signals were excluded to improve the model’s overall
applicability. The list of the 19 selected signals, along with
their definitions, is presented in Table I.

B. Cycle 2 Dataset

The C2 data was collected from real-time driving. Like
Cl1, C2 data were obtained from two experiments: one from
Rome, Italy (C2.1), and another from Ledn, Spain (C2.2). In
C2.1, 19 signals were collected from 9 participants. Out of
these 19 signals, 11 were selected based on their relevance
in detecting fatigue. For example, changes in acceleration and
speed often reflect variations in driver alertness levels, while
fluctuations in engine load and throttle position can indicate
inconsistent vehicle control. These specific patterns are crucial
for accurately identifying signs of driver fatigue. Table II
presents a list of the 11 selected signals, along with their
definitions. In the C2.2 experiments, 12 participants took part,
and data on available signals were collected from real driving.
Like C2.1, the relevance of collected signals is analysed,
and 15 signals related to fatigue were considered during the
analyses. The list of signals is provided in Table III.

TABLE 11
LIST OF THE SELECTED PARAMETERS IN CYCLE 2.1.
S1 Parameter Description Unit
1 acc_x Acceleration along the x-axis. m/ 52
2 acc_y Acceleration along the y-axis. m/s>
3 acc_z Acceleration along the z-axis. m/ 52
4 accelerator_pos_d | Position of the accelerator pedal. | %
5 accelerator_pos_e | Another sensor’s reading of the | %

accelerator pedal position.

6 engine_load The current engine load com- | %
pared to the maximum possible
load.
7 pos_lat Latitude position of the vehicle. deg
8 pos_long Longitude position of the vehicle. | deg
9 rpm Revolutions per minute (RPM) of | —
the engine
10 | speed Speed of the vehicle. km/h
11 | throttle_pos Position of the throttle. %

III. APPROACH AND METHODS

The structured approach and methodology presented in Fig.
1 provide a comprehensive framework for handling unlabelled
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Fig. 1. Overall approach of integrating XAI and MML.

multimodal data. By integrating feature extraction, clustering,
multimodal alignment, data fusion, and explainable classi-
fication, the approach ensures effective data transformation,

improved interpretability, and robust decision-making.

Step 1. Heterogeneous and Multimodal Data: The
datasets in this study exhibit multimodal characteristics due
to diverse data sources, varying sampling frequencies, hetero-
geneous data structures, and inconsistent feature distributions.
The vehicular data sets (C1.1, C1.2, C2.1, and C2.2) capture
various aspects of vehicle dynamics, introducing challenges
related to multimodality, including differences in sources,
frequencies, structures, and distributions. Additionally, these
datasets lack annotations, making interpretation more complex.
A neurophysiological dataset serves as a supporting modal-

ity, providing insights into driver states. The combination
of vehicle-related parameters and neurophysiological signals
forms a complex multimodal dataset, where each modality
presents unique challenges in terms of alignment, fusion, and

Step 2. Pattern Discovery using Autoencoders and Clus-
tering: Since the vehicular dataset lacks predefined labels,
unsupervised learning techniques are applied to uncover mean-
ingful patterns. The process begins with feature extraction
using an autoencoder, by training the autoencoder to recon-
struct input data, it captures essential patterns while reducing
redundancy, resulting in a lower-dimensional representation
that preserves relevant information for further analysis. Once
the features are extracted, k-means clustering is applied to
identify potential behavioural patterns within the dataset. This
method groups similar instances, allowing for the exploration
of whether natural clusters correspond to vehicle dynam-
ics patterns. To ensure meaningful segmentation, validation
and insights extraction are performed, examining the con-
sistency and coherence of the clusters. The combination of
autoencoder-based feature extraction and k-means clustering
provides an effective approach for analysing the dataset with-
out requiring labelled information.

