
Requirements Ambiguity Detection and Explanation
with LLMs: An Industrial Study

Sarmad Bashir1,2, Alessio Ferrari3, Abbas Khan1,2, Per Erik Strandberg4, Zulqarnain Haider5,
Mehrdad Saadatmand1 and Markus Bohlin2

1RISE Research Institutes of Sweden, Västerås, Sweden, {first.last}@ri.se
2Mälardalen University, Västerås, Sweden, {first.last}@mdu.se
3University College Dublin, Dublin, Ireland {first.last}@ucd.ie

4Westermo, Västerås, Sweden, {first.last}@westermo.com
5Alstom, Västerås, Sweden, {first.last}@alstomgroup.com

Abstract—Developing large-scale industrial systems requires
high-quality requirements to avoid costly rework and project
delays. However, linguistic ambiguities in natural language
(NL) requirements have been a long-standing challenge, often
introducing misinterpretations and inconsistencies that
propagate throughout the development lifecycle. Such
ambiguous NL requirements necessitate early detection and
well-reasoned explanations to clarify and prevent further
misunderstandings among stakeholders. While solutions have
been developed to detect ambiguities in NL requirements, the
advent of generative large language models (LLMs) offers new
avenues for explanation-augmented requirements ambiguity
detection. This paper empirically investigates LLMs for
ambiguity detection and explanation in real-world industrial
requirements by adopting an in-context learning paradigm.
Our results from three industrial datasets show that LLMs
achieve a 20.2% average performance increase in classifying
ambiguous requirements when prompted with ten relevant
in-context demonstrations (10-shot), compared to no
demonstrations (0-shot). Additionally, we conducted human
evaluations of the LLM-generated outputs with eight industry
experts along four dimensions—naturalness, adequacy,
usefulness and relevance—to gain practical insights. The results
show an average rating of 3.84 out of 5 across evaluation
criteria, indicating that the approach is effective in providing
supporting explanations for requirement ambiguities.

Index Terms—requirements classification, requirements
ambiguity, large language models, in-context learning

I. INTRODUCTION

In the safety-critical domain, such as the railway industry,
contractual specification documents establish the high-level
objectives and constraints for complex systems, which are
subsequently translated into actionable natural language (NL)
requirements guiding the system development life cycle. [1]
While NL remains the de facto industry standard for
expressing requirements, it is inherently prone to ambiguities
[2]. Requirements ambiguities pose a challenge not only for
requirements engineers, who must ensure clarity and
precision to facilitate accurate implementation, but also for
other stakeholders, such as software developers and system
integrators, who are involved in implementing and validating
the requirements. Specifically, the prevalence of linguistic
ambiguities in NL requirements—arising from stakeholders’

diverse backgrounds and varying technical
expertise—requires early detection during the requirements
engineering (RE) process to avoid scope creep and ensure
alignment in large-scale projects [3], [4].

In this regard, automated requirements ambiguity detection
can significantly help industrial practitioners by reducing
feedback loops and minimizing the time and effort required
for iterative clarifications. Further, identifying potential
ambiguous requirements earlier in the RE process can enable
stakeholders to address unclear specifications before they
propagate to downstream phases of system design and
implementation.

Over the years, several studies have focused on detecting
and resolving different types of ambiguities in NL
requirements and advancing state-of-the-art solutions. For
instance, early-stage approaches rely on traditional natural
language processing (NLP) techniques that focus on
identifying ambiguities through rule-based methods and
linguistic pattern analysis [5], [6]. This is followed by recent
works applying deep learning techniques to detect and
resolve requirements ambiguities by leveraging contextual
embeddings and domain-specific corpora [7], [8]. Despite the
remarkable advancements in this domain, one critical issue
of most existing solutions, with few exceptions [9], [10], is
their lack of performance evaluation on industrial datasets,
reducing practical applicability [11]. Moreover, most of the
existing solutions focus solely on detecting ambiguities and
provide limited human-like explanations of their outputs,
which are crucial for industrial practitioners to make
well-informed decisions.

To address the aforementioned issues, we propose
leveraging the capabilities of generative large language
models (LLMs), which are pre-trained on diverse and vast
amounts of corpora, for the task of ambiguity detection and
explanation. The decision to utilize LLMs is driven by two
primary considerations. First, the extensive pre-training and
auto-regressive architecture of modern LLMs not only
enhances their capability to classify ambiguous requirements
but simultaneously enables the generation of explanations
that closely resemble human reasoning, offering valuable

insights for practitioners. Second, there is a lack of empirical
investigation of LLMs for the task of requirements ambiguity
detection, especially with real-world industrial datasets,
emphasizing the need to assess their practical effectiveness
and reliability in industry-specific scenarios.

In this regard, we closely collaborated with two
companies: Alstom Rail AB1 (Alstom), a global leader in
railway manufacturing, and Westermo Network Technologies
AB2 (Westermo), a key provider of industrial communication
systems for railways and other critical sectors. Specifically,
we employ LLMs with in-context learning [12], where
models make predictions using a few task-specific examples.
This approach has been applied to software engineering
tasks [13], [14], enhancing model performance with
task-specific context [15]. In general, in-context learning
involves constructing a prompt template that includes NL
instructions, a few demonstration examples to establish the
context, and a query for the LLM to resolve [16]. The
effectiveness of such a learning paradigm largely depends on
a customized demonstration selection strategy that closely
aligns with the task, enabling the model to better understand
the query. Therefore, to select demonstration examples, we
empirically evaluate two retrieval strategies, one based on
random sampling and the other on semantic similarity to the
input query. In addition, we assess the impact of
demonstration quantity (0-shot, 1-shot, 5-shot, and 10-shot)
on performance, comparing three different LLMs on two
project datasets from Alstom (179 and 265 requirements)
and one from Westermo (219 requirements) for the task of
classifying each requirement as ambiguous or unambiguous,
along with the explanation. Our results indicate that the
in-context learning approach increases performance by an
average of 20.2% across three industrial datasets and models
when provided with ten demonstrations (10-shot), compared
to zero demonstrations (0-shot). Further, the industry experts
evaluated the explanations generated by LLMs, finding them
to be linguistically natural, adequate and relevant. However,
they also identified limitations, particularly the inadequate
understanding and use of domain-specific terminology,
highlighting the need to incorporate domain knowledge when
applying LLMs to improve performance.

The rest of the paper is organized as follows. Section II
outlines the background on requirement ambiguities, large
language models, and in-context learning. Section III details
our explanation-augmented classification approach. Section
IV describes the evaluation methodology, while Section V
presents and discusses the results. Section VI provides a
qualitative analysis, and Section VII discusses the related
work in relation to this paper. Section VIII addresses
potential threats to validity. Finally, Section IX concludes
with a summary and future research directions.

1https://www.alstom.com/se/alstom-sverige
2https://www.westermo.com/se

II. BACKGROUND

In this section, we introduce the task of requirements
ambiguity detection and discuss recent developments in
LLMs, followed by an explanation of the in-context learning
paradigm.

A. Requirements Ambiguity

Ambiguity in NL requirements has been a significant
source of frustration among stakeholders and a primary
reason for undermining project success in industrial contexts
[17], [18]. In general, ambiguity in NL can be classified into
multiple linguistic categories—commonly lexical, syntactic,
semantic, and pragmatic—each with multiple subtypes and
variations [19]. In practice, requirements often show
overlapping forms of ambiguity and belong to multiple
categories, complicating efforts to place them within a single
category [20], [21]. In our context, we frame the problem of
requirements ambiguity detection as an
explanation-augmented binary classification task, identifying
whether a requirement statement is ambiguous or
unambiguous and generating concise explanations to support
the decision.

