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Abstract—This study uses Generative Artificial Intelligence
(gAl) to advance industrial digitization. Although the use of gAl
looks promising for industrial digitization, there are significant
gaps in current Explainable Artificial Intelligence (XAI) methods,
which limit their applicability to such applications. By developing
a theoretical framework, the aim is to provide explanations
for gAl to improve decision-making processes with actionable
insights and explanations for their intended outcomes. The
proposed work has an impact on facilitating inspection, mon-
itoring, optimization, and maintenance of industrial equipment
and machinery. The theoretical framework proposed in this paper
will address this challenge by following a three-step approach:
1) learning prior and posterior from data, 2) feature attribution
and counterfactual explanation-based methods, and 3) integrated
XAI While the current study is theoretical, future work will focus
on applying the approach to real-world industrial scenarios.

Index Terms—Generative Artificial Intelligence, gAl, Explain-
able Artificial Intelligence, XAI, Theoretical Framework, Proba-
bilistic Approach.

I. INTRODUCTION

In recent years, Generative Artificial Intelligence (gAl)
has been one of the most promising advancements in Al
technology, which holds immense potential for revolutionising
industrial digitalisation. The gAlI refers to algorithms capable
of creating new content, such as images, text, or even entire
virtual environments, based on patterns learned from existing
data. The gAl market is projected to experience significant
growth from 2023 to 2030, with nearly 45 billion U.S.
dollars in 2023'. It is anticipated to increase by almost 20
billion U.S. dollars annually until the end of the decade. This
expansion carries substantial business advantages, particularly
in streamlining work processes and enhancing productivity.
Early adoption of gAl could yield productivity gains of up
to 0.6%, a noteworthy contribution considering the global
economic scale. However, the realisation of these benefits
depends on the prompt integration of this new technology into
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standard business practices. Currently, there are gAl platforms
for businesses, e.g., AWS?, Google®, IBM* and MainlyAD.

Nevertheless, the black-box nature of gAl models poses
challenges in understanding the rationale behind prescriptive
recommendations, raising concerns about safety and bias
issues. This limitation hinders gAl application in industrial
settings. Consequently, deploying end-to-end Al solutions tai-
lored to specific industrial use cases becomes challenging. The
purpose of this proposed theoretical framework is to improve
transparency in gAl systems by incorporating the philosophi-
cal concept of Inference to Best Explanation (IBE) [1], [2]
into explainable AI (XAI). In this paper, the explanation
phenomenon is generated from the base model, providing good
control between the model and the generated explanations. By
addressing the challenges in XAI and integrating IBE into the
framework of XAlI, this work will identify the most compelling
explanations for gAl systems, facilitating the explanation of
Al’s outputs to end-users, developers, and other stakeholders.
Incorporating IBE into XAI can enhance transparency and
accountability in Al systems, fostering greater trust in their
decision-making capabilities.

There has been a significant increase in research efforts on
XAI, which involves developing secondary (post-hoc) models
such as approximation models, derivatives, feature importance
measures, and various statistical techniques to explain the
inner workings of black box models. Nevertheless, these post-
hoc methods can be unreliable and inconsistent [3], [4] and
often fail to provide contrastive explanations [5], [6]. There-
fore, there are several major gaps in current XAl methods
[3]-[7]. From a scientific perspective, IBE can help minimise
the identified gaps to provide an explanation for gAl as this
method belongs to the form of logical inference suggesting
contrastive explanation and offers the most “understandable
(loveliest)” explanation covering all the observational data
(evidence) [3], [5], [6]. In this approach, the contrastive form
of the explanation phenomenon, “Why P rather than Q? where
P and Q are two events” [2], [5], is applied to identify
the features of explanations that contribute to the degree of
understanding they provide, and it is crucial for high-quality
prescriptive analytics. The challenge lies in computationally

Zhttps://aws.amazon.com/ai/generative-ai/
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integrating the IBE concept into XAI to provide explanations
for gAl. The paper will, in the three steps, 1) develop a
probabilistic framework for IBE, 2) implement methods for
feature attribution and counterfactual explanations, and 3)
create a Hybrid approach for contrastive explanations and
evaluation of explanations. These three steps are based only
on a theoretical approach, which is a limitation of the current
study.