Step 3. Structured Data Transformations for Multimodal
Analysis: Intermediate conclusions from data processing result
in structured outputs that contribute to the final analysis. These
structured transformations include extracted features that cap-
ture essential patterns while removing redundancy, clustered
data that groups features into meaningful patterns, aligned
data that standardises datasets for cross-modal comparisons,
and fused data that merges multimodal datasets to enhance
contextual understanding. Feature extraction condenses the
original data into a more structured form, ensuring that im-
portant relationships among parameters are retained. Clus-
tering helps reveal potential behavioural patterns, while data
alignment ensures that vehicular and neurophysiological data
are synchronised for meaningful comparisons. The fusion of
multimodal datasets facilitates deeper pattern recognition and
provides a comprehensive analysis of relationships between
vehicle behaviour and external influences. By transforming
raw, heterogeneous data into structured and meaningful out-
puts, this step lays the foundation for data-driven decision-
making and system optimisation. The multimodal-alignment

TABLE I
LIST OF THE SELECTED PARAMETERS IN CYCLE 2.2.
S1 Parameters Descriptions Unit
1 Wheel-Based The speed of the vehicle based on | km/h
Vehicle Speed wheel rotation. analysis.
2 Brake Switch Indicates the pressed status | —
(on/of f) of the brake pedal.
3 Clutch Switch Indicates the pressed status | —
(on/of f) of the clutch pedal.
4 Actual  Engine | Engine torque output compared to | %
Percent Torque the maximum possible torque.
5 Steering Wheel | The angle of the vehicle’s steering | deg
Angle wheel.
6 Lateral Acceler- | The vehicle’s acceleration in the | m/s?
ation lateral direction.
7 Tachograph Ve- | The vehicle speed recorded by the | km/h
hicle Speed tachograph.
8 Accelerator The position of the accelerator | %
Pedal Position 1 pedal.
9 Engine Percent | Engine load at the current speed | %
Load At Current | compared to the maximum possi-
Speed ble load.
10 | Brake Pedal Po- | Position of the brake pedal with | %
sition respect to its total possible travel.
11 | Position Longi- | The longitude position of the vehi- | deg
tude cle.
12 | Position Latitude | The latitude position of the vehicle. | deg
13 | Yaw Rate The rotation of the vehicle around | deg/s
its vertical axis.
14 | Engine Speed Revolutions per minute (RPM) of | —
the engine.
15 | Longitudinal Ac- | The vehicle’s acceleration in the | m/s?
celeration longitudinal direction.
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procedure with details is presented in our previous paper [3].

Step 4. Inferential Data Processing for Multimodal
Learning: Inferential processing involves representation tech-
niques that transform raw data into structured insights. The
first process, multimodal alignment, establishes correspon-
dences between heterogeneous datasets such as vehicular and
neurophysiological data [6]. Once the datasets are aligned,
data fusion is applied to merge structured information from
different sources. Instead of treating each dataset separately,
this approach integrates multiple perspectives, ensuring a
more comprehensive understanding of vehicle behaviour. The
final process involves labelling unlabelled data using machine
learning models. Since the vehicular dataset lacks ground
truth labels, supervised learning approaches such as RF and
XGBoost are applied to infer labels based on learned patterns.
For the RF and XGBoost, the study relied on widely accepted
“off-the-shelf” configurations; the details are in our previous
paper [3]. These models leverage labelled subsets to classify
new, unseen samples, generating structured annotations that
enable future supervised learning applications. By applying
trained models to derive new insights, this step refines the
dataset into a more meaningful form for downstream analysis.

Step 5. Feature Attribution-based Explanation and Clas-
stfication for Decision-Making: The final stage involves two
critical processes: generating Shapley values for feature attri-
bution using SHAP and using labelled data for classification
and decision-making. To enhance model interpretability, the
SHAP technique is applied, which quantifies the influence of
individual features on model predictions. SHAP is grounded
in cooperative game theory, ensuring a fair distribution of
feature importance across all possible input variations. This
method improves model transparency, allowing for a better
understanding of which features drive predictions and whether
the model relies on meaningful patterns. Once labelled data is
available, it is used to train supervised classification models,
such as RF and XGBoost, to distinguish different behavioural
states within the dataset. The structured annotations generated
in previous steps provide a solid foundation for optimising
model performance in fatigue detection and vehicle behaviour
analysis. Finally, all processed data—including extracted fea-
tures, clustered patterns, and fused multimodal data—are inte-
grated into a final classification pipeline. This ensures that all
inferential steps contribute to a structured and well-prepared
dataset, enabling the development of a robust predictive model
for practical deployment and real-world applications.

IV. EXPERIMENTAL RESULTS

For the experimental work to detect driver mental fa-
tigue, first, an unsupervised ML algorithm, i.e., the k-means
clustering algorithm, is considered, then two supervised ML
algorithms, such as RF and XGBoost, are considered. Finally,
it explores the contributing parameters using SHAP for fatigue
classification.