The decision to frame the problem as a binary
classification task (ambiguous versus unambiguous) and not
identifying subcategories, aligns with the constraints of our
industrial partners’ dataset and the limited practical value of
subcategory distinctions for our stakeholders. Additionally, in
our context, the binary classification of requirements,
supplemented with rationales, provides a practical approach
and actionable insights for improving the clarity and quality
of requirements.

B. Large Language Models (LLMs)

Language models are probabilistic in nature and designed
to capture the distributions of words and sequences, enabling
them to effectively perform a variety of tasks, such as
semantic parsing [22], classification [23], and reasoning [24].
Recent advancements and the development of
LLMs—trained on huge text corpora—started with the
introduction of transformer architecture by Vaswani et al.
[25], which utilized the self-attention mechanisms to capture
long-range contextual dependencies. This is followed by
Delvin et al. [26], who developed Bidirectional Encoder
Representations from Transformers (BERT), employing
bidirectional training to enhance data representation learning.
Subsequently, Radford et al. [27], [28] introduced the GPT
series, focusing on autoregressive next-word prediction,
which was further advanced by Brown et al. [16] with
GPT-3, showing significant improvements in few-shot
generalization across diverse NLP tasks.

These improvements resulted in multiple variations of
language models in different sizes and state-of-the-art
performance on a wide range of benchmark tasks. In
addition, recent efforts in LLMs have shown significant
results in human-like reasoning based on the given context
[29].

https://www.alstom.com/se/alstom-sverige
https://www.westermo.com/se

Input query

Retrieval
search

LLM(a) Is the explanation generated?

Yes

No

(a)

Prompt Template A

In-context demonstrations

Task Description

Input query

Task Description

Classification: {label}

Input query

Prompt Template B

Domain
Corpus

GIVEN AC Selected is set to TRUE WHEN
AC LCB Opened (1...n) is set to TRUE
THEN AC LCB Opening Operating Time
(1...n) shall start to count closing time (by
increment 1 hour)
Classification: Ambiguous
Rationale:

In-context demonstrations

Output

Fig. 1: Overview of our In-context Learning Approach

C. In-Context Learning

The optimal performance of LLMs in specialized tasks,
such as detecting ambiguity in domain-specific requirements,
typically necessitates adaptation to the particular domain. In
this regard, fine-tuning LLMs has traditionally been the
default approach for domain-specific tasks [30], although
their growing size requires substantial domain-specific
datasets and extensive computational resources. Recently, the
architecture of modern LLMs has increasingly supported
in-context learning, enabling adaptation to specialized
domains by providing task instructions and examples directly
in the prompt [15], [31]. This significantly reduces
computational overhead and the need for additional training
data, as the model utilizes provided examples and task
instructions at inference time without updating model
parameters. Within this concept, the LLMs can be adapted
for the target task by dynamically retrieving relevant
examples and combining them with prompting strategies
[16]. This allows the models to generalize effectively and
achieve high performance in domain-specific contexts [12].

In this study, we share the same motivation by employing
an in-context learning approach, utilizing prompt engineering
techniques with LLMs for ambiguity detection in
requirements. This approach provides greater flexibility,
enabling effective model adaptation to domain-specific data
with limited demonstrations.

III. APPROACH

Fig. 1 provides an overview of our approach for detecting
requirements ambiguity using in-context learning with LLMs.
Below, we discuss different phases of the approach.

A. Prompt template Creation

Fig. 2 shows the prompt template constructed for our task
of requirement ambiguity detection. Here, the prompt
template is defined as PT = (TD, rexamples, rtest), where TD is
task description that establishes system instructions, including
a role-play scenario to ensure that the models are aware of
the domain context (Fig. 2, 1⃝) and formulating a dual-task
that assigns a binary label and requires a concise rationale to

<|im_start|>user
Failure	of	the	line	trip	chain	shall	trigger	a	maintainer	alert	via	TCMS.
<|im_end|>
<|im_start|>assistant
Classification:	Unambiguous
Rationale:
<|im_end|>

In-context
Demonstration N

<|im_start|>system
As	a	requirements	engineer,	you	are	tasked	with	evaluating	new	project	specifications.
For	each	requirement,	please	follow	these	steps:	

1.	Classification:	Determine	if	the	requirement	is	"Ambiguous"	or	"Unambiguous".	
2.	Rationale:	Briefly	explain	your	classification	decision	in	1-3	sentences.	

For	the	"Ambiguous"	requirement,	identify	vague	terms	or	missing	details.	For	the
"Unambiguous"	requirement,	identify	what	makes	it	clear	and	complete.

For	your	reference,	below	are	few	requirement	statements	along	with	their	ground	truth
labels.	Although	these	examples	lack	rationale	explanations,	you	must	provide	your
rationale	for	classification.
<|im_end|>

<|im_start|>user
Components	with	a	long	design	life	must	still	be	able	to	be	removed	without	the
need	to	remove	other	significant	equipment	cases	or	any	structural	partitions.
<|im_end|>
<|im_start|>assistant

Task Description

In-context
Demonstration 1

Input Query

1

2

3

Fig. 2: Prompt template (A) for requirements ambiguity
detection

<|im_start|>system
As	a	requirements	engineer,	you	have	reviewed	project	specifications	and
classified	each	requirement	as	either	"Ambiguous"	or	"Unambiguous."	
Given	the	requirement	and	its	classification,	provide	a	brief	explanation	in	1-3
sentences.	
For	an	"Ambiguous"	requirement,	identify	vague	terms	or	missing	details.	For	an
"Unambiguous"	requirement,	explain	what	makes	it	clear	and	complete.
<|im_end|>

<|im_start|>user
{input	query}
Classification:	{label}	<|im_end|>

<|im_start|>assistant

Task Description

Fig. 3: Prompt template (B) to generate missing explanations

justify that label based on the provided definitions (Fig. 2,
2⃝). Further, rexamples consists of a set of k in-context

demonstrations (d1, d2, . . . , dk), which are automatically
retrieved from a ground-truth. Each demonstration di =
(ri, li, ∅) comprises a requirement statement ri, its
ground-truth label li, and an empty placeholder ∅ for the
rationale (i.e., the ambiguity explanation). Since our datasets
lack ground-truth rationales, these placeholders ensure the
model follows the specified generation structure for a given

query requirement rtest. In the prompt template,
< im start > and < im end > are special tokens that
define instruction blocks within the prompt, and their format
is adapted based on the underlying model architecture.

Note that we structure each di as multi-turn conversations
in the user-assistant format, which aligns with the
supervised fine-tuning (SFT) approach used for
instruction-tuned language models [32], improving
consistency in output generation. However, in some cases,
the models fail to generate a rationale for a given rtest, likely
due to the recency bias [33] caused by multiple in-context
demonstrations. Specifically, the repeated inclusion of ∅ with
each di establishes a pattern that ignores the earlier system
instructions to generate explanations. As a result, even when
explicitly instructed to generate rationales (see Fig. 2, 3⃝),
the model disproportionately focuses on recent prompt
blocks and omits the rationale. To address this, we
automatically detect such missing explanations from the
output and issue a follow-up prompt (Fig. 3) aligned closely
with the instructions of TD in Fig. 2 to generate the missing
rationale.