The rest of the paper contains: Section II presents the
state of the art for the three steps; Section III discusses
the methodological approach used to develop the overall
framework; Section IV proposes a probabilistic framework
for IBE; Section V discusses methods for feature attribution
and counterfactual explanations; Section VI proposes a Hybrid
approach for contrastive explanations and evaluation of expla-
nations and Section VII contains discussion and conclusions.

II. STATE-OF-THE-ART

Existing XAI methods are based on concepts such as
functional understanding, explicability, interpretability, trans-
parency, and human-centric XAI [8]-[11]. These concepts
involve describing the problem domain, making AI models
inspectable, explaining model decisions, ensuring algorithmic
behaviour is understandable by humans, and generating ex-
planations with human involvement. However, none of the
existing algorithms have fully met all these concepts of
XAI. Post-hoc model-agnostic algorithms such as LIME [12],
SHAP [13], and DALEX [14] are widely used methods for
explaining predictions of complex ML models. However, these
methods suffer from consistency issues and face challenges
with locality. Locality issues involve identifying appropriate
“neighbourhood” data points for generating local surrogate
datasets to approximate the Al model.

Traditionally, the most common methods for explaining
the decision of deep learning are based on either Gradient-
based (Grad-CAM and SmoothGrad) or Layer-Wise Rele-
vance Propagation (LRP) methods [15], [16]. These methods
have limitations, including accurate object localisation and
reasoning capabilities, can be constrained by the absence of
ground truth, and do not provide insight into the underlying
reasoning. Again, an advanced deep network architecture
called ProtoPNet is proposed, but it cannot always provide
accurate explanations due to the semantic gap between latent
space and input space similarity [16], [17]. INTERACTION,
an XAI model for natural Language inference explanations
model, is proposed in [18] that considers predefined Gaussian
distribution as priors. However, in the real world, data can
come from different distributions. The proposed approach will
perform beyond specific data categories and specific types of
distribution, which is applicable to gAl for different industrial
data sets.

Considering data generation, BayLIME developed by Zhao
et al. [3], is a Bayesian extension of LIME that tackles incon-
sistency and locality challenges. However, BayLIME derives
priors from application-specific context and the guarantee of
“good” priors is dependent on the validation and verification

(V&V) tool, which may result in circular arguments regarding
reliable V&V tools. Generative modelling techniques, such as
Variational Autoencoder (VAE) [19] and Generative Adver-
sarial Networks (GANSs), have shown promising results for
synthetic data generation and can address the locality problem
of model-agnostic methods. However, their potential for XAI
has not yet been fully explored for gAl.

Regarding the integration of XAI methods, Statistical Re-
lational Learning (SRL) [20] employs probabilistic graphical
models (Bayesian approach) with symbolic reasoning and
logic. The proposed approach will address open issues (Sym-
bolic representation explanation, probabilistic reasoning, and
scaling inference) in XAl by utilizing probabilistic graphical
models as the foundation of structural causal models (i.e.,
counterfactuals) and combining reasoning to deduce explana-
tions. Thus, the proposed approach will advance the modern
XALI techniques to more human-like responses to “why” ques-
tions and provide understandable (loveliest) explanations.

Proposed Approach

Probabilistic
Framework for

Explaining

Generative Al
State-of-the-art

Explanation methods
for discriminative
Al algorithms

Fig. 1. Expected improvements from the state-of-the-art XAI.

Inclusion of gAl

Usually, by design, gAl models are polysemantic in nature,
i.e., several concepts are learned from the data and stored
in latent space, which need to be investigated to generate
explanations for the overall mechanism of the gAI models.