A. Pattern Discovery using Clustering

The optimal number of clusters, denoted by k, was deter-
mined through the Elbow method, which suggested that k£ = 3

provided the best balance between within-cluster variance and
the number of clusters. The results were visualised using
t-SNE (t-distributed Stochastic Neighbours Embedding), a
widely used technique for reducing the dimensionality of high-
dimensional data to create a two-dimensional scatter plot. Fig.
2 and 3 display the t-SNE visualisations for the C1.1 and C1.2
datasets, respectively. According to the figures it is suggested
that while both datasets exhibit clear cluster separations, there
are notable variations in the underlying data patterns, which
may be due to differences in the features or characteristics
captured in each subset.

Clusters in 2D t-SNE space

LSNE2

Fig. 2. Clusters in 2D t-SNE space built using extracted features of C1.1.

Clusters in 2D t-SNE space

LSNE2

ESNEL

Fig. 3. Clusters in 2D t-SNE space built using extracted features of C1.2.

Similarly, Fig. 4 and 5 present the t-SNE visualisations for
the C2.1 and C2.2 datasets. As with the previous datasets,
both C2.1 and C2.2 exhibit well-defined cluster separations.
However, there are observable differences in the cluster dis-
tributions between C2.1 and C2.2, indicating that these two
datasets also contain distinct data patterns. These variations
suggest that the data in C2.1 and C2.2 might have been
influenced by different factors or characteristics, which are
reflected in the way the clusters are distributed. In summary,
the t-SNE visualisations for all four datasets (C1.1, C1.2, C2.1,
and C2.2) reveal clear cluster separations, but the observed
differences in the cluster distributions between corresponding
datasets (e.g., C1.1 vs. C1.2 and C2.1 vs. C2.2) highlight the
inherent variations in the data patterns.

736
Authorized licensed use limited to: Malardalen University. Downloaded on October 07,2025 at 12:28:42 UTC from IEEE Xplore. Restrictions apply.



Clusters in 2D t-SNE space

tsME2

ESNE L

Fig. 4. Clusters in 2D t-SNE space built using extracted features of C2.1.
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Fig. 5. Clusters in 2D t-SNE space built using extracted features of C2.2.

B. Multimodal Learning and Classification

The dataset used in this study consists of multiple subsets,
with each subset denoted by a specific identifier (C1, C2.1,
and C2.2). To conduct the multimodal learning and classify
the labelled dataset, we consider 5055 samples out of 85975
samples, and the details can be found in our previous paper
[3]. Here, the process of assigning these labels can be found
in the following article [16]. Thus, the final training dataset
was obtained considering the vehicular parameters and labels
obtained from the process mentioned above. Each of these
subsets was analysed using two different ML algorithms—RF
and XGBoost to evaluate their predictive performance in terms
of accuracy and F) score. The data was split into a train
and test set with an 80% and 20% distribution, respectively.
When splitting the dataset into train and test, a chronological
approach was used due to the related time stamps of each
sample, which were dropped during analysis. The results of the
classification are presented in Table IV. For the combined C1
dataset (which merges C1.1 and C1.2), both machine learning
models performed excellently. RF achieved an accuracy of
98%, with a corresponding F score of 0.98, indicating high
precision and recall in the classification task. XGBoost, al-
though slightly lower in performance, still demonstrated strong
results with a 97% accuracy and an F} score of 0.97.

For the C2.1 dataset, which consists of a larger number
of samples (3,645), both models continued to perform well,
though there was a slight shift in performance. The XGBoost

TABLE IV
CLASSIFICATION RESULTS OF C1 AND C2 DATASETS.

Number of Test
Dataset Samples Method Accuracy F; score

C1 (combined 1011 RF 98 % 0.98
Cl.1 and C1.2) XGBoost 97% 0.97
RF 97% 0.97

c21 3645 XGBoost 98 % 0.98

RF 80% 0.80

€22 3240 XGBoost 86% 0.86

model achieved the highest test accuracy at 98%, along with
an F3 score of 0.98, making it the most effective model for
this dataset. On the other hand, RF also performed admirably,
achieving a test accuracy of 97% and an Fj score of 0.97.
This indicates that while XGBoost was marginally better in
classification performance, RF still provided reliable results.
The C2.2 dataset showed a notable difference in performance
compared to the previous datasets. RF achieved a relatively
lower accuracy of 80%, with an F} score of 0.80, indicating
some challenges in correctly identifying the target class.
However, XGBoost demonstrated a better performance for this
dataset, with a higher test accuracy of 86% and an F}j score
of 0.86.