B. Requirement Demonstration Retrieval

For each rtest, we retrieve top-k candidate requirements
statements ri from a domain-specific corpus to construct
in-context learning demonstrations. Specifically, we consider
three configurations to determine the number of k for
selecting rexamples demonstrations. In the zero-shot setting
(k = 0), the PT includes only the TD and rtest. In the
one-shot setting (k = 1), the PT includes only one
demonstration from rexamples retrieved through the selection
strategy. Similarly, in the few-shot setting (k > 1), we
retrieve multiple rexamples preceding the rtest in the prompt.

For the selection of rexamples demonstrations, we employ
two retrieval strategies: random retrieval and semantic-based
retrieval. In the random retrieval, the top-k demonstrations
are sampled uniformly from the corpus without considering
semantic alignment with rtest. In contrast, the semantic-based
retrieval strategy utilizes an off-the-shelf sentence
transformer (ST) stsb-roberta-base-v2 3, which is pre-trained
using a contrastive learning objective on multiple semantic
textual similarity datasets [34]. The ST model captures both
lexical and contextual attributes, enabling it to produce
768-dimensional dense embeddings that accurately represent
requirement semantics. Notably, the ST model has shown
competitive performance in semantic similarity tasks [13],
[22].

For semantic-based retrieval, both rtest and all the ri
statements in the domain corpus are encoded into dense
vectors. Then, cosine similarity scores are computed between
rtest and each ri statement, and the top-k most similar ri are
selected to construct rexamples for in-context learning.

3https://huggingface.co/sentence-transformers/stsb-roberta-base-v2

Input Requirement (R1): Routing switches ability to filter
network traffic between data-plane interfaces and management
data traffic.
Ground truth: ‘Ambiguous’
Output Label: ‘Ambiguous’
Output Rationale: The requirement is ambiguous because it
does not specify what type of filtering is required (e.g. packet
filtering, protocol filtering, etc.) and what kind of management
data traffic is being referred to (e.g. SNMP, HTTP, etc.).
Additionally, it does not provide any specific details about the
data-plane interfaces, such as the number of interfaces or the
type of traffic that will be passing through them.
—————————————————————————
Input Requirement (R2): GIVEN AC Selected is set to
TRUE WHEN AC LCB Opened (1...n) is set to TRUE THEN
AC LCB Opening Operating Time (1...n) shall start to count
closing time (by increment 1 hour).
Ground truth: ‘Ambiguous’
Output Label: ‘Ambiguous’
Output Rationale: The requirement is ambiguous because it
does not clearly specify what should happen when AC LCB
Opened (1...n) is set to FALSE. Additionally, the phrase “by
increment 1 hour” is unclear and may be interpreted in
different ways.

Listing 1: Example outputs.
©The R1 and R2 input requirements are the property of Westermo
and Alstom, respectively.

C. LLM-based Ambiguity Detection

After constructing the prompt template PT with the
retrieved rexamples, the final step is to invoke a large language
model (LLM) to classify the query requirement rtest and
generate a rationale in the specified output format. As
discussed previously, if the model omits the rationale due to
multiple in-context demonstrations, we issue a follow-up
prompt to output an explanation. The examples (shown in
Listing 1) above report the output generated by our
in-context learning approach for two ambiguous input
requirements.

In this study, we consider three LLMs: Phi-3 Mini4

(3.8B), Llama-35 (8B), and Qwen-2.56 (1.5B), for our task
of explanation-augmented requirements ambiguity detection.
We use instruct-tuned LLM variants instead of base versions
due to their superior performance in understanding the
instructions in prompts [35]. The models represent different
architectural families and are within the 1.5B-8B parameter
range. We selected the models because of their (i)
availability under open-source licenses that comply with our
data privacy and confidentiality requirements, (ii) strong
performance on software engineering tasks [13], and (iii)
compatibility in terms of size for deployment in

4https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
6https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct

https://huggingface.co/sentence-transformers/stsb-roberta-base-v2
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct

resource-constrained environments. Further, the model
selection is guided by Measuring Massive Multitask
Language Understanding (MMLU) benchmark scores, which
assess the general knowledge and reasoning capabilities of
LLMs. At the time of experimentation, instruct-tuned
variants of Phi3-mini (3.8B) and Llama-3 (8B) achieved
comparable MMLU scores of 69% and 68.4%, respectively,
ranking as the best-performing models in their respective size
categories. Following the release of Qwen-2.5 (1.5B), we
include the model in the evaluation due to its state-of-the-art
performance in the sub-2B category [36] and practicality for
deployment in our resource-constrained environment.

IV. EVALUATION

A. Study Context

This study is conducted in close collaboration with
Alstom, a global leader in railway vehicle manufacturing and
Westermo, a prominent provider of industrial network
solutions. Both organizations require strict requirements
engineering practices to ensure system safety and
performance. In such specialized domains, project initiation
often requires reviewing extensive textual documentation that
includes system requirements and standards, regulatory
mandates, and safety guidelines. The complexity of these
artifacts and processes requires detailed analysis to ensure
compliance with safety and performance criteria.
Traditionally, requirements analysts rely on manual methods
to detect ambiguous or conflicting requirements, a laborious
and time-consuming process. In addition, clarifying
requirements requires involving multiple stakeholders, which
extends the feedback cycle and ultimately delays the
time-to-market. Consequently, both organizations
continuously seek efficient early-stage requirements
ambiguity detection methods to facilitate their RE process.

B. Research Questions

The study aims to assist practitioners by detecting
ambiguous requirements and generating concise explanations
to support decision-making. Since different LLMs may
perform differently when given the same in-context learning
demonstrations within a standardized prompt template, we
systematically evaluate their effectiveness in detecting
requirement ambiguities. In this regard, we evaluate the
impact of the number of demonstration examples (i.e.,
0-shot, 1-shot, 5-shot and 10-shot) on the performance of
LLMs. We also investigate the effect of customized
demonstration selection, assessing whether highly relevant
in-context examples improve performance compared to
randomly selected ones. Finally, we examine the usefulness
of LLM-generated explanations for practitioners. To this end,
we formulate the following research questions (RQs).

• RQ1. Which LLM yields the best results in requirements
ambiguity detection task?

• RQ2. What is the impact of demonstration quantity on
LLM performance?

TABLE I: Datasets

Dataset Reqs. AW Amb. Valid. Test
Westermo 219 26 56 44 175

AlstomProjectA 179 33 74 36 143

AlstomProjectB 265 37 48 55 219
*AW = average words per requirement; Amb. = number of ambiguous
requirements (remaining are unambiguous); Valid. = number of
validation requirements; Test = number of test requirements.

• RQ3. Which demonstration selection technique improves
the effectiveness of LLMs?

• RQ4. How do practitioners perceive and evaluate the
explanations of LLMs?

C. Data collection & Preparation

Table I outlines the attributes of the datasets under
consideration. In particular, we utilize three industrial
datasets: one from Westermo and two from Alstom, referred
to as AlstomProjectA and AlstomProjectB dataset. Each dataset
consists of requirements previously annotated with
ground-truth binary labels representing ambiguous or
unambiguous. To perform the evaluation, we prepared the
datasets using the following steps. First, we processed the
requirements to identify and remove duplicates. For
Westermo, duplicate requirements were removed within the
dataset, while for the Alstom datasets, we detected and
removed duplicates both within each dataset and across
projects. Then, we created three stratified random splits of
each dataset into validation (20%) and test (80%) subsets to
address model performance variability.