The proposed framework initiative is built upon our
prior research experience in XAI, which includes active
participation in five international projects (ARTIMATION®,
BrainSafeDrive’, xAPPS, Trustyg, and MONITOR) as well
as three national projects (TRUST_GEN_Z, CPMXai and
DIGICOGS). As indicated in our previous analysis [10], the
bulk of XAI research has centred around neural networks, with
a primary emphasis on generating local explanations through
post-hoc methods. Based on this observation, we proposed
that additional research is needed to develop methods for
generating global explanations that do not compromise the per-
formance of the gAl model in its primary task. This requires
achieving a good approximation between the base model and
the XAI model, which is an essential input in the proposed ap-
proach. We anticipate that the proposed causal chain approach
will outperform feature importance-based explanations in this
regard. As reported in another work [21], the explanation

Shttps://www.artimation.eu

7https://brainsafedrive.brainsigns.com/

Shttps://www.es.mdu.se/projects/585-_xApp__Explainable_AI_for_
Industrial_Applications
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provided was effective in identifying feature importance and
selection, with SHAP being the most effective method for
this purpose. However, we identified a limitation of SHAP,
which is its potential to under-represent the decision-making
process. This misalignment with the base model may not meet
the expectations of the end-user. Taking these limitations into
account, our recent work [22] highlighted the importance of
balancing interpretability and accuracy when assessing the
quality of explanations. However, a significant challenge lies
in maintaining consistency, particularly in achieving accuracy
comparable to that of the base predictor while providing
consistent explanations in scenarios involving repeated or
randomized sampling for surrogate data. In this paper, we
propose utilizing the best approximate explanation derived
from the posterior distribution to provide sufficient information
through a causal chain approach. As Fig. 1 shows, it will
provide an improvement over the current XAl methods (which
are limited to discriminative Al such as Logistic Regression,
Support Vector Machines, Decision Trees etc.) by enabling
explanations for gAl models.

I[II. METHODOLOGY

“Inference to Best Explanation (IBE)” [1] is a reasoning
method that strives to identify the most convincing explanation
for a given set of observations. Arguably, IBE is the most
appropriate model of explanation suggested in the field of the
philosophy of science. This method belongs to the form of
logical inference, i.e., given evidence as observations, we infer
what would be the most likely cause or explanation for those
observations, assuming their truthfulness and prior knowledge.
According to Lipton [1], the most understandable explanation
is often perceived as the most plausible one, i.e., “loveliness”
to determine the likelihood of an explanation. So, IBE can be
viewed as “Inference to the Loveliest Explanation”.

Interaction Intelligence Module
Industrial
Inputs Perspective Analytics Applications
multi-modal + Decision Support
data
¢ * Mg::el } Explanation Module N Use case 1
' IBE for gAl (Probabilistic Approach)
N . Counterfactual y’
Learning Pr_lor |:> and Feature N
and Posterior -
from Data Attribution Use case 2
based Method
Integrated XAl <
(Statistical Relational Learning)
Fig. 2. Overview of the proposed Probabilistic framework to learn the

approximate prior and posterior distributions from the observational data for
representations of gAls’ decisions for industrial applications.

Drawing inspiration from IBE, the paper aims to develop
XAI methods that provide a comprehensive understanding of
gAT’s decisions. Contrastive forms of explanations that include
counterfactuals with the cause and effect of the decisions will
be an outcome of this approach. The overall concepts of the
work and how it can be used in industrial applications are
presented in Fig. 2. It can support prescriptive analytics where
explaining gAl outcome is important for informing future

measures and decision-making. The IBE for gAl will be based
on probabilistic modelling, observational data, and contextual
information to provide a better representation and infer the
best “understandable (loveliest)” explanations. The approach
is discussed in three specific steps:

1) Learning prior and posterior from data,

2) Feature attribution and counterfactual explanations-based
methods and

3) Integrated XAI

The learning model will learn the approximate prior from
observational data (Step 1), from which we can estimate
the posterior distribution for the Generative Model (GM).
GM will provide a better representation and understanding
of the observational data. The GM model (Step 2) will be
utilized for both feature attribution and counterfactual anal-
ysis. Then, in integrated XAlI, i.e., the proposed SRL will
integrate the methods (Step 3) and provide an XAI model
with improved confidence, leading to more understandable
(loveliest) explanations. The specific outcome of the work is a
new XAI method for gAI that will provide consistent and stable
explanations using constraint-based numerical techniques and
a probabilistic approach from observational data.