TABLE V
SUMMARY OF PARAMETER RANKING BY XGBOOST USING SHAP.

Ranking on Ranking on
Sl | Parameter Cl.1 Da%aset C1.2 Dagtaset
1 Accelerator Pedal Position 1 3
2 LatAccelExtSns 8 1
3 | LatVelExtSns 4 5
4 LongVelExtSns 3 4
5 RollExtSns - 8
6 Speed Lateral 6 7
7 Steering Wheel Angle 5 9
8 Vehicle Velocity 7 -
9 YawExtSns 2 6
10 | YawRateExtSns 9 2

C. Feature Attribution based Explanation

To assess the contributions of different parameters in fatigue
classification, SHAP [12] was applied to the trained XGBoost
model across all experimental cycles, including C1.1, C1.2,
C2.1, and C2.2. Specifically, the SHAP values, the comparison
tables, the Beeswarm summary plot, the Cohort bar plot, and
the Force plots were used to illustrate the impact of each
parameter. It’s important to note that the SHAP values do not
quantify fatigue directly but instead describe the influence of
each parameter on the trained classifier’s inference mechanism,
in this case, the XGBoost model. Table V presents the com-
parison for the C1.1 and C1.2 datasets, respectively, allowing
for a comparison of how feature contributions differ across
these subsets. The ranking of parameters across the Cl1.1
and Cl1.2 datasets reveals key differences in their influence
on the classification process. In the C1.1 dataset, the most
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significant parameter is Acceleration Pedal Position, followed
by YawExtSns and LongVelExtSns, indicating that acceleration
and yaw-related features play a critical role in fatigue classi-
fication. In contrast, in the C1.2 dataset, the most influential
parameter is LatAccelExtSns, while YawRateExtSns and Ac-
celeration Pedal Position rank second and third, respectively.
Comparing both datasets, YawExtSns remains an essential
factor in both cases, albeit with a lower ranking in C1.2.
Additionally, LatAccelExtSns, which ranks eighth in Cl1.1,
emerges as the most significant feature in C1.2, suggesting
differences in dataset characteristics. RollExtSns and Vehicle
Velocity are absent (presented by "-" in the Table V) in one
of the datasets, further indicating that specific features may be
dataset dependent.

High
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Value_throttle_pos

=Y
:.;
-a+—-

Value_speed .

Value_accelerator_pos_d
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% 4 5 0 2 4 6 8
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Fig. 6. Beeswarm summary plot from SHAP presenting the impact of top
parameters on the fatigue classification by the XGBoost model with C2.1.
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Fig. 7. Beeswarm summary plot from SHAP presenting the impact of top
parameters on the fatigue classification by the XGBoost model with C2.2.

An analysis using Beeswarm plots was conducted for the
datasets C2.1 and C2.2, with the results presented in the re-
spective sub-figures of Fig. 6 and 7. Each dot in the Beeswarm
plot represents a single sample for a specific feature, with
its horizontal position reflecting the SHAP value for that
feature. Dots cluster along each row to represent the density of
values, and colour is used to show the original value of each
feature, providing additional context to the parameter’s role
in the classification. For C2.1, Value_accelerator_pos_e is the
dominant parameter, while for C2.2, BrakePedalPosition takes
the lead. It is important to note that only the top influencing
parameters are explicitly displayed in these plots.

The contributions of the parameters were also analysed for
each fatigue class, specifically low and high, using SHAP
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Fig. 8. Cohort bar plot presenting the importance values of top parameters
in terms of SHAP values for the two classes of fatigue in C1.1.
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Sum of 10 other features
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Fig. 9. Cohort bar plot presenting the importance values of top parameters
in terms of SHAP values for the two classes of fatigue in C1.2.

cohort plots. Fig. 8 and 9 present the cohort plots for the
Cl1.1 and C1.2 datasets, respectively, showing the same set
of parameters identified in the corresponding Beeswarm plots.
This visualisation allows for a clear comparison of feature
contributions when analysing the datasets separately. The re-
sults indicate that in the C1.1 dataset, YawExtSns, Acceleration
Pedal Position, and LongVelExtSns play a more significant role
in fatigue classification. Notably, Acceleration Pedal Position
emerges as a particularly important factor in C1.1, contributing
more prominently than in C1.2 or the combined dataset.