Note that we did not create the training subsets, as our
evaluation followed an in-context learning paradigm that
does not require LLM training and update of its parameters.
Instead, we treated the validation set as a pool to select
demonstration examples for in-context learning.

D. Experimental Setup

To evaluate the performance of LLMs, we employ 0-shot
and 1-shot settings, as well as demonstration selection with
5- and 10-shots for in-context learning. The reason for
limiting the maximum number of demonstration shots to ten
is driven by two factors. First, the limited context window of
LLMs restricts the tokens that can be processed in a single
input. Second, larger prompts increase memory usage and
processing time, leading to practical computational
challenges [37]. Furthermore, we selected the demonstrations
both randomly and based on their semantic similarity to the
given query to evaluate their impact on model performance
and generalization. In both approaches, we set the
temperature parameter to zero to reduce the randomness in
model responses and consistently select the most probable
tokens at each decoding step. The maximum length of the
generated sequence is set to 156 tokens to limit output size.

In addition, we repeated each experiment three times, each
time using a different stratified random split of the data, and

LLM Method Westermo AlstomProjectA AlstomProjectB
P R F1 P R F1 P R F1

Random 59.1 48.7 52.2 51.9 53.4 53.5 69.3 50.8 56.5

Qwen-2.5 (1.5B)

0-shot 58.9 42.1 44.8 61.3 54.3 52.8 68.8 38.5 43.4
1-shot (Selectionrandom) 63.6 45.0 47.1 55.1 54.3 54.6 71.6 39.2 43.4
1-shot (Selectionsemantic) 63.2 49.3 52.2 50.5 53.1 50.8 69.9 46.7 52.5
5-shot (Selectionrandom) 60.8 52.8 55.3 57.1 56.4 56.6 74.5 59.7 64.4
5-shot (Selectionsemantic) 62.5 49.9 52.8 58.0 58.7 58.2 74.3 59.7 64.3
10-shot (Selectionrandom) 63.6 65.7 64.3 60.1 60.4 60.0 74.6 71.1 72.5
10-shot (Selectionsemantic) 59.6 57.1 57.8 62.7 63.2 62.7 73.1 73.0 72.9

Phi3-mini (3.8B)

0-shot 68.4 61.7 63.8 60.6 61.8 59.7 66.5 45.9 52.1
1-shot (Selectionrandom) 66.5 49.7 52.3 61.3 59.7 60.0 78.3 55.5 60.5
1-shot (Selectionsemantic) 60.5 45.0 47.9 65.5 63.2 63.4 72.9 47.2 52.6
5-shot (Selectionrandom) 63.5 56.2 58.6 62.3 61.8 61.9 74.1 68.2 70.6
5-shot (Selectionsemantic) 63.2 53.5 56.3 68.9 67.1 67.4 76.4 68.9 71.6
10-shot (Selectionrandom) 66.2 63.2 64.3 64.3 64.6 64.3 70.5 70.5 72.0
10-shot (Selectionsemantic) 65.3 64.2 64.4 67.1 67.1 67.1 74.1 76.6 75.2

Llama-3 (8B)

0-shot 64.3 59.4 61.3 59.5 60.8 56.0 67.6 59.7 63.1
1-shot (Selectionrandom) 68.1 66.1 67.0 53.8 58.0 49.6 74.7 77.4 75.8
1-shot (Selectionsemantic) 66.7 65.3 65.9 60.8 61.8 56.3 69.5 71.2 70.3
5-shot (Selectionrandom) 65.6 58.7 60.6 57.6 59.4 56.3 78.2 66.8 70.4
5-shot (Selectionsemantic) 70.5 57.7 60.3 61.6 62.9 60.3 70.7 57.1 61.8
10-shot (Selectionrandom) 70.4 67.8 68.6 64.4 64.6 61.3 79.0 69.5 72.6
10-shot (Selectionsemantic) 71.9 63.2 65.3 64.6 64.6 61.8 72.7 62.9 66.5

TABLE II: The performance comparison across different LLMs and demonstration selection strategies (in %).

reported the average scores across runs. This reduces the
variance in performance estimates and provides a more
reliable assessment of models by averaging results across
multiple splits. As a point of reference, we also include a
random classifier as a baseline, representing chance-level
performance. Due to the use of an in-context learning
paradigm, our validation set is small, so we sample labels
uniformly rather than by frequency, reflecting true random
chance performance.

E. Evaluation Metrics

To address our research questions, we employ a two-fold
evaluation. First, we adopted standard metrics, Precision (P),
Recall (R), and F1 score, to evaluate the performance
(RQ1–RQ3) of different LLMs for the task of requirements
ambiguity detection. As Table I shows, our datasets are
highly imbalanced, reflecting real-world scenarios where
ambiguous and unambiguous requirements may not be
equally distributed, we report weighted average scores to
account for this imbalance. In addition, we use the
non-parametric Friedman test, which determines the
statistically significant differences among multiple classifiers
evaluated across multiple datasets [38]. Specifically, we use
the Friedman test followed by the Nemenyi post-hoc test to
assess the performance of different LLMs (RQ1) and the
effect of demonstration quantity (RQ2). For RQ3, we use the
Wilcoxon signed-rank test to perform a pair-wise comparison
and determine whether the differences in performance
between demonstration selection techniques (random vs
semantic) are statistically significant.

Second, we conducted a human evaluation to gain expert
insights (RQ4) into the practical utility and quality of the
results. In this regard, a total of eight domain experts—three
from Westermo and five from Alstom—performed the human
evaluation. From the Westermo side, two experts were from
the technical pre-sales team with expertise in the company’s
technical offerings, customer needs and extensive experience
with internal and external requirements. The third expert was
a certified requirements engineer working as a project
manager in the R&D with a background in software test
automation. From the Alstom side, four evaluators were from
the Train Control and Information System (TC&IS)
department and one from the Propulsion department. All
were seasoned engineers who worked in various roles,
responsible for handling requirements from the tender stage
to the product delivery. The experts evaluated the LLMs’
explanations using the four criteria listed below.

1) Naturalness evaluates the fluency, readability, and
linguistic quality of the generated explanations. The
motivation behind this criterion is to evaluate how well
the practitioners can understand the reasoning behind
classification decisions without misinterpretation.

2) Adequacy reflects the extent to which the rationale
provides comprehensive and relevant information. The
criterion measures whether the explanation includes
information richness to justify the classification
decision.

3) Usefulness examines the extent to which the generated
classification labels and their explanations assist
practitioners in making well-informed decisions.

4) Relevance evaluates the degree to which the assigned

classification labels and rationales are relevant and
aligned with the query requirements.

The human evaluation is conducted using a five-point Likert
scale (1 for poor, 2 for marginal, 3 for acceptable, 4 for good,
and 5 for excellent). Such an experimental setting, along with
similar evaluation criteria, has been adopted in previous studies
[13], [14]. However, based on discussions and agreement with
our industrial partners, we revised the definitions to align with
our specific use case.

F. Implementation

Our experimental setup is implemented primarily in
Python. The sentence-transformers7 library is utilized for
semantic-based retrieval of demonstrations. We perform
inference with open-source LLMs using Hugging Face
protected and dedicated inference endpoints for secure and
scalable model deployment and execution.