IV. LEARNING PRIOR AND POSTERIOR FROM DATA

This step will focus on generalizing distributions, ensur-
ing convergence, and optimizing computational efficiency for
modeling unknown functions. First, it estimates the probabil-
ities of the observation x denoted by p(x). Second, given the
decisions y and knowing the prior knowledge of the observa-
tion x as probability distributions, a generative model is built
that estimates the distribution p(z|y). Generative modelling
uses a Bayesian framework by setting prior plausibilities and
updating the posterior plausibilities in light of new data. The
process can be described as for some dataset, X = {z()}N |
consists of |X| = N iid. (independent and identically
distributed) samples, we assume the data is generated by
some random process, involving an unobserved (i.e., unknown
to us) probability distribution for some random variable y.
The process requires first to know some prior distribution
pe~(y) to generate a value y® and then second, use some
conditional distribution pg- (z|y) to generate the value z(%).
Often some fixed parametric family of distribution py(y) and
po(x|y) are used to define the prior py+(y) and the likelihood
po+(x|y) and it assumes that their probability density functions
(PDF) are differentiable w.r.t. § and y. In the ML setting, the
true parameters 8* and prior distribution are unknown to us.
However, the log-likelihood of the generative model log p(x)
can be evaluated as in (1):

log pg(z) = log Zpe (fffly“)) p (y(i)) (1)

Since the model pg(z|y) is trained with y = yg« (x) from the
“Maximum a Posteriori” inference, we can write as in (2):

log pe(x) ~ log pe~ (z|ye= (x)) pe~ (ye= (x)) )
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TABLE I
EXPECTED QUESTIONS TO BE ANSWERED IN THE PROPOSED APPROACH.

Feature Attribution Counterfactuals

1. Why did you make that | 1. Are you sure that it is not

decision? something else?
2. How did you make that | 2. What would it take for me
decision? to get another decision?
3. What data did you see? 3. How do I correct an error?
4. How certain are you? 4. What happens if 1 do not

take that decision?

which can be evaluated empirically.

Generally, when the parameters are unknown, the posteriors
and priors for GMs are assumed to be normally distributed.
To provide an explanation with a causal chain, a data-centric
full informative prior’s elicitation is necessary to better es-
timate the posterior distribution. To achieve IBE, an XAI
model must establish the underlying probability distribution
for data of unknown distribution. Here, firstly the probabilistic
framework will learn informative priors directly from the
training data, enhancing posterior probability updates. Full
informative priors provide precise feature information, improv-
ing posterior precision and explanations. Poor estimation of
priors can lead to biased Bayesian estimates. The framework
will define criteria for “good” priors that accurately capture
the Al model’s behaviour and offer the best approximations.
The proposed approach will use Continuous Piecewise Affine
mapping to represent complex data distributions, leveraging
functions like Rectified Linear Unit (ReLU) to obtain latent
space distributions for better density representation.

Secondly, Markov Chain Monte Carlo and Stochastic Gra-
dient Variational Bayes methods will be used to generate
samples from the posterior distribution, reducing uncertainty
and improving the representation of training data. These
methods will transform the XAI model into a probabilistic
one to enhance explanation generation.

V. FEATURE ATTRIBUTION AND COUNTERFACTUAL
EXPLANATION-BASED METHODS

XAI methods based on feature attribution often rely on
combinations of features to explain a decision, which can be
unrealistic and result in implausible synthetic instances. This
issue arises due to the disregard for the local distribution of
features, the density of class labels in the neighbourhood, and
causal relationships among input features during data sampling
for surrogate models. To address this problem, we propose
leveraging the generative modelling approach discussed in the
previous section. A principal approach for identifying causal
structure in data is to use Structural Causal Models (SCMs).
Incorporating knowledge, even partial, of the causal structure
of observational data can enhance the understanding of deci-
sions made by the Al model, leading to higher interpretability
and more robust explanations. Suppose a random variable C
denotes the cause and £ is the effect. An SCM with graph
C — & can be defined in (3), and (4):