Similar analyses for individual classes of fatigue were done
for the C2.1 and C2.2 datasets, which are presented in Fig. 10
and 11, containing the same list of top parameters shown in
the corresponding Cohort bar plots.

The contribution of parameters to the classifier model’s
decisions for individual samples is further explored using
SHAP force plots. Fig. 12 and 13 illustrate the force plots
for two specific samples: one with low fatigue and one with
high fatigue. In a force plot, the bolded value represents
the collective SHAP value derived from all the parameters
for either low or high fatigue. The base value, which is the
average of SHAP values across all samples, acts as a reference
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Fig. 10. Cohort bar plot presenting the importance values of top parameters
in terms of SHAP values for the two classes of fatigue in C2.1.
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Fig. 11. Cohort bar plot presenting the importance values of top parameters
in terms of SHAP values for the two classes of fatigue in C2.2.

point. If the collective SHAP value for a specific sample is
below the base value, the model classifies the sample as low
fatigue. Conversely, if the collective SHAP value is above the
base value, the sample is classified as high fatigue. At the
bottom of the force plot, the parameters are shown alongside
their respective values, indicating the contribution of each
parameter to the final prediction. The red and blue colour bars
represent the extent to which each parameter either increases
(red) or decreases (blue) the final SHAP value for that sample.
Additionally, the width of the colour bars indicates the degree
of influence each parameter has on the final classification
decision, with wider bars signifying a stronger influence. The
values depicted in these force plots are specific to the trained
XGBoost classifier for the C1 dataset.

V. SUMMARY AND CONCLUSIONS

In summary, by integrating multimodal learning techniques,
alignment strategies, and advanced feature extraction methods,
the study significantly enhances both the accuracy and inter-
pretability of driver fatigue classification. The role of precise
alignment techniques in mitigating inconsistencies between
different data modalities cannot be overstated. SHAP results
provide valuable insights into the influence of various driving
patterns on fatigue detection. This is also true as the literature
also influences, for instance, research has demonstrated that
drivers experiencing fatigue tend to exhibit reduced speed

variability, longer reaction times, and less frequent lane correc-
tions, leading to more consistent lateral positions [17]. Addi-
tionally, studies have suggested that fatigue is associated with
diminished attention, which often manifests as erratic speed
control or drifting within the lane [18]. These studies have
shown that certain parameters for driving behaviours, such
as YawExtSns, Acceleration Pedal Position, LongVelExtSns,
BrakePedalPosition and Speed, can be significant indicators
in the classification of driver fatigue. These results align with
previous literature, reinforcing the importance of these driving
behaviours as key indicators of fatigue.

Thus, this study, part of the FitDrive project, aims to
develop a data-driven decision support system for identifying
driver mental fatigue, providing detailed explanations for its
predictions through the integration of MML and XAI. The key
contributions and findings of this research are:

o Representation of Diverse Data: The study implemented
advanced feature extraction techniques to create a new
representation of multimodal data, which is crucial for ac-
curately assessing driver fitness. This data included multi-
ple sources, such as biometric data, vehicle telemetry, and
environmental context, providing a more comprehensive
view of a driver’s mental state.

o Alignment of True Labels: A significant challenge in
fatigue classification is the alignment of true fatigue
labels with unlabelled data. By aligning these true labels
effectively, the study ensured consistency and reliability
in the labelling process, thus enhancing the robustness of
the models.

e Fusion of Features: The study successfully integrated
diverse feature sets into a unified dataset, enabling the
models to make more accurate classifications of fatigue.
By combining features from multiple modalities (e.g.,
biometric signals, vehicle telemetry, contextual data),
the model could consider a broader range of factors,
improving its classification capabilities.

o Fatigue Classification: The developed models demon-
strated high efficacy in classifying driver fatigue, illus-
trating the success of the data-driven approach. This not
only validated the overall framework but also proved the
viability of using multimodal data for fatigue detection,
setting a foundation for future applications in driver safety
and health monitoring.

o Parameter Contribution Analysis: A detailed SHAP [12]
based analysis was conducted to assess the contributions
of various parameters to the classification of driver fa-
tigue. This analysis identified the most significant indi-
cators, such as specific vehicle metrics and physiological
signals, providing valuable insights into the drivers’ be-
haviour and mental state.
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