V. RESULTS AND DISCUSSION

Table II presents the overall performance of selected
LLMs on industrial datasets for the task of requirements
ambiguity detection. The Method column specifies the
demonstration configuration, indicating both the number of
in-context examples (e.g., 0-shot, 1-shot, 5-shot, and 10-shot)
and the retrieval selection strategy (random or semantic). In
the following, we discuss the results based on the evaluation
metrics defined in IV-E.

RQ1: LLM Performance. Table II shows the results of
various LLMs across multiple datasets, highlighting how
both model and dataset choice significantly affect results.
Notably, no single model consistently outperforms others
across all considered methods. In general, larger models such
as Phi3-mini (3.8B) and Llama-3 (8B) perform better than
the smaller Qwen-2.5 (1.5B), suggesting that model size may
affect the performance. Similarly, in the Alstom datasets,
Phi3-mini outperforms other models with the highest
F1-score on AlstomProjectA (67.1%) and AlstomProjectB
(75.2%), both with 10-shot semantic selection. However,
Qwen-2.5, despite its smaller size, achieved superior results
under specific configurations. Notably, on the AlstomProjectA
dataset with a 10-shot semantic selection, Qwen-2.5 resulted
in an F1-score of 72.9%, outperforming Llama-3 (8B),
which scores 66.5%.

To further assess the effect of model choice on
performance, we applied the Friedman test to the weighted
F1 scores obtained across three datasets given seven prompt
configurations, resulting in 21 blocks, each containing the
three F1 scores of the models for a specific dataset–method
pairing. The test revealed statistically significant differences
in performance between model sizes, p < 0.05. Further,
post-hoc Nemenyi comparisons showed that Qwen-2.5
performed significantly worse than both Phi3-mini and
Llama-3 This could be influenced by the more limited size
of Qwen-2.5. However, the performance of Phi3-mini and

7https://huggingface.co/sentence-transformers

Llama-3 did not differ significantly despite their difference in
size, suggesting that model size alone does not determine
performance, and prompt design and dataset characteristics
could also play critical roles.

Answer to RQ1. No single model consistently
outperforms the rest across all considered datasets and
configurations. Although larger models (Phi3-mini and
Llama-3) tend to show better performance, factors
like prompt configuration and domain-specific dataset
characteristics may influence the overall performance.

RQ2: Demonstration Quantity. Table II shows that in
general, the increase in the number of demonstration
examples improves the in-context learning performance
across the models and datasets. For instance, on the
Westermo dataset, Llama-3 achieves an F1 score of 61.3%
without any requirement demonstrations (0-shot), which
improves to 68.6% once ten randomly selected
demonstrations are used. A similar trend is observed in the
AlstomProjectA and AlstomProjectB datasets, where Llama-3
achieves F1 scores of 56.0% and 63.1% without
demonstration examples and with ten randomly selected
examples, the scores improved to 61.3% and 72.6%,
respectively. These findings are consistent with existing work
[14], which suggests that inferring LLMs with more
in-context learning demonstrations often improves
performance.

To evaluate the statistical significance of the demonstration
quantity effect on performance, we conducted a Friedman
test across nine model-dataset combinations (blocks), each
consisting of four levels (0-shot, 1-shot, 5-shot, and 10-shot).
For each block, F1 scores were averaged across
demonstration selection variants (i.e., random and semantic)
within the same shot level to focus the analysis specifically
on the impact of demonstration quantity. The Friedman test
showed a statistically significant impact (p < 0.05) of
demonstration quantity on performance, indicating that the
number of in-context demonstrations greatly influences F1
scores across all considered models and datasets. The
follow-up Nemenyi post-hoc test showed that only the
pair-wise comparisons between 10-shot vs. 0-shot and
10-shot vs. 1-shot achieved statistical significance. This
suggests that the differences between lower shot counts (0, 1,
5) are not significantly different across all settings, while
most of the performance gain comes from increasing the
demonstration count to ten8.

8Although the statistical difference between between five and ten examples
is not significant, the results in Table II suggest that the use of ten examples
lead to higher performance for most of the cases.

https://huggingface.co/sentence-transformers

Answer to RQ2. While the performance of LLMs
improves with additional in-context demonstrations,
only the 10-shot setting produced statistically
significant gains. This suggests that, in our case,
the models require around ten examples to achieve
consistent improvements.

RQ3: Demonstration Selection. The comparative analysis
in Table II indicates that the effectiveness of demonstration
selection techniques—random and semantic—varies with the
number of demonstrations provided to the model. In the
1-shot setting, the semantic selection shows a slight
advantage over random selection in specific cases. For
instance, the Qwen-2.5 model for the Westermo dataset
improved the F1 score from 47.1% (random) to 52.2%
(semantic). Similarly, for Phi3-mini on AlstomProjectA, the
semantic demonstration selection achieves a considerable
improvement from 60.0% (random) to 63.4%. However, this
improvement is not consistent across all datasets or models.
Notably, the Llama-3 model shows the opposite pattern on
AlstomProjectB, where random selection achieves a
significantly higher F1 score of 75.8% compared to 70.3%
score from semantic selection. As the number of
demonstrations increases to five, the performance differences
between selection techniques continue to vary across models
and datasets. For Qwen-2.5 on AlstomProjectA, the semantic
selection technique provides a slight improvement of F1
score 58.2% over random 56.6%. Phi3-mini shows a clear
advantage with semantic selection, achieving higher F1
scores on both AlstomProjectA, increasing from 61.9% to
67.4%, and AlstomProjectB, rising from 70.6% to 71.6%.
However, for Llama-3 on the AlstomProjectB dataset, the F1
score drops significantly from 70.4% with random selection
to 61.8% with semantic selection. With 10 demonstrations,
the Phi3-mini model achieves higher F1 scores with
semantic selection, reaching 67.1% on AlstomProjectA
compared to 64.3% with random selection, and 75.2% on
AlstomProjectB compared to 72.0%. In contrast, Qwen-2.5
performs better with random selection on the Westermo
dataset, achieving 64.3%, while semantic selection yields
57.8%. Similarly, Llama-3 consistently favors random
selection, particularly on AlstomProjectB, where it achieves
72.6% F1 score compared to semantic selection score of
66.5%. These findings suggest that while semantic-based
technique can enhance performance in multiple cases, its
impact remains varying across all models and datasets.

To further analyze the statistical significance, we
performed the Wilcoxon signed-rank test to determine
whether the choice of demonstration selection strategy affects
the F1 performance across all considered configurations. The
test, based on 27 paired comparisons, revealed no statistically
significant difference (p > 0.05), indicating that the
semantic-based demonstration selection neither consistently
outperforms nor underperforms random selection.

Criterion
Westermo AlstomProjectA AlstomProjectB

µ σ µ σ µ σ

Naturalness 4.34 0.80 4.28 1.06 3.65 1.50

Adequacy 4.34 1.13 3.91 1.19 3.82 1.32

Usefulness 3.26 1.33 3.52 1.38 3.28 1.45

Relevance 4.08 1.19 3.97 1.15 3.60 1.32

TABLE III: Human evaluation results
*µ=average; σ=standard deviation

Answer to RQ3. No single demonstration selection
strategy consistently outperformed the other across
all configurations. The effectiveness of demonstration
selection is influenced by how each model represents
and processes semantic information, as well as by
the characteristics of the dataset, such as domain
specificity.