C:=N¢ 3)
&= fe(C,Ng) 4)

where, Mg and A are the noise associated with £ and C, and
Ng is independent of ANz. We can sample noise values Ng
and N¢ by evaluating C and £ with the above two equations
if we know the function f¢ and the noise distributions Py, and
Py, When it comes to explanations consisting of fact and foil,
we are specifically interested in understanding the behaviour
of the Al model under interventions. This involves inducing
a different distribution that deviates from the observational
distribution to intentionally change the Al model’s behaviour.
The two distributions of the AI model become unrelated after
the intervention, and we can treat them as two separate models,
especially when only certain parts of the data-generating
process change due to the intervention. In addition, we modify
all noise distributions of an SCM to enable us to effectively
address counterfactual questions.

Both feature attribution and counterfactual explanations
will leverage generative modelling in the proposed approach.
The SRL, which utilizes probabilistic graphical models as a
common approach to descriptive modelling and declarative
representation, can be used to integrate the two explanation ap-
proaches. By combining feature attribution and counterfactual
explanations through SRL, we aim to develop a comprehensive
XAI model that can address the questions outlined in Table
I. Some of the questions related to counterfactuals remain as
open challenges that current XAI methods failed to provide a
satisfactory answer.

For feature attribution, the generative modelling framework
that uses true prior knowledge of the training dataset will build
a rational XAI model that allows the “Loveliest” explanations.
This task will use the Bayesian approach for GM frameworks,
which works in two folds. First, it estimates the probabilities
of observation = denoted by p(z). Second, given the decisions
y and knowing the prior knowledge of the observation x
as probability distributions, a GM is built that estimates the
distribution p(z|y).

For generating the explanations, let us consider a classifier
f that outputs the prediction y = f(x) for an observation
x, where x is a vector consisting of values from m features.
The explanation to the prediction with feature attribution is
defined by a vector of feature contributions— [¢g, @1, ..., D],
where ¢ is the bias term and rest of the values corresponds
to the m features denoting the contribution of the features to
a particular prediction. Thus, approximation on the confidence
of the prediction can be defined in terms of probability with

(5):

p(f@)x) = ¢ )

j=0
With the same classifier f, counterfactual explanation to
the prediction y = f(x) consists of a set of observations
z' such that the prediction by f on z’ is different from g,
ie, f(z') # y, and where the difference between z and z’
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is minimal. To identify causal structure in data, we will use
SCMs, considering the same generative framework mentioned
above.

VI. INTEGRATED XAI

A graph-based learning framework will be developed using
probabilistic graphical models (i.e., an extension of SRL) to
integrate feature attribution and counterfactual methods as a
hybrid solution for XAI. Leveraging SRL, we will establish
connections between strong associations in feature attribution
and causal chains in observational data. As causal models
are graph-based, we will design a novel approach to generate
graphical representations for feature attribution, allowing us to
learn explanations for the outcomes of automated decisions.
In statistical learning theory, PAC-Bayes bounds generalize
the union bound that allows dealing with both finite and
infinite parameters. We aim to bridge the gap between the
Bayesian framework and statistical learning theory using a
decision-theoretic approach. This theoretical framework for
the generalization error bound will provide a high degree
of confidence in the explanations given by the XAI model
and estimate the underlying uncertainty associated with these
explanations.

VII. OUTCOME, BENEFITS AND LIMITATIONS

None of the existing XAI methods applies to gAl to
provide comprehensive explanations [12]. By knowing the
level of model confidence, the proposed methods increase
the faithfulness of explanations to the user. ML methods
often lack “control variables” for counterfactual or causal
reasoning in inductive reasoning. Counterfactual reasoning
is a vital part of human cognition, and it is essential for
effective decision-making and problem-solving as it involves
considering alternate possibilities or hypothetical scenarios
that differ from what has occurred, creating new perspectives
on familiar themes and ideas. By learning from interventional
data, this approach will provide a better understanding of
phenomena and enable better counterfactual representations.

Here, for instance, we can consider a hypothetical use
case of binary classification with label I' = {‘+’,‘—'} and
observations X containing values from the features A, B, C, D
and E. Now, for an observation x € X, the prediction
f + x — ‘4’ can be explained with feature attribution,
as illustrated in Fig. 3a. From the ¢ values, corresponding
answers to the feature attribution from Table I are intended
to be answered. For example, if the user asks the classifier
model, “How certain are you?”, it can be answered with he
approximated probability on the prediction p(f(x)|z) from
the corresponding feature attribution values ¢ and (5). In
addition, using the SCM illustrated in Fig. 3b, the questions
intended for the counterfactual-based explanations can be
answered, such as “What would it take for me to get another
decision?”. The SCM is presented with the hierarchy and
causation of the concerned features to the prediction associated
with the possible values of the highly contributing features to
the prediction and the label (I'). The counterfactuals can be

generated from the alternate values of the features as well as
the change in predicted label; thus, the query from the user
on a different decision can be answered using the SCM.

+

| A={ay,ax 83} C={c1,cy} D={dy,dq}

PA r 4 o
a < c, 4
oc
[
e \ V
+ € value_of

«— causes
«— explains

(a) Feature Attribution (b) Counterfactual
Fig. 3. A hypothetical outcome of the proposed approach for integrated XAl
in a binary classification task.

P+ P < Pa+Pc+dp

v
Hence, f(x) = '+ F={+-}

Ultimately, this will allow for learning from past experi-
ences and making decisions that embody the human cognitive
process. The proposed unique approach seeks to provide
the necessary and sufficient “fact and foil” of Al decisions
by incorporating counterfactual reasoning alongside feature
attribution, which is a commonly used method for providing
possible facts. Doing so will offer a more complete and
balanced explanation of Al decision-making than feature at-
tribution alone, as foil information will be provided through
the counterfactual approach. Therefore, the main result of this
work can be seen as an enabling technology for further rapid
innovation of new methods for next-generation gAl-based
industrial applications. Incorporating gAl with an explanation
will enhance transparency, accountability, and compliance with
emerging regulations in Al systems, fostering greater trust in
their decision-making capabilities, improving ML fairness and
mitigating data bias for industrial applications. It will enhance
the level of trust in Al-generated decisions, especially on gAl
and prescriptive analytics for different end-users, developers,
and other stakeholders.

The framework could provide insights into the future be-
haviour of machines by quantifying the uncertainty of the Al
model for a range of adversarial samples based on historical
data, characteristics of data distribution, and perturbation. The
knowledge of the capability of gAl, which is crucial for
providing actionable measures in explainable decision-making,
can be transferable to other domains. So, the next step is to
validate the proposed theoretical framework with industrial
data. The validation of outcomes is currently restricted to
laboratory settings, and the work is ongoing. Once that is
done, we may require additional deployment efforts to ensure
the overall outcome meets that expectation to be utilized in
the real industrial environment.

VIII. CONCLUSIONS

“Explanation” is a key research topic in the philosophy
of science. The current explanation methods in XAI re-
search lack this connection between the philosophy of sci-
ence and algorithmic development. As a result, they often
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provide insufficient human-understandable explanations and
suffer from inconsistency and reliability issues. Trust in Al
systems can be increased by providing clear explanations to
the users of how the Al arrives at its decisions. One way to
achieve this is by using XAI techniques, which support better
knowledge representation and can help in understanding the
decision-making processes of complex Al models. However,
the challenge is to plug in the philosophical concept of
explanation that is closer to human-perceived explanations,
to the computational/mathematical development of explana-
tions in gAl. The approach will advance the modern XAI
techniques to more human-like responses to “why”’ questions
and provide satisfactory explanations that align with human-
level comprehension. The proposed approach investigates the
use of generative modelling to address the inconsistency
and unreliability problems in XAI methods to include it in
gAl Thus, the paper outlines a theoretical framework in
3 steps to achieve “understandable (loveliest)” explanations
from data. Here, the significance and scientific novelty are
approximations of learning “prior” from observational data,
understanding the phenomena and concept based on cognitive
process (in counterfactuals), and a unique solution based on
SRL approach utilizing the Bayesian framework will provide
the understandable (loveliest) explanation.
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