RQ4: Human Evaluation. We conducted a human
evaluation using a five-point Likert scale to assess the quality
of LLM-generated explanations and gain practical insights. A
20% of the generated explanations—including both true
positives and false positives9—from each test dataset were
selected and rated by domain experts based on predefined
evaluation criteria, and also provided qualitative feedback on
these instances. We randomly sample the instances for
evaluation because (i) no single model consistently
outperformed others across datasets or metrics and (ii) in the
absence of ground truth rationales for requirement labels,
cross-sampling across models is valuable for capturing
diverse reasoning strategies that can guide future
improvements in prompt tuning. Table III presents the
descriptive statistics from the study for each dataset. For
discussion, we report the weighted averages µ and standard
deviations (σ) aggregated across all datasets. The weighted
scores are calculated due to the varying number of evaluators
(total 8): Westermo (3 evaluators), AlstomProjectA (5
evaluators), AlstomProjectB (4, shared with AlstomProjectA). The
results are as follows: Naturalness µ(σ) = 4.08 (1.21),
Adequacy µ(σ) = 3.99 (1.24), Usefulness µ(σ) = 3.38 (1.40),
and Relevance µ(σ) = 3.87 (1.24).

Naturalness. Practitioners rated the naturalness of LLM
responses positively with a µ of 4.08, indicating that outputs
were generally fluent and easy to comprehend. However, the
σ of 1.21 indicates moderate variability, suggesting a few
inconsistencies regarding the clarity of specific outputs.

Adequacy. µ = 3.99 shows that practitioners generally
agree that the provided rationales are comprehensive and
information-rich, effectively supporting the classification
decisions. The σ = 1.24 suggests variability among experts,
with specific explanations missing relevant details. This is
particularly evident in Alstom projects (weighted σ = 1.25),

9Previous studies observed that even in presence of false positives, experts
can have insight on ambiguities that they did not previously considered [39].

where experts noted insufficient justification for the given
query requirement and its generated classification label.

Usefulness. µ = 3.38 shows experts found the explanations
satisfactory for informed decision-making. However, the high
σ = 1.40 reflects considerable variation in expert responses,
indicating that while some found the outputs practically
helpful, others noticed limited value. In this regard, there is
still a need to improve the usefulness of the generated
responses.

Relevance. µ = 3.87 suggests that experts found the
generated responses reasonably aligned and relevant to their
queries. However, the notable variability σ = 1.24 suggests
differences in experts’ perceptions of relevance, with some
experts noting only partial alignment or insufficient
context-specific relevance in certain instances.

Answer to RQ4. Domain experts perceive LLM-
generated explanations as linguistically natural,
adequate, and relevant. However, the low usefulness
ratings suggest shortcomings in the explanations and
highlight the need for better contextual alignment with
domain specificity.

VI. EXPERT FEEDBACK

Domain experts reviewed the results of our case study on
requirements ambiguity detection, providing detailed analysis
and feedback to guide future improvements. In this section,
we present a brief qualitative analysis of their responses to
discuss the implications of our study.

Insights into the Variability of Standards Interpretation.
The experts pointed out the variability in the interpretation of
standards, noting that only referencing them in requirements
is often insufficient because standards themselves can be
broad, complex, and open to interpretation. The LLMs
frequently accepted references to standards without verifying
the relevance or completeness of the cited information. An
expert emphasized this issue, stating, “Standards-compliance
is a very tricky topic... [The LLM] just saying that the
standard is ‘well-defined’ is not good enough,” in response
to the LLM’s justification for classifying a requirement as
unambiguous. Similarly, in another instance, the LLM failed
to identify ambiguity when a requirement referenced a
standard but did not specify the details for compliance
testing. The expert noted, “What test levels are required?
The Requirement specifies a standard but not what test levels
to comply to”, showing that referencing standards alone can
still result in unclear requirements.

Furthermore, the reviewers concerns suggest that standards
often require careful, clause-by-clause reading to ensure that
requirements fully capture necessary constraints, a level of
analysis that LLMs consistently failed to achieve. In this
regard, retrieval-augmented generation (RAG) [13]
techniques can be employed to access the standard document
relevant to a specific requirement, enabling LLMs to retrieve
necessary details for more informed analysis.

On the importance of Domain-Specific and Contextual
Knowledge. The experts emphasized the need for
domain-specific and contextual knowledge to interpret and
evaluate requirements accurately. In this regard, experts
mentioned multiple instances where incompleteness or
inaccuracy of generated rationales was due to the model’s
limited understanding of industry terminology, relevant
standards, and operational context. For instance, an expert
from Westermo noted that a rationale related to railway
standard “IEC 61375-2-5 ETB physical train naming
convention” overlooked the specifications “...defined in the
61375-standard that the AI does not seem to know,” showing
the model’s lack of familiarity with essential domain-specific
concepts. Similarly, experts from Alstom also pointed out
that specific terminologies in requirements, such as grease
free chains, single failure, and rising edge, which are
ambiguous to model, have well-established meanings within
the domain, often defined by industry standards.

These insights emphasize the need to incorporate domain-
specific information into the LLM’s knowledge base, which
further improves its reasoning capabilities and, in turn, the
practical utility of the models within specialized domains. This
problem has been also observed by other authors who used
LLMs for model generation from requirements [40].

Reasoning quality and human-like judgments. In
addition to acknowledging the limitations of language
models in standard interpretation and domain-specific
knowledge, industry experts consistently highlighted LLMs
strong logical reasoning and human-like judgment in
classifying requirements. One reviewer observed that, even
when the LLM initially misclassified a requirement as
ambiguous, its detailed rationale was often persuasive
enough to change their judgment, “I felt that this
[requirement] was unambiguous, but reading the response
from the LLM, I agree that it’s somewhat ambiguous... the
motivation is very good, and could have come from a
colleague.” Similarly, the LLMs were further commended by
reviewers for identifying poor requirement formulations,
including ambiguous phrases (e.g., “provide to ensure”),
non-quantifiable terms (e.g., “minimized”), and logical
inconsistencies (e.g., mixing WHEN conditions with THEN
actions), and particularly noted their precision in handling
ambiguous constructs (e.g., “at least,” “preferably”).

In our context, although LLMs exhibit domain-specific
limitations, experts value them for their ability to detect
structural inconsistencies and well-formulated reasoning.

VII. RELATED WORK

There is a substantial body of literature on requirements
ambiguities—often referred to as smells [41] or
defects [39]—and on approaches for automatic ambiguity
detection [11]. A seminal work is the handbook by Berry et
al. [42], which discusses the different types of ambiguities
(i.e., lexical, syntactic, semantic, pragmatic), and provides
extensive examples. Other theoretical contributions are those
by Gervasi et al. [43], providing a unifying framework for

ambiguity in requirements specifications and interviews, and
a recent chapter of the Handbook of Natural Language
Processing for Requirements Engineering [44], which gives
an overview of the established concepts and recent works.

Several tools and solutions have been developed to detect
ambiguities. Part of them use rule-based or heuristic NLP
approaches, while others propose machine learning
techniques, including language models (LMs).

The first group includes tools like QuARS [45] and
SREE [46], which are based on the automatic identification
of ambiguous keywords or key-phrases in the requirements
text (e.g., pronouns, adverbs, the terms all and as possible,
etc.). With a more sophisticated approach, Chantree et
al. [47] propose a set of heuristics to detect coordination
ambiguities, which occur when words such as and or or are
used, while other works, e.g., [48], [49], adopted knowledge
graphs and search algorithms to detect pragmatic
ambiguities, i.e., those occurring when the interpretation of
the requirements depends on the context. Some industrial
works have also been published using rule-based and
heuristic approaches, such as Ferrari et al. [39], with an
application in the railway domain, and Femmer et al. [41],
who introduced the Smella tool and applied it to
requirements in the automotive sector. More recently,
Veizaga et al. [10] proposed Paska, a tool that uses
rule-based NLP techniques combined with a controlled
natural language to detect requirements smells, and applied
the tool to the financial domain.

Among the works using machine learning solutions, Yang
et al. [6] use a set of heuristics combined with the k-nearest
neighbour algorithm to discover anaphoric ambiguities, i.e.,
those associated with pronouns such as it, they, etc. Bequiri
et al. [50] propose a combination of NLP techniques and
traditional machine learning algorithms for the detection of
ambiguity in the railway domain, and include a module to
support understanding of the words that could cause
ambiguity. Another line of work from Ferrari and
colleagues [21], [51], [52] uses LMs based on word
embeddings to discover pragmatic ambiguities, with a
particular focus on those ambiguities that can emerge when
two readers belong to different domains. Ezzini et al. [9]
uses a combination of machine learning solutions and LMs,
i.e., BERT, for the detection of anaphoric ambiguities. Still
with a focus on anaphoric ambiguities, Yildrim et al. [53] is
one of the first works that employs generative LLMs to
address the ambiguity problem in RE, showing that these
solutions outperform more traditional classifiers.

Our research belongs to the group of approaches using
machine learning and (L)LM-based solutions. The most
similar works to ours are those by Yildrim et al. [53], using
LLMs, and by Beqiri et al. [50], providing some forms of
explanations for the ambiguities. Compared to Yildrim et
al. [53], which focuses on anaphoric ambiguities only, we (i)
address a broader perspective, (ii) consider an industrial case,
and (iii) leverage LLMs to also provide explanations of the
ambiguities, besides detection. Compared to Beqiri et

al. [50], our explanations are not simply based on keywords,
but are more articulated, human-like expressions. Overall, to
our knowledge, this is the first contribution that: compares
different LLMs; provides support for ambiguity explanation;
considers an industrial case study; and includes an evaluation
with practitioners.

VIII. THREATS TO VALIDITY

Internal Validity. To address the variability introduced by
LLM sampling and demonstration selection, we repeat each
experiment three times using stratified random data splits
and report average scores. Furthermore, we implemented our
approach using standard libraries for both development and
metric computation, and engaged multiple domain experts to
evaluate the results independently. A common internal
validity threat when using open-source LLMs is data
leakage, as they may have been trained on publicly available
data. However, our use of proprietary industrial
datasets—–which are not accessible online—–eliminates this
risk, making model familiarity with our data highly unlikely.

External Validity. Generalization is a known challenge in
industry-driven research such as ours. While our results are
based on two industrial datasets from Alstom and one from
Westermo, thus covering multiple companies, they may not
be generalizable beyond the studied contexts. Nevertheless,
following case-based generalization principles [54], our
findings could be transferable to similar domains, such as the
railway and automotive industries.

IX. CONCLUSION AND FUTURE DIRECTIONS

Detecting ambiguities in requirements and resolving them
with multiple stakeholders is a common challenge and
practice in large-scale companies to avoid project scope
creep. Recent advances in LLMs provide support for this
task due to their effective understanding with few examples
and adaptability across datasets. However, there is limited
empirical evidence on the performance of LLMs using
in-context learning in industrial settings. In this paper, we
present an empirical analysis across three industrial datasets
to evaluate different configurations and measure the
performance of LLMs in detecting ambiguities in
requirements. Our results show that LLMs achieve
competitive classification performance when provided with
sufficient few-shot in-context demonstrations and generate
explanations that practitioners find useful for clarifying and
making well-informed decisions.

In the future, we aim to improve our approach by
addressing the limitations identified by domain experts, with
a focus on retrieving relevant, domain-specific glossaries and
standards to improve the performance of LLMs.

Acknowledgement. This research has been partially
supported by the KKS INDTECH industrial school (Grant
No. 20200132) at MDU and by the AIDOaRt (Grant No.
101007350) and MATISSE (Grant No. 101140216) projects
under the KDT program.

REFERENCES

[1] S. Bashir, M. Abbas, M. Saadatmand, E. P. Enoiu, M. Bohlin, and
P. Lindberg, “Requirement or not, that is the question: A case from the
railway industry,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 2023, pp.
105–121.

[2] D. M. Berry, E. Kamsties, and M. M. Krieger, “From contract drafting
to software specification: Linguistic sources of ambiguity,” A Handbook,
2003.

[3] D. M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra,
A. Vetrò, T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius et al.,
“Naming the pain in requirements engineering: Contemporary problems,
causes, and effects in practice,” Empirical software engineering, vol. 22,
pp. 2298–2338, 2017.

[4] A. Bajceta, M. Leon, W. Afzal, P. Lindberg, and M. Bohlin, “Using
NLP tools to detect ambiguities in system requirements-a comparison
study.” in REFSQ Workshops, 2022.

[5] G. Lami, QuARS: A tool for analyzing requirements. Carnegie Mellon
University, Software Engineering Institute, 2005.

[6] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language requirements,”
Requirements engineering, vol. 16, pp. 163–189, 2011.

[7] S. Alharbi, “Ambiguity detection in requirements classification task
using fine-tuned transformation technique,” in CS & IT Conference
Proceedings, vol. 12, no. 21. CS & IT Conference Proceedings, 2022.

[8] A. Moharil and A. Sharma, “Tabasco: A transformer based
contextualization toolkit,” Science of Computer Programming, vol. 230,
p. 102994, 2023.

[9] S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, “Automated
handling of anaphoric ambiguity in requirements: a multi-solution
study,” in Proceedings of the 44th international conference on software
engineering, 2022, pp. 187–199.

[10] A. Veizaga, S. Y. Shin, and L. C. Briand, “Automated smell detection and
recommendation in natural language requirements,” IEEE Transactions
on Software Engineering, vol. 50, no. 4, pp. 695–720, 2024.

[11] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-
V. Chioasca, and R. T. Batista-Navarro, “Natural language processing
for requirements engineering: A systematic mapping study,” ACM
Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–41, 2021.

[12] M. Luo, X. Xu, Y. Liu, P. Pasupat, and M. Kazemi, “In-context learning
with retrieved demonstrations for language models: A survey,” arXiv
preprint arXiv:2401.11624, 2024.

[13] M. S. Ibtasham, S. Bashir, M. Abbas, Z. Haider, M. Saadatmand, and
A. Cicchetti, “Reqrag: Enhancing software release management through
retrieval-augmented llms: An industrial study,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2025, pp. 277–292.

[14] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and
X. Liao, “Large language models are few-shot summarizers: Multi-intent
comment generation via in-context learning,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024, pp.
1–13.

[15] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu,
B. Chang et al., “A survey on in-context learning,” in Proceedings
of the 2024 Conference on Empirical Methods in Natural Language
Processing, 2024, pp. 1107–1128.

[16] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[17] K. E. Wiegers and J. Beatty, Software requirements. Pearson Education,
2013.

[18] J. Dick, E. Hull, and K. Jackson, Requirements engineering. Springer,
2017.

[19] D. M. Berry and E. Kamsties, “Ambiguity in requirements specification,”
in Perspectives on software requirements. Springer, 2004, pp. 7–44.

[20] A. K. Massey, R. L. Rutledge, A. I. Antón, and P. P. Swire, “Identifying
and classifying ambiguity for regulatory requirements,” in 2014 IEEE
22nd international requirements engineering conference (RE). IEEE,
2014, pp. 83–92.

[21] A. Ferrari and A. Esuli, “An NLP approach for cross-domain
ambiguity detection in requirements engineering,” Automated Software
Engineering, vol. 26, no. 3, pp. 559–598, 2019.

[22] M. Abbas, S. Bashir, M. Saadatmand, E. P. Enoiu, and D. Sundmark,
“Requirements similarity and retrieval,” in Handbook on Natural
Language Processing for Requirements Engineering. Springer, 2025,
pp. 61–88.

[23] S. Bashir, M. Abbas, A. Ferrari, M. Saadatmand, and P. Lindberg,
“Requirements classification for smart allocation: A case study in
the railway industry,” in 2023 IEEE 31st International Requirements
Engineering Conference (RE). IEEE, 2023, pp. 201–211.

[24] A. Plaat, A. Wong, S. Verberne, J. Broekens, N. van Stein, and T. Back,
“Reasoning with large language models, a survey,” arXiv preprint
arXiv:2407.11511, 2024.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 conference of the North American chapter of the
association for computational linguistics: human language technologies,
volume 1 (long and short papers), 2019, pp. 4171–4186.

[27] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[29] Q. Chen, L. Qin, J. Liu, D. Peng, J. Guan, P. Wang, M. Hu, Y. Zhou,
T. Gao, and W. Che, “Towards reasoning era: A survey of long
chain-of-thought for reasoning large language models,” arXiv preprint
arXiv:2503.09567, 2025.

[30] X. ZHAO, J. LU, C. DENG, C. ZHENG, J. WANG, T. CHOWDHURY,
L. YUN, H. CUI, Z. XUCHAO, T. ZHAO et al., “Beyond one-model-
fits-all: A survey of domain specialization for large language models,”
arXiv preprint arXiv, vol. 2305, 2023.

[31] A. Edwards and J. Camacho-Collados, “Language models for
text classification: Is in-context learning enough?” arXiv preprint
arXiv:2403.17661, 2024.

[32] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li,
X. Wang, M. Dehghani, S. Brahma et al., “Scaling instruction-finetuned
language models,” Journal of Machine Learning Research, vol. 25,
no. 70, pp. 1–53, 2024.

[33] X. Guo and S. Vosoughi, “Serial position effects of large language
models,” arXiv preprint arXiv:2406.15981, 2024.

[34] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[35] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction tuning for large language models:
A survey,” arXiv preprint arXiv:2308.10792, 2023.

[36] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei et al., “Qwen2. 5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

[37] Z. Li, Y. Liu, Y. Su, and N. Collier, “Prompt compression for large
language models: A survey,” arXiv preprint arXiv:2410.12388, 2024.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[39] A. Ferrari, G. Gori, B. Rosadini, I. Trotta, S. Bacherini, A. Fantechi,
and S. Gnesi, “Detecting requirements defects with NLP patterns:
an industrial experience in the railway domain,” Empirical Software
Engineering, vol. 23, no. 6, pp. 3684–3733, 2018.

[40] A. Ferrari, S. Abualhaijal, and C. Arora, “Model generation with llms:
From requirements to uml sequence diagrams,” in 2024 IEEE 32nd
International Requirements Engineering Conference Workshops (REW).
IEEE, 2024, pp. 291–300.

[41] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” Journal of Systems and Software,
vol. 123, pp. 190–213, 2017.

[42] A. Handbook, “From contract drafting to software specification:
Linguistic sources of ambiguity,” 2003. [Online]. Available: /https:
//cs.uwaterloo.ca/∼dberry/handbook/ambiguityHandbook.pdf

[43] V. Gervasi, A. Ferrari, D. Zowghi, and P. Spoletini, “Ambiguity
in requirements engineering: Towards a unifying framework,” From
Software Engineering to Formal Methods and Tools, and Back: Essays
Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday, pp.
191–210, 2019.

/https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
/https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

[44] D. M. Berry, E. Kamsties, C. Ribeiro, and S. F. Tjong, “Detecting
defects in natural language requirements specifications,” in Handbook on
Natural Language Processing for Requirements Engineering. Springer,
2025, pp. 117–151.

[45] A. Bucchiarone, S. Gnesi, G. Lami, G. Trentanni, and A. Fantechi,
“Quars express-a tool demonstration,” in 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2008, pp. 473–474.

[46] S. F. Tjong and D. M. Berry, “The design of sree—a prototype potential
ambiguity finder for requirements specifications and lessons learned,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2013, pp. 80–95.

[47] F. Chantree, B. Nuseibeh, A. De Roeck, and A. Willis, “Identifying
nocuous ambiguities in natural language requirements,” in 14th IEEE
International Requirements Engineering Conference (RE’06). IEEE,
2006, pp. 59–68.

[48] A. Ferrari, G. Lipari, S. Gnesi, and G. O. Spagnolo, “Pragmatic
ambiguity detection in natural language requirements,” in 2014 IEEE
1st International Workshop on Artificial Intelligence for Requirements
Engineering (AIRE). IEEE, 2014, pp. 1–8.

[49] A. Ferrari and S. Gnesi, “Using collective intelligence to detect
pragmatic ambiguities,” in 2012 20th IEEE International Requirements

Engineering Conference (RE). IEEE, 2012, pp. 191–200.
[50] L. Beqiri, C. S. Montero, A. Cicchetti, and A. Kruglyak, “Classifying

ambiguous requirements: An explainable approach in railway industry,”
in 2024 IEEE 32nd International Requirements Engineering Conference
Workshops (REW). IEEE, 2024, pp. 12–21.

[51] A. Ferrari, B. Donati, and S. Gnesi, “Detecting domain-specific
ambiguities: an NLP approach based on wikipedia crawling and word
embeddings,” in 2017 IEEE 25th international requirements engineering
conference workshops (REW). IEEE, 2017, pp. 393–399.

[52] A. Ferrari, A. Esuli, and S. Gnesi, “Identification of cross-domain
ambiguity with language models,” in 2018 5th international workshop
on artificial intelligence for requirements engineering (AIRE). IEEE,
2018, pp. 31–38.

[53] S. Yildirim, G. Malik, M. Cevik, and A. Başar, “Anaphora resolution
in software requirements engineering: A comparison of generative
NLP pipelines and encoder-based models,” in 2024 34th International
Conference on Collaborative Advances in Software and COmputiNg
(CASCON). IEEE, 2024, pp. 1–6.

[54] R. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Science of computer programming, vol. 101, pp.
136–152, 2015.

	Introduction
	Background
	Requirements Ambiguity
	Large Language Models (LLMs)
	In-Context Learning

	Approach
	Prompt template Creation
	Requirement Demonstration Retrieval
	LLM-based Ambiguity Detection

	Evaluation
	Study Context
	Research Questions
	Data collection & Preparation
	Experimental Setup
	Evaluation Metrics
	Implementation

	Results and Discussion
	Expert Feedback
	Related Work
	Threats to Validity
	Conclusion and Future Directions
	References

